Complex Variables, Series, and Field Coordinates II.

(Ch. 10 of Unit 1)

1. The Story of e (A Tale of Great $Interest)
How good are those power series?

laylor-Maclaurin series, imaginary interest, and complex exponentials

2. What good are complex exponentials?
Lasy trig
Easy 2D vector analysis
Easy oscillator phase analysis

Easy rotation and “dot” or “cross” products

3. Easy 2D vector calculus
Easy 2D vector derivatives

Easy 2D source-free field theory starts here

1. Complex numbers provide "automatic trigonometry"
2. Complex numbers add like vectors.
3. Complex exponentials Ae™ track position and velocity using Phasor Clock.

4. Complex products provide 2D rotation operations.

5. Complex products provide 2D “dot”(+) and “cross’(x) products.

Lecture 14 Thur. 10.15.15

6. Complex derivative contains “divergence”(V-F) and “curl”(VxF) of 2D vector field

7. Invent source-free 2D vector fields [V+-F=0 and VxF=0]

Lasy 2D vector freld-potential theory

4. Riemann-Cauchy relations (What's analytic? What's not?)

Easy 2D curvilinear coordinate discovery
Easy 2D circulation and flux integrals

Easy 2D monopole, dipole, and 2"-pole analysis
Easy 2"-multipole field and potential expansion

Easy stereo-projection visualization

Cauchy integrals, Laurent-Maclaurin series
5. Mapping and Non-analytic 2D source field analysis
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8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA) potentials
The half-n*-half results: (Riemann-Cauchy Derivative Relations)

9. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

10. Complex integrals [ f(z)dz count 2D “circulation”( [Fdr) and “flux”([Fxdr)

11. Complex integrals define 2D monopole fields and potentials

12. Complex derivatives give 2D dipole fields

13. More derivatives give 2D 2N-pole fields. ..

14. ...and 2N-pole multipole expansions of fields and potentials...

15. ...and Laurent Series...

16. ...and non-analytic source analysis.



What Good Are Complex Exponentials? (contd.) (Review of Lecture 13.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative gJ; and “star” z*-derivative. %Z*
. 2 dpplying 42 dzox 'dzdy ~ 20x 20y

7 =X—1y y:%i (z —27%) chain-rule df _ dx df _I_Qy of _1df _|_L§f
dz*  dz*dx ~ dz*dy = 20x 29y
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What Good Are Complex Exponentials? (contd.) (Review of Lecture 13.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative gJ; and “star” z*-derivative. ﬁg*

g 9 Y _L _idf
dz~ 0dzox dzdy ~ 20x 20y

df _odx of dy of _1df | idf
dz*  dz*dx ~ dz*dy ~ 20x 20y

Z =x+1y

7 =xX—1y

Derivative chain-ruie shows real part’of i_ll'f has 2D divergence Vef and imaginary part has curl V< f.
; CIstne =

of.  Ifv i Of, O\ 1 ‘
éff +ayy)+§(axy —éfyfx) =5 Vef +§IV><fIZl(x’y)

I=d (i) =38+ =
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What Good Are Complex Exponentials? (contd.) (Review of Lecture 13.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative g]; and “star” z*-derivative. ﬁg*

g 9 Y _L _idf
dz~ 0dzox dzdy ~ 20x 20y

df _odx of dy of _1df | idf
dz*  dz*dx ~ dz*dy = 20x 29y

Z =x+1y

7 =xX—1y

Derivative chain-ruie shows real part’of gf has 2D divergence Vef and imaginary part has curl V< f.
; CIstne =

of.  Ifv i Of, O\ 1 ‘
5)/} +ayy)+§(axy —éfyfx) =5 Vef +§IV><fIZl(x,y)

I=d (i) =38+ =

7. Invent source-free 2D vector fields [V-F=0 and VxF=0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.

Take any function f(z), conjugate it (change all i’s to —i) to give /" (z*) for which gf — ()
<
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What Good Are Complex Exponentials? (contd.) (Review of Lecture 13.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF ) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative g]; and “star” z*-derivative. ﬁg*

g 9 Y _L _idf
dz~ 0dzox dzdy ~ 20x 20y

df _odx of dy of _1df | idf
dz*  dz*dx ~ dz*dy ~ 20x 20y

Z =x+1y

7 =xX—1y

Derivative chain-ruie shows real part’of gf has 2D divergence Vef and imaginary part has curl V< f.
; CIstne =

of.  Ifv i Of, O\ 1 ‘
éff +ayy)+§(axy —éfyfx) =5 Vef +§IV><fIZl(x,y)

I=d (i) =38+ =

7. Invent source-free 2D vector fields [V-F=0 and VxF=0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.

Take any function f(z), conjugate it (change all i’s to —i) to give /" (z*) for which gf — ()
<

For example: if f{z)=a'z then f*(z*)=a-z*=a(x-iy) is not function of z so it has zero z-derivative.
F=(Fx,Fy)=(f3)=(ax,-a'y) has zero divergence: VeF=0 and has zero curl: IVxFI=0.

_ oF, -
Vep = OF O _ dax) OF(-ay) _ VR vy _OF _9d(zay) JF(ax) _

dx Jdy  oOx dy 2T 9% 9y ox dy
A DFL field ¥ (Divergence-Free-Laminar)

0
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What Good Are Complex Exponentials? (contd.) (Review of Lecture 13.)
7. Invent source-free 2D vector fields [V-F=0 and VxF =0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.
Take any function f(z), conjugate it (change all i’s to —i) to give f*(z*) for which

For example: if f(z)=az then f*(z*)=a-z*=a(x-iy) is not function of z so it has zero z-derivative.
F=(Fx,Fy)=(~f)=(ax,-a'y) has zero divergence: VeF=0 and has zero curl: IVxFI=0.
oF  dF,  d(ax) +8F (—ay) doF, OF, _ d(=ay) dF(ax) _

Vel'= i ox dy ox dy

— 0
ox dy ox dy

0 IVxFIZL(X,y):

precursor to
Unit 1
Fig. 10.7

F=(f"v.fy) =(ax,-a'y) is a divergence-free laminar (DFL) field.
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What Good are complex variables?

Easy 2D vector calculus
Easy 2D vector derivatives
Easy 2D source-free field theory

—) Easy 2D vector field-potential theory
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=VO® F=Vx

A complex potential ¢(z)=P(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d ¢*/dz* giving DFL field F.
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F is a gradient of a scalar potential field ® or a curl of a
F=VO F=Vx

A complex potential ¢(z)=P(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d ¢*/dz* giving DFL field F.

To find ¢=D+iA integrate f(z)=az to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.

Tuesday, October 13, 2015 9



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F is a gradient of a scalar potential field ® or a curl of a
F=VO F=Vx
A complex potential ¢(z)=P(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d ¢*/dz* giving DFL field F.

To find ¢=D+i

f@=% =

Tuesday, October 13, 2015
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integrate f(z)=a'z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
= () +1 Azjf-dzzjaz-dzz%azz

10



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F is a gradient of a scalar potential field ® or a curl of a
F=VO® F= VX
A complex potential ¢(z)=P(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d ¢*/dz* giving DFL field F.

To find ¢=D+i

f@=% =

Tuesday, October 13, 2015

¢

integrate f(z)=a'z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
= () +1 Azjfdzzjazdzz%azzzéa(x+iy)2

A
r N\

=% a(xz—yz) +1 axy

11



What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials
Any DFL field F is a gradient of a scalar potential field ® or a curl of a
F=VoO F=Vx
A complex potential ¢(z)=P(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d ¢*/dz* giving DFL field F.

To find p=D+iA integrate f(z)=a-z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
fo=i = ¢= @ +i A=|f-dz=[az -dz=5 az’ =5 a(x +iy)’

A
~

" 2 2
=5 a(x”—y7) +i

T T_l 1 ]|
ik

1T

ILh

3
2

Field:

I (z¥)=z%=x-iy
Fey)=(x,-y)

Potential:
0(z)=2’
:X2-y2+i
= O +i

Lh

T

]
iLh

TrrrroIrrrTrr
»
~—
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F is a gradient of a scalar potential field ® or a curl of a
F=VO F=Vx

A complex potential ¢(z)=P(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d ¢*/dz* giving DFL field F.

To find ¢=D+iA integrate f(z)=az to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.

f(z):z—llf — ¢: J(g +l :jfdz:]azdz:% CZZ2 :% Cl(X"'iy)z BONUS/
r N ’
:% a(x® —y?) +i Get a free
- coordinate
:c system/
|_'. .
29 The (D,A) grid 1s a GCC
Fl coordinate system™:
i; _: q]: () :(XZ—)/Z)/2 — const.
_t- E i q2: — (Xy) — const.
- ——— 4 *Actually it’s OCC.

Field:
fE=zr=xiy

Fry=(x,-y)
Potential:

0(z)=2

Lh

T

]
i_h

:X2-y2+i
= O +i

TrrrroIrrrTrr
»
~—

Tuesday, October 13, 2015 13



Tuesday, October 13, 2015

What Good are complex variables?

Easy 2D vector calculus
Easy 2D vector derivatives
Easy 2D source-free field theory

—) o5y 2D vector field-potential theory

é The half-n™-half results: (Riemann-Cauchy Derivative Relations)

14



What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

oD dA
Derivative 4% has 2D gradient v = [3; ]of scalar @ and curl v A_[ ;A

f(z)= c_ifb — dy dy

of vector A (and they re equall)

¢ 9= (P=iA)= =5 (§,+ig, (D= iA) = z(ax+ay )+2(a —id=tvao+lvxa

Tuesday, October 13, 2015
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

oD dA
Derivative 4% has 2D gradient v = [3’; ]of scalar @ and curl v A_[ .

f@=% = ’ K

¢ 9= (P=iA)= =5 (§,+ig, (D= iA) = z(ax+ay )+2(a —id=tvao+lvxa

of vector A (and they re equall)

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO

Tuesday, October 13, 2015 16



What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

foL) J
Derivative g, has 2D gradient vo - [g’; ]of scalar @ and curl v, A( f vector A (and they’re equall)

f@=¢ = »

/- A

i 0" = e (P—iA)= =1 +za ND—iA) 2(ax+aayq’)+2(a —id=tvao+lvxa

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO

Given ¢: || ¢ = D +i A The half-n’-half result

1,2 2
find: = a(x” —y") +i axy or find: l

%‘D 3 Q(Xz — yz) l ax 5 5 axy
2 ax

V(I) — a);) — axa ) ’ — ( ]: F VXA = ay = ay = ( ): F
» ) (e =) ) =@y 5 ) \faw) 79
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

dy

oD J
Derivative 4% has 2D gradient Vq)_£g’;) ]of scalar @ and curl v, { 9y }f vector A (and they re equall)

f@=% =

A
d * d ° 1 a -a . . a 1 1

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO

Given ¢: ¢ = 0] +1 The half-n’-half result
find: =5 a(x* —y%) +i :
JD da, 2 2 d d
> (X7 =y7) l 9 9
) st ) - 5 ) (Haw)
Scalar static potential lines ®=const. and vector =const. define DF'L field-net.
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

oD

2
Derivative §%; has 2D gradient Vd)—{?)’; ]of scalar @ and curl vx _[ ay J of vector A (and they re equall)

dy

A The half-n*- result
d : OAy 1 1
dz* ¢ ((D A)= —2 (ax _HBy NP—iA)= —2 (ax +i ay ) +2 (ay L ox ) 2 Vo ) VX
Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO
Given ¢: ¢ = 0] +1 The half-n’-half result
find: =5 a(x* —y%) +i :
JD da, 2 2 d d
. 2 (X7 =7) l 5 5
Vq): 3(1) — gz ) ’ :[ax]:F V)( = ay = ay :(ax):F
) st ) - 5 ) (Haw)
Scalar static potential lines ®=const. and vector =const. define DF'L field-net.
The half-n’-half results
are called

Riemann-Cauchy
Derivative Relations

Field: t 05 P aq) a iS- aRef(Z) Q f(Z)

,;%:(z*:j-z-y v dx — dy || ox dy
x3)=(X,=Y ——

s : 9P _ _9A . .|| Ref(x) _ _ Imf(z)
=x’-p?+i =& ay o a.x ’ ay o a.x

- D +i E i

Tuesday, October 13, 2015
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— . Riemann-Cauchy conditions what’s analytic? (...and what’s not?)

Tuesday, October 13, 2015
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Review (z,z*) to (x,y) transformation relations

_ , 1 df  ox af dy of _
= X +i =1 (7 +z=
< Y x=; (2 +2%) dz 9z Ox az Jy
% . 1
Z =x—1y y=5, (2 —z%) df _0x9df dyof _
dz* 97" ox Bz dy

laf 1df 1 a_ia !
2 0x 218y_2 ox dy
1df laf:l aﬂ,a !
“209x 2idy 2lox 9y

Criteria for a field function f = fx(x,y) +i f,(x,y) to be an analytic function f(z) of z=x+iy:

First, f(z) must not be a function of z*=x-

This implies f(z) satisfies diﬁ‘erential equations known as the @iemann-Cauchy conditions
J (0 J J
d—f=0=l 8 (f.+ f)— Bf J, 4L fy+afx implies : afx: /, and : iz—afx
dz * 2 ax dy ox dy ] 2\ odx 9y o0x  dy ox dy
df 1[0 .9 o Afof, O i(9 o) o, .9 d o 9 . ... 9 . .
iz Z(E)x ayj(fxﬂfy)_ [8x T e B R Mt A et A 2

Tuesday, October 13, 2015
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Review (z,z*) to (x,y) transformation relations

. : 1 df  ox Bf dy 9f _ laf lof 1( o0 .0
=x+1 —= * S
¢ Y A 2(Z %) dz 9z Ox az dy 28x 2i dy 2(8x lay]f
% . 1
7 =x—1Iy y=5, (2 —z%) df _0xof dyodf _19of 10f_1({a .0 ;
d7" 97" ox Bz dy 20dx 2idy 2\dx 9y

Criteria for a field function f = f«(x,y) +i f,(x,y) to be an analytic function f(z) of z=x+iy:
First, f(z) must not be a function of z*=x-i /

This implies f(z) satisfies differential equations known as the @iemann-Cauchy conditions)

d—f=0=l(a j(f f)— [af afyj+ (af afjlmplles afx:afy and : %:—afx
dz * 2\ dx dy ox dy ox dy o0x  dy ox By y

da _1{d _.9d _L(of O i o _of 9 U o _ O _ 9
dz _2(836 8)(f+f) [8x+8yj+2(ax ay)_ax_i_lax_ay ay x(f if,) (f+lf)

Criteria for a field function f = f«(x,y) +i f,(x,y) to be an analytic function f(z*) of z*=x-iy:
First, f(z*) must not be a function of z=x+1iy, that iS.'Z—i=0

This implies f(z*) satisfies differential equations we call Anti -(Riemann-Cauchy conditions

& _gLf9_;9 _Y(of Y i on_. o | 9 99,
dz =0= (E)x lyj(f i) (8x+8y)+2£8x ayj—zmplzes. ox  dy and: 8x_8y)
df 1(9 . o (of. IR i o) 9 O _ 9 o _ 9 __ 9
dz*_z(ax“ayj(ﬁ‘ﬂm_z(ax ay]+2\8x+ayj_ax+lax_ oy oy T ax I (f+‘f)
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What s analytic? (...and what's not?)

Example: Is f(x,y) = 2x + iy an analytic function of z=x+1i)?

Tuesday, October 13, 2015
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

Tuesday, October 13, 2015
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)

Tuesday, October 13, 2015
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)

Tuesday, October 13, 2015
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

Tuesday, October 13, 2015
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-z*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.

Tuesday, October 13, 2015
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x* + y° an analytic function of z=x+iy?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.

Tuesday, October 13, 2015
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=x+1i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x* + y° an analytic function of z=x+iy?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.

Example 3: Q: Is s(x,y) = x*-y? + 2ixy an analytic function of z=x+iy?
P Y Y 34 y

A: YES! s(xy)=(x+tiy)? =z is analytic function of z. yy

Tuesday, October 13, 2015
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4. Riemann-Cauchy conditions whats analytic? (...and what’s not?)

——- [/5y 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis
Easy 2"-multipole field and potential expansion
Easy stereo-projection visualization

Tuesday, October 13, 2015
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What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between pomt z; and point z; 1s potential difference Agp =¢(z2)- o(z1)

Ag = ¢(Zz) ¢(Z )= jf(Z)dZ_q)(xzayz) (D(x19y1)+l[A(x29y2) A(xpyl)]

Zl — i
—

AQ = AD +1 AA

In DFL-field F, A¢ 1s independent of the integration path z(?) connecting z; and z>.

Tuesday, October 13, 2015

32



What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between pomt z; and point z; 1s potential difference Agp =¢(z2)- o(z1)

AQ = ¢(22) ¢)(Zl)—ff(2)d2—q)(x2,y2) (I)(xl,yl)+z[A(x2,y2) A(xpyl)]

Zl — i
—

AQ = AD +1 AA

In DFL-field F, A¢ 1s independent of the integration path z(?) connecting z; and z>.
[ £(2)dz = j(f*(z*)) dz = j(f*(z*)) (dx+idy)= j(f; " ify*) (dx+idy) = j(f; _ if;‘)(dx+ i dy)

= [(fydx+ [, dy)+i [(f, dy = [, dx)
= [Fedr +i[F X dree
= [Fedr +i[Fedrxe,

= [Fedr +i[FedS where:  dS=drxe,

VA
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What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between pomt z; and point z; 1s potential difference Agp =¢(z2)- o(z1)

Ag = ¢(22) ¢(Z )= jf(Z)dZ_q)(xzayz) (I)(xl,yl)+z[A(x2,y2) A(xpyl)]

Zl — i
—

AQ = AD +1 AA

In DFL-field F, A¢ 1s independent of the integration path z(?) connecting z; and z>.
[ £(2)dz = j(f*(z*)) dz = j(f*(z*)) (dx+idy)= j(f; " ify*) (dx+idy) = j(f; _ if;‘)(dx+ i dy)

= [(fydx+ [, dy)+i [(f, dy = [, dx)
= [Fedr +i[F X dree

Z
= [Fedr +i[Fedrxe,
ds
- o +1|[ FedS here: dS=drxe
[ Fedr i|| Fed where:  dS=drxe, e
F dr f_BlgF «dS \

! / Big;.dr \ part J12 FedS = AA
Real part fl Fedr = AD sums F projection across path dr
sums F projections along path that 1s, thru surface
dr that 1s, circulation on path clements dS=drxez normal to dr

to get AD . to get AA.
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Tuesday, October 13, 2015

Here the scalar potential ®=(x*-y?)/2 is stereo-plotted vs. (x,y)
The ®=(x*-y?)/2=const. curves are topography lines

The curves are streamlines normal to topography lines
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4. Riemann-Cauchy conditions whats analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
— 05y 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis
Easy 2"-multipole field and potential expansion
Easy stereo-projection visualization
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What Good Are Complex Exponentials? (contd.)
10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:
q1= d Z(xZ—yZ)/Z — const.

q2= — (xy) — const.
. f(z%)=z*=x-iy
*Actually it’s OCC. Ficy ()
o(z)=2’
=x-y°+i
=@ +i
dg' dq' ob Jb ox  dx ox  Ox
BV B _ @ 3 9 -
Kajobian = ox = ox Oy = S A Jacobian = 9 e J®  d :iz(x yj
0 9g" | |94 941 \y x)<E 9O 9y | |9 | -y X
ox 9y ox 9y dq' 9q’ 8(%) aT A
E, E E, E
E ’E E OE 2 O @
Metrictensor = Boe Bou |_[ To™te ® =" , | where: rr=x"+y’
80 &8 E 'Ecp E ‘E 0 r
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What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:

q1= () Z(xZ—yZ)/Z — const.

q2= — (xy) — const.
. [ E)=zr=x-iy
*Actually it’s OCC. P =(x,3)
0(z)=z*
=x-y°+i
=@ +i
dg' dq' ob Jb ox  dx ox  Ox
ax dy | | ox dy - ¢ d' 9 | | od oA
Kajobian = ox dy _ ox dy _(* v «—E Jacobian | %4 9 |_|o® 9 :iz( X )’j
dg> o’ | |94 94| \y x)«E Oy 9y | |9y dy| ri-y x
ox E ox 9y dq' 9q’ 8(%) aT A
E, E E, E
E,-E, E,E >0 ?
Metrictensor = Boe Bou |_[ To™te ® =" , | where: rr=x"+y’
80 8 EE, E;E 0 r
Riemann-Cauchy Derivative Relations make coordinates orthogonal
gq’ g 9 (x% - ?) . The half-n™-half results assure g g -
QCI) Q ag. 2 2 —ay E(D'E = + 0 0 —ay
dy 8y2(x =y7) ox dx dy dy ~ ~
0D 0D  JD dD
=— + =0
ox dy dy dx
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What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:

q1= () Z(xZ—yZ)/Z — const.

6]2: — (xy) — const.
*Actually it’s OCC. Ficy ()
0(z)=2
=x-y°+i
= ® +i
dg' dq' ob JD ox  ox
N B Y _ 0} a 1 a 2
Kajobian = ox = ox _[ Y <E Jacobian = 9 4
9 9’| |94 94} |y x)<E 9y 9y
ox dy ox dy dq' 9q’

g0 8.) \EE, E-E ) (0 -

E,cE, E,:E 0
Metrictensor = (gm 8o ]:( e @ jz (r 2} where: r’=x"+y’

Riemann-Cauchy Derivative Relations make coordinates orthogonal
oL

9 J a X2 2) The half-n’- results assure
ox 8x2 -y ax
VO = = = =F 0D oA 9D 9

QCD g ( . 2) _ay E(D.E = +

dy 8y2 y ox dx dy dy
_ 0D acD oD oD 0o
 ox ay dy ox

or Riemann-Cauchy
_% G/ 0 9 9P _ 82613 0°®

Zero divergence, requirement: 0

/\ ) ox dy

T ox ox

Tuesday, October 13, 2015

Jx  ox
_|oD oA |_1([Xx ¥
9y dy| ril-y x
o> 9 T
E, E E, E
g)jA g y axy ax
VXA = = = =F
and so does

Yy al o =0 potential ®,0beys Laplace equation

N\
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4. Riemann-Cauchy conditions whats analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
—) Lasy 2D monopole, dipole, and 2"-pole analysis
Easy 2"-multipole field and potential expansion
Easy stereo-projection visualization

Tuesday, October 13, 2015
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What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlz’”l .Itis the » = -/ case.

1

Unit monopole field: f (z)=i= z f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a'In(z)=a'In(x+iy).

Tuesday, October 13, 2015

41



What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlz’”l .Itis the » = -/ case.

1

Unit monopole field: f (z)=i= z f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a'In(z)=a'In(x+iy).

d(2)= @ + iA=]f()dz=]7dz=aln(z)

Tuesday, October 13, 2015
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What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlz’”l .Itis the » = -/ case.

1

Unit monopole field: f (z)=i= z f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a-In(z)=a‘In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’®)=i6, and z=re".

0()= @+ iA=[f(2)dz=]¢dz=aln(z)=aln(re")
=aln(r) + iab
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What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlz” 1 1t is the case.
Unit monopole field: f (Z)Zi: z7} f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a'In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e”®)=i6, and z=re.
()= ® + iA=][f(2)dz=][%z=aln(z)=aln(re)

=aln(r) + iab
(a) Unit Z—line—ﬂx field f(z)=1/z

Lecture 14 Thur. 10.9
ends here

R A R
llllllllllll

f(z%)=1/z=e"/r
Fan=(xy)/r

Potential:

0(z)=Inz
=Iln r+i
=0 +;

Tuesday, October 13, 2015
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What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlz” 1 1t is the case.

1

Unit monopole field: f (z)=i: z f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a'In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e”®)=i6, and z=re.
()= ® + iA=][f(2)dz=][%z=aln(z)=aln(re)

=aln(r) + iab
(a) Unit Z-line-flux field f(z)=1/z (b) Unit Z-line-vortex field f(z)=i/z

| AT TR

N |-].i|:l / I '|_.‘,_|_-1.:c_l-_'_l-.__l_'q_::ll_f|.l‘l_l_ll_'l; |1;-|| I |

A 1 2
|||||||||||||||||

—
| &

Field:
(z*%)=-i/z*=-ie"/r
Fey=0,-x)/r
Potential:

f(z%)=1/z=e"/r
Fan=(xy)/r

R AN IS R a
M . :
1 |
—

Potential:

0(z)=Inz Oz)=ilnz
=In r+i =0 +i
=@ +i iy, =D +i
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What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlz’”l .Itis the » = -/ case.

- f(z)=5= az™' Source-a monopole

Unit monopole field: f (z):i: z

It has a logarithmic potential O(z)=a-In(z)=a‘In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’®)=i6, and z=re".

0()= @+ iA=[f(2)dz=]¢dz=aln(z)=aln(re")
=aln(r) + iab

A monopole field is the only power-law field whose integral (potential) depends on path of integration.
path that goes N times

around origin (r=0) at

constant r = R.

dy  6=27N g(Re'%)  6=27N. 2 .
Ap=¢ f(z)dz = aCﬁ =a {0 Py a { id6 = ai G‘O”N = 2amiN
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(a) Unit Z-line-flux field f(z)=1/z

L

= In(r) + i

f(z*)=1/z%=e"/r
Fy)=(xy)/r

Potential:
O(z)=Inz
=In r+i
=D +i
1-pole(flux) 1-pole(flux)
X,y X,y

Each turn around origin

adds 27i to vector potential i

.
I-pole(flux) 1-pole(flux) =
X,V A Xy
) A
S
27 '
/
L4
— S
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(a) Unit Z-line-flux field f(z)=1/z

Y B
Fi5s
X
-1
S
; 1
= V. ga T | 13
L L e
|
b
f*(z”f)Zl/z*:e’.e/r '_—j
Feay)=(xy)/r N
Potential: :' lis
0(z)=Inz E
=lnr+i 'F )
=@ +i £
I-pole(flux) 1-pole(flux)
X,y X,y
‘:1}’ ".)
\, \
N \/,,
\ \
1-pole(flux) 1-pole(flux)
X,V Axy

Tuesday, October 13, 2015

(b) Unit Z-line-vortex field f(z)=i/z

X

]
Lh

|
=
|8

ll‘lﬁ-rrl!'j_r!':vhﬂll

1 f*(z*) =-i/z*=-je!O/r
- Feay=(0, -x)/r2
Potential:
T 0(z)=ilnz
L =0 +i
__2 =® +

1-pole(vortex) 1-pole(vortex)
x;y x’y

\‘\
. N al
XA Xt
s ‘[,7

1-pole(vortex) 1-pole(vortex)

X,y X, )

\.\ 1.7



“Vortex” “Hurricane”

x=-3.6 y=3.

3
W

LS | I LI
12
Ln
=
YT

s
N

—
LA
[*
—
(W)

T LT

.L‘ ™~

X, : O‘

350 | s S P A sy s 5 3 5 35“35 L K5, A0S | 1S5 25 35
NIRAEA IAN Sl e Wt o A

TR FEEER a1 ISREAY AN TN I - [ o ey | T REURE. ] i A :32—;1—}44: Ve U O e L

TR Ay
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4. Riemann-Cauchy conditions whats analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
—) Lasy 2D monopole, dipole, and 2"-pole analysis
Easy 2"-multipole field and potential expansion
Easy stereo-projection visualization

Tuesday, October 13, 2015
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What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az"!: 2D line monopole field and is its monopole potential¢(z)= alnzof source strength a.

] a d 1-pole )
f] pole (2)= Z _ (bdz ¢] pole (z)=alnz

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of /77 -fields is called a cz’ipole field.

. —a-A . 7 -2
fdlpoze(z)= £ 2 - ; dipole ()= qIn(z-5)—aln(z+5) =aln 2
R S
This is like the
derivative definition:
So-called
flJ; = f(Z+AA)_f(Z) “physical dipole”
o has finite A
A A :
df f(Z+5)—f(Z—E) (+)(-) separation
dz A
if A is infinitesimal
(A—0)
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What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az"!: 2D line monopole field and is its monopole potential¢(z)= alnzof source strength a.

] a d 1-pole )
f] pole (Z): Z _ ¢dZ ¢] pole (Z): aan

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of /77 -fields is called a cz’ipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln
42 _a 2_A A

If interval A is tiny and is divided out we get a point-dipole field f?7° that is the z-derivative of f /ol

1-pole
—a df]-pole B d¢2-p0le ¢2-pole 3 ﬁ _ d¢

f2- pole _
72 dz dz Z dz

Tuesday, October 13, 2015



What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az"!: 2D line monopole field and is its monopole potential¢(z)= alnzof source strength a.

] a d 1-pole )
f] pole (Z): Z _ ¢dZ ¢] pole (Z): aan

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of /77 -fields is called a cz’ipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln
42 _a 2_A A

If interval A is tiny and is divided out we get a point-dipole field f?7° that is the z-derivative of f /ol

1-pole
—a df]-pole B d¢2-pole ¢2-pole B E _ d¢

f2-pole _

72 dz dz Z dz
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What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az"!: 2D line monopole field and is its monopole potential¢(z)= alnzof source strength a.

_ a d 1-pole )
f] pole (Z): Z _ ¢dZ ¢] pole (Z): aan

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of /77 -fields is called a cz’ipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln
42 _a 2_A A

If interval A is tiny and is divided out we get a point-dipole field f?7° that is the z-derivative of f /ol

1-pole
—a df]-pole B d¢2-p0le ¢2-pole _a _ d¢

72 dz dz Z dz

A point-dipole potential $>7°'¢ (whose z-derivative is f?7°¥) is a z-derivative of (/0%

f2-pole _

= —= +1 =—c0os@—i—sin@

¢2_p016_a_ a a x-—iy ax —ay a a
z x+iy x+iyx—iy x24y*  xP4y? 7 r

_ (D2-pole 4 A2—pole
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A point-dipole potential ¢>°'¢ (whose z-derivative is f>7°¥) is a z-derivative of ¢p/P0%,

¢2_p016 a a a x-—1Iy ax . —ay a a

= — = : . +1i =—cos@—i—sinf
z x+ily x+iyx—iy x24y?  xP4y? 7 r

_ (I)Z—pole 4 2-pole

Scalar potentials
o= (a/r)cos O=const.

.

o A3 TN

IIIIIIIII
— - — - s

a/D

|
=(a/)")sin ©

f(z*)=1/z>*=e'*%/y?
F(x,0)=(c0s26,5in20)/r*
Potential.:

O(z)=1/z
=(cos0)/r+i
= @ +i

— (Cl/?‘) sin O=const.

Tuesday, October 13, 2015
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2"-]?0[6 analySiS (quadrupole:2°=4-pole, octapole:2°=8-pole, ..., poie dancer,

What if we put a (-)copy of a 2-pole near its original?
Well, the result is 4-pole or quadrupole field f#rele and potential p#+o,

Each a z-derivative of 27/ and ¢?»,

a _lde-pOZe B d¢4-p01€ ¢4_p018 B L_ld¢2-p0k

f4-pole _
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L -pOl e analys 1S (quadrupole:2°=4-pole, octapole:23=8-pole, ..., poie dancer,

What if we put a (-)copy of a 2-pole near its original?
Well, the result is 4-pole or quadrupole field f#rele and potential p#+o,

Each a z-derivative of /27 and ¢?»,

a 1d¢2-p016
T3 2 4z d 2.2 2 d:

f4—pole _ﬁ_lde-pole _ d¢4-pole

¢4-pole _

4-pole
X,V

?
—— —

Field:
(z%)=1/23*=¢3%/43
F(x.0)=(c0s38,5in30)/i
Potential:
20(z)=1/z°
=(c0s20)/r’+i

= O +i
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4. Riemann-Cauchy conditions whats analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis
> Easy 2"-multipole field and potential expansion
Easy stereo-projection visualization
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2"-]?016 analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

d -3 —2 —1 2 3 4 5
d—fzf(z):..a_ﬂ + a,7 "+ a2z + ay + @z + ar7Z" + a7z + ayz + asz +..

22-pole 21-pole 20 -pole 21-pole 22-pole 23-pole 24 -pole 2° -pole 26-pole

(quadrupﬁle) (d%'pole) (manapaée) (dipole (quadrupole) (octapole) (hexadecapole)
at z= at z=0 at =

at z= 7=o0 atz=oo  atz=oo  atz=oo atz=oo  at z=oo
[ fdz=
a_, _ a_» _ a a a a a
N)=.—=27°+ =27 + a lnz + ayz + Lz + 27 + 3B 4+ AP 50 4
—2 -1 2 3 4 5 6

All field terms am-1z"! except -pole ;—1 have potential term a,,-:z"/m of a 2"-pole.

These are located at z=0 for m<0 and at z=o0 for m>0.

(octapole)o  (quadrupole)y (dipole)o (monopole) (dipole) (quadrupole)» (octapole)«
a_, _— a_~ _ a_» _ a a
¢(Z)=-..—4Z . +—37 2 4 —27 by a_Inz + agz + —122 + —2z3 + ...
-3 -2 -1 2 3
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2"-]?016 analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.
d _ _ _
d—f=f(z)=..a_3z 3 4 a_»z 2 4 a_z by ay, + @z + a2z2 + a3z3 + a4z4 + a5z5 + ...
22—pole 21—pole 20—pole 21—pole 22—pole 23—pole 24—pole 2° -pole 26—pole

(quadrupgle) (dipole) (monopole) (dipole) (quadrupole) (octapole) (hexadecapole)
at z=0 at z=0 at z=0 at z= =00 t

tz=c0 atz= at z=oo At z=oo At z=oo At g=oo
[fdz=
a_s _ a_, _ a a a a a
¢(Z)=...—3Z 2+ —27 by a_ylnz + agz + —122 + —2Z3 + —324 + —425+ —5z6 + ...
-2 —1 2 3 4 5 6

All field terms am-1z"! except -pole ;—1 have potential term a,,-:z"/m of a 2"-pole.

These are located at z=0 for m<0 and at z=o0 for m>0.

(octapole)o  (quadrupole)y (dipole)o (monopole) (dipole) (quadrupole)» (octapole)«

a , _ a , a , _ da a
¢(Z)=---—3Z R e a Inz + ayz + L2+ 2 4
-2 -2 -1 2 3
a_ _ _ _ a_ _ a a

(W)= ..—=w 3+—23w ‘+ 2w 4 oa nw + ggw + 2wt 4+ %w3 +

(with z=w')
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2"-]?016 analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.
a¢ _ _ -3 -2 -1 2 3 4 5
0 =f()=.az2° + a,z" + a2z + ay + aqz + az” + a7z + a2 + az +..

.22 pole  2'-pole  2'-pole  2'-pole 2%pole 2°-pole 2%-pole 2°-pole 2°-pole ---
(quadlg/tpole) (dipgle) (mmfgpde) (dl'glj)ale) (qualc)l’rupale) (chlpole) (hexgdecapole) b b

J.deZ at Z:O at Z:O at Z:O at 7=oco at 7=co at 7z=o0 at z=oo at z7=oo at z=oo
52, G2 - a a a a a
O(z)=..—z 2 =21 a  Inz + ayz + a2 L 23 4 34 4S5, 506
—2 -1 2 3 4 5

All field terms am-1z"! except -pole ;—1 have potential term a,,-:z"/m of a 2"-pole.

These are located at z=0 for m<0 and at z=o0 for m>0.

(octapole)o  (quadrupole)y (dipole)o (monopole) (dipole) (quadrupole)» (octapole)«
a4, -3 a3 - a_» _ a - a, 3
¢(Z)=...—4Z 570 ¢ =2 4 a_Inz + agz + R S
-3 —2 —1 2 3
a_ _ _ _ a_ _ a a
o(w)=. TP By 2227 4 a_lnw + aggw + Ty? 4+ 22y 4
— —2 — 2 3
>< e
a, _ ar _ — a_ a_ a_
:"'?22 ) +Elz % a7 ' T alnz + —12z + —23z2 + =27 4

(with w=z"1)
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N |Z|:tan6/2:|W|_]
\ .
Z_plane — /W 1 DY N 0/2
2
0
] cos/6/2 /
z 0/2 cos® 0/2
0/2
S |W|:cot6/2:|Z|_]
w-plane WUty

=1/z

a4, 3 da _ a, _ a a
d()=..—277 + 377 + 27 4 4 Inz + agr + =S¢+ ?223 +...

(octapole) (q;admpole)o (cZ’pole)o (monopole) (dipole)  (quadrupole)» (octapole)x
_ 44 3 43 2 4y a2 a 3
(b(w)—...—3w +—w "+ —=w  + a_lhw+ agw + —w + —=w +..

(with z—w)

ar, _» a —1 a_ a3 » a4 3
=277 +277% 4+ g - alnz+ =2z 4+ A4 =P 4
3 2 -1 - - (with w=z")
Kﬁ _4a -1
(a) s (b) 0= =92
X _ ) -2
X f(R)=azz f@=a47"
(+) monopoleﬁeld dipoleﬁeld centered quadrupoleﬁeld centered
at North Pole at North Pole at North Pole
s (-) monopole field is constant field is quadratic field
near SouthPole near SouthPole near South Pole
R o(w) = agw (W) = agw?
> s » —
/?f \‘{\ > f(w)=aqy fw)y=aw
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-3 —2 ~1 2 3 4 5
f(@)=.a3z2” + ay,z " + a2+ a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, =+ ¢ f(2)dz
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, zm $ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p = 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) » 41 = 272:1 f(Z)
z°
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

§f(2)dz=¢a_z"'dz="2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_27:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 272:1 f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §(z-a)"'dz=2xri.
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, zm $ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p = 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)
z°

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)
(2) (a)
b J(z <ﬁf

<~ Cl
(but any Contour that doesn’ t touch a gIves same answer)
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, 27” ¢ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral.
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

§f(2)dz=¢a_z"'dz="2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df(a) _ 1 g VACII
da  2mi (z— a)

9
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

§f(2)dz=¢a_z"'dz="2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 272:1 f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) 1s just f(a) on a u, circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df(a) _ 1 § f(Z) dzf(a) 2 § f(Z)
da  2mi (z— a) © o gg: 2w (z— a)

9
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

§f(2)dz=¢a_z"'dz="2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 272:1 f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) 1s just f(a) on a u, circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df@_ 1, f@) . df@_ 2, /@) , df@_ 3, /) ,
da  2mi (z-a) = da? 2 (z— a) © 4l 2w (z—a)*
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

§f(2)dz=¢a_z"'dz="2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 272:1 f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) 1s just f(a) on a u, circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

d@_1 ., /@  dEf@_2 [  df@_3 . & df@_n . f()
d (j) Z b 2 Cﬁ b Cf) Z, ) - Cﬁ dZ
a  2mi (z— a) da 27 (z— a)

da® 27 (z— a) da" 27 (z—g)"!
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

§f(2)dz=¢a_z"'dz="2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 272:1 f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) 1s just f(a) on a u, circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

d@_1 ., /@  dEf@_2 [  df@_3 . & df@_n . f()
d (j) Z b 2 Cﬁ b Cf) Z, ) - Cﬁ dZ
a  2mi (z— a) da 27 (z— a)

da® 27 (z— a) da" 27 (z—g)"!

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.
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f(Z)=...a_3z_3 + a_zz_z + a_lz_l + a + az + a2z2 + a3z3 + a4z4 + a5z5 + ...
Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f(2)dz=¢a_z"'dz=2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.

(Z) (z)

SR =2%ri cﬁzzf(z)dz , a_y 27rz E]SZ fdz , a 1_2}, $ f(2)dz dy = 27;, Cﬁ > 4 27rz 98

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) 1s just f(a) on a u, circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df(a) _ 1 § G4 d’f(a) _ 24-) ACI d3f(a): 3 s f@ o 4@ nl JACINN

da  2mi’ (;—q)’ da®  2mi (7 a) L ddd i (z—a)t T dd" 2mi (z— )™

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

f(2)= § an(Z—d)n where : a_ = : $ /(@) dz£: 1 d"f(a)

for : nZO]
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Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f(z)dz = qsa_lz_ldz =2mia_, 27” $ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p = 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)
z°

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

@ 1, /6 , df@_ 2, /6 , &f@_ 3 f@ o @ e (6

da 27 (z_q  dd®  2mi (z- a) L dd 2 (z-a) L da" 27 (z—g)"t!

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

= 1 1 d"
f()= ¥ a (z—a) where : a =—¢ A dz| = AC) for: n=0
N=—o00 271 (Z — a)n+1 n! dan
(quadrupole)y (dipole)o (monopole) (dipole)s (quadrupole)« (octapole)s (hexadecapole)s ...

-3 -2 —1 2 3 4 5
f(Z) =...4_3Z + ad_»Zl + a_i< + ap + < + arZ? + aszg + au,? + asZ + .
dipole monopole
moment moment
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5. Mapping and Non-analytic 2D source field analysis
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The half-n’-half results

are called
Riemann-Cauchy
Derivative Relations

=S
Il

SSISY

<

VI VIV
|l
SSIISY

= e

1S:

1S:

dRed(z) _
0x _

oRei(z) __
dy -

dlme(z)
dy

_ 9lm¢(z)
dx

Or.

Or.

dRef(z) _

ox

dlmf(z)
dy

dRef(z)_ _ AImf(z)

dy

ox

1S:

1S:

af.(2) _
dx

df (z) _
dy

af,(2)
dy

af,(2)
~ ox

RC applies to analytic potential () = P +IiA and analytic field f(z) = f, +if yand any analytic function
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The half-n’-half results

are called
Riemann-Cauchy
Derivative Relations

= S

Vv Vlw
= B
|l

JdA |: .| dRed(z) _  dIm¢(z)

dy 159 9x — dy

_0A|: | dRed(z)_ _ dIm(z)
ox 15 dy — dx

Or.

Or.

dRef(z) _

ox

dlmf(z) |.

dy

dRef(z)_ _ AImf(z)

dy

ox

is: g—)’}(Z):

is: gﬁxw:

af,(2)
dy

af,(2)
~ ox

RC applies to analytic potential ((z) =D +1iA and analytic field f(z) = f, +1f. yand any analytic function

Common notation for mapping: w(z)=u+1v
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Y z=xtiy 4 W= 1 +i V
space space
w(z) —
Z(w)
X u
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Common notation for mapping: w(z)=u+1v

The half-n’-half results
are called
Riemann-Cauchy
Derivative Relations

=S
Il

SSISY

<

SEIISSRERSSIISY
= B

|l
Ul

Al

X

1S:

1S.

dRed(z) _
0x _

oRei(z) __
dy -

T ox

dlme(z)
dy

dlme(z)

Or.

Or.

dRef(z) _
ox -

dRef(z) _ _

dy

dlmf(z)
dy

dlmf(z)

ox

1S:

1S:

af.(2) _
dx

df (z) _
dy

af,(2)
dy

af,(2)
dx

RC applies to analytic potential ((z) =D +1iA and analytic field f(z) = f, +1f. yand any analytic function

y

z=x+tiy

space

du=2"
! 0x

dv=—
Y dx

ou

dx+—dy

dy
ov

dx+—dy

dy
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X

Jacobian for mapping:

Ju

y
v

dy

ou
ox
v
ox

dx
dy

W=1u—+iv

space

u

Complex derivative for mapping:

’ —l a_u+ﬁ
“2{ox 9y

J+

i

2

(

v Jdu

dx dy

1
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The half-n’-half results
are called
Riemann-Cauchy
Derivative Relations

0P _9A |: | dRe@z)_  dmi(z)| .| dRef(z)_  dImf(2) |; . |9fi(z)_  9f,(2)
dx ~ dy 153 9x dy O} 5x dy 1515 dy
0D __ JA[. | dRed(z)_ _ dim¢(z) | 9ORef(z) _ _ dlmf(z) |... _f(z) _9f,(2)
dy ~  0x 1S. dy - ox Or. dy - ox 1S. dy - ox

RC applies to analytic potential ((z) =D +1iA and analytic field f(z) = f, +1f. yand any analytic function

Common notation for mapping: w(z)=u+1v

V z=xtiy 4 W=1U +iV
space space
w(z) —
Z(w)
X u
Jacobian for mapping: Complex derivative for mapping:
du —a—udx a—ua,’y du du dw 1{ 0 . _ au v dv du
dx dy du dx dy dx —=—| ——i— (u+zv) —+— + ———
= dz 2\ dx dy ax oy ox dy
v v dv dv dv dy
R L i x 9 -a_”_ia_“ ﬂﬂ@
y y “ox 9y dy Ox
du  du v _dv Complex derivative abs-square:
_| ox oy de |_| dy ox dx dwl? (Y (ou) (av) [ov)
R R R oG55 ()
dy OJx ox dy
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The half-n’-half results
are called
Riemann-Cauchy

Derivative Relations

= S

QI Qv

= e

QI

SSIISY
<

Al.

X

1S:

1S.

dRe@(z) _
ox -

oRei(z) __
dy _'

T ox

dlme(z)
dy

dlme(z)

Or.

Or.

dRef(z) _
ox

dRef(z) _ _

dy

dlmf(z)

dy

dlmf(z)

ox

- |9f(2) _
is: [37=
is: gﬁxw:

af,(2)

dy

af,(2)

T 0x

RC applies to analytic potential ((z) =D +1iA and analytic field f(z) = f, +1f. yand any analytic function

Common notation for mapping: w(z)=u+1v

y

z=x+tiy

space

= —dx+a—udy

d
! ox dy

v
dv=""ax+2q
' 0x § oy Y
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du

}:

X

ou
ox
v
ox

v
|5
| oy

ox

...equals Jacobian Determinant

ou

v W=1u +iV
space
w(z) —
()
u
Complex derivative for mapping:
d_w—l i_li (u+l’v)—l a_u+@ +i i__
dz 2\ ox 9y “2(ox 9y) 2lax 9y
ou . du ov . 0dv
=——]1— =_+l_
dx dy dy Ox
_ov Complex derivative abs-square:
R RCRE RO
? dy dz|  \ox dy ) (ady ox)
y

|
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The half-n’-half results
are called
Riemann-Cauchy
Derivative Relations

o0 _9A |. | dRei(z)_  dlmiz)| .| ORef(z)_  dImf(z) |... [0fi(z)_ 9/, (2)
dx ~ dy 153 9x — Jdy O} 5x — Jdy 5.5y = dy
0D __ JA[. | dRed(z)_ _ dim¢(z) | ORef(z) _ _ dimf(z) |... | ofi(z)_ _ 9f,(2)
dy ~  0x 1S. dy ~ Odx Or. dy - 1S. dy ~  Odx

RC applies to analytic potential ((z) =D +1iA and analytic field f(z) = f, +1f. yand any analytic function

Common notation for mapping: w(z)=u+1v

y

z=x+tiy

space

Ju
du=—dx+—d
ox dy Y

ov

dv=""ax+2q
' 0x § oy Y

Tuesday, October 13, 2015

du

X

Jacobian for mapping is scaled rotation:

ou o
_| 9x 9y dx | | cos@ -—sinO
J_ Q Q [dy ]_ detJ[ sin@ cos@ )(

ox dy

o o o
| ox 9y dx | | dy ox dx
oo @ )T e @

dy Ox ox dy

dx
dy

|

Important result:
4 W=1U +iV
_ i0
space dw=+~J-e” -dz
is scaled rotation of dz.
u

Complex derivative for mapping:

d_w—l i_li (u+l’v)—l a_u+@ +i i_a_u
dz 2\ 9x 9y “2lox 9y 2lox 9y
dv .odv

Complex derivative abs-square:

d_Wz_(a_”TJr A 2+(ﬂj2—det|1|
dz ox dy dy ox

...equals Jacobian Determinant
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7> gives parabolic OCC

21 +1-19

wiz)

w(z)

L |

15 mapped into

2

3

Azt

z=-324 +155

WwWizZ)

ol

-
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7> gives parabolic OCC

w(z)

=
1
+
n
1
.LC;
M
=
.m i
=
..m L
™
o)
(7]
m_—____ LLL _—_
L
o 1
A &
- 41 X
+ £y
+ <,
n__._.,_ A IE ..F
[~
1 =
B £

w'"? gives hyperbolic OCC

U

Inverse: z(w)
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w(z)=z> gives parabolic OCC

z=-34 +155 1s mapped info wiz)=-91 +1-19
Y 4

E 3

-

i

EENRANE NN AN
MMANMIAM AMMANMIAE

; _"

C _::‘

E 4
wiz)= Az 22 )

w= (u+ )= 2" = (z+1iy)’ is analytic function of z and w

Tuesday, October 13, 2015

Expansion: u=2"—y" and v =22y may be solved using |w |=| 2* |=| z |’
A = 3 Expansion: |w = yu® +v* =2’ +¢* = 2
F ' 2 2 ' 2 2
Solution: xQ — m y2 — M
= 2 2
ﬂ
Ou Or Oz 2z +2y
-_1 dy _ E _ 2r 2y ou v E): -2y 2z
:q _q | 1 E 1 @ En +2y 2"17 % @ v 4(1;2 + yZ)
= = dy ou Ov
Lill |I|| || 1Ll 11 Il I 11 ||||
G
-3
4
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Non-analytic potential, force, and source field functions

A general 2D complex field may have:
1. non-analytic potential field function ¢(z,z*)=®(x,y)+iA(x,y),

2. non-analytic force field function f(z,z*) = fx(x,y) + ify(x,y) ,
3. non-analytic source distribution function s(z,z*) = p(x,y) + i l(x,y).

Source definitions are made to generalize the f* field equations (10.33) based on relations (10.31) and (10.32).

df” Y _
2%:5*(2,2*) PE s(z,2°)
4
Field equations for the potentials are like (10.33) with an extra factor of 2.
do” _ .« .
2@=f(z,z*) 2—=1"(z,z)
dz dz

Source equations (10.46) expand like (10.32) into a real and imaginary parts of divergence and curl terms.

* * dr’ | [ * s *
s(z,z):2f _ d a]fx(x,y)ﬂ'fy(x,y)} =p—il, Where:fxzfx,and:fy:—fy

—1
dz |dx Jdy
off of, | |of, af : :
_ fx_|_ fy 4+ fy_ /s :[Vof :|+i|:v><f:|
dx dy dx dy VA
Real part: Poisson scalar source equa;ion icharge density p). Imaginary part: Biot-Savart vector source equatiorfk(current density I)
Vef =p Vxf =-1
Field equations (10.47) expand into Re and Im parts; x and y components of grad ® and curl4z from potential ¢ = ® +i4 or ¢p'= P - iA.
f (z,z )=2—F= +1i O—-id)=f +if
dz 0x dy ( ) oY
o0 . JD dA .d4
— +i + —1 = VO |+| VXA
dx l&y } {8y l&x :l [ ] [ Z:I
Two parts: gradient of scalar potential called the longitudinal field f;i and curl of a vector potential called the transverse field f; :
f'=f, +1; f =Vo fr=VxA

(For source-free analytic functions these two fields are identical.)
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Potential, force, and source field equations vs.  position, velocity, and acceleration equations

Field equations Newton equations

Vector Field
f(zz")

o[ Rer=r:
- Im fo= j-;

f(z2)=)

, @) _
dz

js' dz

0" @)=} f d

Potential
0" (z,2")
¢ =D(x,y) +iA(x,y

Source
5'(z,2")
s=p(x,y)+il(x,y)

Acceleration

2 .
4d¢{z,z)=s
dz dz

Potential and source field theory reduced to sophomore mechanics of motion!
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Example 1
Consider a non -analytic field f{z) = (z*)? or f*(z) = 2.

The non-analytic potential function follows by integrating $'(z,2)=2 B g —ariia y

or: p=4x, and: I=-4y.

*\2 . 2 2 .
¢(Z’Z*)=%ff(z)dz=%](z*)2d2=Z(Zz) _ et iy)(x ;y —z2xy)’

or: <D=M, and : A=#.
The longitudinal field f; is quite different from the transverse field f .
f, +1; 04
Sl 3xz+y2 R S - —3)/2—962
f{:VcIa:V(*ZyJ{ 2 } f}:VxA:Vx[%ez]= aayA ={TJ
Xy o Xy
The longitudinal field f; has no curl and the transverse field f; has no divergence. The sum field has both making a violent storm, indeed, as shown by a plot of in Fig. 10.17.
3x+y L—xz {xz_Z} o o
f :fL+fT: 2 + 2 = Yo Ve =Vef =ax=p,  VxE =Vxfi=4y=-1.
2xy
Xy Xy
/ WV
a/ﬁ,,.,_izs-:H\ \ / /
R S SN
f/jyhﬁaa
A NN S N
i L v = S A A //:’f
Hh1r-s__{5hﬁr‘x’r.f’rf’f,f'ffi —
> ™ = T -":l - f’f'ff—i_f—::i
T [y | Ll | .
F—#ﬁﬁﬁﬂ'x"*d vEe s e e };
i Y H&m
fﬁ/{fﬂ//’/,jjﬁdpk_klj\. %“&H\whm&
.-""H //.J"H.IP‘ 'I" I S :.a & ¥ L -.!‘
// /{thtm;_lf‘{# \\,\\
NS IEY NN
7/ \ \Nx e L4 \
A==
[t(Z) F=[z2 * LW
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