Due Thursday Oct. 20: Assignment 7 Based on Unit 1 Chapter 10 and 12 and Lectures 13-14 (2015).

"Professional" Parabolic and Hyperbolic Coordinates (Relates to Fig. 1.10.7) 50points

1.12.1 Consider GCC definition: $q^1 = \Phi = x^2 - y^2$, $q^2 = A = 2xy$. Both $(x^1 = x, x^2 = y)$ and $(q^1 = u = \Phi, q^2 = v = A)$ are Orthogonal Curvilinear Coordinates (OCC) related by an analytic function $w = z^2$ or $(u+iv) = (x+iy)^2$. You can treat *either one* as Cartesian. (This is based on the analytic function f(z) = 2z whose complex potential is $\phi =$ _____) (a) Plot $(q^1 = u, q^2 = v)$ coordinate curves in a Cartesian $(x^1 = x, x^2 = y)$ graph. Derive the Jacobian, Kajobian, unitary vectors \mathbf{E}_k and \mathbf{E}^k and metric tensors g_{mn} and g^{mn} for this GCC. (b) Plot $(x^1 = x, x^2 = y)$ coordinate curves in a Cartesian $(q^1 = u, q^2 = v)$ graph. Derive the Jacobian, Kajobian, unitary vectors and metric tensors for this GCC.

Galaxy Grids 40points

1.12.2 Consider the monopole field function $f(z) = e^{i\alpha}/z$ with complex source $e^{i\alpha}$ discussed in Lectures 13-14. (a) Derive its $(q^1 = \Phi, q^2 = A)$ scalar and vector potential coordinate functions.

(b) Plot examples for angle α =30° and α =45°.

Fun with Exponents & more of the Story of e 30points

1.12.3 Consider a sequence of functions, $f_1(z) = z^z$, $f_2(z) = z^{f_1(z)} = z^{z^z}$, $f_3(z) = z^{f_2(z)} = z^{z^{z^z}}$,.... The function $f_N(z)$ has a finite limit $f_{\infty}(z)$ for N approaching infinity if argument z is small enough. (z=1 works! But, so does $z=\sqrt{2}$.)

- (a) Find $f_{\infty}(\sqrt{2}) = ___?$
- (b) Find an analytic expression for the limiting real z_{max} that involves the Euler constant. e=2.718281828...

Vector analysis problems involving Levi-Civita relations $\varepsilon_{ijk}\varepsilon_{mnk} = \delta_{im}\delta_{jn} - \delta_{in}\delta_{jm}$. 30points

- 1.12.4 Reduce double-crosses to ordinary or products with Levi-Civita relations (and without peeking at answers).
 (a) Reduce B×(C×A). Also reduce (A×B)•(C×D).
 - (b) Reduce $\nabla \times (\nabla \times \mathbf{A})$ and $\nabla \times (\mathbf{A} \times \mathbf{B})$.
 - (c) Reduce $\mathbf{v} \times (\nabla \times \mathbf{A})$. Then show how it simplifies assuming classical mechanical constraint $(\nabla \mathbf{v}) = \mathbf{0}$.
- **1.12.5** Derive surface shapes of rotating fluid whose curl $\nabla \times \mathbf{v}$ of velocity fields is given: *30points*
 - (a) $|\nabla \times \mathbf{v}| = 0 = \nabla \cdot \mathbf{v}$ (Whirlpool or Vortex: First describe complex velocity field $f(z^*) = v_x(x,y) + i v_y(x,y) = i/z^*$.)
 - (b) $\nabla \times \mathbf{v} = const.$ (Rigid rotation: First describe complex velocity field $f(z) = v_x(x,y) + i v_y(x,y) = i\omega z.$)

