

► Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation Learning about sin! and cos and...

Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation *Learning about sin and cos and...*

Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

<u>Two Famous-Name Coe</u> Review of Lect. 30 p.106	<u>effici</u>	<u>ents</u>	$\frac{Time}{(unit)}$ $\lambda_A = 1/2$	e ct' s of 2μm)	2		Her Min 180	rman 1kowski 54-1909	Λ
Albert Einstein 1859-1955					1.5				
This number	/					v'_{phase} =	-1.25		
time-dilation					-0//			Sr	ace x'
(dilated by 25% here)				\sim			1	S P (1	units of
This number					$\mathcal{N}_{group}=$	0.8		λ_A	$=1/2\mu m$)
is called a:Lorentz			1/1						
length-contraction			-0.5		0	5		1.5	
(contracted by 20% here)	phase	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_{A}}$	$rac{{ au _{phase}}}{{ au _A}}$	$v_{phase} u_A$	$rac{\lambda_{phase}}{\lambda_A}$	$rac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
Hendrik A. Lorentz 1853-1928	group	$\frac{1}{b_{BLUE}^{Doppler}}$	V _{group}	$rac{oldsymbol{v}_{group}}{oldsymbol{v}_A}$	$\left(\begin{array}{c} \lambda_{group} \\ \lambda_A \end{array} \right)$	$rac{\kappa_{group}}{\kappa_A}$	$rac{oldsymbol{ au}_{group}}{oldsymbol{ au}_{A}}$	$\frac{c}{V_{group}}$	$rac{1}{b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}}$
	rapidity ρ	$e^{-\rho}$	anh ho	$\sinh ho$	$\operatorname{sech}\rho$	$\cosh \rho$	$\mathrm{csch} ho$	$\operatorname{coth} \rho$	$e^{+ ho}$
<u>Old-Fashioned Notation</u>	$\beta \equiv \frac{u}{2}$	$\sqrt{\frac{1-\beta}{1+\beta}}$	$\frac{\beta}{1}$	$\frac{1}{\sqrt{2r^2-1}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\alpha^2}}$	$\sqrt{\beta^{-2}-1}$	$\frac{1}{\rho}$	$\sqrt{\frac{1+\beta}{1-\beta}}$
RelaWavity Web Simulation - Relativistic Terms	<i>C</i>	γ 1+ <i>β</i>	1	$\sqrt{\beta^{-2}-1}$		$\sqrt{1-\beta^2}$	I	p	γ1- <i>p</i>
<u>(Expanded Table)</u>	value for β=3/5	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4} = 0.75$	$\frac{4}{5} = 0.80$	$\frac{5}{4} = 1.25$	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1}$ =2.0

Per-space-time parameters

 $c\kappa_{phase} = c\kappa_A \sinh\rho$

 $c\kappa_{group} = c\kappa_A \cosh\rho$

 $v_{phase} = v_A \cosh \rho$

 $v_{group} = v_A \sinh \rho$

 V_{phase}

С

С

V_{group}

 $\operatorname{coth} \rho$

 $\csc\sigma$

1 $\overline{\beta}$

 $\frac{5}{3}$ =1.67

 V_{phase}

 $b_{BLUE}^{Doppler}$

1

 $b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$

 $e^{+\rho}$

 $1/e^{-\rho}$

|1+β

 $\sqrt{1-\beta}$

 $\frac{2}{1} = 2.0$

 $b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$

 au_{group}

 au_{A}

 λ_{phase}

 λ_{A}

 $\operatorname{csch}\rho$

 $\cot \sigma$

 $\sqrt{\beta^{-2}-1}$

 $\frac{4}{3} = 1.33$

asymmetry

inverse

 κ_{group}

 κ_A

 $\boldsymbol{v}_{\textit{phase}}$

 v_{A}

 $\cosh \rho$

 $\sec \sigma$

1

 $\sqrt{1-\beta^2}$

 $\frac{5}{4} = 1.25$

t-dilation^(Einstein)

 v_{phase} -dilation

Lorentz-transform)

(on-diagonal

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation *Learning about sin and cos and...* Derivation of relativistic quantum mechanics

Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Thur. 12.10.2015

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ-geometry connects to transverse circular σ-geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation Learning about sin! and cos and...

Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Comparing Longitudinal relativity parameter: Rapidity $\rho = \log_{e}(\text{Doppler Shift})$ to a <u>Transverse</u>*relativity parameter: Stellar aberration angle σ *Lewis Carroll Epstein, *Relativitätstheorie*, Birkhäuser, (2004) Earlier English version (1985)-

Comparing Longitudinal relativity parameter: Rapidity ρ = log_e(Doppler Shift) to a <u>Transverse</u>*relativity parameter: Stellar aberration angle σ *Lewis Carroll Epstein, *Relativitätstheorie*, Birkhäuser, (2004) Earlier English version (1985)-

Monday, December 21, 2015

15

Thur. 12.10.2015

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to *stellar aberration angle* σ and L. C. Epstein's approach to relativity

 Longitudinal hyperbolic ρ-geometry connects to transverse circular σ-geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ
 Applications to optical waveguide, spherical waves, and accelerator radiation *Learning about* sin! and cos and...

Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Monday, December 21, 2015

Lecture 31 Thur. 12.10.2015

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry

"Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation *Learning about* sin! and cos and...

Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Monday, December 21, 2015

Rapidity ρ related to *stellar aberration angle* σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ

► Applications to optical waveguide, spherical waves, and accelerator radiation Learning about sin! and cos and...

Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Optical wave guide relativistic geometry aided by Occam's Sword geometry applies to (x,y) space-space to (k_x,k_y) per-space-per-space to (x,ct) space-time

(a) Spherical wave pair In Alice-Carla frame

Also, aided by Occam's Sword

Lecture 31 Thur. 12.10.2015

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to *stellar aberration angle* σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ-geometry connects to transverse circular σ-geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation *Learning about* sin! *and* cos *and...*Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations

Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Learning about SIN

It's mostly about triangles and sine-waves

Learning about SIN and the COS in and TANgent and COT angent out an "Slope of INcline EL-5500Ⅲ COS tan log MATRIX STAT GUARD / AUTO POWER OFF 30° cos30° tan30° =0.870.50

It's mostly about triangles and sine-waves

Lecture 31 Thur. 12.10.2015

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation Learning about sin! and cos and...

Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Laser up-tuning by Alice and down-tuning by Carla makes *g*-acceleration grid Analysis of constant-*g* grid compared to zero-*g* Minkowsi grid Animation of mechanics and metrology of constant-g grid

Usi	ng (s	some	e) wa	ve pa	aram	eters	to de	evelo	p relativistic quantum theory
	υ _{phas} CK _{phas}	e = Bc se = Bs	$\cosh \rho$ $\sinh \rho$	$\approx \mathbf{B} + \frac{1}{2}$ $\approx \mathbf{B}\boldsymbol{\rho}$	<i>B</i> ρ ² (f (f	or $u \ll c$	c) c)	cosh <i>p</i> ≈] sinh <i>p≈j</i>	$B = v_A$ $B = v_A = c\kappa_A$
					At lo	ow spee	ds:		
group	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$\frac{V_{group}}{c}$	$rac{oldsymbol{\mathcal{V}}_{group}}{oldsymbol{\mathcal{V}}_A}$	$rac{\lambda_{group}}{\lambda_A}$	$\frac{\kappa_{g,oup}}{\kappa_{A}}$	$rac{ au_{group}}{ au_{A}}$	$rac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$	
phase	$\frac{1}{b_{BLUE}^{Doppler}}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_A}$	$rac{{m au}_{phase}}{{m au}_{A}}$	$\left(\begin{array}{c} \upsilon_{phase} \\ \upsilon_{A} \end{array} ight)$	$rac{\lambda_{phase}}{\lambda_A}$	$rac{c}{V_{group}}$	$\frac{1}{b_{RED}^{Doppler}}$	
rapidity ρ	$e^{- ho}$	$\tanh \rho$	$\sinh ho$	$\operatorname{sech} \rho$	$\cosh ho$	cschp	$\mathrm{coth}\rho$	$e^{+ ho}$	RelaWavity Web Simulation - Relativistic Terms
stellar \forall angle σ	$1/e^{+\rho}$	$\sin \sigma$	$\tan \sigma$	$\cos \sigma$	$\sec \sigma$	$\cot \sigma$	csc o	1/ <i>e</i> ⁻	<u>(Expanded Table)</u>
$\beta \equiv \frac{u}{c}$	$\sqrt{\frac{1-\beta}{1+\beta}}$	$\frac{\beta}{1}$	$\frac{1}{\sqrt{\beta^{-2}-1}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\beta^2}}$	$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\beta}$	$\sqrt{\frac{1+\beta}{1-\beta}}$	
value for β=3/5	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5}$ =0.80	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1} = 2.0$	

Usi	ng (s	some	e) wa	ve pa	aram	eters	to de	evelo	p relativisti	c quan	tum theory
	v_{phas}	e = Bc	$\cosh \rho$	$\approx B + \frac{1}{2}$	$B\rho^2$ (f	or $u \ll c$	c)	coshp≈∃	$1 + \frac{1}{2}\rho^2 \approx 1 + \frac{1}{2}\frac{u^2}{2}$		$B = v_A$
	CK phas	se = BS	$\sin \rho$	$\approx B\rho$	(I	or $u \ll c$	C)	sinh <i>ρ≈</i>	$D \approx \frac{u}{c}$		$B = v_A = c\kappa_A$
	$-\left(\frac{u}{c}\right)$	= ta	nh $ ho$	$\approx \rho$	(fe	or <i>u≪c</i>	c)		С		
	l				At lo	ow spee	ds: [!]				
Щ.					_						
	[<u> </u>				.				
group	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$\frac{V_{group}}{c}$	$\frac{v_{group}}{v_{\star}}$	$\frac{\lambda_{group}}{\lambda_{s}}$	$\frac{\kappa_{g,oup}}{\kappa_{A}}$	$rac{ au_{group}}{ au_{A}}$	V _{phase} C	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$			
nhasa	1	c	κ _{phase}	$ au_{phase}$	v _{phase}	λ_{phase}	c	1			
pnuse	$b_{\it BLUE}^{\it Doppler}$	V_{phase}	K _A	$ au_{\scriptscriptstyle A}$	υ_A	$\lambda_{_{A}}$	V_{group}	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$			
rapidity ρ	$e^{- ho}$	(tanh ρ)	$\sinh \rho$	$\operatorname{sech} \rho$	$\cosh \rho$	csch <i>p</i>	$\operatorname{coth} \rho$	$e^{+ ho}$			
stellar \forall angle σ	$1/e^{+\rho}$	$\sin \sigma$	$\tan \sigma$	$\cos \sigma$	$\sec \sigma$	$\cot \sigma$	$\csc\sigma$	1/ <i>e</i> ^{-p}			
β≡ <mark>″</mark>	$\sqrt{\frac{1-\beta}{1+\beta}}$	$\frac{\beta}{1}$	$\frac{1}{\sqrt{2}}$	$\frac{\sqrt{1-\beta^2}}{1}$	1	$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\alpha}$	$\sqrt{\frac{1+\beta}{1-\beta}}$			
С	γ I+β		$\frac{\sqrt{\beta^{-2}-1}}{2}$		$\sqrt{1-\beta^2}$	1	р 5	γ 1-β 2			
value for $\beta=3/5$	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4} = 0.75$	$\frac{4}{5} = 0.80$	$\frac{3}{4} = 1.25$	$\frac{4}{3} = 1.33$	$\frac{3}{3} = 1.67$	$\frac{2}{1} = 2.0$			

stellar \forall angle σ	$1/e^{+\rho}$	$\sin \sigma$	$ an \sigma$	$\cos\sigma$	$\sec \sigma$	$\cot \sigma$	$\csc\sigma$	$1/e^{-\rho}$
$\beta \equiv \frac{u}{c}$	$\sqrt{\frac{1-\beta}{1+\beta}}$	$\frac{\beta}{1}$	$rac{1}{\sqrt{eta^{-2}-1}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\beta^2}}$	$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\beta}$	$\sqrt{\frac{1+\beta}{1-\beta}}$
value for β=3/5	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5}$ =0.80	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1}$ =2.0

$$\begin{array}{c}
\upsilon_{phase} = B \cosh \rho \approx B + \frac{1}{2} B \rho^{2} (\text{for } u \ll c) \\
c\kappa_{phase} = B \sinh \rho \approx B \rho \\
\left(\text{for } u \ll c\right) \\
\hline
\upsilon_{phase} \approx B + \frac{1}{2} \frac{B}{c^{2}} u^{2} \\
\hline
\upsilon_{phase} \approx B + \frac{1}{2} \frac{B}{c^{2}} u^{2} \\
\hline
\upsilon_{phase} \approx B + \frac{1}{2} \frac{B}{c^{2}} u^{2} \\
\hline
\varepsilon & \text{for } (u \ll c) \Rightarrow \\
\hline
\kappa_{phase} \approx \frac{B}{c^{2}} u^{2}
\end{array}$$

$$\begin{array}{c}
c \cos h \rho \approx 1 + \frac{1}{2} \rho^{2} \approx 1 + \frac{1}{2} \frac{u^{2}}{c^{2}} \\
Sinh \rho \approx \rho \approx \frac{u}{c} \\
\hline
Sinh \rho \approx \rho \approx \frac{u}{c} \\
\hline
\kappa_{phase} \approx \frac{B}{c^{2}} u^{2}
\end{array}$$

$$\begin{array}{c}
B = \upsilon_{A} \\
\hline
Sinh \rho \approx \rho \approx \frac{u}{c} \\
\hline
\kappa_{phase} \approx \frac{B}{c^{2}} u^{2}$$

time	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$rac{V_{group}}{c}$	$rac{oldsymbol{v}_{group}}{oldsymbol{v}_A}$	$rac{{{ au }_{phase}}}{{{ au }_{A}}}$	$\left(\begin{array}{c} \upsilon_{phase} \\ \upsilon_A \end{array} ight)$	$rac{ au_{group}}{ au_A}$	$rac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
space	$\frac{1}{b_{BLUE}^{Doppler}}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_A}$	$rac{\lambda_{group}}{\lambda_A}$	$rac{\kappa_{group}}{\kappa_A}$	$rac{\lambda_{phase}}{\lambda_A}$	$\frac{c}{V_{group}}$	$rac{1}{b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}}$
rapidity ρ	$e^{- ho}$	$tanh \rho$	$\sinh \rho$	$\operatorname{sech} \rho$	$\cosh \rho$	$\mathrm{csch} ho$	$\operatorname{coth} \rho$	$e^{+ ho}$
stellar \forall angle σ	$1/e^{+\rho}$	$\sin \sigma$	$tan \sigma$	$\cos \sigma$	sec σ	$\cot \sigma$	csco	1/ <i>e</i> ^{-p}
$\beta \equiv \frac{u}{c}$	$\sqrt{\frac{1-\beta}{1+\beta}}$	$\frac{\beta}{1}$	$\frac{1}{\sqrt{\beta^{-2}-1}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\beta^2}}$	$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\beta}$	$\sqrt{\frac{1+\beta}{1-\beta}}$
value for $\beta=3/5$	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5}$ =0.80	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1}$ =2.0

Monday, December 21, 2015

$$\frac{v_{phaxe} = B \cosh \rho}{c\kappa_{phaxe} = B \sinh \rho} \approx B\rho \qquad (for \ u \ll c) \qquad \cosh \rho \approx 1 + \frac{1}{2}\rho^2 \approx 1 + \frac{1}{2}u^2 \qquad B = v_A \\ B = v_A \\ B = v_A \\ B = v_A = c\kappa_A \\ B = v_A = c\kappa_A \\ B = v_A = c\kappa_A \\ Sinh \ \rho \approx \rho \approx \frac{u}{c} \qquad Sinh \ \rho \approx \rho \approx \frac{u}{c} \\ v_{phaxe} \approx B + \frac{1}{2}\frac{B}{c^2}u^2 \qquad (for \ u \ll c) \Rightarrow \qquad K_{phaxe} \approx \frac{B}{c^2}u \qquad U_{phaxe} \text{ and } \kappa_{phaxe} \text{ resemble} \\ formulae \ for \ Newton's \\ kinetic \ energy \ and \ momentum \\ Resembles: \ const. + \frac{1}{2}Mu^2 \qquad Resembles: \ Mu \\ \hline M = \frac{1}{\rho_{Baxe}} \frac{v_{phaxe}}{v_A} \qquad \frac{\lambda_{prove}}{\kappa_A} \qquad \frac{\kappa_{prove}}{\kappa_A} \qquad \frac{v_{phaxe}}{\kappa_A} \qquad \frac{v_{phaxe}}{\tau_A} \qquad \frac{v_{phaxe}}{v_A} \qquad \frac{v_{phaxe}}{\tau_A} \qquad \frac{v_{phaxe}}{v_A} \qquad \frac{v_{phaxe}}{r_A} \qquad \frac{v_{phaxe}}{v_B} \qquad \frac{v_{phaxe}}{r_A} \qquad \frac{v_{$$

$$\frac{v_{phase} = B \cosh \rho}{(\kappa_{phase} = B \sinh \rho)} \approx B + \frac{1}{2} B \rho^{2} (\text{for } u \ll c) \qquad \cosh \rho \approx |+\frac{1}{2} \rho^{2} \approx |+\frac{1}{2} \frac{u^{2}}{c^{2}} \qquad B = v_{A}$$

$$\frac{u}{c} = \tanh \rho \approx \rho \qquad (\text{for } u \ll c) \qquad \sinh \rho \approx \rho \approx \frac{u}{c} \qquad B = v_{A} = c\kappa_{A}$$

$$\frac{u}{c} = \tanh \rho \approx \rho \qquad (\text{for } u \ll c) \qquad \text{At low speeds:}$$

$$v_{phase} \approx B + \frac{1}{2} \frac{B}{c_{z}^{2}} u^{2} \iff \text{for } (u \ll c) \Rightarrow \qquad \kappa_{phase} \approx \frac{B}{c_{z}^{2}} u \qquad v_{phase} \text{ and } \kappa_{phase} \text{ resemble}$$

$$\operatorname{Rescale } v_{phase} \text{ by } h \quad \text{so: } M = \frac{hB}{c^{2}} \qquad Resembles: Mu$$

$$\operatorname{Resembles: } const. + \frac{1}{2}Mu^{2} \qquad \operatorname{Resembles: } Mu$$

$$\operatorname{Resembles: } const. + \frac{1}{2}Mu^{2} \qquad \operatorname{Resembles: } Mu$$

$$\operatorname{Resembles: } const. + \frac{1}{2}Mu^{2} \qquad \operatorname{Resembles: } Mu$$

 $\frac{3}{5} = 0.6 \quad \frac{3}{4} = 0.75 \quad \left| \begin{array}{c} \frac{4}{5} = 0.80 \\ \frac{5}{4} = 1.25 \end{array} \right| \quad \frac{4}{3} = 1.33 \quad \frac{5}{3} = 1.67 \quad \left| \begin{array}{c} \frac{2}{1} = 2.0 \\ \frac{1}{1} = 2.0 \end{array} \right|$

Monday, December 21, 2015

value for β=3/5 $\frac{1}{2} = 0.5$

group	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$rac{V_{group}}{c}$	$rac{oldsymbol{v}_{group}}{oldsymbol{v}_A}$	$rac{\lambda_{group}}{\lambda_A}$	$\frac{\kappa_g}{\kappa_A}$	$rac{{m au}_{group}}{{m au}_A}$	$rac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
phase	$rac{1}{b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_{A}}$	$rac{{m au}_{phase}}{{m au}_A}$	$\left(egin{array}{c} \upsilon_{phase} \ \upsilon_A \end{array} ight)$	$rac{\lambda_{phase}}{\lambda_A}$	$rac{c}{V_{group}}$	$rac{1}{b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}}$
rapidity ρ	$e^{-\rho}$	$tanh \rho$	$\sinh \rho$	$\operatorname{sech} \rho$	$\cosh \rho$	$\mathrm{csch} ho$	$\operatorname{coth} \rho$	$e^{+ ho}$
stellar \forall angle σ	$1/e^{+\rho}$	$\sin \sigma$	$tan\sigma$	$\cos \sigma$	$\sec \sigma$	$\cot \sigma$	csco	$1/e^{-\rho}$
$\beta \equiv \frac{u}{c}$	$\sqrt{rac{1-eta}{1+eta}}$	$\frac{\beta}{1}$	$\frac{1}{\sqrt{\beta^{-2}-1}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\beta^2}}$	$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\beta}$	$\sqrt{\frac{1+\beta}{1-\beta}}$
value for $\beta=3/5$	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5} = 0.80$	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1} = 2.0$

group	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$rac{V_{group}}{c}$	$rac{oldsymbol{v}_{group}}{oldsymbol{v}_A}$	$rac{\lambda_{group}}{\lambda_A}$	K _g . _{oup} K _A	$rac{{m au}_{group}}{{m au}_A}$	$rac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
phase	$rac{1}{b_{BLUE}^{Doppler}}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_{A}}$	$rac{{m au}_{phase}}{{m au}_{A}}$	$\left(egin{array}{c} arpsilon_{phase} \ arpsilon_{A} \end{array} ight)$	$rac{\lambda_{phase}}{\lambda_A}$	$\frac{c}{V_{group}}$	$rac{1}{b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}}$
rapidity ρ	$e^{-\rho}$	tanh ρ	$\sinh \rho$	$\operatorname{sech} \rho$	$\cosh \rho$	$\mathrm{csch} ho$	$\operatorname{coth} \rho$	$e^{+ ho}$
stellar \forall angle σ	$1/e^{+\rho}$	$\sin \sigma$	$tan \sigma$	$\cos \sigma$	sec σ	$\cot \sigma$	csco	1/ <i>e</i> ^{-p}
$\beta \equiv \frac{u}{c}$	$\sqrt{\frac{1-\beta}{1+\beta}}$	$\frac{\beta}{1}$	$\frac{1}{\sqrt{\beta^{-2}-1}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\beta^2}}$	$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\beta}$	$\sqrt{\frac{1+\beta}{1-\beta}}$
value for $\beta = 3/5$	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5} = 0.80$	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1}$ =2.0

$$\frac{U_{phase} = B \cosh \rho}{(\kappa_{phase} = B \sinh \rho)} \approx B + \frac{1}{2} B \rho^{2} (\text{for } u \ll c) \qquad \cosh \rho = 1 + \frac{1}{2} \rho^{2} \approx 1 + \frac{1}{2} \frac{u^{2}}{c^{2}} \qquad B = v_{A}$$

$$B = v_{A}$$

$$\frac{v_{phase} = B\cosh\rho}{v_{phase} = B\sinh\rho} \approx B\rho \quad (\text{for } u \ll c) \qquad \cosh\rho = 1 \pm \frac{1}{2}\rho^2 \approx 1 \pm \frac{1}{2}u^2 \qquad B = v_A \\ B = v_A = c\kappa_A \\ \frac{u}{c} = \tanh\rho \approx \rho \quad (\text{for } u \ll c) \qquad \sinh\rho \approx \rho \approx \frac{u}{c} \qquad B = v_A \\ B = v_A = c\kappa_A \\ \frac{u}{c} = \tanh\rho \approx \rho \quad (\text{for } u \ll c) \qquad \sinh\rho \approx \rho \approx \frac{u}{c} \qquad B = v_A \\ P_A = v_A = c\kappa_A \\ B = v_A \\ B = v_A$$

$$\frac{v_{phase} = B \cosh \rho}{v_{phase} = B \sinh \rho} \approx B + \frac{1}{2} B \rho^{2} (\text{for } u \ll c) \qquad \cosh \rho \approx 1 + \frac{1}{2} \rho^{2} \approx 1 + \frac{1}{2} u^{2} \qquad B = v_{A}$$

$$B = v_{A}$$

$$\frac{v_{phase} = B\cosh \rho}{(\kappa_{phase} = B\sinh \rho) \approx B\rho} (\text{for } u \ll c) \qquad \cosh \rho \approx 1 + \frac{1}{2}\rho^{2} \approx$$

$$\frac{v_{phase} = B\cosh \rho}{\left| \frac{w}{c} + \frac{1}{2}B\rho^{2}(\log u \ll c) \right|} (\log u \ll c)} = \cosh \rho \approx B + \frac{1}{2}B\rho^{2}(\log u \ll c)} = \cosh \rho \approx B + \frac{1}{2}B\rho^{2}(\log u \ll c)} = \cosh \rho \approx B + \frac{1}{2}B\rho^{2}(\log u \ll c)} = \cosh \rho \approx B + \frac{1}{2}B\rho^{2}(\log u \ll c)} = \cosh \rho \approx B + \frac{1}{2}B\rho^{2}(\log u \ll c)} = \cosh \rho \approx B + \frac{1}{2}B\rho^{2}(\log u \ll c)} = K + \frac{1}{2}B\rho^{2}(u) = \cosh \rho \approx B + \frac{1}{2}B\rho^{2}(u) = \frac{1$$

$$\frac{v_{phase} = B \cosh p}{c_{K} phase} = B \sinh p \approx B\rho \quad (for \ u \ll c)}$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} = \ln \rho \quad (for \ u \ll c)$$

$$\frac{d}{d} \quad (for \ u \ll c)$$

$$\frac{v_{phase} = B \cosh p}{c\kappa_{phase} = B \sinh p} \approx B\rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\cosh p \approx |\frac{1}{2}p^{2} \approx |\frac{1}{2}p^{2} \approx |\frac{1}{2}u^{2}$$

$$\sinh p \approx p = \frac{u}{c}$$

$$\sinh p \approx p = \frac{u}{c}$$

$$v_{phase} \approx B + \frac{1}{2}\frac{B}{c^{2}}u^{2} \quad \Leftrightarrow \text{ for } (u \ll c) \Rightarrow$$

$$\Lambda t \text{ low speeds:}$$

$$v_{phase} \approx B + \frac{1}{2}\frac{B}{c^{2}}u^{2} \quad \Leftrightarrow \text{ for } (u \ll c) \Rightarrow$$

$$\kappa_{phase} \approx \frac{B}{c^{2}}u \quad U_{phase} \text{ and } \kappa_{phase} \text{ resemble}$$
formulae for Newton's kinetic
energy $\frac{1}{2}Mu^{2}$ and momentum Mu .

$$hv_{phase} \approx hB + \frac{1}{2}\frac{hB}{c^{2}}u^{2} \quad \Leftrightarrow \text{ for } (u \ll c) \Rightarrow$$

$$h\kappa_{phase} \approx \frac{hB}{c^{2}}u$$

$$V_{phase} \approx hB + \frac{1}{2}\frac{hB}{c^{2}}u^{2} \quad \Leftrightarrow \text{ for } (u \ll c) \Rightarrow$$

$$h\kappa_{phase} \approx \frac{hB}{c^{2}}u$$

$$V_{phase} \approx Mc^{2} + \frac{1}{2}Mu^{2} \quad \iff \text{ for } (u \ll c) \Rightarrow$$

$$h\kappa_{phase} \approx Mu$$

$$Newton's kinetic energy $\frac{1}{2}Mu^{2} \text{ and momentum } Mu$.

$$hv_{phase} \approx Mc^{2} + \frac{1}{2}Mu^{2} \quad \iff \text{ for } (u \ll c) \Rightarrow$$

$$h\kappa_{phase} \approx Mu$$

$$Newton's kinetic energy $\frac{1}{2}Mu^{2} \text{ condential } hv_{phase} \approx Mu$

$$Nu ede to replace Mu$$

$$Nu ede to replace$$$$$$

$$\frac{v_{phase} = B \cosh p}{c\kappa_{phase} = B \sinh p} \approx B\rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$Al \ low \ speeds:$$

$$v_{phase} \approx B + \frac{1}{2} \frac{B}{c^2} u^2 \quad \Leftrightarrow \ for \ (u \ll c) \Rightarrow \qquad \kappa_{phase} \approx \frac{B}{c^2} u \quad U_{phase} \ and \ \kappa_{phase} \ resemble$$
formulae for Newton's kinetic
energy $\frac{1}{2} Mu^2$ and momentum Mu .

$$hv_{phase} \approx Mc^2 + \frac{1}{2} \frac{Mu^2}{c^2} \quad \Leftrightarrow \ for \ (u \ll c) \Rightarrow \qquad h\kappa_{phase} \approx \frac{hB}{c^2} u \qquad U_{phase} \ and \ \kappa_{phase} \ resemble$$
formulae for Newton's kinetic
energy $\frac{1}{2} Mu^2$ and momentum Mu .

$$hv_{phase} \approx Mc^2 + \frac{1}{2} \frac{Mu^2}{c^2} \quad \Leftrightarrow \ for \ (u \ll c) \Rightarrow \qquad h\kappa_{phase} \approx \frac{hB}{c^2} u \qquad So \ attach \ scale \ factor \ h \ (or \ hN)$$
to match units.

$$hv_{phase} \approx Mc^2 + \frac{1}{2} \frac{Mu^2}{c^2} \quad \Leftrightarrow \ for \ (u \ll c) \Rightarrow \qquad h\kappa_{phase} \approx Mu \qquad Hv_{phase} = hB \cosh \rho = Mc^2 \ cosh\rho = Mc^2 \ momentum Mu$$
.

$$hv_{phase} \approx Mc^2 + \frac{1}{2} \frac{Mu^2}{c^2} \quad \Leftrightarrow \ for \ (u \ll c) \Rightarrow \qquad h\kappa_{phase} \approx Mu \qquad Hv_{phase} = hB \ cosh\rho = Mc^2 \ cosh\rho = Mc^2 \ cosh\rho = Mc^2 \ momentum Mu$$
.

$$hv_{phase} = hB \ cosh\rho = Mc^2 \ cosh\rho = Mc^2 \ cosh\rho = Mc^2 \ momentum Mu$$
.

$$hv_{phase} = Mc^2 + \frac{1}{2} \frac{Mu^2}{c} \quad \Leftrightarrow \ for \ (u \ll c) \Rightarrow \qquad h\kappa_{phase} \approx Mu \qquad Hv_{phase} = hB \ cosh\rho = Mc^2 \ cosh\rho = Mc^2 \ momentum Mu$$
.

$$hv_{phase} = hB \ cosh\rho = Mc^2 \ cosh\rho = Mc^2 \ momentum Mu$$
.

$$hv_{phase} = hB \ cosh\rho = Mc^2 \ cosh\rho = Mc^2 \ momentum Mu$$
.

$$hv_{phase} = \frac{1}{2} \frac{1}{\sqrt{1-\mu^2/c^2}} \qquad Hv_{phase} = \frac{Mc^2}{\sqrt{1-\mu^2/c^2}} \ Hv_{phase} = \frac{Mc^2}{\sqrt{1-\mu^2/c$$

$$\frac{v_{phase} = B \cosh \rho \approx B + \frac{1}{2} B \rho^{2}(\text{for } u \ll c)}{(\text{for } u \ll c)}$$

$$\frac{v_{c}}{c} = B \sinh \rho \approx \beta \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \frac{b}{c} = \frac$$

$$\frac{v_{phase} = B \cosh \rho}{c\kappa_{phase} = B \sinh \rho} \approx B\rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$\sinh \rho \approx \rho \approx \frac{u}{c}$$

$$\int \frac{u}{c} = \tanh \rho \approx \rho \quad (for \ u \ll c)$$

$$h \ U \ ophase \approx B + \frac{1}{2} \frac{B}{c^2} u^2 \quad \Leftrightarrow for \ (u \ll c) \Rightarrow \qquad \kappa_{phase} \approx \frac{B}{c^2} u \quad U \ ophase \ and \ \kappa_{phase} \ rescmblc$$

$$\int \frac{hB}{c^2} e^{-\frac{hB}{c^2}} e^{-\frac{hB}{c^$$

$$\frac{v_{phase} = B\cosh \rho \approx B + \frac{1}{2}B\rho^{2}(\text{for } u \ll c)}{(\kappa_{phase} = B\sinh \rho \approx B\rho} \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{u}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \tanh \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \approx \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} = \ln \rho \quad (\text{for } u \ll c)$$

$$\frac{h}{c} \quad (\text{for } u \approx c)$$

$$\frac{h}{c} \quad (\text{for } u \approx c)$$

$$\frac{h}{c} \quad (\text{for }$$

$$\frac{v_{phase} = B \cosh p}{c\kappa_{phase} = B \sinh p} \approx B\rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \tanh p \approx \rho \quad (for \ u \ll c)$$

$$\frac{u}{c} = \frac{b}{c} = \frac{b}{c}$$

Relawavity variable tables

group	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	$rac{V_{group}}{c}$	$rac{oldsymbol{v}_{group}}{oldsymbol{v}_A}$	$rac{\lambda_{group}}{\lambda_A}$	$rac{\kappa_{group}}{\kappa_A}$	$rac{{{ au }_{group}}}{{{ au }_{A}}}$	$rac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
phase	$\frac{1}{b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_{A}}$	$rac{{m au}_{phase}}{{m au}_{A}}$	$rac{oldsymbol{arphi}_{phase}}{oldsymbol{arphi}_A}$	$rac{\lambda_{phase}}{\lambda_A}$	$rac{C}{V_{group}}$	$rac{1}{b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}}$
rapidity ρ	$e^{- ho}$	$\tanh \rho$	$\sinh ho$	$\operatorname{sech} \rho$	$\cosh ho$	csch <i>p</i>	$\operatorname{coth} \rho$	$e^{+ ho}$
stellar \forall angle σ	$1/e^{+\rho}$	$\sin \sigma$	$tan \sigma$	$\cos \sigma$	$\sec\sigma$	$\cot \sigma$	csco	$1/e^{-\rho}$
$\beta \equiv \frac{u}{c}$	$\sqrt{\frac{1-\beta}{1+\beta}}$	<u>β</u> 1	$\frac{1}{\sqrt{eta^{-2}-1}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\beta^2}}$	$\frac{\sqrt{\beta^{-2}-1}}{1}$	$\frac{1}{\beta}$	$\sqrt{\frac{1+eta}{1-eta}}$
value for β=3/5	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5} = 0.80$	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1} = 2.0$
effects	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	V_{group}	past-future asymmetry (off-diagonal Lorentz-transform)	x-contraction ^(Lorentz) τ_{phase} -contraction	t-dilation ^(Einstein) v _{phase} -dilation (on-diagonal Lorentz-transform)	inverse asymmetry	V_{phase}	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$

Relativistic quantum mechanics variable tables

group	$b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}$	V _{group}	$rac{oldsymbol{v}_{group}}{oldsymbol{v}_A}$	$rac{\lambda_{group}}{\lambda_A}$	$rac{\kappa_{group}}{\kappa_A}$	$rac{{m au}_{group}}{{m au}_A}$	$rac{V_{phase}}{c}$	$b_{\scriptscriptstyle BLUE}^{\scriptscriptstyle Doppler}$
phase	$\frac{1}{b_{BLUE}^{Doppler}}$	$\frac{c}{V_{phase}}$	$rac{\kappa_{phase}}{\kappa_{A}}$	$rac{ au_{phase}}{ au_A}$	$rac{oldsymbol{v}_{phase}}{oldsymbol{v}_A}$	$rac{\lambda_{phase}}{\lambda_A}$	$rac{C}{V_{group}}$	$rac{1}{b_{\scriptscriptstyle RED}^{\scriptscriptstyle Doppler}}$
rapidity ρ	$e^{-\rho}$	$\tanh ho$	$\sinh ho$	$\operatorname{sech} \rho$	$\cosh ho$	$\mathrm{csch} ho$	$\mathrm{coth}\rho$	$e^{+\rho}$
stellar \forall angle σ	$1/e^{+\rho}$	$\sin \sigma$	$tan\sigma$	$\cos \sigma$	$\sec\sigma$	$\cot \sigma$	$\csc\sigma$	$1/e^{-\rho}$
$\beta \equiv \frac{u}{c}$	$\sqrt{\frac{1-\beta}{1+\beta}}$	$\frac{\beta}{1}$	$rac{eta}{\sqrt{1\!-\!eta^2}}$	$\frac{\sqrt{1-\beta^2}}{1}$	$\frac{1}{\sqrt{1-\beta^2}}$	$\frac{\sqrt{1-\beta^2}}{\beta}$	$\frac{1}{\beta}$	$\sqrt{\frac{1+eta}{1-eta}}$
value for $\beta = 3/5$	$\frac{1}{2} = 0.5$	$\frac{3}{5} = 0.6$	$\frac{3}{4}$ =0.75	$\frac{4}{5} = 0.80$	$\frac{5}{4}$ =1.25	$\frac{4}{3}$ =1.33	$\frac{5}{3}$ =1.67	$\frac{2}{1} = 2.0$
functions		$V_{group} = ctanh ho$	$momentum \\ cp = Mc^2 \sinh \rho$	-Lagrangian $L=-Mc^2 \mathrm{sech}\rho$	Hamiltonian $H=Mc^2\cosh\rho$	$\begin{array}{l} DeBroglie\\ \lambda = \alpha \operatorname{csch} \rho \end{array}$	$\frac{V_{phase}}{c \cot h\rho} =$	

Lecture 31 Thur. 12.10.2015

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation Learning about sin! and cos and...

Derivation of relativistic quantum mechanics

What's the matter with mass? Shining some light on the Elephant in the roomRelativistic action and Lagrangian-Hamiltonian relationsPoincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Laser up-tuning by Alice and down-tuning by Carla makes *g*-acceleration grid Analysis of constant-*g* grid compared to zero-*g* Minkowsi grid Animation of mechanics and metrology of constant-g grid Definition(s) of mass for relativity/quantum Given: <u>Energy</u>: $E = Mc^2 \cosh \rho$

<u>Rest Mass</u> M_{rest} (Einstein's mass) $hB = hv_A = Mc^2 = hc\kappa_A$ Defines invariant hyperbola(s) $E = \pm \sqrt{\left(Mc^2\right)^2 + (cp)^2}$

$$= hv_{phase}$$
momentum: $cp = Mc^{2} \sinh \rho$

$$= hc\kappa_{phase}$$
velocity: $u = c \tanh \rho = \frac{dv}{d\kappa}$

• What's the matter with Mass?

Shining some light on the elephant in the spacetime room

ct
Definition(s) of mass for relativity/quantum Given: <u>*Energy:*</u> $E = Mc^2 \cosh \rho$

$$\frac{Rest Mass}{hB} = hv_{A} = Mc^{2} = hc\kappa_{A}$$

$$E = \pm \sqrt{\left(Mc^{2}\right)^{2} + (cp)^{2}}$$

$$\frac{hv_{phase}}{c^{2}} = M_{rest} = \frac{hc\kappa_{phase}}{c^{2}} \frac{Rest}{Mass}$$

$$E = \pm \sqrt{\left(Mc^{2}\right)^{2} + (cp)^{2}}$$

$$\frac{momentum:}{u = c \tanh \rho = \frac{dv}{d\kappa}$$

$$\frac{Rest Mass M_{rest} (Einstein's mass)}{hB = hv_{A} = Mc^{2} = hc\kappa_{A}}$$

$$E = \pm \sqrt{(Mc^{2})^{2} + (cp)^{2}}$$

$$\frac{hv_{phase}}{c^{2}} = M_{rest} = \frac{hc\kappa_{phase}}{c^{2}} \frac{Rest}{Mass}$$

$$E = \pm \sqrt{(Mc^{2})^{2} + (cp)^{2}}$$

$$\frac{velocity:}{u = c \tanh \rho} = \frac{dv}{d\kappa}$$

$$\frac{velocity:}{u = c \tanh \rho} = \frac{dv}{d\kappa}$$

$$M_{mom} = \frac{p}{u} = \frac{M_{rest} c \sinh \rho}{c \tanh \rho}$$

$$= M_{rest} \cosh \rho = \frac{M_{rest}}{\sqrt{1 - u^{2}/c^{2}}} \frac{Momentum}{Mass}$$

$$= hv_{phase}$$

$$Rest Mass M_{rest} (Einstein's mass) \qquad Defines invariant hyperbola(s) \qquad momentum: cp = Mc^{2} \sinh \rho = hc\kappa_{phase}$$

$$MB = hv_{A} = Mc^{2} = hc\kappa_{A} \qquad E = \pm \sqrt{(Mc^{2})^{2} + (cp)^{2}} \qquad momentum: cp = Mc^{2} \sinh \rho = hc\kappa_{phase}$$

$$\frac{hv_{phase}}{c^{2}} = M_{rest} = \frac{hc\kappa_{phase}}{c^{2}} \qquad Mass$$

$$Momentum Mass M_{mom} (Galileo's mass) Defined by ratio p/u of relativistic momentum to group velocity.$$

$$M_{mom} \equiv \frac{p}{u} = \frac{M_{rest}c\sinh\rho}{c\tanh\rho} \qquad \text{Limiting cases:} \qquad M_{mom} \xrightarrow{u \to c} M_{rest}e^{\rho}/2$$

$$M_{mom} \xrightarrow{u \to c} M_{rest}$$

$$= hv_{phase}$$

$$Rest Mass M_{rest} (Einstein's mass) \qquad Defines invariant hyperbola(s) \qquad momentum: cp = Mc^{2} sinh \rho$$

$$B = hv_{A} = Mc^{2} = hc\kappa_{A} \qquad E = \pm \sqrt{(Mc^{2})^{2} + (cp)^{2}} \qquad momentum: cp = Mc^{2} sinh \rho$$

$$E = \pm \sqrt{(Mc^{2})^{2} + (cp)^{2}} \qquad u = c tanh \rho = \frac{dv}{d\kappa}$$

$$Momentum Mass M_{mom} (Galileo's mass) Defined by ratio p/u of relativistic momentum to group velocity.$$

$$M_{mom} \equiv \frac{p}{u} = \frac{M_{rest} c sinh \rho}{c tanh \rho} \qquad \text{Limiting cases:} \qquad M_{mom} \xrightarrow{u \to c} M_{rest} e^{\rho}/2$$

$$M_{mom} \xrightarrow{u \to c} M_{rest} = M_{rest} e^{\rho}/2$$

<u>Effective Mass</u> M_{eff} (Newton's mass) Defined by ratio F/a=dp/du of relativistic force to acceleration.

$$=hv_{phase}$$

$$= kv_{phase}$$

$$Rest Mass M_{rest} (Einstein's mass) \qquad \text{Defines invariant hyperbola(s)} \qquad \underline{momentum:} \quad cp = Mc^{2} \sinh \rho$$

$$= hc\kappa_{phase}$$

$$M_{rest} = M_{rest} = \frac{hc\kappa_{phase}}{c^{2}} = M_{rest} = \frac{hc\kappa_{phase}}{c^{2}} = M_{ass}$$

$$E = \pm \sqrt{(Mc^{2})^{2} + (cp)^{2}} \qquad \underline{momentum:} \quad cp = Mc^{2} \sinh \rho$$

$$= hc\kappa_{phase}$$

$$\underline{velocity:} \quad u = c \tanh \rho = \frac{dv}{d\kappa}$$

$$M_{mom} = \frac{p}{u} = \frac{M_{rest}c \sinh \rho}{c \tanh \rho}$$

$$Limiting cases: \qquad M_{mom} = \frac{M_{rest}c hc}{u = c \tanh \rho}$$

$$M_{mom} = \frac{m_{rest}c \sinh \rho}{\sqrt{1 - u^{2}/c^{2}}} \qquad M_{mom}$$

<u>Effective Mass</u> M_{eff} (Newton's mass) Defined by ratio F/a=dp/du of relativistic force to acceleration. That is ratio of change $dp=Mc \cosh\rho d\rho$ in momentum to change $du=c \operatorname{sech}^2\rho d\rho$ in velocity

$$= hv_{phase}$$

$$= kv_{phase}$$

$$Rest Mass M_{rest} (Einstein's mass) \qquad Defines invariant hyperbola(s) \qquad momentum: cp = Mc^{2} \sinh \rho \\ = hc\kappa_{phase}$$

$$M_{rest} = M_{rest} = \frac{hc\kappa_{phase}}{c^{2}} = M_{rest} = \frac{hc\kappa_{phase}}{c \tanh \rho}$$

$$M_{mom} = \frac{p}{u} = \frac{M_{rest}c\sinh\rho}{c \tanh\rho} \qquad \text{Limiting cases:} \quad M_{mom} = M_{rest}e^{\rho}/2 = M_{rest}\cosh\rho = \frac{M_{rest}}{\sqrt{1-u^{2}/c^{2}}} = M_{mass}$$

<u>Effective Mass</u> M_{eff} (Newton's mass) Defined by ratio F/a=dp/du of relativistic force to acceleration.

That is ratio of change $dp = Mc \cosh \rho \, d\rho$ in momentum to change $du = c \operatorname{sech}^2 \rho \, d\rho$ in velocity $M_{eff} \equiv \frac{dp}{du} = M_{rest} \frac{c \cosh \rho}{c \operatorname{sech}^2 \rho} = M_{rest} \cosh^3 \rho$

$$= hv_{phase}$$

$$= kv_{phase}$$

$$Rest Mass M_{rest} (Einstein's mass) \qquad Defines invariant hyperbola(s) \qquad momentum: cp = Mc^{2} sinh \rho$$

$$= hc\kappa_{phase}$$

$$E = \pm \sqrt{\left(Mc^{2}\right)^{2} + (cp)^{2}} \qquad e = hc\kappa_{phase}$$

$$= hc\kappa_{phase}$$

<u>Effective Mass</u> M_{eff} (Newton's mass) Defined by ratio F/a=dp/du of relativistic force to acceleration.

That is ratio of change $dp = Mc \cosh \rho \, d\rho$ in momentum to change $du = c \operatorname{sech}^2 \rho \, d\rho$ in velocity

$$M_{eff} = \frac{dp}{du} = M_{rest} \frac{c \cosh \rho}{c \operatorname{sech}^2 \rho} \left[= M_{rest} \cosh^3 \rho \\ \underbrace{Effective \, Mass}_{eff} \xrightarrow{u \to c} M_{rest} e^{3\rho} / 2 \\ M_{eff} \xrightarrow{u \to c} M_{rest} e^{3\rho} / 2 \\ M_{eff} \xrightarrow{u \ll c} M_{eff} \xrightarrow{u \ll c}$$

$$= hv_{phase}$$

$$= kv_{phase}$$

$$Rest Mass M_{rest} (Einstein's mass) \qquad Defines invariant hyperbola(s) \qquad momentum: cp = Mc^{2} \sinh \rho \\ = hc\kappa_{phase}$$

$$M_{rest} = M_{rest} = \frac{hc\kappa_{phase}}{c^{2}} = M_{rest} = \frac{hc\kappa_{phase}}{c \tanh \rho} = \frac{M_{rest}}{c \tanh \rho} = M_{rest} = M_{rest}$$

<u>Effective Mass</u> M_{eff} (Newton's mass) Defined by ratio F/a=dp/du of relativistic force to acceleration.

That is ratio of change $dp = Mc \cosh \rho \, d\rho$ in momentum to change $du = c \operatorname{sech}^2 \rho \, d\rho$ in velocity

$$M_{eff} = \frac{dp}{du} = M_{rest} \frac{c \cosh \rho}{c \operatorname{sech}^2 \rho} \left[= M_{rest} \cosh^3 \rho \\ \underbrace{Effective \ Mass}_{eff} \xrightarrow{u \to c} M_{rest} e^{3\rho} / 2 \\ M_{eff} \xrightarrow{u \to c} M_{rest} \right]$$

More common derivation using group velocity: $u = V_{group} = \frac{d\omega}{dk} = \frac{d\upsilon}{d\kappa}$

$$M_{eff} \equiv \frac{dp}{du} = \frac{\hbar dk}{dV_{group}} = \frac{\hbar}{\frac{d}{dk}\frac{d\omega}{dk}} = \frac{\hbar}{\frac{d^2\omega}{dk^2}} = \frac{M_{rest}}{\left(1 - u^2/c^2\right)^{3/2}}$$

$$= hv_{phase}$$

$$Rest Mass M_{rest} (Einstein's mass) \qquad \text{Defines invariant hyperbola(s)} \qquad \underline{momentum:} \quad cp = Mc^{2} \sinh \rho$$

$$= hc\kappa_{phase}$$

$$M_{mom} = \frac{p}{u} = \frac{M_{rest} \cosh \rho}{c \tanh \rho} \qquad \text{Limiting cases:} \qquad M_{mom} \xrightarrow{u \to c} M_{rest} e^{\rho}/2$$

$$= M_{rest} \cosh \rho = \frac{M_{rest}}{\sqrt{1 - u^{2}/c^{2}}} \xrightarrow{Momentum}{Mass}$$

<u>Effective Mass</u> M_{eff} (Newton's mass) Defined by ratio F/a=dp/du of relativistic force to acceleration.

That is ratio of change $dp = Mc \cosh \rho \, d\rho$ in momentum to change $du = c \operatorname{sech}^2 \rho \, d\rho$ in velocity

$$M_{eff} = \frac{dp}{du} = M_{rest} \frac{c \cosh \rho}{c \operatorname{sech}^2 \rho} \begin{bmatrix} =M_{rest} \cosh^3 \rho \\ \underline{Effective Mass} \end{bmatrix} \text{ Limiting cases: } M_{eff} \xrightarrow[u \to c]{} M_{rest} e^{3\rho}/2 \\ M_{eff} \xrightarrow[u \to c]{} M_{eff}$$

Definition(s) of mass for relativity/quantum How much mass does a γ -photon have?

Rest Mass $(a)\gamma$ -rest mass: $M_{rest}^{\gamma} = 0$,Newton complained about
his "corpuscles" of light having
"fits" (going crazy).Momentum Mass $(b)\gamma$ -momentum mass: $M_{mom}^{\gamma} = \frac{p}{c} = \frac{h\kappa}{c} = \frac{hv}{c^2}$,Newton complained about
his "corpuscles" of light having
"fits" (going crazy).Effective Mass $(c)\gamma$ -effective mass: $M_{eff}^{\gamma} = \infty$.Newton complained about
his "corpuscles" of light having
"fits" (going crazy).

$$M_{mom}^{\gamma} = \frac{h\nu}{c^2} = \nu(1.2 \cdot 10^{-51})kg \cdot s = 4.5 \cdot 10^{-36}kg \quad \text{(for: } \nu = 600\text{THz}$$

Lecture 31 Thur. 12.10.2015

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation Learning about sin! and cos and...

Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Laser up-tuning by Alice and down-tuning by Carla makes *g*-acceleration grid Analysis of constant-*g* grid compared to zero-*g* Minkowsi grid Animation of mechanics and metrology of constant-g grid

Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$.

$$L = \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega$$

$$\hbar = \frac{h}{2\pi}$$

$$\begin{pmatrix} h\upsilon_A = Mc^2 = hc\kappa_A \\ h\upsilon_{phase} = E = h\upsilon_A \cosh\rho \\ hc\kappa_{phase} = cp = h\upsilon_A \sinh\rho \end{pmatrix}$$
 Prior wave relations

$$\begin{pmatrix} h\omega_A = Mc^2 = \hbar c\kappa_A \\ \hbar \omega_{phase} = E = \hbar \omega_A \cosh\rho \\ \hbar \sigma_{phase} = E = \hbar \omega_A \cosh\rho \\ \hbar c\kappa_{phase} = cp = \hbar \omega_A \sinh\rho \end{pmatrix}$$

$$\hbar \equiv \frac{h}{2\pi}$$

Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$.

Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar \omega$ relation

 $L \equiv \hbar \frac{d\Phi}{dt} = \frac{\hbar k}{dt} \frac{dx}{dt} - \hbar \omega$ $\hbar \equiv \frac{n}{2\pi}$ $=\hbar k = Mc \sinh \rho$ $E = \hbar \omega = Mc^2 \cosh \rho$ Prior wave relations -linear Hz angular phasor format format $\hbar\omega_A = Mc^2 = \hbar ck_A$ $\hbar\omega_{phase} = E = \hbar\omega_A \cosh\rho$ $\hbar ck_{phase} = cp = \hbar\omega_A \sinh\rho$ $hv_A = Mc^2 = hc\kappa_A$ $hv_{phase} = E = hv_A \cosh \rho$ ←linear Hz $hc\kappa_{phase} = cp = hv_A \sinh\rho$ Monday, December 21, 2015 86

Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$.

Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar\omega$ relation

$$L = \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega = p \frac{dx}{dt} - E \equiv p \dot{x} - E \qquad \hbar \equiv \frac{h}{2\pi}$$
$$p = \hbar k = Mc \sinh \rho \qquad E = \hbar \omega = Mc^2 \cosh \rho$$

$$\begin{aligned} hv_A = Mc^2 = hc\kappa_A \\ hv_{phase} = E = hv_A \cosh\rho \\ hc\kappa_{phase} = cp = hv_A \sinh\rho \end{aligned}$$

Prior wave relations \leftarrow linear Hzangular phasor \leftarrow format $\hbar \omega_A = Mc^2 = \hbar ck_A$ $\hbar \omega_{phase} = E = \hbar \omega_A \cosh \rho$ $\hbar \omega_{phase} = E = \hbar \omega_A \cosh \rho$ $\hbar ck_{phase} = cp = \hbar \omega_A \sinh \rho$

Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$.

Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar\omega$ relation to define Hamiltonian H=E

$$L \equiv \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega = p \frac{dx}{dt} - E \equiv p\dot{x} - E \equiv pu - H = L$$
Legendre
transformation

 $p = \hbar k = Mc \sinh \rho \qquad \qquad E = \hbar \omega = Mc^2 \cosh \rho = H$

$$hv_{A} = Mc^{2} = hc\kappa_{A}$$
$$hv_{phase} = E = hv_{A}\cosh\rho$$
$$hc\kappa_{phase} = cp = hv_{A}\sinh\rho$$

Prior wave relations-linear Hzangular phasor \rightarrow formatformat

$$\frac{\hbar\omega_A = Mc^2 = \hbar ck_A}{\hbar\omega_{phase}} = E = \hbar\omega_A \cosh\rho$$
$$\hbar \equiv \frac{h}{2\pi}$$
$$\frac{\hbar ck_{phase} = cp = \hbar\omega_A \sinh\rho}{\hbar ck_{phase}} = \frac{\hbar\omega_A \sinh\rho}{2\pi}$$

Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$.

Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar\omega$ relation to define Hamiltonian H=E

$$L \equiv \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega = p \frac{dx}{dt} - E \equiv p\dot{x} - E \equiv pu - H = L \qquad \text{transformation}$$

Use Group velocity : $u = \frac{dx}{dt} = c \tanh \rho$
 $p = \hbar k = Mc \sinh \rho \qquad E = \hbar \omega = Mc^2 \cosh \rho = H$

Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$.

Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar\omega$ relation to define Hamiltonian H=E

$$L = \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega = p \frac{dx}{dt} - E = p\dot{x} - E = pu - H = L \qquad \frac{Legendre}{transformation}$$

Use Group velocity : $u = \frac{dx}{dt} = c \tanh \rho$
 $E = \hbar \omega = Mc^2 \cosh \rho = H$
 $L = pu - H = (Mc \sinh \rho)(c \tanh \rho) - Mc^2 \cosh \rho$

Monday, December 21, 2015

Relativistic action S and Lagrangian-Hamiltonian relations Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$. Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar\omega$ relation to define Hamiltonian H=ELegendre $L \equiv \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega = p \frac{dx}{dt} - E \equiv p\dot{x} - E \equiv pu - H = L$ Legendre
transformation
dx Use Group velocity : $u = \frac{dx}{dt} = c \tanh \rho$ $E = \hbar \omega = Mc^2 \cosh \rho = H$ $p = \hbar k = Mc \sinh \rho$ $L = \rho u - H = (Mc \sinh \rho)(c \tanh \rho) - Mc^2 \cosh \rho$ $= Mc^{2} \frac{\sinh^{2} \rho - \cosh^{2} \rho}{\cosh \rho} = -Mc^{2} \operatorname{sech} \rho$

L is :
$$Mc^2 \frac{-1}{\cosh \rho} = -Mc^2 \operatorname{sech} \rho$$

Prior wave relations ($\hbar \omega_A = Mc^2 = \hbar c k_A$ $hv_A = Mc^2 = hc\kappa_A$ $\begin{array}{c} \leftarrow \text{linear Hz} & \text{angular phasor} \rightarrow \\ \text{format} & \text{format} \end{array} \quad \begin{array}{c} \hbar \omega_{phase} = E = \hbar \omega_A \cosh \rho \\ \hbar c k_{phase} = cp = \hbar \omega_A \sinh \rho \end{array} \begin{array}{c} \hbar = \\ \hbar c k_{phase} = cp = \hbar \omega_A \sinh \rho \end{array}$ $hv_{phase} = E = hv_A \cosh \rho$ $hc\kappa_{phase} = cp = hv_A \sinh \rho$ 91

Relativistic action S and Lagrangian-Hamiltonian relations Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$. Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar\omega$ relation to define Hamiltonian H=ELegendre $L \equiv \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega = p \frac{dx}{dt} - E \equiv p\dot{x} - E \equiv pu - H = L$ Legendre
transformation
dx Use Group velocity : $u = \frac{dx}{dt} = c \tanh \rho$ $E = \hbar \omega = Mc^2 \cosh \rho = H$ $p = \hbar k = Mc \sinh \rho$ Note: $Mcu = Mc^2 \tanh \rho$ $L = \rho u - H = (Mc \sinh \rho)(c \tanh \rho) - Mc^2 \cosh \rho$ $= Mc^{2} \frac{\sinh^{2} \rho - \cosh^{2} \rho}{\cosh \rho} = -\frac{Mc^{2} \operatorname{sech} \rho}{\operatorname{cosh} \rho}$ Compare Lagrangian L $L = \hbar \dot{\Phi} = -Mc^2 \sqrt{1 - \frac{u^2}{c^2}} = -Mc^2 \operatorname{sech}\rho$

Monday, December 21, 2015

Relativistic action S and Lagrangian-Hamiltonian relations Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$. Stroglie-momentum $p = \hbar k$ relation and France-concept $L \equiv \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega = p \frac{dx}{dt} - E \equiv p\dot{x} - E \equiv pu - H = L$ Use Group velocity: $u = \frac{dx}{dt} = c \tanh \rho$ Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar\omega$ relation to define Hamiltonian H=E $E = \hbar \omega = Mc^2 \cosh \rho = H$ $p = \hbar k = Mc \sinh \rho$ Note: $Mcu = Mc^2 \tanh \rho$ $L = \rho u - H = (Mc \sinh \rho)(c \tanh \rho) - Mc^2 \cosh \rho$ $= Mc^{2} \frac{\sinh^{2} \rho - \cosh^{2} \rho}{\cosh \rho} = -Mc^{2} \operatorname{sech} \rho$ Compare Lagrangian L re Lagrangian L $L = \hbar \dot{\Phi} = -Mc^2 \sqrt{1 - \frac{u^2}{c^2}} = -Mc^2 \operatorname{sech}\rho$ with Hamiltonian H=E $H = \hbar\omega = Mc^2 / \sqrt{1 - \frac{u^2}{c^2}} = Mc^2 \cosh \rho$

Monday, December 21, 2015

Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$.

Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar\omega$ relation to define Hamiltonian H=E

$$L = \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega = p \frac{dx}{dt} - E = p\dot{x} - E = \begin{bmatrix} pu - H = L & transformation \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ = Mc^2 \frac{\sin \rho}{\cosh \rho} = -Mc^2 \cosh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ = Mc^2 \frac{\sin \rho}{\cosh \rho} = -Mc^2 \cosh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{dt} = c \tanh \rho \\ Use Group velocity : u = \frac{dx}{$$

$$\begin{pmatrix} hv_A = Mc^2 = hc\kappa_A \\ hv_{phase} = E = hv_A \cosh \rho \\ hc\kappa_{phase} = cp = hv_A \sinh \rho \end{pmatrix}$$
 Prior wave relations

$$\begin{pmatrix} \hbar\omega_A = Mc^2 = \hbar ck_A \\ \hbar\omega_{phase} = E = \hbar \omega_A \cosh \rho \\ \hbar \sigma_{phase} = E = \hbar \omega_A \cosh \rho \\ \hbar ck_{phase} = cp = \hbar \omega_A \sinh \rho \end{pmatrix}$$

$$\hbar \equiv \frac{h}{2\pi}$$

Monday, December 21, 2015

C

Relativistic action S and Lagrangian-Hamiltonian relations Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$. Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar\omega$ relation to define Hamiltonian H=E $\left(\frac{dS}{dt} = L\right) \equiv \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega = p \frac{dx}{dt} - E \equiv p\dot{x} - E \equiv pu - H = L$ Legendre transformation Use Group velocity : $u = \frac{dx}{dt} = c \tanh \rho$ $E = \hbar \omega = Mc^2 \cosh \rho = H$ $p = \hbar k = Mc \sinh \rho$ $=c\sin\sigma$ Note: $Mcu = Mc^2 \tanh \rho$ $L = pu - H = (Mc \sinh \rho)(c \tanh \rho) - Mc^2 \cosh \rho$ $= Mc^{2} \frac{\sinh^{2} \rho - \cosh^{2} \rho}{\cosh \rho} = -Mc^{2} \operatorname{sech} \rho$ $= Mc^2 \sin \sigma$ Also: $cp = Mc^2 \sinh \rho$ Compare Lagrangian L $=\hbar c k = M c^2 \tan \sigma$ $(\dot{S} = L = \hbar \dot{\Phi}) = -Mc^2 \sqrt{1 - \frac{u^2}{c^2}} = -Mc^2 \operatorname{sech}\rho = -Mc^2 \operatorname{cos}\sigma$ Including with *Hamiltonian* H=E $\frac{muonian}{H} = \frac{h\omega}{E} = Mc^2 / \sqrt{1 - \frac{u^2}{c^2}}$ $= Mc^{2} \cosh \rho = Mc^{2} \sec \sigma$ $= Mc^{2} \sqrt{1 + \sinh^{2}\rho} = Mc^{2} \sqrt{1 + (cp)^{2}}$ stellar angle σ **Define** Action $S = \hbar \Phi$

 $\begin{array}{c} hv_{A} = Mc^{2} = hc\kappa_{A} \\ hv_{phase} = E = hv_{A}\cosh\rho \\ hc\kappa_{phase} = cp = hv_{A}\sinh\rho \end{array} \begin{array}{c} Prior \text{ wave relations} \\ \leftarrow \text{ linear Hz} \\ \text{ format} \end{array} \begin{array}{c} \hbar\omega_{A} = Mc^{2} = \hbar ck_{A} \\ \hbar\omega_{phase} = E = \hbar\omega_{A}\cosh\rho \\ \hbar ck_{phase} = cp = \hbar\omega_{A}\sinh\rho \end{array} \begin{array}{c} \hbar = \frac{h}{2\pi} \\ \hbar ck_{phase} = cp = \hbar\omega_{A}\sinh\rho \end{array}$

Lecture 31 Thur. 12.10.2015

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation *Learning about* sin! and cos and...

Derivation of relativistic quantum mechanics

What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations

Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Laser up-tuning by Alice and down-tuning by Carla makes *g*-acceleration grid Analysis of constant-*g* grid compared to zero-*g* Minkowsi grid Animation of mechanics and metrology of constant-g grid

Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$.

Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar\omega$ relation to define Hamiltonian H=E

$$\left(\frac{dS}{dt} = L\right) \equiv \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega = p \frac{dx}{dt} - E \equiv p\dot{x} - E \equiv pu - H = L \qquad Legendre transformation$$

Compare Lagrangian L

$$\dot{S} = L = \hbar \dot{\Phi} = -Mc^2 \sqrt{1 - \frac{u^2}{c^2}} = -Mc^2 \operatorname{sech}\rho = -Mc^2 \cos\sigma$$

with Hamiltonian $H=E$
 $H = \hbar\omega = Mc^2 / \sqrt{1 - \frac{u^2}{c^2}} = Mc^2 \cosh\rho = Mc^2 \sec\sigma$
 $= Mc^2 \sqrt{1 + \sinh^2\rho} = Mc^2 \sqrt{1 + (cp)^2}$

 $hv_{A} = Mc^{2} = hc\kappa_{A}$ $hv_{phase} = E = hv_{A}\cosh\rho$ $hc\kappa_{phase} = cp = hv_{A}\sinh\rho$

Prior wave relations ←linear Hz angular phasor→ format format

$$\frac{\hbar\omega_A = Mc^2 = \hbar ck_A}{\hbar\omega_{phase}} = E = \hbar\omega_A \cosh\rho$$
$$\hbar = \frac{h}{2\pi}$$
$$\frac{\hbar\omega_{phase}}{\hbar ck_{phase}} = cp = \hbar\omega_A \sinh\rho$$

Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$.

Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar\omega$ relation to define Hamiltonian H=E

$$\frac{dS}{dt} = L = \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega = p \frac{dx}{dt} - E = p\dot{x} - E = pu - H = L$$
Legendre transformation

$$dS \equiv Ldt \equiv \hbar d\Phi = \hbar k dx - \hbar \omega dt = p dx - H dt$$

Poincare Invariant action differential

$$\begin{aligned} \overbrace{S = L = \hbar \dot{\Phi}}^{\text{Compare Lagrangian } L} &= -Mc^2 \sqrt{1 - \frac{u^2}{c^2}} &= -Mc^2 \operatorname{sech}\rho = -Mc^2 \cos \sigma \\ \text{with Hamiltonian } H = E \\ H = \hbar \omega = Mc^2 / \sqrt{1 - \frac{u^2}{c^2}} &= Mc^2 \cosh \rho &= Mc^2 \operatorname{sec} \sigma \\ = Mc^2 \sqrt{1 + \sinh^2 \rho} = Mc^2 \sqrt{1 + (cp)^2} \end{aligned}$$

Prior wave relations $\hbar \omega_A = Mc^2 = \hbar c k_A$ $hv_A = Mc^2 = hc\kappa_A$ $hv_{phase} = E = hv_A \cosh \rho$ $hc\kappa_{phase} = cp = hv_A \sinh\rho$ Monday, December 21, 2015

Define Lagrangian L using invariant wave phase $\Phi = kx - \omega t = k'x' - \omega't'$ for wave of $k = k_{phase}$ and $\omega = \omega_{phase}$.

Use DeBroglie-momentum $p=\hbar k$ relation and Planck-energy $E=\hbar\omega$ relation to define Hamiltonian H=E

$$\frac{dS}{dt} = L = \hbar \frac{d\Phi}{dt} = \hbar k \frac{dx}{dt} - \hbar \omega = p \frac{dx}{dt} - E \equiv p\dot{x} - E \equiv pu - H = L \qquad \frac{Legendre}{transformation}$$

Use Group velocity: $u = \frac{dx}{dt} = c \tanh \rho$

$$dS \equiv Ldt \equiv \hbar d\Phi = \hbar k dx - \hbar \omega dt = p dx - H dt$$
Poincare Invariant action differential
$$\frac{\partial S}{\partial x} = p \qquad \frac{\partial S}{\partial t} = -H$$
Hamilton-Jacobi equations

Compare Lagrangian L

$$\dot{S} = L = \hbar \dot{\Phi} = -Mc^2 \sqrt{1 - \frac{u^2}{c^2}} = -Mc^2 \operatorname{sech}\rho = -Mc^2 \cos\sigma$$

with Hamiltonian H=E
 $H = \hbar \omega = Mc^2 / \sqrt{1 - \frac{u^2}{c^2}} = Mc^2 \cosh\rho = Mc^2 \sec\sigma$
 $= Mc^2 \sqrt{1 + \sinh^2\rho} = Mc^2 \sqrt{1 + (cp)^2}$

 $\begin{pmatrix} hv_A = Mc^2 = hc\kappa_A \\ hv_{phase} = E = hv_A\cosh\rho \\ hc\kappa_{phase} = cp = hv_A\sinh\rho \end{pmatrix}$ Prior wave relations $\leftarrow \text{linear Hz} \quad \text{angular phasor} \rightarrow \begin{pmatrix} \hbar\omega_A = Mc^2 = \hbar c\kappa_A \\ \hbar\omega_{phase} = E = \hbar\omega_A\cosh\rho \\ \hbar c\kappa_{phase} = cp = \hbar \omega_A\sinh\rho \end{pmatrix}$ $\hbar \equiv \frac{h}{2\pi}$ Monday, December 21, 2015

Lecture 31 Thur. 12.10.2015

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation Learning about sin! and cos and...

Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations Poincare' and Hamilton-Jacobi equations

 Relativistic optical transitions and Compton recoil formulae Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Laser up-tuning by Alice and down-tuning by Carla makes *g*-acceleration grid Analysis of constant-*g* grid compared to zero-*g* Minkowsi grid Animation of mechanics and metrology of constant-g grid

Lecture 31 Thur. 12.10.2015

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation *Learning about* sin! and cos and...

Derivation of relativistic quantum mechanics

What's the matter with mass? Shining some light on the Elephant in the roomRelativistic action and Lagrangian-Hamiltonian relationsPoincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Laser up-tuning by Alice and down-tuning by Carla makes *g*-acceleration grid Analysis of constant-*g* grid compared to zero-*g* Minkowsi grid Animation of mechanics and metrology of constant-g grid

Monday, December 21, 2015

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation Learning about sin! and cos and...

Derivation of relativistic quantum mechanics

What's the matter with mass? Shining some light on the Elephant in the roomRelativistic action and Lagrangian-Hamiltonian relationsPoincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation Learning about sin! and cos and...

Derivation of relativistic quantum mechanics

What's the matter with mass? Shining some light on the Elephant in the roomRelativistic action and Lagrangian-Hamiltonian relationsPoincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

2nd Quantization: NEWS FLASH!!! hv is actually hNv

 $(hv_{phase} = E = hv_A \cosh \rho)$ is actually $(hNv_{phase} = E_N = hNv_A \cosh \rho$ with quantum numbers)

Monday, December 21, 2015

2nd Quantization: NEWS FLASH!!! hv is actually hNv

 $(hv_{phase} = E = hv_A \cosh \rho)$ is actually $(hNv_{phase} = E_N = hNv_A \cosh \rho \quad (N=1,2,..))$

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation Learning about sin! and cos and...

Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Review of 16 relawavity functions of ρ and related geometric approach to relativity Animation of $e^{\rho}=2$ spacetime and per-spacetime plots

Rapidity ρ related to stellar aberration angle σ and L. C. Epstein's approach to relativity Longitudinal hyperbolic ρ -geometry connects to transverse circular σ -geometry "Occams Sword" and summary of 16 parameter functions of ρ and σ Applications to optical waveguide, spherical waves, and accelerator radiation Learning about sin! and cos and...

Derivation of relativistic quantum mechanics What's the matter with mass? Shining some light on the Elephant in the room Relativistic action and Lagrangian-Hamiltonian relations Poincare' and Hamilton-Jacobi equations

Relativistic optical transitions and Compton recoil formulae

Feynman diagram geometry

Compton recoil related to rocket velocity formula

Comparing 2nd-quantization "photon" number N and 1st-quantization wavenumber κ

Relawavity in accelerated frames

Fig. 8.2 Accelerated reference frames and their trajectories painted by chirped coherent light

From Lect. 35

ModPhys (2012)