Due Thursday Oct. 20: Assignment 7 Based on Unit 1 Chapter 10 and 12 and Lectures 13-14 (2015).
"Professional" Parabolic and Hyperbolic Coordinates (Relates to Fig. 1.10.7) 50points
 Orthogonal Curvilinear Coordinates (OCC) related by an analytic function $w=z^{2}$ or $(u+\mathrm{i} v)=(x+\mathrm{i} y)^{2}$. You can treat either one as Cartesian. (This is based on the analytic function $f(z)=2 z$ whose complex potential is $\phi=$ \qquad
(a) Plot $\left(q^{1}=u, q^{2}=v\right)$ coordinate curves in a Cartesian $\left(x^{l}=x, x^{2}=y\right)$ graph. Derive the Jacobian, Kajobian, unitary vectors \mathbf{E}_{k} and \mathbf{E}^{k} and metric tensors $g_{m n}$ and $g^{m n}$ for this GCC.
(b) Plot ($x^{1}=x, x^{2}=y$) coordinate curves in a Cartesian ($q^{1}=u, q^{2}=v$) graph. Derive the Jacobian, Kajobian, unitary vectors and metric tensors for this GCC.

Galaxy Grids 40points

1.12.2 Consider the monopole field function $f(z)=e^{i \alpha} / z$ with complex source $e^{i \alpha}$ discussed in Lectures 13-14.
(a) Derive its $\left(q^{l}=\Phi, q^{2}=A\right)$ scalar and vector potential coordinate functions.
(b) Plot examples for angle $\alpha=30^{\circ}$ and $\alpha=45^{\circ}$.

Fun with Exponents \& more of the Story of e 30points
1.12.3 Consider a sequence of functions, $f_{1}(z)=z^{z}, f_{2}(z)=z^{f_{1}(z)}=z^{z^{z^{z}}}, f_{3}(z)=z^{f_{2}(z)}=z^{z^{z^{z}}}, \ldots$. The function $f_{N}(z)$ has a finite limit $f_{\infty}(z)$ for N approaching infinity if argument z is small enough . $(z=1$ works! But, so does $z=\sqrt{ } 2$.)
(a) Find $f_{\infty}(\sqrt{2})=$ \qquad ?
(b) Find an analytic expression for the limiting real $z_{\max }$ that involves the Euler constant. $e=2.718281828 \ldots$

Vector analysis problems involving Levi-Civita relations $\varepsilon_{i j k} \varepsilon_{m n k}=\delta_{i m} \delta_{j n}-\delta_{i n} \delta_{j m}$. 30points
1.12.4 Reduce double-crosses to ordinary \cdot or \cdot products with Levi-Civita relations (and without peeking at answers).
(a) Reduce $\mathbf{B} \times(\mathbf{C} \times \mathbf{A})$. Also reduce $(\mathbf{A} \times \mathbf{B}) \cdot(\mathbf{C} \times \mathbf{D})$.
(b) Reduce $\nabla \times(\nabla \times \mathbf{A})$ and $\nabla \times(\mathbf{A} \times \mathbf{B})$.
(c) Reduce $\mathbf{v} \times(\nabla \times \mathbf{A})$. Then show how it simplifies assuming classical mechanical constraint $(\nabla \mathbf{v})=\mathbf{0}$.
1.12.5 Derive surface shapes of rotating fluid whose curl $\nabla \times \mathbf{v}$ of velocity fields is given: 30points
(a) $|\nabla \times \mathbf{v}|=0=\nabla \cdot \mathbf{v}$ (Whirlpool or Vortex: First describe complex velocity field $f\left(z^{*}\right)=v_{x}(x, y)+i v_{y}(x, y)=i / z^{*}$.)
(b) $\nabla \times \mathbf{v}=$ const. (Rigid rotation: First describe complex velocity field $f(z)=v_{x}(x, y)+i v_{y}(x, y)=i \omega z$.)

