Assignment 11 - Classical Mechanics 5103 11/10/16: Unit 4 thru Ch. 4.2. Due Thur. Nov. 17

Exercise 4.2.4 DC G-response of FDHO

DC response $G_{\omega_0}(0)$ is the amplitude caused by a unit acceleration (a=1) at zero stimulus frequency. This may be confusing since there is no acceleration at zero frequency. A clearer definition of $G_{\omega_0}(0)$ is response to a static force of magnitude F = ma = m acting on mass m. Show this $G_{\omega_0}(0)$ is consistent with the spring force equation (4.2.2) and Hooke's Law.

Exercise 4.2.5 Resonant G-response of FDHO

Resonant response $G_{\omega_0}(\omega_0)$ is the amplitude caused by a unit acceleration amplitude (|a(t)|=1) or force amplitude (|F(t)|=m) at resonance $(\omega_s = \omega_0)$. Compute $G_{\omega_0}(\omega_0)$ and show it is consistent with drag force (4.2.3). Work done by this goes where?

Exercise 4.2.6 The "standard" Lorentzian (Note: Review complex 2-pole potential $\phi(z) = 1/z$ (10.42) *in Unit 1-Ch. 10 Fig. 10.11.)* In physics literature, a standard Lorentzian function generally means a form $L(\Delta) = A/(\Delta^2 + A^2)$ with constant *A*. In the Near-Resonant Approximation (NRA is (4.2.18)) the $L(\Delta)$ or its derivative is an approximation to exact *G*-equations (4.2.15).

(a) Use NRA (4.2.18) to reduce (4.2.15a-d) and identify a standard Lorentzian function of the detuning parameter $\Delta = \omega_s - \omega_0$.

(b) Show that NRA for complex response G=Re G +iIm G gives circular arcs in the complex $\omega = |\omega|e^{i\theta} = \Delta +i\Gamma$ plane for constant decay rate Γ and variable detuning or beat rate Δ . How does this circle deviate from what is almost a circle in Fig. 4.2.6? (Consider higher Γ values for which NRA breaks down such as Fig. 4.2.14.) Fixed Δ and varying Γ give what curve?

(c) Verify and do ruler-and-compass constructions of NRA Lorentz-Green functions following the figures below.

Exercise 4.2.7 Max and min G-values (Part (b-c) involves some algebra!)

Derive equations for the extreme values for the response function or function related to G as asked below.

For part (a) only use Near-Resonant Approximation (NRA): See preceding Ex. 4.2.6.

(a) Find values which give maxima for: $\operatorname{Re} G_{\omega_0}(\omega_s)$, $\operatorname{Im} G_{\omega_0}(\omega_s)$, and $|G_{\omega_0}(\omega_s)|$ assuming ω_0 is constant and ω_s varies. (a) Find values which give maxima for: $\operatorname{Re} G_{\omega_0}(\omega_s)$, $\operatorname{Im} G_{\omega_0}(\omega_s)$, and $|G_{\omega_0}(\omega_s)|$ assuming ω_s is constant and ω_0 varies.

(b) Do (a) for *exact* $G_{\omega_0}(\omega_s)$. Exact plots by calculator help check these answers.

(c) Find exact value to maximize peak KE of responding oscillator.(1st show total $KE = \frac{1}{2} m\omega^2 A^2$ for oscillation of amplitude A.)

Exercise 4.2.8 Lifetimes

Compare the number of heartbeats in your lifetime (assuming you live to a ripe old age of 100 years) to the number of oscillations in atomic and molecular lifetimes given below. (First, estimate your own angular quality factor *q*.)

Typical atomic <u>energy</u> decay time is $t_{5\%} = 3/\Gamma = 3.4 \times 10^{-8} s$ for a green spectral 600Thz line. Compute atomic q and Q.

Optional Exercise 4.2.9 Initializing

Derive the initial transient components Re *A* and Im *A* in terms of initial values $x_0 = x(0)$, $v_0 = \dot{x}(0)$ of stimulated FDHO, response magnitude $R = |G_{\omega_0}(\omega_s)|$, initial stimulus $a(0) = |a| e^{i\alpha}$, Γ , ω_{Γ} , and ρ .

(Check that your total solution (4.2.25) does satisfy the initial conditions.)

Exercise 4.2.10 Wiggling Old-Main lamp posts (Don't do a lot of algebra for this one!)

Let a static force of *10N* on a lamp post cause it to bend *1cm*. Upon release it vibrates at ω_{Γ} for a minute before its amplitude dies to less than 5%. Estimate ω_0 , Γ , and q and how much it bends 1 minute after a 1 Hz oscillating force of ±1N starts. What is the bending after 2 minutes? Do this quickly by reasoning using q-factor properties and 5% mnemonics. (Points-off for too much algebra!)

Exercise 4.2.11 Timing is everything! (A formula to remember)

(a) Let oscillating force $F(t) = F_s cos\omega t$ act on a mass whose response $x(t) = Gcos(\omega t - \rho)$ also is frequency ω but with a amplitude *G* and a phase lag of ρ . Derive a formula for the work loop integral $W = \oint F dx$ for exactly one period of oscillation. Discuss how result relates to work done against friction in a FDHO. (Recall Ex. 4.2.5.)

(b) Let oscillations x_1 and x_2 have amplitude A but x_1 lags x_2 by phase ρ . Show by geometry (below) an x_1 vs. x_2 path is an ellipse of major axis $a=A\sqrt{2}\cos(\rho/2)$ and $b=A\sqrt{2}\sin(\rho/2)$ and area W=_____. Compare this W to loop work derived in part (a). Construct example for $\rho=60^\circ$.

