
Kepler Geometry of IHO (Isotropic Harmonic Oscillator) Elliptical Orbits
(Ch. 9 and Ch. 11 of Unit 1)

Constructing 2D IHO orbits by phasor plots
Phasor “clock” geometry 
Integrating IHO equations by phasor geometry

Constructing 2D IHO orbits using Kepler anomaly plots
Mean-anomaly and eccentric-anomaly geometry
Calculus and vector geometry of IHO orbits
A confusing introduction to Coriolis-centrifugal force geometry (Derived rigorously later in Ch. 12)

Some Kepler’s “laws” for central (isotropic) force F(r)
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2 (Derived rigorously)   
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r (Derived later in Unit 5)
Total energy E=KE+PE invariance of IHO: F(r)=-k·r (Derived rigorously)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2 (Derived later in Unit 5)

Brief introduction to matrix quadratic form geometry

Lecture  9 
Tue. 9.23.2014

BoxIt simulation of U(2) orbits
http://www.uark.edu/ua/modphys/markup/BoxItWeb.html
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Introducing 2D IHO orbits and phasor geometry
Phasor “clock” geometry 
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Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law
F =-x     (1-Dimension)
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

1-D 2-D
(Paths are always 
2-D ellipses if 
viewed right!)

Unit 1
Fig. 9.10

Total E = KE + PE = 1
2
mv2 +U(x) = 1

2
mv2 + 1

2
kx2 = const.
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ellipses if viewed 
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Fig. 9.10

Equations for x-motion
[x(t) and vx=v(t)] are 
given first. They apply
as well to dimensions
[y(t) and vy=v(t)] and 
[z(t) and vz=v(t)] in the
ideal isotropic case.
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mv2 +U(x) = 1
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mv2 + 1

2
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Let :       v = 2E /m cosθ ,    and :         x = 2E /k sinθ(1) (2)

Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law
F =-x     (1-Dimension)
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

Another example of
the old “scale-a-circle”
trick...

1-D

Unit 1
Fig. 9.10

2-D or 3-D
(Paths are always 2-D 
ellipses if viewed 
right!)

Equations for x-motion
[x(t) and vx=v(t)] are 
given first. They apply
as well to dimensions
[y(t) and vy=v(t)] and 
[z(t) and vz=v(t)] in the
ideal isotropic case.

velocity: position:
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Isotropic Harmonic Oscillator phase dynamics in uniform-body

I.H.O. Force law
F =-x     (1-Dimension)
F =-r (2 or 3-Dimensions)
Each dimension x, y, or z obeys the following:

Another example of
the old “scale-a-circle”
trick...

1-D

Unit 1
Fig. 9.10

2-D or 3-D
(Paths are always 2-D 
ellipses if viewed 
right!)

ω = dθ
dt

def. (3)

Equations for x-motion
[x(t) and vx=v(t)] are 
given first. They apply
as well to dimensions
[y(t) and vy=v(t)] and 
[z(t) and vz=v(t)] in the
ideal isotropic case.

velocity: position:

velocity:

angular velocity:
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Constructing 2D IHO orbits by phasor plots
Review of phasor “clock” geometry (From Lecture 8)
Integrating IHO equations by phasor geometry (case of unequal x and y phasor area)
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http://www.uark.edu/ua/modphys/markup/BoxItWeb.html
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Constructing 2D IHO orbits using Kepler anomaly plots
Mean-anomaly and eccentric-anomaly geometry
Calculus and vector geometry of IHO orbits
A confusing introduction to Coriolis-centrifugal force geometry 
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Eccentric Anomaly Line

(slope is polar angle φ=atan[y/x]) 
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Constructing 2D IHO orbits using Kepler anomaly plots
Mean-anomaly and eccentric-anomaly geometry
Calculus and vector geometry of IHO orbits
A confusing introduction to Coriolis-centrifugal force geometry 
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⎠
⎟⎟
= dr

dt
= r =

acos φ +  2
π( )

bsin φ +  2
π( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

( for ω = 1)

Unit 1
Fig. 11.5 

Calculus of IHO orbits
To make velocity vector v 
just rotate by π/2 or 90°
the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r 
rotated by π/2 or 90° is m.a. of vector v 
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r(t) φv(t)/ω

90°

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

r(t)
φ=ω tv(t)/ω

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

90°

Time frame angle

φ=ω t
(Mean Anomaly)

(a) Orbits (b) Tangents

    

radius vector :r =
rx
ry

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= x

y
⎛

⎝
⎜

⎞

⎠
⎟ =

acosω t
bsinω t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

acosφ
bsinφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

velocity vector : v =
vx
vy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

−aω sinω t
bω cosω t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= dr

dt
= r =

acos φ +  2
π( )

bsin φ +  2
π( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

( for ω = 1)

accelerationor force vector : F
m

= a =
ax
ay

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

−aω 2 cosω t

−bω 2 sinω t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= dv

dt
= v = r = d2r

dt2
=

acos φ +  2
2π( )

bsin φ +  2
2π( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Unit 1
Fig. 11.5 

 or changeof velocity

Calculus of IHO orbits
To make velocity vector v 
just rotate by π/2 or 90°
the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r 
rotated by π/2 or 90° is m.a. of vector v 

 m.a. φ+π/2 of vector v rotated by
another π/2 is m.a. of vector a 
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a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

r(t)
φ=ω tv(t)/ω

a(t)/ω2

j(t)/ω3

acceleration

jerk

velocity

position

90°

90°

Time frame angle

φ=ω t
(Mean Anomaly)

(a) Orbits (b) Tangents

    

radius vector :r =
rx
ry

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= x

y
⎛

⎝
⎜

⎞

⎠
⎟ =

acosω t
bsinω t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

acosφ
bsinφ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

velocity vector : v =
vx
vy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

−aω sinω t
bω cosω t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= dr

dt
= r =

acos φ +  2
π( )

bsin φ +  2
π( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

( for ω = 1)

accelerationor force vector : F
m

= a =
ax
ay

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

−aω 2 cosω t

−bω 2 sinω t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= dv

dt
= v = r = d2r

dt2
=

acos φ +  2
2π( )

bsin φ +  2
2π( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

jerk or changeof acceleration : j=
jx
jy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

+aω 3sinω t

−bω 3cosω t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= da

dt
= a = v = r = d3r

dt3
=

acos φ +  2
3π( )

bsin φ +  2
3π( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Unit 1
Fig. 11.5 

 or changeof velocity or changeof velocity

Calculus of IHO orbits
To make velocity vector v 
just rotate by π/2 or 90°
the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r 
rotated by π/2 or 90° is m.a. of vector v 

 m.a. φ+π/2 of vector v rotated by
another π/2 is m.a. of vector a 

...and so forth...
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r(t) φv(t)/ω
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a(t)/ω2
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φ=ω tv(t)/ω

a(t)/ω2

j(t)/ω3
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jerk
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90°
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φ=ω t
(Mean Anomaly)

(a) Orbits (b) Tangents

    

radius vector :r =
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ry

⎛

⎝
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⎞
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⎟
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⎝
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⎞

⎠
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=
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⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

velocity vector : v =
vx
vy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

−aω sinω t
bω cosω t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= dr

dt
= r =

acos φ +  2
π( )

bsin φ +  2
π( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

( for ω = 1)

accelerationor force vector : F
m

= a =
ax
ay

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

−aω 2 cosω t

−bω 2 sinω t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= dv

dt
= v = r = d2r

dt2
=

acos φ +  2
2π( )

bsin φ +  2
2π( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

jerk or changeof acceleration : j=
jx
jy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

+aω 3sinω t

−bω 3cosω t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= da

dt
= a = v = r = d3r

dt3
=

acos φ +  2
3π( )

bsin φ +  2
3π( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

inaugurationor changeof jerk :i =
ix
iy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

+aω 4 cosω t

+bω 4 sinω t

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= dj

dt
= j= a = v = r = d4r

dt4
=

acos φ +  2
4π( )

bsin φ +  2
4π( )

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

Unit 1
Fig. 11.5 

 or changeof velocity or changeof velocity or changeof velocity

Calculus of IHO orbits
To make velocity vector v 
just rotate by π/2 or 90°
the mean-anomaly φ of position vector r

mean-anomaly φ of position vector r 
rotated by π/2 or 90° is m.a. of vector v 

 m.a. φ+π/2 of vector v rotated by
another π/2 is m.a. of vector a 

...and so forth...

...and so on...
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Constructing 2D IHO orbits using Kepler anomaly plots
Mean-anomaly and eccentric-anomaly geometry
Calculus and vector geometry of IHO orbits
A confusing introduction to Coriolis-centrifugal force geometry 
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F = -kr

orbital velocity=V

(b) “Carnival kid” orbiting in
space attached to a spring

centrifugal
force=+kr
=+mω2r

ω t

centripetal
force=

(due to spring)

Carnival kid
says:

“This is awful!
I can hardly
hold onto
this darn
spring.”

F = -kr

orbital velocity=V

(a) “Earthronaut” orbiting
tunnel inside Earth

centrifugal
force=+kr
=+mω2r

ω t

centripetal
force=

(due to gravity)

Earthronaut
says:

“This is great!
I’m weightless.”

apogee
(x=a, y=0)aphelion=a

perigee
(x=0,y=b)

θperhelion=b
mass gaining speed

as it falls

Velocity
V

θVelocity
V centripetal force F=-kr

Negative power
( F•V=|F||V|cos θ <0)

Positive power
( F•V=|F||V|cos θ >0)

mass losing speed
as it rises

Unit 1
Fig. 11.2

Unit 1
Fig. 11.3

(Radius r decreasing)(Radius r increasing)
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Velocity

V

centripetal force F=-kr

centrifugal force

Total inertial force F=+kr

Coriolis force

centrifugal force

Velocity

along

radial

path

Coriolis force

(depends on

radial path

speed)

Rotational

velocity

V=ωr

circle

of

curvature

Velocity

V

centrifugal force is

Total inertial force F=+kr

circle

of

curvature

(a) Centrifugal and Coriolis

Forces on Merry-Go-Round

(b) Centrifugal and Coriolis

Forces on Oscillator Orbit

(Falling phase)

(c) Centrifugal and Coriolis

Forces on Oscillator Orbit

(Rising phase)

centrifugal force

Velocity

along

radial

path

Coriolis force

centripetal force F=-kr

Velocity

V

centripetal force F=-kr

centrifugal force

Total inertial force F=+kr

Coriolis force

circle

of

curvature

(d) Centrifugal Force

on Oscillator Orbit

(apogee and perigee)

Velocity

V

centripetal force F=-kr

centrifugal force is

Total inertial force F=+kr

Unit 1
Fig. 11.4 

a-d

Quite confusing? 
Discussion of Coriolis
forces will be done more elegantly 
and made more physically intuitive 
in Ch. 12 of Unit1 and in Unit 6.

Physicist Force 
(where m wants to go)

Mathematician Force 
(to hold m back)

Constraint force 
keeps m in radial slot
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Some Kepler’s “laws” for central (isotropic) force F(r)
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2 (Derived rigorously)   
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r (Derived later)
Total energy E=KE+PE invariance of IHO: F(r)=-k·r (Derived rigorously)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2 (Derived later)
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− bsinω t ⋅ −aω sinω t( ) = ab ⋅ω cos2ω t + sin2ω t( )

t = 0 t = π/3ω t = π/2ωv=a ω
v=b ω

r r
r

b
a

Unit 1
Fig. 11.8 

Some Kepler’s “laws” for central (isotropic) force F(r)
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2   

    for IHO

  

vx
vy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

−aω sinω t
bω cosω t

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

rx
ry

!

"
#
#

$

%
&
&
= x

y

!

"
#

$

%
& =

acos! t
bsin! t

!

"
##

$

%
&&

 (Recall from Lecture 8:  k = Gm 4π

3
ρ⊕ )
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− asinω t ⋅ −bω sinω t( ) = ab ⋅ω

2. Angular momentum  L = mr × v  is conserved

 L = m |r × v |= m rxvy − ryvx( ) = m ⋅ab ⋅ω

t = 0 t = π/3ω t = π/2ωv=a ω
v=b ω

r r
r

b
a

Unit 1
Fig. 11.8 

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

    for IHO

    for IHO

r
v

|r×v| =r·v·sinrv

 (Recall from Lecture 8:  k = Gm 4π

3
ρ⊕ )
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− asinω t ⋅ −bω sinω t( ) = ab ⋅ω
2. Angular momentum  L = mr × v  is conserved

 L = m |r × v |= m rxvy − ryvx( ) = m ⋅ab ⋅ω

t = 0 t = π/3ω t = π/2ωv=a ω
v=b ω

r r
r

b
a

Unit 1
Fig. 11.8 

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

    for IHO

    for IHO

3. Equal area is swept by radius vector in each equal time interval T

 AT =
r × dr

20

T

∫ =
r × dr

dt
2

dt
0

T

∫ = r × v
2

dt
0

T

∫ = L
2m

dt
0

T

∫ = L
2m

T     for IHO

by 2.

r
dr

|r×dr| =r·dr·sinrdr

 (Recall from Lecture 8:  k = Gm 4π

3
ρ⊕ )
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− asinω t ⋅ −bω sinω t( ) = ab ⋅ω
2. Angular momentum  L = mr × v  is conserved

 L = mr × v = m rxvy − ryvx( ) = m ⋅ab ⋅ω = m ⋅ab ⋅ 2π
τ

t = 0 t = π/3ω t = π/2ωv=a ω
v=b ω

r r
r

b
a

Unit 1
Fig. 11.8 

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

    for IHO

    for IHO

3. Equal area is swept by radius vector in each equal time interval T

 AT =
r × dr

20

T

∫ =
r × dr

dt
2

dt
0

T

∫ = r × v
2

dt
0

T

∫ = L
2m

dt
0

T

∫ = L
2m

T     for IHO

In one period: τ= 1
υ

= 2π
ω

= 2mAτ

L
  the area is: Aτ =

Lτ
2m

 ( = ab ⋅π   for ellipse orbit)

 (Recall from Lecture 8:  k = Gm 4π

3
ρ⊕ )
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx = acosω t ⋅ bω cosω t( )− asinω t ⋅ −bω sinω t( ) = ab ⋅ω
2. Angular momentum  L = mr × v  is conserved

 L = mr × v = m rxvy − ryvx( ) = m ⋅ab ⋅ω = m ⋅ab ⋅ 2π
τ

t = 0 t = π/3ω t = π/2ωv=a ω
v=b ω

r r
r

b
a

Unit 1
Fig. 11.8 

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
...and certainly apply to the IHO: F(r)=-k·r with U(r)=k·r2/2

    for IHO

    for IHO

3. Equal area is swept by radius vector in each equal time interval T

 AT =
r × dr

20

T

∫ =
r × dr

dt
2

dt
0

T

∫ = r × v
2

dt
0

T

∫ = L
2m

dt
0

T

∫ = L
2m

T     for IHO

In one period: τ= 1
υ

= 2π
ω

= 2mAτ

L
  the area is: Aτ =

Lτ
2m

 ( = ab ⋅π   for ellipse orbit)

 (  Recall from Lecture 8:  ω = k /m = Gρ⊕4π / 3  )

 (Recall from Lecture 8:  k = Gm 4π

3
ρ⊕ )
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Some Kepler’s “laws” for central (isotropic) force F(r)
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2 (Derived rigorously)   
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r (Derived later)
Total energy E=KE+PE invariance of IHO: F(r)=-k·r (Derived rigorously)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2 (Derived later)
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx =
ab ⋅ Gρ⊕4π / 3 for IHO

a−1/2b GM⊕ for Coul. 

⎧
⎨
⎪

⎩⎪

t = 0 t = π/3ω t = π/2ωv=a ω
v=b ω

r r
r

b
a

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

    for IHO

t = 0 v
v

r r
rba

v

v
rCoulomb:

IHO:

    for Coul.(Derived in Unit 5)
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx =
ab ⋅ Gρ⊕4π / 3 for IHO

a−1/2b GM⊕ for Coul.

⎧
⎨
⎪

⎩⎪2. Angular momentum  L = mr × v  is conserved

 L = mr × v = m rxvy − ryvx( ) = m·ab ⋅ Gρ⊕4π / 3 for IHO

m·a−1/2b GM⊕ for Coul.

⎧
⎨
⎪

⎩⎪

t = 0 t = π/3ω t = π/2ωv=a ω
v=b ω

r r
r

b
a

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

    for IHO

    for IHO

t = 0 v
v

r r
rba

v

v
rCoulomb:

IHO:

    for Coul.

    for Coul.

(Derived in Unit 5)
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1. Area of triangle  r
v = r × v/2 is constant

r × v = rxvy − ryvx =
ab ⋅ Gρ⊕4π / 3 for IHO

a−1/2b GM⊕ for Coul.

⎧
⎨
⎪

⎩⎪2. Angular momentum  L = mr × v  is conserved

 L = mr × v = m rxvy − ryvx( ) = m·ab ⋅ Gρ⊕4π / 3 for IHO

m·a−1/2b GM⊕ for Coul.

⎧
⎨
⎪

⎩⎪

t = 0 t = π/3ω t = π/2ωv=a ω
v=b ω

r r
r

b
a

Some Kepler’s “laws” that apply to any central (isotropic) force F(r)
Apply to IHO: F(r)=-k·r with U(r)=k·r2/2 and Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r

    for IHO

    for IHO

3. Equal area is swept by radius vector in each equal time interval T

τ= 1
υ
= 2π
ω

= 2mAτ

L
= 2m·ab ⋅π

L
=

2m·ab ⋅π
m·ab ⋅ Gρ⊕4π / 3

= 2π
Gρ⊕4π / 3

for IHO

2m·ab ⋅π
m·a−1/2b GM⊕

= 2π
a−3/2 GM⊕

for Coul.

⎧

⎨

⎪
⎪

⎩

⎪
⎪

t = 0 v
v

r r
rba

v

v
rCoulomb:

IHO:

    for Coul.

    for Coul.

In one period: 

that is ωIHO

that is ωCoul

Applies to
any central 

F(r) 

Applies to
IHO and 
Coulomb

(Derived in Unit 5)

(not a function of b)
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Some Kepler’s “laws” for central (isotropic) force F(r)
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2 (Derived rigorously)   
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r (Derived later)
Total energy E=KE+PE invariance of IHO: F(r)=-k·r (Derived rigorously)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2 (Derived later)
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Kepler laws involve -momentum conservation in isotropic force F(r)
Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2

 

Total energy=KE+PE  is constant

KE + PE =           1
2
v iM i v                  +            1
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Kepler laws involve -momentum conservation in isotropic force F(r)
Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2
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Some Kepler’s “laws” for central (isotropic) force F(r)
Angular momentum invariance of IHO: F(r)=-k·r with U(r)=k·r2/2 (Derived rigorously)   
Angular momentum invariance of Coulomb: F(r)=-GMm/r2 with U(r)=-GMm·/r (Derived later)
Total energy E=KE+PE invariance of IHO: F(r)=-k·r (Derived rigorously)
Total energy E=KE+PE invariance of Coulomb: F(r)=-GMm/r2 (Derived later)
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Kepler laws involve -momentum conservation in isotropic force F(r)
Now consider orbital energy conservation of the IHO: F(r)=-k·r with U(r)=k·r2/2

We'll see that the Coul. orbits are simpler:                 (like the period...not a function of b)
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Quadratic forms and tangent contact geometry of their ellipses
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A inverse matrix Q-1 generates an ellipse by p•Q -1•p=1 called inverse or dual ellipse:
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A matrix Q that generates an ellipse by r•Q•r=1 is called positive-definite (if r•Q•r always >0)

Lect. 10 
topics
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Quadratic forms and tangent contact geometry of their ellipses
A matrix Q that generates an ellipse by r•Q•r=1 is called positive-definite (if r•Q•r always >0)
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Defined
mapping
between
ellipses
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r(φ)

φ=ω t

ab

b-circle

a-circle

Original ellipse

r•Q•r = r•p = 1

Inverse ellipse

p•Q-1•p =p•r = 1

p(φ)

(a) Quadratic form ellipse and

Inverse quadratic form ellipse

 p = Q• r

  r = Q−1•p

Defined
mapping
between
ellipses

Q

Q-1

based on
Unit 1

Fig. 11.6 
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Quadratic form r•Q•r =1 has mutual duality relations with inverse form  p•Q-1•p =1= p•r
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Quadratic form r•Q•r =1 has mutual duality relations with inverse form  p•Q-1•p =1= p•r
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