
Lecture  22 
Tue 11.06.2014

Reimann-Christoffel equations and covariant derivative
(Ch. 4-7 of Unit 3)

 
Separation of GCC Equations: Effective Potentials

Small radial oscillations
2D Spherical pendulum or “Bowl-Bowling”

Cycloidal ruler&compass geometry
Cycloid as brachistichrone with various geometries
Cycloid as tautochrone

Cycloidulum vs Pendulum
Cycloidal geometry of flying levers

Practical poolhall application
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Separation of GCC Equations: Effective Potentials

 

H =
1
2
γ mn q

m qn +V =
1
2
m ρ2   +  1

2
mρ2 φ2  +  1

2
mz2 +V        ( Numerically

correct ONLY!
) 

   = 1
2
γ mn pm pn +V =

1
2m

pρ
2 +

1
2mρ2

pφ
2 +

1
2m

pz
2 +V    ( Formally and Numerically

correct
)
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1
2m

pρ
2 +

1
2mρ2

pφ
2 +

1
2m

pz
2 +V    ( Formally and Numerically

correct
)

   
mρ2 φ = pφ = const.= µ

(For isotropic H(r,pr,φ,pφ)

Potential V is isotropic (cylindrical) function of radius ρ. (V = V(ρ)) 
H has no explicit φ−dependence and the φ−momenta is constant.

4Thursday, November 6, 2014



Separation of GCC Equations: Effective Potentials

 

H =
1
2
γ mn q

m qn +V =
1
2
m ρ2   +  1

2
mρ2 φ2  +  1

2
mz2 +V        ( Numerically

correct ONLY!
) 

   = 1
2
γ mn pm pn +V =

1
2m

pρ
2 +

1
2mρ2

pφ
2 +

1
2m

pz
2 +V    ( Formally and Numerically

correct
)

   
mρ2 φ = pφ = const.= µ

Potential V is isotropic (cylindrical) function of radius ρ. (V = V(ρ)) 
H has no explicit φ−dependence and the φ−momenta is constant.

If H has no explicit z−dependence 
then the z−momenta is constant, too.

   mz = pz = const.= k

(For isotropic H(r,pr,φ,pφ)
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   mz = pz = const.= k
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then the z−momenta is constant, too.

   mz = pz = const.= k

  
H = 1

2m
pρ

2 + µ2

2mρ2
+ k2

2m
+V ρ( ) = E = const. (Let k =0)
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H has no explicit φ−dependence and the φ−momenta is constant.

If H has no explicit z−dependence 
then the z−momenta is constant, too.

   mz = pz = const.= k

  
H = 1

2m
pρ

2 + µ2

2mρ2
+ k2

2m
+V ρ( ) = E = const.

  
H = 1

2m
pρ

2 +V eff ρ( ) = E = const.
Symmetry reduces problem to a one-dimensional form.

(Let k =0)
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H = 1
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Symmetry reduces problem to a one-dimensional form.

An effective potential Veff(ρ) has a centrifugal barrier.

  
V eff ρ( ) = µ2

2mρ2
+V ρ( )

(Let k =0)

9Thursday, November 6, 2014



Separation of GCC Equations: Effective Potentials

 

H =
1
2
γ mn q

m qn +V =
1
2
m ρ2   +  1

2
mρ2 φ2  +  1

2
mz2 +V        ( Numerically

correct ONLY!
) 

   = 1
2
γ mn pm pn +V =

1
2m

pρ
2 +

1
2mρ2

pφ
2 +

1
2m

pz
2 +V    ( Formally and Numerically

correct
)

   
mρ2 φ = pφ = const.= µ

Potential V is isotropic (cylindrical) function of radius ρ. (V = V(ρ)) 
H has no explicit φ−dependence and the φ−momenta is constant.

If H has no explicit z−dependence 
then the z−momenta is constant, too.

   mz = pz = const.= k

  
H = 1

2m
pρ

2 + µ2

2mρ2
+ k2

2m
+V ρ( ) = E = const.

  
H = 1

2m
pρ

2 +V eff ρ( ) = E = const.
Symmetry reduces problem to a one-dimensional form.

An effective potential Veff(ρ) has a centrifugal barrier.

  
V eff ρ( ) = µ2

2mρ2
+V ρ( )

   
φ = µ / mρ2( )

   
ρ = dρ

dt
= ∂H

∂pρ
=

pρ
m

= ± 2
m

E −V eff ρ( )( )
Velocity relations:

(Let k =0)
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Separation of GCC Equations: Effective Potentials
Small radial oscillations

2D Spherical pendulum or “Bowl-Bowling”
Cycloidal ruler&compass geometry

Cycloid as brachistichrone
Cycloid as tautochrone

Cycloidulum vs Pendulum
Cycloidal geometry of flying levers

Practical poolhall application
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dV eff ρ( )
dρ

ρ0

= 0 ,     with:  d2V eff

dρ2
ρ0

> 0 .

Stable minimal-energy radius will satisfy a zero-slope equation.

Small radial oscillations

A Taylor series around this minimum can be used to estimate orbit properties for small oscillations.

  

V eff ρ( ) =V eff ρ0( ) + 0+ 1
2

ρ − ρ0( )2 d2V eff

dρ2
ρ0

p p

q q

(a) (b)

Fig. 2.7.4  Phase paths around fixed points (a) Stable point (b) Unstable saddle point 

Stable flat 
  

d2V eff

dρ2
ρ0

> 0 Unstable flat 
  

d2V eff

dρ2
ρ0

< 0 
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dV eff ρ( )
dρ

ρstable

= 0 ,     with:  d2V eff

dρ2
ρstable

> 0 .

Small radial oscillations

A Taylor series around this minimum can be used to estimate orbit properties for small oscillations.

  

V eff ρ( ) = V eff ρstable( ) + 0+ 1
2

ρ − ρstable( )2 d2V eff

dρ2
ρstable

  

keff = d2V eff

dρ2
ρstable

An effective "spring constant" at the stable point giving approximate frequency of oscillation.  

  

ωρstable
= keff

m
= 1

m
d2V eff

dρ2
ρstable

Stable minimal-energy radius will satisfy a zero-slope equation.
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2
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dρ2
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An effective "spring constant" at the stable point giving approximate frequency of oscillation.  

  

ωρstable
= keff

m
= 1

m
d2V eff

dρ2
ρstable

Small oscillation orbits are closed if and only if the ratio of the two is a rational (fractional) number.

   

ωρstable
ωφ

=
ωρstable
φ ρstable( ) =

nρ
nφ

⇔ Orbit is closed-periodic

Stable minimal-energy radius will satisfy a zero-slope equation.
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dρ2
ρstable

Small oscillation orbits are closed if and only if the ratio of the two is a rational (fractional) number.

   

ωρstable
ωφ

=
ωρstable
φ ρstable( ) =

nρ
nφ

⇔ Orbit is closed-periodic

Some generic shapes resulting from various ratios nρ : nφ  

Stable minimal-energy radius will satisfy a zero-slope equation.
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1:1 2:1 3:1 4:1 5:1 6:1

1:2 2:2 3:2 4:2 5:2 6:2

1:3 2:3 3:3 4:3 5:3 6:3

1:4 2:4 3:4 4:4 5:4 6:4

1:5 2:5 3:5 4:5 5:5 6:5

•

••••••

•

••

•
m:n
m-fold

n-fold

symmetry

by

prograde
precession
of nodes

ωρ:ωφ just below 2
retrograde
precession
of nodes

ωρ:ωφ just above 2ωρ:ωφ=2

prograde
precession
of nodes

ωρ:ωφ just below 1
retrograde
precession
of nodes

ωρ:ωφ just above 1ωρ:ωφ=1(b) (c)
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2D Spherical pendulum or “Bowl-Bowling”
Spherical coordinates: {q1=r, q2=θ, q3=φ } obvious choice:
 x=x1=rsinθ cosφ,   y=x2=rsinθ sinφ,     z=x3=rcosθ, 
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2D Spherical pendulum or “Bowl-Bowling”
Spherical coordinates: {q1=r, q2=θ, q3=φ } obvious choice:
 x=x1=rsinθ cosφ,   y=x2=rsinθ sinφ,     z=x3=rcosθ, 

   

         Er      Eθ     Eφ                                                                                 Reduced to cylindrical coordinates:

J =

∂x
∂r

∂x
∂θ

∂x
∂φ

∂y
∂r

∂y
∂θ

∂y
∂φ

∂z
∂r

∂z
∂θ

∂z
∂φ

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=
sinθ cosφ r cosθ cosφ −r sinθ sinφ
sinθ sinφ r cosθ sinφ r sinθ cosφ

cosθ −r sinθ 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

θ=π /2
r=ρ

⎯ →⎯⎯
cosφ 0 −ρ sinφ
sinφ 0 ρcosφ

0 −ρ 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

          det J = det J T = ∂{xyz}
∂{rθφ}

= r2 sinθ θ=π /2
r=ρ

⎯ →⎯⎯ ρ2

Jacobian matrices and determinants:
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r=ρ
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Jacobian matrices and determinants:

 

Covariant: grr= EriEr= 1,   gθθ = EθiEθ= r
2,   gφφ = EφiEφ= r

2 sin2θ ,  

Contravariant:         grr=1,               gθθ=1/r2,                gφφ=1/r2 sin2θ .

Covariant metric gµν is matrix product g=JT·J of Jacobian and its transpose. OCC g’s are diagonal.
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2 sin2θ ,  
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                 (Lagrangian form)            (Hamiltonian form) 

T = m
2

(grr r
2 + gθθ

θ 2 + gφφ
φ2 ) = 1

2m
(grr pr

2 + gθθ pθ
2 + gφφ pφ

2 ) 

  = 1
2

(γ rr r
2 + γ θθ

θ 2 + γ φφ
φ2 ) = 1

2
   (γ rr pr

2 + γ θθ pθ
2 + γ φφ pφ

2 ) 

  = m
2

( r2 + r2 θ 2 + r2 sin2θ φ2 ) = 1
2m

( pr
2 +

pθ
2

r2 +
pφ

2

r2 sin2θ
) 
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φ2 ) = 1
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2 + gθθ pθ
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   (γ rr pr

2 + γ θθ pθ
2 + γ φφ pφ

2 ) 

  = m
2

( r2 + r2 θ 2 + r2 sin2θ φ2 ) = 1
2m

( pr
2 +

pθ
2

r2 +
pφ

2

r2 sin2θ
) 

Spherical coordinates with constant radius r 
implies conserved azimuthal momentum:

 
 pφ ≡

∂T
∂ φ

= m(R2 sin2θ ) φ = const.
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sinθ sinφ r cosθ sinφ r sinθ cosφ

cosθ −r sinθ 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

θ=π /2
r=ρ

⎯ →⎯⎯
cosφ 0 −ρ sinφ
sinφ 0 ρcosφ

0 −ρ 0

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟

          det J = det J T = ∂{xyz}
∂{rθφ}

= r2 sinθ θ=π /2
r=ρ

⎯ →⎯⎯ ρ2

Jacobian matrices and determinants:

 

Covariant: grr= EriEr= 1,   gθθ = EθiEθ= r
2,   gφφ = EφiEφ= r

2 sin2θ ,  

Contravariant:         grr=1,               gθθ=1/r2,                gφφ=1/r2 sin2θ .

Covariant metric gµν is matrix product g=JT·J of Jacobian and its transpose. OCC g’s are diagonal.

   

                 (Lagrangian form)            (Hamiltonian form) 

T = m
2

(grr r
2 + gθθ

θ 2 + gφφ
φ2 ) = 1

2m
(grr pr

2 + gθθ pθ
2 + gφφ pφ

2 ) 

  = 1
2

(γ rr r
2 + γ θθ

θ 2 + γ φφ
φ2 ) = 1

2
   (γ rr pr

2 + γ θθ pθ
2 + γ φφ pφ

2 ) 

  = m
2

( r2 + r2 θ 2 + r2 sin2θ φ2 ) = 1
2m

( pr
2 +

pθ
2

r2 +
pφ

2

r2 sin2θ
) 

Spherical coordinates with constant radius r 
implies conserved azimuthal momentum:

 
 pφ ≡

∂L
∂ φ

= ∂T
∂ φ

= m(R2 sin2θ ) φ = const.

Total Energy from Hamiltonian E=T+V(gravity)=const.  :

 

E = mR
2

2
θ 2 +V effective θ( ) = mR

2

2
θ 2+

pφ
2

2mR2 sin2θ
+mgRcosθ   =    α θ 2+ δ

sin2θ
+ γ cosθ

Let :       α = mR
2

2
,       δ=

pφ
2

2mR2 ,       γ =mgR      where:          pφ =mR2sin2θ( φ )
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2D Spherical pendulum or “Bowl-Bowling”

Total Energy from Hamiltonian E=T+V(gravity)=const.  :

 

E = mR
2

2
θ 2 +V effective θ( ) =  α θ 2+ δ

sin2θ
+ γ cosθ

Let :       α = mR
2

2
,       δ=

pφ
2

2mR2 ,       γ =mgR      where:          pφ =mR2sin2θ( φ )
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2D Spherical pendulum or “Bowl-Bowling”

Total Energy from Hamiltonian E=T+V(gravity)=const.  :

 

E = mR
2

2
θ 2 +V effective θ( ) =  α θ 2+ δ

sin2θ
+ γ cosθ

Let :       α = mR
2

2
,       δ=

pφ
2

2mR2 ,       γ =mgR      where:          pφ =mR2sin2θ( φ )

dV effective θ( )
dθ

= −2δ cosθ
sin3θ

−γ sinθ = 0 =
−2pφ

2 cosθ
2mR2 sin3θ

−mgRsinθ

Equilibrium point of stable orbit 
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2D Spherical pendulum or “Bowl-Bowling”

Total Energy from Hamiltonian E=T+V(gravity)=const.  :

 

E = mR
2

2
θ 2 +V effective θ( ) =  α θ 2+ δ

sin2θ
+ γ cosθ

Let :       α = mR
2

2
,       δ=

pφ
2

2mR2 ,       γ =mgR      where:          pφ =mR2sin2θ( φ )

dV effective θ( )
dθ

= −2δ cosθ
sin3θ

−γ sinθ = 0 =
−2pφ

2 cosθ
2mR2 sin3θ

−mgRsinθ ωθ
equil( )2 = 1

mR2
d2V effective θ( )

dθ 2 equil

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:
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2D Spherical pendulum or “Bowl-Bowling”

Total Energy from Hamiltonian E=T+V(gravity)=const.  :

 

E = mR
2

2
θ 2 +V effective θ( ) =  α θ 2+ δ

sin2θ
+ γ cosθ

Let :       α = mR
2

2
,       δ=

pφ
2

2mR2 ,       γ =mgR      where:          pφ =mR2sin2θ( φ )

 

dV effective θ( )
dθ

= −2δ cosθ
sin3θ

−γ sinθ = 0 =
−2pφ

2 cosθ
2mR2 sin3θ

−mgRsinθ  

0 = (mR2 sinθ ) φ2 cosθ −mgRsinθ  or:       φequil
2 = − g

Rcosθequil

ωθ
equil( )2 = 1

mR2
d2V effective θ( )

dθ 2 equil

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

(Polar angle librational frequency 
is related to azimuthal frequency        .)

ωθ
equil

 
φequil
2
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2D Spherical pendulum or “Bowl-Bowling”

Total Energy from Hamiltonian E=T+V(gravity)=const.  :

 

E = mR
2

2
θ 2 +V effective θ( ) =  α θ 2+ δ

sin2θ
+ γ cosθ

Let :       α = mR
2

2
,       δ=

pφ
2

2mR2 ,       γ =mgR      where:          pφ =mR2sin2θ( φ )

 

dV effective θ( )
dθ

= −2δ cosθ
sin3θ

−γ sinθ = 0 =
−2pφ

2 cosθ
2mR2 sin3θ

−mgRsinθ  

0 = (mR2 sinθ ) φ2 cosθ −mgRsinθ  or:       φequil
2 = − g

Rcosθequil

ωθ
equil( )2 = 1

mR2
d2V effective θ( )

dθ 2 equil

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

V-Derivative for small oscillation frequency:

 

d2V effective θ( )
dθ 2 = −γ cosθ + 2δ sinθ

sin3θ
+ 3⋅2δ cos2θ

sin4θ
= −γ cosθ + 2δ sin2θ + 3cos2θ

sin4θ

                        = −mgRcosθ +
2 mR2 sin2θ φ( )2

2mR2
1+2cos2θ

sin4θ
 

                        = −mgRcosθ +mR2 φ2 1+2cos2θ( )

(Polar angle librational frequency 
is related to azimuthal frequency        .)

ωθ
equil

 
φequil
2
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2D Spherical pendulum or “Bowl-Bowling”

Total Energy from Hamiltonian E=T+V(gravity)=const.  :

 

E = mR
2

2
θ 2 +V effective θ( ) =  α θ 2+ δ

sin2θ
+ γ cosθ

Let :       α = mR
2

2
,       δ=

pφ
2

2mR2 ,       γ =mgR      where:          pφ =mR2sin2θ( φ )

 

dV effective θ( )
dθ

= −2δ cosθ
sin3θ

−γ sinθ = 0 =
−2pφ

2 cosθ
2mR2 sin3θ

−mgRsinθ  

0 = (mR2 sinθ ) φ2 cosθ −mgRsinθ  or:       φequil
2 = − g

Rcosθequil

ωθ
equil( )2 = 1

mR2
d2V effective θ( )

dθ 2 equil

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

V-Derivative for small oscillation frequency:

 

d2V effective θ( )
dθ 2 = −γ cosθ + 2δ sinθ

sin3θ
+ 3⋅2δ cos2θ

sin4θ
= −γ cosθ + 2δ sin2θ + 3cos2θ

sin4θ

                        = −mgRcosθ +
2 mR2 sin2θ φ( )2

2mR2
1+2cos2θ

sin4θ
 

                        = −mgRcosθ +mR2 φ2 1+2cos2θ( )

d2V effective θ( )
dθ 2

equil

= −mgRcosθequil +mR
2 − g

Rcosθequil

⎛

⎝
⎜

⎞

⎠
⎟ 1+2cos2θequil( )  

                                  = − mgR
cosθequil

1+3cos2θequil( )  

At equilibrium:

(Polar angle librational frequency 
is related to azimuthal frequency        .)

ωθ
equil

 
φequil
2
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2D Spherical pendulum or “Bowl-Bowling”

Total Energy from Hamiltonian E=T+V(gravity)=const.  :

 

E = mR
2

2
θ 2 +V effective θ( ) =  α θ 2+ δ

sin2θ
+ γ cosθ

Let :       α = mR
2

2
,       δ=

pφ
2

2mR2 ,       γ =mgR      where:          pφ =mR2sin2θ( φ )

 

dV effective θ( )
dθ

= −2δ cosθ
sin3θ

−γ sinθ = 0 =
−2pφ

2 cosθ
2mR2 sin3θ

−mgRsinθ  

0 = (mR2 sinθ ) φ2 cosθ −mgRsinθ  or:       φequil
2 = − g

Rcosθequil

ωθ
equil( )2 = 1

mR2
d2V effective θ( )

dθ 2 equil

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

V-Derivative for small oscillation frequency:

 

d2V effective θ( )
dθ 2 = −γ cosθ + 2δ sinθ

sin3θ
+ 3⋅2δ cos2θ

sin4θ
= −γ cosθ + 2δ sin2θ + 3cos2θ

sin4θ

                        = −mgRcosθ +
2 mR2 sin2θ φ( )2

2mR2
1+2cos2θ

sin4θ
 

                        = −mgRcosθ +mR2 φ2 1+2cos2θ( )

d2V effective θ( )
dθ 2

equil

= −mgRcosθequil +mR
2 − g

Rcosθequil

⎛

⎝
⎜

⎞

⎠
⎟ 1+2cos2θequil( )  

                                  = − mgR
cosθequil

1+3cos2θequil( )  

At equilibrium:

(Polar angle librational frequency 
is related to azimuthal frequency        .)

 
ωθ
equil( )2 / ( φequil

2 ) = 1+3cos2θequil( )  

ωθ
equil

 
φequil
2
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2D Spherical pendulum or “Bowl-Bowling”

Total Energy from Hamiltonian E=T+V(gravity)=const.  :

 

E = mR
2

2
θ 2 +V effective θ( ) =  α θ 2+ δ

sin2θ
+ γ cosθ

Let :       α = mR
2

2
,       δ=

pφ
2

2mR2 ,       γ =mgR      where:          pφ =mR2sin2θ( φ )

 

dV effective θ( )
dθ

= −2δ cosθ
sin3θ

−γ sinθ = 0 =
−2pφ

2 cosθ
2mR2 sin3θ

−mgRsinθ  

0 = (mR2 sinθ ) φ2 cosθ −mgRsinθ  or:       φequil
2 = − g

Rcosθequil

ωθ
equil( )2 = 1

mR2
d2V effective θ( )

dθ 2 equil

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

V-Derivative for small oscillation frequency:

 

d2V effective θ( )
dθ 2 = −γ cosθ + 2δ sinθ

sin3θ
+ 3⋅2δ cos2θ

sin4θ
= −γ cosθ + 2δ sin2θ + 3cos2θ

sin4θ

                        = −mgRcosθ +
2 mR2 sin2θ φ( )2

2mR2
1+2cos2θ

sin4θ
 

                        = −mgRcosθ +mR2 φ2 1+2cos2θ( )

d2V effective θ( )
dθ 2

equil

= −mgRcosθequil +mR
2 − g

Rcosθequil

⎛

⎝
⎜

⎞

⎠
⎟ 1+2cos2θequil( )  

                                  = − mgR
cosθequil

1+3cos2θequil( )  

At equilibrium:

(Polar angle librational frequency 
is related to azimuthal frequency        .)

 
ωθ
equil( )2 / ( φequil

2 ) = 1+3cos2θequil( )  

ωθ
equil

 
φequil
2

 θ  
φ

2> ωθ:ωφ >1

prograde
precession
of nodes

retrograde
precession
of nodes

ωθ:ωφ ~1ωθ:ωφ ~2

At bottom θ→π the ratio of in-out ωθ to circle ωφ  approaches 2:1
At equator θ→π/2 the ratio approaches 1:1.
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2D Spherical pendulum or “Bowl-Bowling”

Total Energy from Hamiltonian E=T+V(gravity)=const.  :

 

E = mR
2

2
θ 2 +V effective θ( ) =  α θ 2+ δ

sin2θ
+ γ cosθ

Let :       α = mR
2

2
,       δ=

pφ
2

2mR2 ,       γ =mgR      where:          pφ =mR2sin2θ( φ )

 

dV effective θ( )
dθ

= −2δ cosθ
sin3θ

−γ sinθ = 0 =
−2pφ

2 cosθ
2mR2 sin3θ

−mgRsinθ  

0 = (mR2 sinθ ) φ2 cosθ −mgRsinθ  or:       φequil
2 = − g

Rcosθequil

ωθ
equil( )2 = 1

mR2
d2V effective θ( )

dθ 2 equil

Equilibrium point of stable orbit and small oscillation frequency near equilibrium:

V-Derivative for small oscillation frequency:

 

d2V effective θ( )
dθ 2 = −γ cosθ + 2δ sinθ

sin3θ
+ 3⋅2δ cos2θ

sin4θ
= −γ cosθ + 2δ sin2θ + 3cos2θ

sin4θ

                        = −mgRcosθ +
2 mR2 sin2θ φ( )2

2mR2
1+2cos2θ

sin4θ
 

                        = −mgRcosθ +mR2 φ2 1+2cos2θ( )

d2V effective θ( )
dθ 2

equil

= −mgRcosθequil +mR
2 − g

Rcosθequil

⎛

⎝
⎜

⎞

⎠
⎟ 1+2cos2θequil( )  

                                  = − mgR
cosθequil

1+3cos2θequil( )  

At equilibrium:

(Polar angle librational frequency 
is related to azimuthal frequency        .)

 
ωθ
equil( )2 / ( φequil

2 ) = 1+3cos2θequil( )  

ωθ
equil

 
φequil
2

 θ  
φ

At bottom θ→π the ratio of in-out ωθ to circle ωφ  approaches 2:1
At equator θ→π/2 the ratio approaches 1:1.

Ratio is between 2 and 1 
(Usually irrational non-closed orbit).
 (2:1 is like 2D IHO, but 1:1 is like coulomb orbit.)

2> ωθ:ωφ >1

prograde
precession
of nodes

retrograde
precession
of nodes

ωθ:ωφ ~1ωθ:ωφ ~2
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Separation of GCC Equations: Effective Potentials
Small radial oscillations

2D Spherical pendulum or “Bowl-Bowling”
Cycloidal ruler&compass geometry

Cycloid as brachistichrone
Cycloid as tautochrone

Cycloidulum vs Pendulum
Cycloidal geometry of flying levers

Practical poolhall application
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4·3/π=3.82

3/2π=.4770.5
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3.0

3.5

4.0

Rotation angle φ

Arc length  Rφ= (3/π)φ1/22/23/24/25/26/27/28/29/210/211/212/2

o’clock

= Radius R

Here the radius is plotted as an irrational R=3/π=0.955 length so rolling by rational angle φ= mπ/n 
is a rational length of rolled -out circumference Rφ= (3/π)mπ/n=3m/n.
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Rotation angle φ

Arc length  Rφ= (3/π)φ1/22/23/24/25/26/27/28/29/210/211/212/2

o’clock

= Radius R

Here the radius is plotted as an irrational R=3/π=0.955 length so rolling by rational angle φ= mπ/n 
is a rational length of rolled -out circumference Rφ= (3/π)mπ/n=3m/n. Diameter is 2R=6/π=1.91
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= Radius R
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π/6

Ceiling y=3.82 

Ceiling z=3.82 

Ceiling y=1.91 

Red circle rolls left-to-right on y=3.82 ceiling
Contact point goes from (x=6/2, y=3.82) to x=0.

Here the radius is plotted as an irrational R=3/π=0.955 length so rolling by rational angle φ= mπ/n 
is a rational length of rolled -out circumference Rφ= (3/π)mπ/n=3m/n. Diameter is 2R=6/π=1.91

Green circle rolls right-to-left on y=1.91 ceiling
Contact point goes from (x=0, y=1.91) to x=6/2.
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37Thursday, November 6, 2014



0123456789101112

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

π/6π/3π/22π/3π7π/68π/69π/610π/611π/62π 5π/6

3/π=.955

2·3/π=1.91

3·3/π=2.865

4·3/π=3.82

3/2π=.477

Rotation angle φ

Arc length  Rφ= (3/π)φ1/22/23/24/25/26/27/28/29/210/211/212/2

o’clock

= Radius R

π/6

π/6

π/3

π/3

Ceiling y=3.82 

Ceiling y=1.91 

Red circle rolls left-to-right on y=3.82 ceiling
Contact point goes from (x=6/2, y=3.82) to x=0.
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is a rational length of rolled -out circumference Rφ= (3/π)mπ/n=3m/n. Diameter is 2R=6/π=1.91
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Separation of GCC Equations: Effective Potentials
Small radial oscillations

2D Spherical pendulum or “Bowl-Bowling”
Cycloidal ruler&compass geometry

Cycloid as brachistichrone
Cycloid as tautochrone

Cycloidulum vs Pendulum
Cycloidal geometry of flying levers

Practical poolhall application
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The brachistichrone or minimum-time curve for a particle falling in a uniform gravitational potential.

Its solution gives that of another problem, the tautochrone or equal-time period curve of Huygens.

  
ds
dt

= v = 2gy

Energy conservation gives velocity v from gravitational g. Elapsed travel time t is to be minimized.

  
t = dt∫ = ds

2gy
∫ = dy 1+ ′x 2

2gy
∫ = Ldy∫
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The brachistichrone or minimum-time curve for a particle falling in a uniform gravitational potential.

Its solution gives that of another problem, the tautochrone or equal-time period curve of Huygens.

  
ds
dt

= v = 2gy

Energy conservation gives velocity v from gravitational g. Elapsed travel time t is to be minimized.

  
t = dt∫ = ds

2gy
∫ = dy 1+ ′x 2

2gy
∫ = Ldy∫

A “pseudo-momentum” px for “pseudo-Lagrange” L in y-integral is constant if L is x-independent.

  

px = const.= ∂ L
∂ ′x

= ∂
∂ ′x

1+ ′x 2

2gy
= ′x

2gy 1+ ′x 2
= 1

′y 2gy 1+1/ ′y 2
where: ′x = dx

dy
= 1

′y
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The brachistichrone or minimum-time curve for a particle falling in a uniform gravitational potential.

Its solution gives that of another problem, the tautochrone or equal-time period curve of Huygens.

  
ds
dt

= v = 2gy

Energy conservation gives velocity v from gravitational g. Elapsed travel time t is to be minimized.

  
t = dt∫ = ds

2gy
∫ = dy 1+ ′x 2

2gy
∫ = Ldy∫

A “pseudo-momentum” px for “pseudo-Lagrange” L in y-integral is constant if L is x-independent.

  

px = const.= ∂ L
∂ ′x

= ∂
∂ ′x

1+ ′x 2

2gy
= ′x

2gy 1+ ′x 2
= 1

′y 2gy 1+1/ ′y 2
where: ′x = dx

dy
= 1

′y
                  

Change variables from y to velocity v to simplify using:
  
v2 = 2gy,   dy = vdv

g
,    ′y = v

g
dv
dx
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The brachistichrone or minimum-time curve for a particle falling in a uniform gravitational potential.

Its solution gives that of another problem, the tautochrone or equal-time period curve of Huygens.

  
ds
dt

= v = 2gy

Energy conservation gives velocity v from gravitational g. Elapsed travel time t is to be minimized.
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2gy
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∫ = Ldy∫

A “pseudo-momentum” px for “pseudo-Lagrange” L in y-integral is constant if L is x-independent.

  

px = const.= ∂ L
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= ∂
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1+ ′x 2

2gy
= ′x

2gy 1+ ′x 2
= 1

′y 2gy 1+1/ ′y 2
where: ′x = dx

dy
= 1

′y
                  

Change variables from y to velocity v to simplify using:
  
v2 = 2gy,   dy = vdv

g
,    ′y = v

g
dv
dx

  

px =
1

2gy ′y 2 +1
= 1

v v2

g2
dv
dx

⎛
⎝⎜

⎞
⎠⎟

2

+1

 is:  px
2v2 = 1

v2

g2
dv
dx

⎛
⎝⎜

⎞
⎠⎟

2

+1

 is:  v2

g2
dv
dx

⎛
⎝⎜

⎞
⎠⎟

2

= 1
px

2v2 −1=
1− px

2v2

px
2v2
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The brachistichrone or minimum-time curve for a particle falling in a uniform gravitational potential.

Its solution gives that of another problem, the tautochrone or equal-time period curve of Huygens.

  
ds
dt

= v = 2gy

Energy conservation gives velocity v from gravitational g. Elapsed travel time t is to be minimized.

  
t = dt∫ = ds

2gy
∫ = dy 1+ ′x 2

2gy
∫ = Ldy∫

A “pseudo-momentum” px for “pseudo-Lagrange” L in y-integral is constant if L is x-independent.

  

px = const.= ∂ L
∂ ′x

= ∂
∂ ′x

1+ ′x 2

2gy
= ′x

2gy 1+ ′x 2
= 1

′y 2gy 1+1/ ′y 2
where: ′x = dx

dy
= 1

′y
                  

Change variables from y to velocity v to simplify using:
  
v2 = 2gy,   dy = vdv

g
,    ′y = v

g
dv
dx

An elementary integral results and suggests an elementary substitution v=a cosθ.

  

px =
1

2gy ′y 2 +1
= 1

v v2

g2
dv
dx

⎛
⎝⎜

⎞
⎠⎟

2

+1

 is:  px
2v2 = 1

v2

g2
dv
dx

⎛
⎝⎜

⎞
⎠⎟

2

+1

 is:  v2

g2
dv
dx

⎛
⎝⎜

⎞
⎠⎟

2

= 1
px

2v2 −1=
1− px

2v2

px
2v2

  

dv
dx

⎛
⎝⎜

⎞
⎠⎟

2

= g2

v2
1− px

2v2

px
2v2 = g2

v2
px
−2 − v2

v2  becomes: dv
dx

= g
v2 px

−2 − v2  and integral: v2dv

g a2 − v2
∫ = dx∫    where: a2 = px

−2
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The brachistichrone or minimum-time curve for a particle falling in a uniform gravitational potential.

Its solution gives that of another problem, the tautochrone or equal-time period curve of Huygens.
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Energy conservation gives velocity v from gravitational g. Elapsed travel time t is to be minimized.
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Change variables from y to velocity v to simplify using:
  
v2 = 2gy,   dy = vdv
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,    ′y = v

g
dv
dx

An elementary integral results and suggests an elementary substitution v=a cosθ.
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v2  becomes: dv
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= g
v2 px

−2 − v2  and integral: v2dv

g a2 − v2
∫ = dx∫    where: a2 = px

−2

  

a2cos2θ asinθdθ
gasinθ∫ = a2

g
cos2θ dθ∫ = dx∫ = x = - a2

2g
1+cos2θ( )dθ∫ = -R 2θ+sin2θ( )     where: R = a2

4g

v2 = 2gy = a2 cos2θ                       gives:   y = a2

2g
cos2θ                 = R 1+cos2θ( )
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Separation of GCC Equations: Effective Potentials
Small radial oscillations

2D Spherical pendulum or “Bowl-Bowling”
Cycloidal ruler&compass geometry

Cycloid as brachistichrone
Cycloid as tautochrone

Cycloidulum vs Pendulum
Cycloidal geometry of flying levers

Practical poolhall application

(With interesting linear dynamics)
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1

2 Y

R

R

x=2Rθ
φ=2θ

m (φ=π)
(θ=π/2)

(φ=−π)
(θ=−π/2)

(φ=0=θ)

0

  

x = -R 2θ+sin2θ( )  where: R = a2

4g
=

px
−2

4g
y = R 1+cos2θ( )        

Some extraordinary properties of the cycloid are related to the constant px (pseudo-momentum)

  

px =
∂ L
∂ ′x

= ∂
∂ ′x

1+ ′x 2

2gy
= ′x

2gy 1+ ′x 2
= 1

2gy ′y 2 +1
where: ′x = dx

dy
= 1

′y
  and: px

2 = 1
4Rg

  

1
px

2 = const.= 2gy ′y 2 +1( ) = v2 sec2θ = a2

 
φ

Unit 7
Fig. 7.3.3
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Some extraordinary properties of the cycloid are related to the constant px (pseudo-momentum)

  

px =
∂ L
∂ ′x

= ∂
∂ ′x

1+ ′x 2
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= ′x

2gy 1+ ′x 2
= 1

2gy ′y 2 +1
where: ′x = dx
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= 1

′y
  and: px

2 = 1
4Rg

  

1
px

2 = const.= 2gy ′y 2 +1( ) = v2 sec2θ = a2

t-derivatives of (x,y) give v vs φ=2θ :
   
v2= x2+ y2= φ2 R + Rcosφ( )2+ −Rsinφ( )2⎡

⎣⎢
⎤
⎦⎥
=2R φ2 1+ cosφ( )=4R2 φ2cos2θ

 
φ

Unit 7
Fig. 7.3.3
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t-derivatives of (x,y) give v vs φ=2θ :
   
v2= x2+ y2= φ2 R + Rcosφ( )2+ −Rsinφ( )2⎡

⎣⎢
⎤
⎦⎥
=2R φ2 1+ cosφ( )=4R2 φ2cos2θ

 
φ

The circle starting at φ=π=2θ turns at a constant rate   =ω and moves at a constant velocity v=ωR. 
φ

   

1
px

= a = 4gR = 4R φ = 8R θ   or:   ω= φ = g
4R

 

Unit 7
Fig. 7.3.3
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t-derivatives of (x,y) give v vs φ=2θ :
   
v2= x2+ y2= φ2 R + Rcosφ( )2+ −Rsinφ( )2⎡

⎣⎢
⎤
⎦⎥
=2R φ2 1+ cosφ( )=4R2 φ2cos2θ
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The circle starting at φ=π=2θ turns at a constant rate   =ω and moves at a constant velocity v=ωR. 
φ

   

1
px

= a = 4gR = 4R φ = 8R θ   or:   ω= φ = g
4R

 

This relates to the arc length of the cycloid from bottom (θ=0) to a point at angle θ<π/2 or φ<π.    

   
s = v dt0

t∫ = 2Rω cosθ dt0
t∫ = 2R ω/ θ( )cosθ dθ =0

θ∫ 4Rsinθ

Unit 7
Fig. 7.3.3

55Thursday, November 6, 2014



Separation of GCC Equations: Effective Potentials
Small radial oscillations

2D Spherical pendulum or “Bowl-Bowling”
Cycloidal ruler&compass geometry

Cycloid as brachistichrone
Cycloid as tautochrone

Cycloidulum vs Pendulum
Cycloidal geometry of flying levers

Practical poolhall application

(With interesting curvature geometry)
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h'=2R cos θ
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h

h =2R sin θ

φ=2θ

φ/2= θ

θ
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X

Y

2

1

0
4R

Arc length s is indicated by a segment hh of length 2h=4Rsinθ left hand Fig. 7.3.4 below.
That is precisely the length of unwound string between points m′ and m″, and between
points m′ and m, is a segment h′h′ of length 2h′=4Rcosθ unwound from middle cycloid.

Fig. 7.3.5

Unit 7
Fig. 7.3.4

Unit 7
Fig. 7.3.5
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Arc length s is indicated by a segment hh of length 2h=4Rsinθ left hand Fig. 7.3.4 below.
That is precisely the length of unwound string between points m′ and m″, and between
points m′ and m, is a segment h′h′ of length 2h′=4Rcosθ unwound from middle cycloid.

Segment hh is the radius of curvature rc(m') =2h=4Rsinθ  of the m' cycloid and the points m' or m" 
are centers of curvature for circular arcs around unwinding points m" or m', respectively.

Fig. 7.3.5

Unit 7
Fig. 7.3.4

Unit 7
Fig. 7.3.5
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Arc length s is indicated by a segment hh of length 2h=4Rsinθ left hand Fig. 7.3.4 below.
That is precisely the length of unwound string between points m′ and m″, and between
points m′ and m, is a segment h′h′ of length 2h′=4Rcosθ unwound from middle cycloid.

Segment hh is the radius of curvature rc(m') =2h=4Rsinθ  of the m' cycloid and the points m' or m" 
are centers of curvature for circular arcs around unwinding points m" or m', respectively.

Three wheels roll synchronically on their respective ceilings. As point m approaches the top
 of its cycloid, point m' approaches m so that curvature becomes infinite.( k=1/rc→∞ as θ→π/2.)

Fig. 7.3.5

Unit 7
Fig. 7.3.4

Unit 7
Fig. 7.3.5
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Arc length s is indicated by a segment hh of length 2h=4Rsinθ left hand Fig. 7.3.4 below.
That is precisely the length of unwound string between points m′ and m″, and between
points m′ and m, is a segment h′h′ of length 2h′=4Rcosθ unwound from middle cycloid.

Segment hh is the radius of curvature rc(m') =2h=4Rsinθ  of the m' cycloid and the points m' or m" 
are centers of curvature for circular arcs around unwinding points m" or m', respectively.

Three wheels roll synchronically on their respective ceilings. As point m approaches the top
 of its cycloid, point m' approaches m so that curvature becomes infinite.( k=1/rc→∞ as θ→π/2.)

Figure 7.3.5 shows circular arcs fitting a cycloid. The largest arc and one with the least curvature 
kc =1/(4R) is a circle of radius rc =4R that surrounds the entire cycloid. This is the path of a simple 
circular pendulum. The figure shows that the circle deviates only slightly from the cycloid with the 
greatest deviation near the tips of the cycloid where curvature blows up.

Fig. 7.3.5

Unit 7
Fig. 7.3.4

Unit 7
Fig. 7.3.5
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Separation of GCC Equations: Effective Potentials
Small radial oscillations

2D Spherical pendulum or “Bowl-Bowling”
Cycloidal ruler&compass geometry

Cycloid as brachistichrone
Cycloid as tautochrone

Cycloidulum vs Pendulum
Cycloidal geometry of flying levers

Practical poolhall application
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The cycloid path has the unique ability to guarantee the same frequency ω = √(g/4R)  for any 
amplitude θ0 of oscillation within the range {-π/2<θ0<π/2} between cycloid tips.
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The cycloid path has the unique ability to guarantee the same frequency ω = √(g/4R)  for any 
amplitude θ0 of oscillation within the range {-π/2<θ0<π/2} between cycloid tips.

The circular pendulum frequency ω = √(g/) holds only for small amplitudes θ<<1.

The time integral below varies with θ0 in the range {-π/2<θ0<π/2}.

  

t1/4 = ds
2g y − y0( )s0

0∫ = 4Rcosθ dθ
2gR cos2θ − cos2θ0( )0

θ0∫ = 4R
g

cosθ dθ

sin2θ0 − sin2θ
0
θ0∫
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The cycloid path has the unique ability to guarantee the same frequency ω = √(g/4R)  for any 
amplitude θ0 of oscillation within the range {-π/2<θ0<π/2} between cycloid tips.

The circular pendulum frequency ω = √(g/) holds only for small amplitudes θ<<1.

The time integral below varies with θ0 in the range {-π/2<θ0<π/2}.

  

t1/4 = ds
2g y − y0( )s0

0∫ = 4Rcosθ dθ
2gR cos2θ − cos2θ0( )0

θ0∫ = 4R
g

cosθ dθ

sin2θ0 − sin2θ
0
θ0∫

Arc length s=4R sin θ  and cycloid height y=R(1+cos2θ) are used above. 
To finish integral for a 1/4-period we set: sin θ= sinθ0 sin α  below. 

  

t1/4 =
4R
g

sinθ0 cosα dα

sinθ0 1− sin2α
0
α=π /2∫ = π

2
4R
g
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The cycloid path has the unique ability to guarantee the same frequency ω = √(g/4R)  for any 
amplitude θ0 of oscillation within the range {-π/2<θ0<π/2} between cycloid tips.

The circular pendulum frequency ω = √(g/) holds only for small amplitudes θ<<1.

The time integral below varies with θ0 in the range {-π/2<θ0<π/2}.

  

t1/4 = ds
2g y − y0( )s0

0∫ = 4Rcosθ dθ
2gR cos2θ − cos2θ0( )0

θ0∫ = 4R
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cosθ dθ

sin2θ0 − sin2θ
0
θ0∫

Arc length s=4R sin θ  and cycloid height y=R(1+cos2θ) are used above. 
To finish integral for a 1/4-period we set: sin θ= sinθ0 sin α  below. 

  

t1/4 =
4R
g

sinθ0 cosα dα

sinθ0 1− sin2α
0
α=π /2∫ = π

2
4R
g

A cycloid has a full period of t1=2π√/g for all θ0. Even for large θ0 the “cycloidulum”
 matches the period of a simple circular (=4R)-pendulum at small θ0.
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SSeparation of GCC Equations: Effective Potentials
Small radial oscillations

2D Spherical pendulum or “Bowl-Bowling”
Cycloidal ruler&compass geometry

Cycloid as brachistichrone
Cycloid as tautochrone

Cycloidulum vs Pendulum
Cycloidal geometry of flying levers

Practical poolhall application
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http://www.uark.edu/ua/modphys/markup/PendulumWeb.html

Simple circular (=4R)-pendulum is harmonic only at small θ0

+π

-π
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http://www.uark.edu/ua/modphys/markup/CycloidulumWeb.html

Huygen’s Cycloidulum (=4R)-is harmonic at all θ0 in range -π to +π.

Angular frequency is exactly: 
 
ω = g


= g

4R

+π

-π

R

R
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Separation of GCC Equations: Effective Potentials
Small radial oscillations

2D Spherical pendulum or “Bowl-Bowling”
Cycloidal ruler&compass geometry

Cycloid as brachistichrone
Cycloid as tautochrone

Cycloidulum vs Pendulum
Cycloidal geometry of flying levers

Practical poolhall application
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If you hammer a stick at a point h meters from its center 
you give it some linear momentum Π 
and some angular momentum Λ = h·Π 

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.
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If you hammer a stick at a point h meters from its center 
you give it some linear momentum Π 
and some angular momentum Λ = h·Π 

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

 Resulting angular velocity ω about the center 
is angular momentum Λ divided by
moment of inertia I = M 2/3 of the stick.
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If you hammer a stick at a point h meters from its center 
you give it some linear momentum Π 
and some angular momentum Λ = h·Π 

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

 Resulting angular velocity ω about the center 
is angular momentum Λ divided by
moment of inertia I = M 2/3 of the stick.

ω = Λ / I    (=3Λ /(M 2) for stick)
    = hΠ / I   (=3hΠ/(M 2)for stick)

72Thursday, November 6, 2014



If you hammer a stick at a point h meters from its center 
you give it some linear momentum Π 
and some angular momentum Λ = h·Π 

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

 Resulting angular velocity ω about the center 
is angular momentum Λ divided by
moment of inertia I = M 2/3 of the stick.

ω = Λ / I    (=3Λ /(M 2) for stick)
    = hΠ / I   (=3hΠ/(M 2)for stick)

One point P, or center of percussion (CoP), is
on the wheel where speed pω due to rotation 
just cancels translational speed VCenter of stick.
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and some angular momentum Λ = h·Π 

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

 Resulting angular velocity ω about the center 
is angular momentum Λ divided by
moment of inertia I = M 2/3 of the stick.

ω = Λ / I    (=3Λ /(M 2) for stick)
    = hΠ / I   (=3hΠ/(M 2)for stick)

One point P, or center of percussion (CoP), is
on the wheel where speed pω due to rotation 
just cancels translational speed VCenter of stick.
Π /M =VCenter =|pω|= p·hΠ/I  
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If you hammer a stick at a point h meters from its center 
you give it some linear momentum Π 
and some angular momentum Λ = h·Π 

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

 Resulting angular velocity ω about the center 
is angular momentum Λ divided by
moment of inertia I = M 2/3 of the stick.

ω = Λ / I    (=3Λ /(M 2) for stick)
    = hΠ / I   (=3hΠ/(M 2)for stick)

One point P, or center of percussion (CoP), is
on the wheel where speed pω due to rotation 
just cancels translational speed VCenter of stick.
Π /M =VCenter =|pω|= p·hΠ/I  

     I /M =VCenter =|pω = p·h   
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If you hammer a stick at a point h meters from its center 
you give it some linear momentum Π 
and some angular momentum Λ = h·Π 

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

 Resulting angular velocity ω about the center 
is angular momentum Λ divided by
moment of inertia I = M 2/3 of the stick.

ω = Λ / I    (=3Λ /(M 2) for stick)
    = hΠ / I   (=3hΠ/(M 2)for stick)

One point P, or center of percussion (CoP), is
on the wheel where speed pω due to rotation 
just cancels translational speed VCenter of stick.
Π /M =VCenter =|pω|= p·hΠ/I  

or: p=I/(Mh)     I /M =VCenter =|pω = p·h   
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If you hammer a stick at a point h meters from its center 
you give it some linear momentum Π 
and some angular momentum Λ = h·Π 

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

 Resulting angular velocity ω about the center 
is angular momentum Λ divided by
moment of inertia I = M 2/3 of the stick.

ω = Λ / I    (=3Λ /(M 2) for stick)
    = hΠ / I   (=3hΠ/(M 2)for stick)

One point P, or center of percussion (CoP), is
on the wheel where speed pω due to rotation 
just cancels translational speed VCenter of stick.

P follows a normal cycloid made by a circle 
of radius p=I/(Mh) rolling on an imaginary road
thru point P in direction of Π.

Π /M =VCenter =|pω|= p·hΠ/I  
or: p=I/(Mh)     I /M =VCenter =|pω = p·h   
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If you hammer a stick at a point h meters from its center 
you give it some linear momentum Π 
and some angular momentum Λ = h·Π 

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

Fig. 2.A.1 Cycloidic paths due to hitting a stationary stick.

 Resulting angular velocity ω about the center 
is angular momentum Λ divided by
moment of inertia I = M 2/3 of the stick.

ω = Λ / I    (=3Λ /(M 2) for stick)
    = hΠ / I   (=3hΠ/(M 2)for stick)

One point P, or center of percussion (CoP), is
on the wheel where speed pω due to rotation 
just cancels translational speed VCenter of stick.

P follows a normal cycloid made by a circle 
of radius p=I/(Mh) rolling on an imaginary road
thru point P in direction of Π.

Π /M =VCenter =|pω|= p·hΠ/I  

The percussion radius p = 2/3h is of the CoP point 
that has no velocity just after hammer hits at h. 

or: p=I/(Mh)     I /M =VCenter =|pω = p·h   
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Separation of GCC Equations: Effective Potentials
Small radial oscillations

2D Spherical pendulum or “Bowl-Bowling”
Cycloidal ruler&compass geometry

Cycloid as brachistichrone
Cycloid as tautochrone

Cycloidulum vs Pendulum
Cycloidal geometry of flying levers

Practical poolhall application
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H=?

2R

I=2/5MR2

Practical poolhall application of center of percussion formula I/M = p·h  

C

Problem: Set bumper height H so ball does not skid.
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H=?

2R

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

I/M = p·h 

I=2/5MR2

h

Practical poolhall application of center of percussion formula I/M = p·h  

Where should bumper
height H be set to make
ball contact point C at the
center of percussion P?

C

P
center of percussion P 
above contact point C

p

Problem: Set bumper height H so ball does not skid.
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H=?

2R

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

I/M = p·h 

I=2/5MR2

h

Practical poolhall application of center of percussion formula I/M = p·h  

Where should bumper
height H be set to make
ball contact point C at the
center of percussion P?

C

P
center of percussion P 
above contact point C
(Ball skids to right     )

R> p

Problem: Set bumper height H so ball does not skid.
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H=?

2R

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

I/M = p·h 

I=2/5MR2

h

Practical poolhall application of center of percussion formula I/M = p·h  

Where should bumper
height H be set to make
ball contact point C at the
center of percussion P?

C
P

center of percussion P 
below contact point C
(Ball skids to left     )

R< p

Problem: Set bumper height H so ball does not skid.
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H=?

2R

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

I/M = p·h 

I=2/5MR2

h

h = I/ Mp = I/ MR
              

Practical poolhall application of center of percussion formula I/M = p·h  

Where should bumper
height H be set to make
ball contact point C at the
center of percussion P?

CP=

center of percussion P 
at contact point C
(Ball does not skid • )

R= p

•

(For R= p )

Problem: Set bumper height H so ball does not skid.
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H=?

2R

Imaginary wheel of radius p rolls on imaginary road
that intersects the Center of Percussion P

bang!





P

Π= linear momentum

h Πh = angular momentum about

p

p

πp

I/M = p·h 

I=2/5MR2

h

h = I/ Mp = I/ MR
               = 2/5MR2/ MR
              = 2/5R

Practical poolhall application of center of percussion formula I/M = p·h  

Where should bumper
height H be set to make
ball contact point C at the
center of percussion P?

CP=

center of percussion P 
at contact point C
(Ball does not skid • )

R= p

•

(For R= p )

For: H= R+h =7/10(2R) ball does not skid.

Problem: Set bumper height H so ball does not skid.
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Thats all folks!

P=1N·s
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