Assignment 10 - Classical Mechanics 5103 12/08/15 Due at Final Exam Tue Dec. 15
Main Reading: In new text (Classical Mechanics with a BANG!) Unit 2 thru 2.9 and Unit 3 thru 3.8.
Due Tue. Dec. 15 An icy cycloid problem
2.A. 1 (a) A meter stick lies on a smooth icy hockey rink surface with two marbles sitting at the lower end on either side of the 0.0 cm mark. (See figure) A hammer give impulse $\mathbf{P}=(1 \mathrm{~N} \cdot \mathrm{~s}) \mathbf{e}_{\mathbf{x}}$ to the stick at the h - cm . mark.
What height h is least likely to disturb the marbles.

(b) Now assume h-value from (a) and friction-free "icy" surface. At what distances $d, 2 d, 3 d, \ldots$ along x-axis should the $3^{r d}, 4^{\text {th }}, 5^{\text {th }}, \ldots$ marbles be placed so they are most likely to be knocked below the axis. Draw 6 equal time Δt interval snapshots of the stick as it flips by 180° and then to 360°. What is Δt for a 1 kg stick?

Due Tue.Dec. 15 Electromagnetic cycloids
2.8.1 Suppose a vertical frictionless surface subject to Earth gravity (Say $g=10 \mathrm{~m} / \mathrm{s}^{2}$) with a unit mass $m=1 \mathrm{~kg}$ and charge $Q=1$ Coul. (Dangerous!) that is dropped from $(x=0=y)$ in a strong magnetic \mathbf{B}-field.
(a) How many Tesla of magnetic field \mathbf{B} and in what direction would cause the mass to move to the right on a normal cycloid made by circle of one meter diameter? Where would it hit the horizontal x-axis?
(b) What initial speed and direction of throw would cause the mass to fly straight along the x -axis?
(c) Describe and plot the resulting trajectory if the mass is thrown down with a speed of $2 \mathrm{~m} / \mathrm{s}$.

Pendulum on turntable

Due Tue. Dec. 15
3.8.5 Suppose a pendulum supported by a circular ball bearing may swing without friction in the vertical plane of the bearing. The bearing plane is secured to a turntable that rotates at a constant angular frequency ω_{r}. The pendulum consists of a mass m at the end of a rod of length $\ell=1 \mathrm{~m}$ and negligible mass with natural frequency of small θ-angle motion at zero- ω_{r} in gravity acceleration (Say $g=10 \mathrm{~m} / \mathrm{s}^{2}$) given by $\omega_{0}\left(\omega_{r}=0\right)=$ \qquad .
(a) Derive the Lagrangian and Hamiltonian using spherical coordinates in the rotating frame.
(b) Derive the θ-equilibrium points and small-oscillation frequency as a function of the frequency ω_{r} and ω_{0}. Overlay plots of effective θ-potential for several key values of ω_{r}. What ω_{r} value makes $\theta=0$ angle unstable?

