
Lecture  7 
Tue. 9.16.2014

 Dynamics of Potentials and Force Fields
(Ch. 7 and Ch. 8 of Unit 1)

Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

(a) Constant force F=-k (linear potential V=kx ) 
Some physics of dare-devil diving 80 ft. into kidee pool

(b) Linear force F=-kx (quadratic potential V=kx2  (like balloon))
(c) Non-linear force  (like superball-floor or ball-bearing-anvil)

Geometry and potential dynamics of 2-ball bounce 
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.

Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier 

Advantages of a geometric m1, m2, m3,… series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”

(Leads to Sagittal 
potential analysis of

2, 3, and 4 body towers)  
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Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

General Non-linear force  (like superball-floor or ball-bearing-anvil)
Constant force F=-k (linear potential V=kx ) 

Some physics of dare-devil-diving 80 ft. into kidee pool
Linear force F=-kx (quadratic potential V=kx2  (like balloon))

Geometry and potential dynamics of 2-ball bounce 
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.

Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier 

Advantages of a geometric m1, m2, m3,… series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”
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x 2R - x

R

r

(a) (b)

r = x 2R − x)( )     ≈ 2Rx    for :   x << R( )    
Thales' geometry and "Sagittal†" approx.

† "bow"

Unit 1
Fig. 7.1

(modified)

Potential Energy Geometry of Superballs and Related things 

Fballoon (x) =  P ⋅A  =   P ⋅πr2  
 ≈  P ⋅π 2Rx

F(x) = ?

If superball was a balloon its bounce force law would be linear F=-k·x (Hooke Law)
(Pressure)·(Area)
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r = x 2R − x)( )     ≈ 2Rx    for :   x << R( )    
Thales' geometry and "Sagittal†" approx.
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(modified)

Potential Energy Geometry of Superballs and Related things 

Fballoon (x) =  P ⋅A  =   P ⋅πr2  
 ≈  P ⋅π 2Rx = P ⋅2πRx
 =         kx 

F(x) = ?

If superball was a balloon its bounce force law would be linear F=-k·x (Hooke Law)

(Hooke spring constant k )

(Pressure)·(Area)
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r = x 2R − x)( )     ≈ 2Rx    for :   x << R( )    
Thales' geometry and "Sagittal†" approx.

† "bow"

Unit 1
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(modified)

Potential Energy Geometry of Superballs and Related things 

F(x) = ?

If superball was a balloon its bounce force law would be linear F=-k·x (Hooke Law)

Instead superball force law depends on bulk volume modulus and is non-linear F~ xp? +? (Power Law?)

Fballoon (x) =  P ⋅A  =   P ⋅πr2  
 ≈  P ⋅π 2Rx = P ⋅2πRx
 =         kx 

(Hooke spring constant k )

Volume(X) = πr2 dx0
X∫ = πx 2R − x( )dx0

X∫

(Pressure)·(Area)
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r = x 2R − x)( )     ≈ 2Rx    for :   x << R( )    
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Potential Energy Geometry of Superballs and Related things 

F(x) = ?

If superball was a balloon its bounce force law would be linear F=-k·x (Hooke Law)

Volume(X) = πr2 dx0
X∫ = πx 2R − x( )dx0

X∫ = 2Rπxdx0
X∫ − πx2 dx0

X∫ = RπX2 − πX 3

3
≈

RπX2    for :X << R( )
4
3
πR3    for :X = 2R( )

⎧

⎨
⎪

⎩
⎪

Instead superball force law depends on bulk volume modulus and is non-linear F~ xp? +? (Power Law?)

Fballoon (x) =  P ⋅A  =   P ⋅πr2  
 ≈  P ⋅π 2Rx = P ⋅2πRx
 =         kx 

(Hooke spring constant k )

(Pressure)·(Area)
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† "bow"

Unit 1
Fig. 7.1

(modified)

Potential Energy Geometry of Superballs and Related things 

F(x) = ?

If superball was a balloon its bounce force law would be linear F=-k·x (Hooke Law)

Volume(X) = πr2 dx0
X∫ = πx 2R − x( )dx0

X∫ = 2Rπxdx0
X∫ − πx2 dx0

X∫ = RπX2 − πX 3

3
≈

RπX2    for :X << R( )
4
3
πR3    for :X = 2R( )

⎧

⎨
⎪

⎩
⎪

Instead superball force law depends on bulk volume modulus and is non-linear F~ xp? +? (Power Law?)

It also depends on velocity       . Adiabatic differs from Isothermal as shown by “Project-Ball*” 

* Am. J. Phys. 39, 656 (1971)

 
x=dx
dt

Fballoon (x) =  P ⋅A  =   P ⋅πr2  
 ≈  P ⋅π 2Rx = P ⋅2πRx
 =         kx 

(Hooke spring constant k )

(Pressure)·(Area)

(Ahead on 
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Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

General Non-linear force  (like superball-floor or ball-bearing-anvil)
Constant force F=-k (linear potential V=kx ) 

Some physics of dare-devil-diving 80 ft. into kidee pool
Linear force F=-kx (quadratic potential V=kx2  (like balloon))

Geometry and potential dynamics of 2-ball bounce 
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.

Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier 

Advantages of a geometric m1, m2, m3,… series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”
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Details of each case
follows

using newer Web simulations 

1990 BounceIt Mac simulations
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(See Simulations)
http://www.uark.edu/ua/modphys/markup/BounceItWeb.html

This is linear setting
(increase for non-linear)

Sets gravity
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Floor Force is
maximum

maximum penetration
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(Zero kinetic energy again)
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Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

General Non-linear force  (like superball-floor or ball-bearing-anvil)
Constant force F=-k (linear potential V=kx ) 

Some physics of dare-devil-diving 80 ft. into kidee pool
Linear force F=-kx (quadratic potential V=kx2  (like balloon))

Geometry and potential dynamics of 2-ball bounce 
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.

Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier 

Advantages of a geometric m1, m2, m3,… series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”

 
 

(Simulations)
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(+)
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y
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Unit 1
Fig. 7.5

  
F(x) = − dU (x)

dx
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  Work =W = F(x)dx∫ = Energy acquired = Area of F(x) = −U (x)
  
F(x) = − dU (x)

dx
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  Work =W = F(x)dx∫ = Energy acquired = Area of F(x) = −U (x)
  
F(x) = − dU (x)

dx

� 

Impulse = P = F (t)dt∫ = Momentum acquired = Area of F(t) = P( t)

� 

F(t) =
dP(t)
dt
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Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

General Non-linear force  (like superball-floor or ball-bearing-anvil)
Constant force F=-k (linear potential V=kx ) 

Some physics of dare-devil-diving 80 ft. into kidee pool
Linear force F=-kx (quadratic potential V=kx2  (like balloon))

Geometry and potential dynamics of 2-ball bounce 
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.

Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier 

Advantages of a geometric m1, m2, m3,… series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”

 
 

(Simulations)
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(See Simulations)http://www.uark.edu/ua/modphys/markup/BounceItWeb.html

This is linear setting
(increase for non-linear)

Sets gravity
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Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

General Non-linear force  (like superball-floor or ball-bearing-anvil)
Constant force F=-k (linear potential V=kx ) 

Some physics of dare-devil-diving 80 ft. into kidee pool
Linear force F=-kx (quadratic potential V=kx2  (like balloon))

Geometry and potential dynamics of 2-ball bounce 
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.

Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier 

Advantages of a geometric m1, m2, m3,… series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”

 
 

(Simulations)
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Unit 1
Fig. 7.4

FTotal = Fgrav + Ftarget =
−Mg       
−Mg − ky

y ≥ 0( )
y < 0( )

⎧
⎨
⎪

⎩⎪

UTotal =Ugrav +Utarget =
Mg y            

Mg y + 1
2
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y ≥ 0( )
y < 0( )

⎧
⎨
⎪

⎩⎪

Hard
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ball
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Close view
of

Soft
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Note dashed curve followed by PE minimum. Parabola? What?
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Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

General Non-linear force  (like superball-floor or ball-bearing-anvil)
Constant force F=-k (linear potential V=kx ) 

Some physics of dare-devil-diving 80 ft. into kidee pool
Linear force F=-kx (quadratic potential V=kx2  (like balloon))

Geometry and potential dynamics of 2-ball bounce 
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.

Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier 

Advantages of a geometric m1, m2, m3,… series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”

 
 

(Simulations)
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Utotal(y)=-Mgx+Uball(y)
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  Work =W = F(x)dx∫ = Energy acquired = Area of F(x) = −U (x)
  
F(x) = − dU (x)

dx

� 

Impulse = P = F (t)dt∫ = Momentum acquired = Area of F(t) = P( t)

� 

F(t) =
dP(t)
dt

Bounce effects due to the 
 flat part of non-linear F(y)

flat 
part 
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Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

General Non-linear force  (like superball-floor or ball-bearing-anvil)
Constant force F=-k (linear potential V=kx ) 

Some physics of dare-devil-diving 80 ft. into kidee pool
Linear force F=-kx (quadratic potential V=kx2  (like balloon))

Geometry and potential dynamics of 2-ball bounce 
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.

Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier 

Advantages of a geometric m1, m2, m3,… series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”

 
 

(Simulations)

Parable allegory for Los Alamos
Cheap&practical “seat-of-the pants” approach 

Parable allegory for Livermore
Fancy&overpriced “political” approach 
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RumpCo
Project Ball
2-Bang Model

CrapCorp
StarWars Division

Super Elastic Bounce

Full Force Field Simulation
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Fig. 7.6

Velocity amplification
or “throw” factor =2.5

Velocity amplification
or “throw” factor =2.3
(about equal to RumpCo
finite gap experiment)

Parable allegory for Los Alamos
Cheap&practical “seat-of-the pants” approach 
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Parable allegory for Los Alamos
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Parable allegory for Livermore
Fancy&overpriced “political” approach 
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Cooperation between Los Alamos and Livermore yields insight to answer “What’s going on?” 
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Velocity amplification
or “throw” factor =1.03
(practically “no-throw”)
for linear force F(y)= ky

Cooperation between Los Alamos and Livermore yields insight to answer “What’s going on?” 

flat part of non-linear force
       gives “explosive” effect
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Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

(a) Constant force F=-k (linear potential V=kx ) 
Some physics of dare-devil-diving 80 ft. into kidee pool

(b) Linear force F=-kx (quadratic potential V=kx2  (like balloon))
(c) Non-linear force  (like superball-floor or ball-bearing-anvil)

Geometry and potential dynamics of 2-ball bounce 
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.

Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier 

Advantages of a geometric m1, m2, m3,… series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”

 
 

(Simulations)

(Leads to Sagittal 
potential analysis of

2, 3, and 4 body towers)  
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http://ocw.mit.edu/high-school/physics/exam-prep/systems-of-particles-linear-momentum/impulse-and-momentum/

A story of USC pre-meds visiting Whammo Manufacturing Co.
...and some results of “Project-Ball”

Much later….
Lots of profs try this out…
...including the unfortunate Harvard
professor M. Tinkham...
(  Still trying to find the
video of the Tinkham incident…)
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A story of USC pre-meds visiting Whammo Manufacturing Co.
...and some results of “Project-Ball”

After initial big NBC splash (Ray Dunkin Reports) in Fall 1968, USC mechanical engineers kindly 
measured super-ball force curves F(y) with their precision tensometer and let us use their analog 
computer to calculate precise bounce heights. 

After this things began deteriorating in Old-Physics-Rm 69 (The Project-Ball-Room)

1. The fancy-pants computer theory did not jive with the fine drop-tower experiments. 

2. USC B&G decided Rm 69 needed painting and kicked us out for a week.

A call to Whammo Co. elicited interest in a big $$$$ product. Invited us to visit. Yay! $$$

Days later, finally, got a car convoy together so we all could visit San Gabriel plant. 

But, that was “Alpha-Wave” day for inventors at San Gabriel plant. 
So we end up talking to Whammo lawyer/owner.  

He says invention too dangerous. Bummmer! No$$! (Forget Feynman’s suggestion of Ceiling Dartboard.) 
Seeing us looking sad he offers us boxes of super-balls of many sizes (and other shapes).

Still a little sad, we return to Rm 69. 
Somebody drops a box of balls that immediately bounce into the wet paint.  

The rest is history. 
Little paint spots on floor show what was wrong with our fancy-pants computer theory 
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The rest is history. 
Little paint spots on floor show what was wrong with our fancy-pants computer theory. 

A story of USC pre-meds visiting Whammo Manufacturing Co.
...and some results of “Project-Ball”

Measuring spot-size d gives energy vs. height.
Slope of E(x) gives force F(x) and G(x).

Fancy-pants computer theory
fits experiment better

Then fancy-pants computer theory
can predict N-ball tower bounce

The engineering curves were isothermal not adiabatic.
Need latter. Can do latter by dropping dyed balls and measuring spot-size.
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Then fancy-pants computer theory
can predict N-ball tower bounces

 Here are some 3-ball tower bounce predictions

Fancy-pants computer theory
fits experiment better
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Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

(a) Constant force F=-k (linear potential V=kx ) 
Some physics of dare-devil-diving 80 ft. into kidee pool

(b) Linear force F=-kx (quadratic potential V=kx2  (like balloon))
(c) Non-linear force  (like superball-floor or ball-bearing-anvil)

Geometry and potential dynamics of 2-ball bounce 
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.  

Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier 

Advantages of a geometric m1, m2, m3,… series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”

 
 

(Simulations)

(Leads to Sagittal 
potential analysis of

2, 3, and 4 body towers)  
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(a) Quartic Force
F(y) = k y4

(b) Independent Collisions (Independent of Force Law)

(c) Linear Force
F(y) = k y

Initial Velocities

Initial Velocities Final Velocities

Final Velocities

Bang-(1)01

Bang-(2)12

Bang-(3)23

Vdown

Vup
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END (0.77,2.1)

Bang(3)23
END (0.54,3.62)
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Final Velocities

Unit 1
Fig. 8.1a-c

Independent Bang Model
(IBM)

3-Body Geometry
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Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

(a) Constant force F=-k (linear potential V=kx ) 
Some physics of dare-devil-diving 80 ft. into kidee pool

(b) Linear force F=-kx (quadratic potential V=kx2  (like balloon))
(c) Non-linear force  (like superball-floor or ball-bearing-anvil)

Geometry and potential dynamics of 2-ball bounce 
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.  

Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier 

Advantages of a geometric m1, m2, m3,… series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”

 
 

(Simulations)
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1.8.3 The optimal idler (An algebra/calculus problem)
To get highest final v3 of mass m3 find optimum mass m2 in terms of masses m1 and m3 that does that.

Superball towers...          analogous to...       acoustic horns...

small&fast…    impedance matched to…    BIG&SLOW
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Geometry and dynamics of single ball bounce
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(Simulations)

(Leads to Sagittal 
potential analysis of

2, 3, and 4 body towers)  
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Source
http://hubblesite.org/newscenter/archive/releases/2007/10/image/a/

Author
NASA, ESA, P. Challis, and R. Kirshner (Harvard-Smithsonian Center for Astrophysics)

A story of Stirling Colgate (Palmolive) and core-collapse supernovae
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Quote
• "I was always enamored with explosives, and eventually I graduated to dynamite and then nuclear bombs."

..an amusing off-color aside
story of Stirling Colgate’s NMIMT resignation... 

(Not told in Wikipedia!)
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1st publication describing theory and experiment of this device 20 years before.

(class of WGH)

(Point allowing patent over previous 1973 proposal (4))

(Now I have to pay
APS for my own paper.)
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Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

(a) Constant force F=-k (linear potential V=kx ) 
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Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”

 
 

(Simulations)

(Leads to Sagittal 
potential analysis of

2, 3, and 4 body towers)  
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Western buckboard    =              ????? 
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Western buckboard    =              ????? 
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Western buckboard    = 3-ball analogy   
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Western buckboard    = 3-ball analogy  Disaster! 
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(b)
mk/mk+1=7

(c) Bouncing
column
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pop-up
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Unit 1
Fig. 8.2a-b

4-Body IBM Geometry
Fig. 8.2c-d

4-Equal-Body Geometry

4-Equal-Body 
“Shockwave” or pulse wave

Dynamics

Opposite of continuous wave dynamics
introduced in Unit 2

http://www.uark.edu/ua/modphys/testing/markup/BounceItWeb.html
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(Leads to Sagittal 
potential analysis of

2, 3, and 4 body towers)  
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(Fug-gedda-aboud-dit!!)

(Many possible scenarios depending on initial positions!)
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Potential energy dynamics of Superballs and related things 
Thales geometry and “Sagittal approximation” to force law
Geometry and dynamics of single ball bounce

(a) Constant force F=-k (linear potential V=kx ) 
Some physics of dare-devil-diving 80 ft. into kidee pool

(b) Linear force F=-kx (quadratic potential V=kx2  (like balloon))
(c) Non-linear force  (like superball-floor or ball-bearing-anvil)

Geometry and potential dynamics of 2-ball bounce 
A parable of RumpCo. vs CrapCorp. (introducing 3-mass potential-driven dynamics)
A story of USC pre-meds visiting Whammo Manufacturing Co.  

Geometry and dynamics of n-ball bounces
Analogy with shockwave and acoustical horn amplifier 

Advantages of a geometric m1, m2, m3,… series
A story of Stirling Colgate (Palmolive) and core-collapse supernovae

Many-body 1D collisions
Elastic examples: Western buckboard

Bouncing columns and Newton’s cradle
Inelastic examples: “Zig-zag geometry” of freeway crashes
Super-elastic examples: This really is “Rocket-Science”

 
 

(Simulations)

(Leads to Sagittal 
potential analysis of

2, 3, and 4 body towers)  
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Rocket Science!

m·Δv1+9m·ΔVM(1)=0

m·Δv2+8m·ΔVM(2)=0

m·Δv0+10m·ΔVM(0)=0 

m·Δv3+7m·ΔVM(3)=0

m·Δv4+6m·ΔVM(4)=0

m·Δv5+5m·ΔVM(5)=0

m·Δv6+4m·ΔVM(6)=0

m·Δv7+3m·ΔVM(7)=0
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           0th: V(0)=1/10=0.1   1st: V(1)=1/10+1/9=0.211  2nd: V(2)=1/10+1/9+1/8=0.336
 3rd: V(3)=V(2)+1/7=0.478 4th: V(4)=V(3)+1/6=0.646 5th: V(5)=V(4)+1/5=0.846
 6th: V(6)=V(5)+1/4=1.096 7th: V(7)= V(6)+1/3=1.429 8th: V(8)=V(7)+1/2=1.929
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By calculus: M·ΔV=-ve·ΔM    or:                      Integrate:dV = −ve
dM
M

dVVIN
VFIN∫ = −ve  M

dM
MIN

MFIN∫

     ve known as
“Specific Impulse”
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⎤
⎦The Rocket Equation:

     ve known as
“Specific Impulse”
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A Thales construction for momentum-energy

(Made obsolete by Estrangian scaling to circular (V1,V2) plots. Still, one has to construct  √m1/√m2   slopes. )

√m1/√m2

m1/m2 1
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Fig. 8.4a-d

This is a detailed construction
of the energy ellipse in a
Largangian (v1,v2) plot
given the initial (v1,v2).

The Estrangian (V1,V2) plot
makes the (v1,v2) plot and 
this construction obsolete.

(Easier to just draw circle
through initial (V1,V2).)
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