Geometry and Symmetry of Coulomb Orbital Dynamics
(Ch. 2-4 of Unit 5 12.05.15)

Review of *Eccentricity vector* ε and (ε, λ)-geometry of orbital mechanics

Analytic geometry derivation of ε-construction

Connection formulas for (a,b) and (ε, λ) with (γ, R)

Detailed ruler & compass construction of ε-vector and orbits

$(R=-0.375$ elliptic orbit)

$(R=+0.5$ hyperbolic orbit)

Properties of Coulomb trajectory families and envelopes

Graphical ε-development of orbits

Launch angle fixed-Varied launch energy

Launch energy fixed-Varied launch angle

Launch optimization and orbit family envelopes
Review of *Eccentricity vector* ε and (ε, λ)-geometry of orbital mechanics

Analytic geometry derivation of ε-construction

Connection formulas for (a, b) and (ε, λ) with (γ, R)

Detailed ruler & compass construction of ε-vector and orbits

- $(R=-0.375 \text{ elliptic orbit})$
- $(R=+0.5 \text{ hyperbolic orbit})$

Properties of Coulomb trajectory families and envelopes

Graphical ε-development of orbits

- Launch angle fixed-Varied launch energy
- Launch energy fixed-Varied launch angle
- Launch optimization and orbit family envelopes
Eccentricity vector $\mathbf{\varepsilon}$ and (ε, λ) geometry of orbital mechanics

Isotropic field $V = V(r)$ guarantees conservation of angular momentum vector \mathbf{L}

\[
\mathbf{L} = \mathbf{r} \times \mathbf{p} = m\mathbf{r} \times \dot{\mathbf{r}}
\]

(Review of Lect. 26)

Coulomb $V = -k/r$ also conserves eccentricity vector $\mathbf{\varepsilon}$

\[
\mathbf{\varepsilon} = \hat{\mathbf{r}} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r} - \mathbf{p} \times (\mathbf{r} \times \mathbf{p})}{km}
\]

$A = km \cdot \mathbf{\varepsilon}$ is known as the Laplace-Hamilton-Gibbs-Runge-Lenz vector.

Consider dot product of $\mathbf{\varepsilon}$ with a radial vector \mathbf{r}:

\[
\mathbf{\varepsilon} \cdot \mathbf{r} = \frac{\mathbf{r} \cdot \mathbf{r}}{r} - \frac{\mathbf{r} \cdot \mathbf{p} \times \mathbf{L}}{km} = \frac{\mathbf{r} \times \mathbf{p} \cdot \mathbf{L}}{km} = \frac{\mathbf{r} \cdot \mathbf{L} \cdot \mathbf{L}}{km}
\]

Let angle ϕ be angle between $\mathbf{\varepsilon}$ and radial vector \mathbf{r}

\[
\varepsilon r \cos \phi = r - \frac{L^2}{km}
\]

For $\lambda = L^2 / km$ that matches:

\[
r = \frac{\lambda}{1 - \varepsilon \cos \phi}
\]

(a) Attractive ($k > 0$)
Elliptic ($E < 0$)

(b) Attractive ($k > 0$)
Hyperbolic ($E > 0$)

(c) Repulsive ($k < 0$)
Hyperbolic ($E > 0$)

(Rotational momentum $\mathbf{L} = \mathbf{r} \times \mathbf{p}$ is normal to the orbit plane.)

IHO $V = (k/2)r^2$ also conserves Stokes vector \mathbf{S}

\[
S_A = \frac{1}{2}(x_1^2 + p_1^2 - x_2^2 - p_2^2)
\]

\[
S_B = x_1p_1 + x_2p_2
\]

\[
S_C = x_1p_2 - x_2p_1
\]

Generate symmetry groups: $U(2) \subset U(2)$
or: $R(3) \subset R(3) \times R(3) \subset O(4)$

...or of $\mathbf{\varepsilon}$ with momentum vector \mathbf{p}:

\[
\mathbf{\varepsilon} \cdot \mathbf{p} = \frac{\mathbf{p} \cdot \mathbf{r}}{km} - \frac{\mathbf{p} \cdot \mathbf{p} \times \mathbf{L}}{km} = \mathbf{p} \cdot \dot{\mathbf{r}} = p_r
\]

\[
\begin{cases}
\lambda & \text{if } \phi = 0 \text{ apogee} \\
\frac{\lambda}{1-\varepsilon} & \text{if } \phi = \frac{\pi}{2} \text{ zenith} \\
\frac{\lambda}{1+\varepsilon} & \text{if } \phi = \pi \text{ perigee}
\end{cases}
\]

Sunday, December 6, 2015
Geometry of Coulomb orbits (Let: \(r = \rho \) here)

\[
\frac{r}{\varepsilon} = \frac{\lambda}{\varepsilon} + r \cos \phi \\
\lambda \equiv 1 - \varepsilon \cos \phi
\]

\[
r = \frac{\lambda}{1 - \varepsilon \cos \phi}
\]

\[
\rho = \frac{\lambda}{(1 + \varepsilon)} \text{ perhelion} \\
\rho = \frac{\lambda}{(1 - \varepsilon)} \text{ aphelion}
\]

All conics defined by:

Defining eccentricity \(\varepsilon \)

Distance to Focal-point = \(\varepsilon \cdot \text{Distance to Directrix-line} \)

\((x, y) \) **physical parameters**

\(\varepsilon = \sqrt{\frac{k^2 m + 2 \frac{L^2}{k^2 m}}{\frac{k^2 m + 2 \frac{L^2}{k^2 m}}}} = \sqrt{1 \pm \frac{b^2}{a^2}} \)

\[
a = \frac{k}{2E} \\
E = \frac{k}{2a} \\
b = \frac{L}{\sqrt{2m E}} \\
L = \sqrt{km \lambda}
\]

Minor radius: \(b = \sqrt{(a^2 - a^2 \varepsilon^2)} = \sqrt{(a \lambda)} \) (ellipse: \(\varepsilon < 1 \))

Minor radius: \(b = \sqrt{(a^2 \varepsilon^2 - a^2)} = \sqrt{(\lambda a)} \) (hyperb: \(\varepsilon > 1 \))

\[
\varepsilon^2 = 1 - \frac{b^2}{a^2} \quad (\text{ellipse: } \varepsilon < 1) \\
\varepsilon^2 = 1 + \frac{b^2}{a^2} \quad (\text{hyperbola: } \varepsilon > 1)
\]

\[
\lambda = a(1 - \varepsilon^2) \quad (\text{ellipse: } \varepsilon < 1) \\
\lambda = a(\varepsilon^2 - 1) \quad (\text{hyperb: } \varepsilon > 1)
\]

(Review of Lect. 25)

\[
\frac{1}{r} = \frac{1 - \varepsilon \cos \phi}{\lambda} = 1 - \frac{\varepsilon}{\lambda} \cos \phi
\]

\[
\rho = \frac{\mu^2}{m} + \frac{\sqrt{k^2 + 2E\mu^2/m}}{\mu^2/m} \cos \phi
\]

Major axis: \(\rho_+ + \rho_- = 2a \)

\[
\rho_+ + \rho_- = \frac{[\lambda(1 + \varepsilon) + \lambda(1 - \varepsilon)]}{(1 - \varepsilon^2)} = 2\lambda/|1 - \varepsilon^2|
\]

Focal axis: \(\rho_+ - \rho_- = 2a \varepsilon \)

\[
\rho_+ - \rho_- = \frac{[\lambda(1 + \varepsilon) - \lambda(1 - \varepsilon)]}{(1 - \varepsilon^2)} = 2\lambda \varepsilon /|1 - \varepsilon^2|
\]

Sunday, December 6, 2015
Review of Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics

Analytic geometry derivation of ε-construction

Connection formulas for (a, b) and (ε, λ) with (γ, R)

Detailed ruler & compass construction of ε-vector and orbits

$(R = -0.375 \text{ elliptic orbit})$

$(R = +0.5 \text{ hyperbolic orbit})$

Properties of Coulomb trajectory families and envelopes

Graphical ε-development of orbits

Launch angle fixed-Varied launch energy

Launch energy fixed-Varied launch angle

Launch optimization and orbit family envelopes
ε-vector and Coulomb orbit construction steps

- Pick launch point P (radius vector \(\mathbf{r} \))
- and elevation angle \(\gamma \) from radius (momentum initial \(\mathbf{p} \) direction)

- Copy F-center circle around launch point P
- Copy elevation angle \(\gamma (\angle \mathbf{FP}' \mathbf{P}) \) onto \(\angle \mathbf{P}' \mathbf{P} \mathbf{Q} \)
- Extend resulting line \(\mathbf{P} \mathbf{Q} \mathbf{P}' \) to make **focus locus**

Reason for focus locus:
- Line \(\mathbf{r} \) from 1st focus \(\mathbf{F} \) “reflects” off line \(\mathbf{p} \) (or \(\mathbf{P}' \mathbf{P} \)) toward 2nd focus \(\mathbf{F}' \) somewhere so incident-angle \(\gamma \) equals reflected-angle \(\gamma \)

Draw ε-vector from focus \(\mathbf{F} \) to \(\mathbf{R} \)-point and beyond to 2nd focus \(\mathbf{F}' \)

Copy double angle \(2\gamma (\angle \mathbf{FP} \mathbf{Q}) \) onto \(\angle \mathbf{PFT} \)

Extend \(\angle \mathbf{PFT} \) chord \(\mathbf{PT} \) to make \(\mathbf{R} \)-ratio scale line**

Label chord PT with \(\mathbf{R}=0 \) at \(\mathbf{P} \) and \(\mathbf{R}=-1.0 \) at \(\mathbf{T} \).

Mark R-line fractions \(\mathbf{R}=0, +1/4, +1/2, ... \) above \(\mathbf{P} \) and \(\mathbf{R}=0, -1/8, -1/4, -1/2, ..., -3/4 \) below \(\mathbf{P} \) and \(-5/4, -3/2, ... \) below \(\mathbf{T} \).

Focused Construction of Orbital Trajectory:

Focus \(\mathbf{F} \) and 2nd focus \(\mathbf{F}' \) allow final construction of orbital trajectory.

Here it is an \(\mathbf{R}=-3/8 \) ellipse.

(Detailed Analytic geometry of ε-vector follows.)

From Lecture 26 p. 64

\[
R = \frac{\text{Initial KE}}{\text{Initial PE}} = \frac{mv^2(0)}{2} - \frac{k}{r(0)}
\]

\[
= \pm \left(\frac{\text{Initial velocity}}{\text{Escape velocity}} \right)^2 = \pm \frac{v^2(0)}{v^2(\infty)}
\]
ε-vector and Coulomb orbit construction steps

Pick launch point \(P \)

(radius vector \(\mathbf{r} \))
and elevation angle \(\gamma \) from radius
(momentum initial \(\mathbf{p} \) direction)

Copy F-center circle around launch point \(P \)

Copy elevation angle \(\gamma (\angle FPP') \) onto \(\angle P/\mathbf{P}Q \)

Extend resulting line \(\mathbf{Q}PQ' \) to make focus locus

Copy double angle \(2\gamma (\angle \mathbf{FPQ}) \) onto \(\angle \mathbf{PFT} \)

Extend \(\angle \mathbf{PFT} \) chord \(PT \) to make \(R \)-ratio scale line

Label chord with \(R=0 \) at \(P \) and \(R=-1.0 \) at \(T \).

Mark \(R \)-line fractions \(R=0, +1/4, +1/2, \ldots \) above \(P \) and
\(R=0, -1/8, -1/4, -1/2, \ldots, -3/4 \) below \(P \) and \(-5/4, -3/2, \ldots \) below \(T \).

\[R = \frac{\text{Initial KE}}{\text{Initial PE}} = \frac{mv^2(0)}{2} \frac{-k}{r(0)} \]

\[R = \pm \left(\frac{\text{Initial velocity}}{\text{Escape velocity}} \right)^2 = \pm \frac{v^2(0)}{v^2(\infty)} \]

(Ratio scale line)

(Extension of chord PT)

(Reason for focus locus: Line \(r \) from 1st focus \(F \) “reflects” off line \(\mathbf{P} \) (or \(\mathbf{P}' \)) toward 2nd focus \(F' \) somewhere so incident-angle \(\gamma \) equals reflected-angle \(\gamma \))

(Reason for focus locus: \(\text{Lines} \) \(r \) and chord \(\mathbf{P} \) “reflect” off line \(\mathbf{P}' \) toward 2nd focus \(F' \) somewhere so incident-angle \(\gamma \) equals reflected-angle \(\gamma \))

(From Lecture 26 p. 65)
Analytic geometry derivation of \(\varepsilon \)-constructions

\[
\varepsilon = \hat{r} - \frac{p \times L}{km} = \hat{r} - \frac{(mv_0)(mv_0r_0)\sin \gamma}{km}
\]

where: \(L_{px} \equiv p \times L \)

\[
\varepsilon = \hat{r} + 2\sin \gamma \frac{mv_0^2}{-k/r_0} \quad \hat{L}_{px} = \hat{r} + 2\sin \gamma \frac{KE}{PE} \hat{L}_{px}
\]

The eccentricity vector is:

\[
\varepsilon = \begin{pmatrix}
\cos \gamma \\
\sin \gamma
\end{pmatrix} + 2\sin \gamma \begin{pmatrix}
0 \\
1
\end{pmatrix} \quad R = \begin{pmatrix}
\cos \gamma \\
(2R+1)\sin \gamma
\end{pmatrix}
\]

For: \(\gamma = 45^\circ \) and: \(R = +\frac{1}{2} \)

\[
\varepsilon = \begin{pmatrix}
1/\sqrt{2} \\
1/\sqrt{2}(2R+1)
\end{pmatrix} = \begin{pmatrix}
1/\sqrt{2} \\
2/\sqrt{2}
\end{pmatrix}
\]

Fig. 5.4.3 in Unit 5 of CMwBANG!

\[
\frac{\text{Initial KE}}{\text{Initial PE}} = \frac{mv^2(0)}{-k/r(0)} = \pm \left(\frac{\text{Initial velocity}}{\text{Escape velocity}} \right)^2 = \pm \frac{v^2(0)}{v^2(\infty)}
\]
Analytic geometry derivation of ε-constructions

$\varepsilon = \hat{r} - \frac{p \times L}{km} = \hat{r} - \left(\frac{mv_0}{km} \right) r_0 \sin \gamma \hat{L}_{px}$

where: $L_{px} \equiv p \times L$

$\varepsilon = \hat{r} + 2 \sin \gamma \frac{mv_0^2}{-k/r_0}$

$\hat{L}_{px} = \hat{r} + 2 \sin \gamma \frac{KE}{PE} \hat{L}_{px}$

The *eccentricity* vector is:

$\varepsilon = \begin{pmatrix}
\cos \gamma \\
\sin \gamma
\end{pmatrix} + 2 \sin \gamma \begin{pmatrix}
0 \\
1
\end{pmatrix} R = \begin{pmatrix}
\cos \gamma \\
(2R+1) \sin \gamma
\end{pmatrix}$

For: $\gamma = 45^\circ$ and: $R = +\frac{1}{2}$

$\varepsilon = \begin{pmatrix}
1/\sqrt{2} \\
1/\sqrt{2}(2R+1)
\end{pmatrix} = \begin{pmatrix}
1/\sqrt{2} \\
2/\sqrt{2}
\end{pmatrix}$

The *eccentricity* parameter defined by:

$e^2 = \cos^2 \gamma + (2R+1)^2 \sin^2 \gamma = 1 + a^2 = 1 + 4R(R+1)\sin^2 \gamma = \frac{a^2}{b^2}$

$R = \frac{\text{Initial KE}}{\text{Initial PE}} = \frac{mv^2(0)}{2/-k/r(0)}$

$= \pm \left(\frac{\text{Initial velocity}}{\text{Escape velocity}} \right)^2 = \pm \frac{v^2(0)}{v^2(\infty)}$

Fig. 5.4.3 in Unit 5 of CMwBANG!
Analytic geometry derivation of ε-constructions

$$\varepsilon = \hat{r} - \frac{\mathbf{p} \times \mathbf{L}}{km} = \hat{r} - \left(\frac{mv_0}{km}\right)\sin \gamma \hat{L}_p$$

where: $\hat{L}_p = \hat{p} \times \hat{L}$

$\varepsilon = \hat{r} + 2 \sin \gamma \frac{mv_0^2}{-k/r_0} \hat{L}_p = \hat{r} + 2 \sin \gamma \frac{KE}{PE} \hat{L}_p$

The **eccentricity** vector is:

$$\varepsilon = \begin{pmatrix} \cos \gamma \\ \sin \gamma \end{pmatrix} + 2 \sin \gamma \begin{pmatrix} 0 \\ 1 \end{pmatrix} R = \begin{pmatrix} \cos \gamma \\ (2R+1) \sin \gamma \end{pmatrix}$$

For: $\gamma = 45^\circ$ and: $R = +\frac{1}{2}$

$$\varepsilon = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} (2R+1) \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ 2/\sqrt{2} \end{pmatrix}$$

The **eccentricity** parameter defined by:

$$e^2 = \cos^2 \gamma + (2R+1)^2 \sin^2 \gamma \leq 1 + \frac{a^2}{b^2}$$

$$e^2 = 1 + 4R(2R+1)\sin^2 \gamma = \frac{a^2}{b^2}$$

$$R = \frac{\text{Initial } KE}{\text{Initial } PE} = \frac{mv^2(0)}{2(-k/r(0))}$$

$$= \pm\left(\frac{\text{Initial velocity}}{\text{Escape velocity}}\right)^2 = \pm \frac{v^2(0)}{v^2(\infty)}$$

Fig. 5.4.3 in Unit 5 of CMwBANG!
Analytic geometry derivation ofε-constructions

\[\mathbf{r} = \hat{\mathbf{r}} - \mathbf{p} \times \mathbf{L} = \hat{\mathbf{r}} - \left(\frac{m v_0}{r_0} \right) \sin \gamma \hat{\mathbf{L}} \]

where: \(\hat{\mathbf{L}} = \mathbf{p} \times \mathbf{L} \)

\[\mathbf{r} = \hat{\mathbf{r}} + 2 \sin \gamma \frac{m v_0^2}{-k/r_0} \hat{\mathbf{L}} = \hat{\mathbf{r}} + 2 \sin \gamma \frac{KE}{PE} \hat{\mathbf{L}} \]

The eccentricity vector is:

\[\mathbf{e} = \begin{pmatrix} \cos \gamma \\ \sin \gamma \end{pmatrix} + 2 \sin \gamma \begin{pmatrix} 0 \\ 1 \end{pmatrix} R = \begin{pmatrix} \cos \gamma \\ (2R+1) \sin \gamma \end{pmatrix} \]

For: \(\gamma = 45^\circ \) and: \(R = \frac{1}{2} \)

\[\mathbf{e} = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ 2/\sqrt{2} \end{pmatrix} \]

The eccentricity parameter defined by:

\[e^2 = \cos^2 \gamma + \left(\frac{2R+1}{2} \right)^2 \sin^2 \gamma = 1 + \frac{a^2}{b^2} \]

\[R = \frac{\text{Initial KE}}{\text{Initial PE}} = \frac{m v^2(0)}{2} / \left(-k / r(0)\right) \]

\[= \pm \left(\frac{\text{Initial velocity}}{\text{Escape velocity}} \right)^2 = \pm \frac{v^2(0)}{v^2(\infty)} \]
Analytic geometry derivation of ε-constructions

\[\varepsilon = \hat{r} - \frac{\mathbf{p} \times \mathbf{L}}{\text{km}} = \hat{r} - \frac{(mv_0)(mv_0 r_0)\sin \gamma}{\text{km}} \hat{L}_{px} \]

where: \(\hat{L}_{px} \equiv \mathbf{p} \times \mathbf{L} \)

\[\varepsilon = \hat{r} + 2\sin \gamma \frac{mv_0^2}{-k/r_0} \hat{L}_{px} = \hat{r} + 2\sin \gamma \frac{KE}{PE} \hat{L}_{px} \]

The **eccentricity** vector is:

\[\varepsilon = \begin{pmatrix} \cos \gamma \\ \sin \gamma \end{pmatrix} + 2\sin \gamma \begin{pmatrix} 0 \\ 1 \end{pmatrix} R = \begin{pmatrix} \cos \gamma \\ (2R+1)\sin \gamma \end{pmatrix} \]

For: \(\gamma = 45^\circ \) and: \(R = \frac{1}{2} \)

\[\varepsilon = \begin{pmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{pmatrix} = \begin{pmatrix} 1/\sqrt{2} \\ 2/\sqrt{2} \end{pmatrix} \]

The **eccentricity** parameter defined by:

\[\varepsilon^2 = \cos^2 \gamma + (2R+1)^2 \sin^2 \gamma \approx 1 + \frac{a^2}{b^2} = 1 + 4R(R+1)\sin^2 \gamma = \frac{a^2}{b^2} \]

\[R = \frac{\text{Initial KE}}{\text{Initial PE}} = \frac{mv^2(0)}{-k/r(0)} \]

\[= \pm \left(\frac{\text{Initial velocity}}{\text{Escape velocity}} \right)^2 = \pm \frac{v^2(0)}{v^2(\infty)} \]
Analytic geometry derivation of ε-constructions

$$R = \frac{KE}{PE}$$

where: $L_{px} = p \times L$

The eccentricity vector is:

$$\varepsilon = \hat{r} - \frac{p \times L}{km} = \hat{r} - \left(\frac{mv_0}{km} \right) \left(\frac{mv_0 r_0}{km} \right) \sin \gamma \hat{L}_{px}$$

For: $\gamma = 45^\circ$ and: $R = +\frac{1}{2}$

$$\varepsilon = \begin{pmatrix} \cos \gamma \\ \sin \gamma \end{pmatrix} + 2\sin \gamma \begin{pmatrix} 0 \\ 1 \end{pmatrix} R = \begin{pmatrix} \cos \gamma \\ (2R+1)\sin \gamma \end{pmatrix}$$

The eccentricity parameter defined by:

$$e^2 = \cos^2 \gamma + \frac{[2R+1]^2}{2}\sin^2 \gamma = 1 + \frac{a^2}{b^2}$$

$$R = \frac{Initial KE}{Initial PE} = \frac{mv^2(0)/2}{-k/r(0)}$$

$$= \pm \left(\frac{Initial velocity}{Escape velocity} \right)^2 = \pm \frac{v^2(0)}{v^2(\infty)}$$

Fig. 5.4.3 in Unit 5 of CMvBANG!
Review of Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics

Analytic geometry derivation of ε-construction

Connection formulas for (a, b) and (ε, λ) with (γ, R)

Detailed ruler & compass construction of ε-vector and orbits

$(R = -0.375 \text{ elliptic orbit})$

$(R = +0.5 \text{ hyperbolic orbit})$

Properties of Coulomb trajectory families and envelopes

Graphical ε-development of orbits

Launch angle fixed-Varied launch energy

Launch energy fixed-Varied launch angle

Launch optimization and orbit family envelopes
Algebra of ε-construction geometry

The eccentricity parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$.

Three pairs of parameters for Coulomb orbits:
1. Cartesian (a, b), 2. Physics (E, L), 3. Polar (ε, λ)

Now we relate a 4th pair: 4. Initial (γ, R)

\[\varepsilon^2 = 1 + 4R(R+1)\sin^2\gamma \]

- for ellipse ($\varepsilon < 1$) where: $4R(R+1)\sin^2\gamma = -\frac{b^2}{a^2} = \varepsilon^2 - 1$ implying: $R(R+1) < 0$ (or $-R^2 > R$)
- for hyperbola ($\varepsilon > 1$) where: $4R(R+1)\sin^2\gamma = +\frac{b^2}{a^2} = \varepsilon^2 - 1$ implying: $R(R+1) > 0$ (or $-R^2 < R$)

Total $\frac{-k}{2a} = E = energy = KE + PE$ relates ratio $R = \frac{KE}{PE}$ to individual radii a, b, and λ.

Total $\frac{-k}{2a} = E = KE + PE = R\ PE + PE = (R + 1)\ PE = (R + 1)\ \frac{-k}{r}$ or: $\frac{1}{2a} = (R + 1)\ \frac{1}{r}$

\[a = \frac{r}{2(R + 1)} = \left(\frac{1}{2(R + 1)}\right)\text{ assuming unit initial radius (}r \equiv 1).\]

\[4R(R+1)\sin^2\gamma = \mp\frac{b^2}{a^2} \text{ implies: } 2\sqrt{\mp R(R+1)}\sin\gamma = \frac{b}{a} \text{ or: } b = 2a\sqrt{\mp R(R+1)}\sin\gamma\]

\[b = r\sqrt{\frac{\mp R}{R+1}}\sin\gamma = \sqrt{\frac{\mp R}{R+1}}\sin\gamma \text{ assuming unit initial radius (}r \equiv 1)\]

Latus radius is similarly related:

\[\lambda = \frac{b^2}{a} = \mp 2r\ R \sin^2\gamma\]

(Review of Lect. 26 p.107-108)
Algebra of ϵ-construction geometry

The *eccentricity* parameter relates ratios $R = \frac{KE}{PE}$ and $\frac{b^2}{a^2}$

$$\epsilon^2 = 1 + 4R(R+1)\sin^2 \gamma$$

$$= 1 - \frac{b^2}{a^2} \text{ ellipse } (\epsilon < 1) \quad 4R(R+1)\sin^2 \gamma = -\frac{b^2}{a^2}$$

$$= 1 + \frac{b^2}{a^2} \text{ hyperbola } (\epsilon > 1) \quad 4R(R+1)\sin^2 \gamma = +\frac{b^2}{a^2}$$

$$a = \frac{r}{2(R+1)} = \left(\frac{1}{2(R+1)} \right) \text{ assuming unit initial radius } (r \equiv 1).$$

$$b = r \sqrt{\frac{\mp R}{R+1}} \sin \gamma = \sqrt{\frac{\mp R}{R+1}} \sin \gamma \text{ assuming unit initial radius } (r \equiv 1).$$

Latus radius is similarly related:

$$\lambda = \frac{b^2}{a} = \mp 2R \sin^2 \gamma$$

From ϵ^2 result (at top):

$$\frac{b}{a} = 2\sqrt{\mp R(R+1)\sin \gamma} = \sqrt{\pm(1-\epsilon^2)}$$

(Review of Lect. 26 p.107-108)

Three pairs of parameters for Coulomb orbits:
1. Cartesian (a,b), 2. Physics (E,L), 3. Polar (ϵ, λ)

Now we relate a 4th pair: 4. Initial (γ, R).
Review of Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics

Analytic geometry derivation of ε-construction

Connection formulas for (a,b) and (ε, λ) with (γ, R)

Detailed ruler & compass construction of ε-vector and orbits

- $(R=-0.375 \text{ elliptic orbit})$
- $(R=+0.5 \text{ hyperbolic orbit})$

Properties of Coulomb trajectory families and envelopes

Graphical ε-development of orbits

- Launch angle fixed-Varied launch energy
- Launch energy fixed-Varied launch angle
- Launch optimization and orbit family envelopes
Extend FP to make major axis sum FPP' : (r + r' = 2a) at intersect of r'-arc F'P' F'P' R = -3/8 elliptic orbit construction

γ = 45°
Strike radius-\(r \) arc about point \(P' \) to intersect original radius-\(r \) circle about focus \(F \) at ends of bisection line \(BB' \). Draw radius-\(a \) circle at \(F \) tangent to bisection line \(BB' \).
Strike radius-\(r \) arc about point \(P' \) to intersect original radius-\(r \) circle about focus \(F \) at ends of bisection line \(BB' \). Draw radius-\(a \) circle at tangent to bisection line \(BB' \).

Draw radius-\(a \) circle at \(F' \). Draw radius-\(a \) and radius-\(b \) circles at \(O \) (Center of bisection line \(\pm b \)).

Extend FP to make major axis sum \(FPP': (r + r' = 2a) \) at \(P' \) intersect of \(r' \)-arc of \(r' \)-arc.

\(R = \frac{-3}{8} \) elliptic orbit construction

\(R = \frac{-3}{8} \)

\(\gamma = 45^\circ \)
Strike radius-r arc about point P' to intersect original radius-r circle about focus at ends of bisection line BB'. Draw radius-a circle at tangent to bisection line BB'.

\[R = -3/8 \] elliptic orbit construction

\[\gamma = 45^\circ \]

Extend FP to make major axis sum FPP':(r+r'=2a) at P' intersect of r'-arc of \(r' \)-arc

Draw radius-a circle at \(F' \)

Draw radius-a and radius-b circles at O (Center of bisection line \((\pm b)\)).
\[\epsilon = \sqrt{1 + 4R(R+1)\sin^2\gamma} = \frac{\sqrt{34}}{8} = .73 \]

\[a = \frac{1}{2(R+1)} = \frac{4}{5} \]

\[b = \sqrt{\frac{R}{R+1}} \sin \gamma = \sqrt{\frac{3}{10}} = .54 \]

\[\lambda = \frac{b^2}{a} = 2R\sin^2\gamma = \frac{3}{8} = .375 \]

\[\frac{b}{a} = 2\sqrt{R(R+1)\sin \gamma} = \tan 34^\circ \]

Draw radius-\(a\) circle at \(F'\)

Draw radius-\(a\) and radius-\(b\) circles at \(O\)

(Center of bisection line \((\pm b)\).)

Do \((a,b)\)-ellipse construction.
Review of *Eccentricity vector* ε and (ε, λ)-geometry of orbital mechanics

Analytic geometry derivation of ε-construction

Connection formulas for (a,b) and (ε, λ) with (γ, R)

Detailed ruler & compass construction of ε-vector and orbits

$(R = -0.375 \text{ elliptic orbit})$

$(R = +0.5 \text{ hyperbolic orbit})$

Properties of Coulomb trajectory families and envelopes

Graphical ε-development of orbits

Launch angle fixed-Varied launch energy

Launch energy fixed-Varied launch angle

Launch optimization and orbit family envelopes
Major diameter \(2a\) is difference \((r-r')=2a\).
Major radius \(a\) is half of difference \((r-r')/2=a\)
Major diameter \(2a\) needs to be centered on \(F-F'\) focal axis

\[R=+1/2\] hyperbolic orbit construction

\[R=+1/2\]
\[\gamma=45^\circ\]
Major diameter $2a$ is difference $v - r' = 2a$.

1. Bisect $F-P$ radius raising $F-P$ circle intersections to define r^2 sections.

$R = +1/2$ hyperbolic orbit construction.

$\gamma = 45^\circ$

$R = +1/2$ hyperbolic orbit construction.
Major diameter $2a$ is difference $(r-r'=2a)$.
Major radius a is half of difference $(r-r')/2=a$.
Major diameter $2a$ needs to be centered on F-F‘ focal axis.
1. Bisect F-P radius r using F-P circle intersections to define $r/2$ sections.
2. Bisect F-F‘ focal axis using F-F‘ circle intersections to locate orbit center C.

$R=+1/2$ hyperbolic orbit construction

$\gamma=45^\circ$
Major diameter 2a is difference (r-r' = 2a).
Major radius a is half of difference (r-r')/2 = a.
Major diameter 2a needs to be centered on F-F' focal axis
1. Bisect F-P radius r using F-P circle intersections to define r/2 sections.
2. Bisect F-F' focal axis using F-F' circle intersections to locate orbit center C.

\[R = +1/2 \ \text{hyperbolic orbit construction} \]

\[\gamma = 45^\circ \]
Major diameter \(2a\) is difference \((r-r' = 2a)\).

Major radius \(a\) is half of difference \((r-r')/2 = a\).

Major diameter \(2a\) needs to be centered on \(F-F'\) focal axis.

1. Bisect \(F-P\) radius \(r\) using \(F-P\) circle intersections to define \(r/2\) sections.
2. Bisect \(F-F'\) focal axis using \(F-F'\) circle intersections to locate orbit center \(C\).
3. Bisect \(F'-P\) radius \(r'\) using \(F'-P\) circle intersections.
4. Swing radius \(r'/2\) onto \(r/2\) section to make major radius \(a=(r-r'/2)\).
Major diameter $2a$ is difference $(r-r')=2a$.
Major radius a is half of difference $(r-r')/2=a$.
Major diameter $2a$ needs to be centered on $F-F'$ focal axis.

1. Bisect $F-P$ radius r using $F-P$ circle intersections to define $r/2$ sections.
2. Bisect $F-F'$ focal axis using $F-F'$ circle intersections to locate orbit center C.
4. Swing radius $r'/2$ onto $r/2$ section to make major radius $a=(r-r')/2$.
5. Copy circle of major radius $a=(r-r')/2$ about orbit center C.

$R=+1/2$ hyperbolic orbit construction

$\gamma=45^\circ$
Major diameter 2a is difference (r-r' = 2a).
Major radius a is half of difference (r-r')/2 = a
Major diameter 2a needs to be centered on F-F' focal axis
1. Bisect F-P radius r using F-P circle intersections to define r/2 sections.
2. Bisect F-F' focal axis using F-F' circle intersections to locate orbit center C.
4. Swing radius r'/2 onto r/2 section to make major radius a=(r-r')/2.
5. Copy circle of major radius a=(r-r')/2 about orbit center C.
6. Draw focal circle of diameter 2ae about orbit center C.
Major diameter 2a is difference (r-r’=2a).
Major radius a is half of difference (r-r’)/2=a
Major diameter 2a needs to be centered on F-F’ focal axis
1. Bisect F-P radius r using F-P circle intersections to define r/2 sections.
2. Bisect F-F’ focal axis using F-F’ circle intersections to locate orbit center C.
4. Swing radius r’/2 onto r/2 section to make major radius a=(r-r’)/2.
5. Copy circle of major radius a=(r-r’)/2 about orbit center C.
6. Draw focal circle of diameter 2aε about orbit center C.
7. Erect minor radius b tangent to a-circle from point a on Cε-axis to point b on focal circle.
Major diameter $2a$ is difference $(r-r' = 2a)$.
Major radius a is half of difference $(r-r')/2 = a$.

Major diameter $2a$ needs to be centered on F-F' focal axis.

1. Bisect F-P radius r using F-P circle intersections to define $r/2$ sections.
2. Bisect F-F' focal axis using F-F' circle intersections to locate orbit center C.
4. Swing radius $r'/2$ onto $r/2$ section to make major radius $a = (r-r')/2$.
5. Copy circle of major radius $a = (r-r')/2$ about orbit center C.
6. Draw focal circle of diameter $2ae$ about orbit center C.
7. Erect minor radius b tangent to a-circle from point a on CE-axis to point b on focal circle.
8. Complete orbit $a-x-b$ box between focal circle and a-circle and its diagonal asymptotes.

$R = +1/2$ hyperbolic orbit construction

$R = +1/2$

$\gamma = 45^\circ$
9. Draw section of hyperbolic orbit.

\[R = +\frac{1}{2} \text{ hyperbolic orbit construction} \]

\[\gamma = 45^\circ \]
9. Draw section of hyperbolic orbit.

Construction based on: $r - r' = 2a$ or $r' = r - 2a$

T draw an r-arc about focus F.

$r = r'$

$R = +1/2$ hyperbolic orbit construction

$R = +1/2$

$\gamma = 45^\circ$
9. Draw section of hyperbolic orbit.

Construction based on: \(r-r' = 2a \) or: \(r' = r-2a \)

1st draw an \(r \)-arc about focus \(F \).
2nd set compass to \((r-2a) \) using \(r \)-arc-minus-\(2a \) on \(CE \)-line.
9. Draw section of hyperbolic orbit.

$R = +1/2$ hyperbolic orbit construction

$\gamma = 45^\circ$

Construction based on: $r - r' = 2a$ or: $r' = r - 2a$

1st draw an r-arc about focus F.

2nd set compass to $(r-2a)$ using r-arc-minus-2a on $C\varepsilon$-line.

3rd draw $(r-2a)$-arc about focus F'.

Sunday, December 6, 2015
9. Draw section of hyperbolic orbit.

Construction based on: $r-r'=2a$ or $r'=r-2a$

1\(^{st}\) draw an r-arc about focus F.
2\(^{st}\) set compass to $(r-2a)$ using r-arc-minus-2a on $C\varepsilon$-line.
3\(^{rd}\) draw $(r-2a)$-arc about focus F'.

Orbit points at intersections.

$R=+1/2$ hyperbolic orbit construction

$R=+1/2$

$\gamma=45^\circ$
9. Draw section of hyperbolic orbit.

$R = +1/2$ hyperbolic orbit construction

$\gamma = 45^\circ$
9. Draw section of hyperbolic orbit.
9. Draw section of hyperbolic orbit.

$R = +\frac{1}{2}$ hyperbolic orbit construction

$\gamma = 45^\circ$

Sunday, December 6, 2015
9. Draw section of hyperbolic orbit.

\[\varepsilon = \sqrt{1 + 4R(R+1)\sin^2 \gamma} = \sqrt{\frac{3}{2}} = 1.58 \]

\[a = \frac{1}{2(R+1)} = \frac{1}{3} = 0.33 \]

\[b = \sqrt{\frac{R}{R+1} \sin \gamma} = \frac{1}{\sqrt{6}} = 0.408 \]

\[\lambda = \frac{b^2}{a} = 2R\sin^2 \gamma = \frac{1}{2} = 0.5 \]

\[\frac{b}{a} = 2\sqrt{R(R+1)\sin \gamma} = \tan 50.7^\circ \]
Review of *Eccentricity vector* ε and (ε, λ)-geometry of orbital mechanics

Analytic geometry derivation of ε-construction

Connection formulas for (a, b) and (ε, λ) with (γ, R)

Detailed ruler & compass construction of ε-vector and orbits

- $(R=-0.375)$ elliptic orbit
- $(R=+0.5)$ hyperbolic orbit

Properties of Coulomb trajectory families and envelopes

- Graphical ε-development of orbits
- Launch angle fixed-Varied launch energy
- Launch energy fixed-Varied launch angle
- Launch optimization and orbit family envelopes
Graphs and protractors make Coulomb trajectory analysis easier.
Start with initial angle
\[\alpha = 20^\circ \]
(horiz. elev.)
or
\[\gamma = 70^\circ \]
(rad. elev.)

for velocity \(v(0) \) or \(-v(0)\)

or \(-v(0)\)

\[2(\alpha - \gamma) = 100^\circ \]

Label Main Focus \(F \) and construct focus locus for 2nd foci \(F' \).
Start with initial angle

\[\alpha = 20^\circ \] (horiz. elev.)

or

\[\gamma = 70^\circ \] (rad. elev.)

for velocity\n\[v(0) \text{ or } -v(0) \]

Construct focus locus for 2nd foci \(F' \)

Construct R-scale line to initial velocity \(\pm v(0) \) line

\[2(\alpha - \gamma) = 100^\circ \]
Start with initial angle
\(\alpha = 20^\circ \)
(horiz. elev.)
or
\(\gamma = 70^\circ \)
(rad. elev.)
for velocity
\(v(0) \) or \(-v(0)\)

Construct \textit{R-scale line} to initial velocity \(v(0) \) line

Construct \textit{focus locus} for prime foci \(F' \)

\((N=8)\)-sect \textit{R-scale line} to mark \(R = K E / P E = 0, \pm 1/8, \pm 2/8, \pm 3/8 \)
for eccentricity \(\epsilon \)-vector scale

Extend eccentricity \(\epsilon \)-vectors from the main Focus \(F \) to each \textit{R-line}-point

\(R \)-scale line is normal to initial \(v(0) \)-line
Start with initial angle
\[\alpha = 20^\circ \]
(horiz. elev.)
or
\[\gamma = 70^\circ \]
(rad. elev.)
for velocity
\[v(0) \] or \[-v(0) \]

Label Main Focus \(F \)

Construct R-scale line to initial velocity \(v(0) \) line

Construct focus locus for prime foci \(F' \)

\((N=8)-\text{sect R-scale line}
\text{to mark } R=KEPE=0, \pm 1/8, \pm 2/8, \pm 3/8
\text{for eccentricity } \varepsilon\text{-vector scale}

Extend eccentricity \(\varepsilon \)-vectors
from the main Focus \(F \)
to each \(R\)-line-point and
beyond to prime foci \(F' \)

R-scale line is normal to initial \(v(0) \)-line
Start with initial angle
\[\alpha = 20^\circ \] (horiz. elev.)

or
\[\gamma = 70^\circ \] (rad. elev.)

for velocity \(v(0) \) or \(-v(0) \)
Start with initial angle
\(\alpha = 20^\circ \) (horiz. elev.)
or
\(\gamma = 70^\circ \) (rad. elev.)
for velocity \(v(0) \) or \(-v(0)\)

\((R=\pm \infty) \ e\text{-line is parallel to } R\text{-scale line.}\)
This \((R=-1)\) case \(\Rightarrow\) R-scale line is parallel to \(\varepsilon-line\)

Start with initial angle \(\alpha=20^\circ\) or \(\gamma=70^\circ\) for velocity \(\pm v(0)\)

\((\text{horiz. elev.)}\) (rad. elev.)

Construct: \(\pm \infty\) point and \(\pm \infty\) line (attractive loci for \(R<1\))

Construct: \(\varepsilon\)-line hits focus-locus \((R=\pm \infty)\) parallel to \(R\)-scale line

Focus-locus \(F\) mark \(R \neq \pm \infty\) from left

Extend eccentricity \(e\) vectors from the main Focus \(F\)

to each \(R\)-line-point and beyond to prime foci \(F'\)

Range Longitude

\((N=8)\) scale line is normal to initial \(v(0)\)-line
This (R=-1) case
Start with initial angle
α = 20° (horiz. elev.)
or γ = 70° (rad. elev.)
for velocity v(0) or -v(0)

Construct focus locus for R<1
or R-scale line is normal to initial v(0)-line

Extend eccentricity e vectors from the main Focus F to each R-line-point and beyond to prime foci F′

(R=±∞) ε-line is parallel to R-scale line.

(R=1/8) ε-line hits focus locus

Focus locus for R<1 intersects ε-line

Range Longitude
This (R=-1) \(\epsilon \)-line is parallel to \(R \)-scale line.

Start with initial angle \(\alpha = 20^\circ \)

\(\gamma = 70^\circ \) (rad. elev.)

(0)

\((R=-9/8) \) - line intersects focus-locus for \(-1 < R < 0 \)

\((R=\infty) \) - line is normal to initial \(v(0) \)-line

\(v(0) \) or \(-v(0)\)

Focus-locus for \(-\infty < R < -1 \)

Focus-locus for \(R > 1 \)

(30\(\infty \) - line is normal to initial \(v(0) \)-line

Extend eccentricity \(e \)-vectors from the main Focus \(F \) to each \(R \)-line-point and beyond to prime foci \(F' \).
Review of **Eccentricity vector** ε and (ε, λ)-geometry of orbital mechanics

Analytic geometry derivation of ε-construction

Connection formulas for (a,b) and (ε, λ) with (γ, R)

Detailed ruler & compass construction of ε-vector and orbits

$(R=-0.375)$ elliptic orbit

$(R=+0.5)$ hyperbolic orbit

Properties of Coulomb trajectory families and envelopes

- Graphical ε-development of orbits
 - Launch angle fixed-Varied launch energy
 - Launch energy fixed-Varied launch angle
 - Launch optimization and orbit family envelopes
Start with initial velocity \(\mathbf{v}(0) \) or \(-\mathbf{v}(0)\)

Label Main Focus \(F \)

Construct \textit{R-line normal} to initial velocity \(\mathbf{v}(0) \) line

Construct \textit{focus locus} for prime foci \(F' \)

\((N=8)\)-sect \textit{R-line normal} to mark \(R=\frac{KE}{PE}=0,\pm 1/8,\pm 2/8,\pm 3/8,\ldots \)

for eccentricity \(\varepsilon \)-vector scale

Extend eccentricity \(\varepsilon \)-vectors from the main Focus \(F \)
to each \textit{R-line}-point and beyond to prime foci \(F' \)

Range bisection circles (these are not orbits) indicate reentry ranges
Start with initial velocity $v(0)$ or $-v(0)$

Label Main Focus F

Construct R-line normal to initial velocity $v(0)$ line

Construct focus locus for prime foci F'

$(N=8)$-sect R-line normal to mark $R=KE/PE=0, \pm 1/8, \pm 2/8, \pm 3/8, \ldots$

for eccentricity ε-vector scale

Extend eccentricity ε-vectors from the main Focus F
to each R-line-point and beyond to prime foci F'

$2a = r' + r = r' + 1$

Range bisection circles (these are not orbits) indicate rentry ranges

\Rightarrow Same arc centered on unit circle measures “string length”
Start with initial velocity $\mathbf{v}(0)$ or $-\mathbf{v}(0)$

- Label Main Focus F
- Construct R-line normal to initial velocity $\mathbf{v}(0)$
- Construct focus locus for prime foci F'
- $(N=8)$-sect R-line normal to mark $R=KE, PE=0, \pm 1/8, \pm 2/8, \pm 3/8...$
- For eccentricity ε-vector scale
- Extend eccentricity ε-vectors from the main Focus F
- To each R-line point and beyond to prime foci F'

$2a = r' + r = r' + 1$

Range bisection circles (these are not orbits) indicate reentry ranges

Construct ellipse point by point

Same arc centered on unit circle measures "string length"
Label Main Focus F

Construct R-line normal to initial velocity $\mathbf{v}(0)$ line

Construct focus locus for prime foci F'

$(N=8)$-sect R-line normal to mark $R=KE/PE=0, \pm 1/8, \pm 2/8, \pm 3/8,$...

for eccentricity ε-vector scale

Extend eccentricity ε-vectors from the main Focus F
to each R-line-point and beyond to prime foci F'

Range bisection indicates re-entry ranges

Maximum range limit for this elevation angle $\alpha=20^\circ$ has $R=-1$
and $\varepsilon=1$ (parabola)

This puts 2nd focus at ∞.
Label Main Focus \(F \)

Construct \(R \)-line normal to initial velocity \(\mathbf{v}(0) \) line

Construct focus locus for prime foci \(F' \)

\((N=8)\)-sect \(R \)-line normal to mark \(R=KE/PE=0, \pm 1/8, \pm 2/8, \pm 3/8\),...

for eccentricity \(\varepsilon \)-vector scale

Extend eccentricity \(\varepsilon \)-vectors from the main Focus \(F \)
to each \(R \)-line-point and beyond to prime foci \(F' \)

Maximum range limit for this elevation angle \(\alpha=20^\circ \) is range \(\phi=280^\circ \)

\((R=-1) \varepsilon = 1 \)-line parallel to focus-locus

This puts 2nd focus at \(\infty \).
Label Main Focus F

Construct R-line normal to initial velocity $\mathbf{v}(0)$ line

Construct focus locus for prime foci F'

$(N=8)$-sect R-line normal to mark $R=KE/PE=0, \pm 1/8, \pm 2/8, \pm 3/8$.

for eccentricity ε-vector scale

Extend eccentricity ε-vectors from the main Focus F
to each R-line-point and
beyond to prime foci F'

Maximum range limit for this elevation angle $\alpha=20^\circ$ is range $\phi=280^\circ$.

Maximum range limit for this elevation angle $\alpha=20^\circ$ has $R=-1$
and $\varepsilon=1$ (parabola)

$\{ (R=-1) \ \varepsilon = 1 \text{-line parallel to focus-locus} \}$

This puts 2nd focus at ∞.

Range bisection indicates re-entry ranges
Revu: geometry of parabola "kites"

Parabola

\[4p \cdot y = x^2 = 2\lambda y \]

This puts 2nd focus at \(\infty \).

Maximum range limit for this elevation angle \(\alpha = 20^\circ \) is range \(\Phi = 280^\circ \).

Maximum range limit for this elevation angle \(\alpha = 20^\circ \) has \(R = -1 \) and \(\varepsilon = 1 \) (parabola).

\[(R=-1) \; \varepsilon = 1 \text{-line parallel to focus-locus} \]

Range Longitude

This puts 2nd focus at \(\infty \).
Review of Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics

Analytic geometry derivation of ε-construction

Connection formulas for (a,b) and (ε, λ) with (γ, R)

Detailed ruler & compass construction of ε-vector and orbits

$(R=-0.375$ elliptic orbit$)$
$(R=+0.5$ hyperbolic orbit$)$

Properties of Coulomb trajectory families and envelopes

Graphical ε-development of orbits

- Launch angle fixed-Varied launch energy
- Launch energy fixed-Varied launch angle

Launch optimization and orbit family envelopes
Orbit with $\gamma = 47^\circ$ and $R = -3/8$
Orbit with $\gamma = 47^\circ$ and $R = -3/8$

Do one with $\gamma = 60^\circ$

(...and same R)

Elevation angle γ

Eccentricity vector

P, P', P_{60°, P_{47°

Q, $R = KE/PE$

F, $R = -3/8$

T
Orbits with the same R have the same energy E and the same major radii a. Hence their foci lie on a circle of radius $2a-r$ around launch point P.

Orbit with $\gamma=47^\circ$ and $R=-3/8$
Do one with $\gamma=60^\circ$ (...and same R)
Orbits with the same R have the same energy E and the same major radii a.

Hence their foci lie on a circle of radius $2a-r$ around launch point P.
focus locus for KE/PE
= $R = -\frac{3}{8}$

Envelope for KE/PE
= $R = -\frac{3}{8}$

Contact Pt. for KE/PE
= $R = -\frac{3}{8}$
Review of *Eccentricity vector* ε and (ε, λ)-geometry of orbital mechanics

Analytic geometry derivation of ε-construction

Connection formulas for (a, b) and (ε, λ) with (γ, R)

Detailed ruler & compass construction of ε-vector and orbits

$(R = -0.375$ elliptic orbit$)$

$(R = +0.5$ hyperbolic orbit$)$

Properties of Coulomb trajectory families and envelopes

Graphical ε-development of orbits

Launch angle fixed-Varied launch energy

Launch energy fixed-Varied launch angle

Launch optimization and orbit family envelopes
Coulomb envelope geometry

 Ideal comet “heads” or “tails” in solar wind

Fig. 5.4.4 in Unit 5 of CMwBANG!

Fig. 5.4.5 in Unit 5 of CMwBANG!

(a) Focus locus for KE/PE
 \(R = -\frac{3}{8} \)

(b) Caustic for KE/PE
 \(R = -\frac{3}{8} \)

(c) Diving orbit

(d) \(R \in (0, \infty) \)
CoulIt Web Simulation
Attractive Coulomb Burst

Sunday, December 6, 2015
CoulIt Web Simulation

Repulsive Coulomb Burst
Review of Eccentricity vector ε and (ε, λ)-geometry of orbital mechanics

Analytic geometry derivation of ε-construction

Connection formulas for (a,b) and (ε, λ) with (γ, R)

Detailed ruler & compass construction of ε-vector and orbits

- $(R=-0.375$ elliptic orbit$)$
- $(R=+0.5$ hyperbolic orbit$)$

Properties of Coulomb trajectory families and envelopes

- Graphical ε-development of orbits
 - Launch angle fixed-Varied launch energy
 - Launch energy fixed-Varied launch angle
 - Launch optimization and orbit family envelopes
Start with initial velocity \(\mathbf{v}(0) \) or \(-\mathbf{v}(0)\). Construct \textit{R-line normal} to initial velocity \(\mathbf{v}(0) \) line. Construct \textit{focus locus} for prime foci \(F' \).

\((N=8)\)-sect \textit{R-line normal} to mark \(R = KE/PE = 0, \pm 1/8, \pm 2/8, \pm 3/8 \).

for eccentricity \(\varepsilon \)-vector scale. Extend eccentricity \(\varepsilon \)-vectors from the main Focus \(F \) to each \textit{R-line}-point and beyond to prime foci \(F' \).

Range Longitude
Label Main Focus \(F \)

Construct \(R\)-line normal to initial velocity \(v(0) \) line

Construct focus locus for prime foci \(F' \)

\((N=8)\)-sect \(R\)-line normal to mark \(R = KE/PE = 0, \pm 1/8, \pm 2/8, \pm 3/8 \)

for eccentricity \(\varepsilon \)-vector scale

Extend eccentricity \(\varepsilon \)-vectors from the main Focus \(F \) to each \(R\)-line-point and beyond to prime foci \(F' \)

\(v(0) \)

focus locus for fixed Energy or fixed \(R = KE/PE = -5/8 \)

Range Longitude
Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes.

Problem:

Find trajectory angle of minimum energy to fly 90° of arc (1/4 around planet)
Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes.

Problem:

Find trajectory angle of minimum energy to fly 90° of longitude (1/4 around planet)

Solution: Prime focus F' lies on radial line that bisects longitude angle.
Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes.

Problem:
Find trajectory angle of minimum energy to fly 90° of longitude (1/4 around planet)

Solution: Prime focus F' lies on radial line that bisects longitude angle

Optimal prime focus F' lies on line connecting START and FINISH at tangent point of minimal energy circle SF'.

Range Longitude
Problem: Find trajectory angle of minimum energy to fly 90° of longitude (1/4 around planet)

Solution: Prime focus F' lies on radial line that bisects longitude angle

Optimal prime focus F' lies on line connecting START and FINISH at tangent point of minimal energy circle SF'.

R-line normal must bisect angle FSF' connecting foci F and F' and is normal to initial launch vector v_0.

Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes.
Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes.

Problem:
Find trajectory angle of minimum energy to fly 90° of longitude (1/4 around planet)

Solution: Prime focus F' lies on radial line that bisects longitude angle

Optimal prime focus F' lies on line connecting START and FINISH
at tangent point of minimal energy circle SF'.

R-line normal must bisect angle FSF' connecting foci F and F' and is normal to initial launch vector v₀ with launch angle α = 22.5°

The ε-vector and R-value: slightly below R = -3/8...

Sunday, December 6, 2015
Graphs and protractors help Coulomb trajectory launch optimization and orbit family envelopes.

Problem:

With launch angle $\alpha = 22.5^\circ$ find trajectory to fly 207° of longitude.

Solution: Prime focus F' lies on radial line at 103.5° that bisects longitude angle 207°.

The ε-vector and R-value: slightly below $R = -5/8$...
Problem: With launch angle $\alpha = 22.5^\circ$ find maximum range of trajectory.

Solution: Prime focus F' lies at infinity and gives parabola ($\varepsilon_\infty = 1, R = -1$) trajectory.

Trajectory axis is at 135°.

Trajectory would hit Earth at 270° …if it actually returned ...

...but a parabola cannot!

But at slightly less energy a very long ellipse would return after a very long time but at slightly less range than 270°.

Maximum range 269.999°: (with launch angle $\alpha = 22.5^\circ$)

Parabola escapes'... ...does not return...
Launch optimization

For low range ρ the optimum angle θ approaches $\theta = \pi/4$

(The well-known sophomore physics result.)