Complex Variables, Series, and Field Coordinates I
(Ch. 10 of Unit 1)

1. The Story of e (A Tale of Great $Interest)
How good are those power series?

laylor-Maclaurin series, imaginary interest, and complex exponentials

2. What good are complex exponentials?
Lasy trig
Easy 2D vector analysis
Easy oscillator phase analysis
Easy rotation and “dot” or “cross” products
3. Easy 2D vector calculus
Easy 2D vector derivatives
Easy 2D source-free field theory
Easy 2D vector field-potential theory
4. Riemann-Cauchy relations (What's analytic? What's not?)
Easy 2D curvilinear coordinate discovery
Easy 2D circulation and flux integrals
Easy 2D monopole, dipole, and 2"-pole analysis
Easy 2"-multipole field and potential expansion
Easy stereo-projection visualization
Cauchy integrals, Laurent-Maclaurin series
5. Mapping and Non-analytic 2D source field analysis

1. Complex numbers provide "automatic trigonometry"

2. Complex numbers add like vectors.

3. Complex exponentials Ae™ track position and velocity using Phasor Clock.
4. Complex products provide 2D rotation operations.

5. Complex products provide 2D “dot”(+) and “cross’(x) products.

6. Complex derivative contains “divergence”(V-F) and “curl”(VxF) of 2D vector field

7. Invent source-free 2D vector fields [V+-F=0 and VxF=0]

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA) potentials
The half-n*-half results: (Riemann-Cauchy Derivative Relations)

9. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

10. Complex integrals [ f(z)dz count 2D “circulation”( [Fdr) and “flux”([Fxdr)

11. Complex integrals define 2D monopole fields and potentials

12. Complex derivatives give 2D dipole fields

13. More derivatives give 2D 2N-pole fields. ..

14. ...and 2N-pole multipole expansions of fields and potentials...

15. ...and Laurent Series...

16. ...and non-analytic source analysis.
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The Story of e (A 1ale of Great $Interest$)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.
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The Story of e (A 1ale of Great $Interest$)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.

Semester compounded interest gives pG)=01+r4)p©0) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate »=1 earns $2.25.

P (O=(+rH)pE)=(1+r5y(1+r$)p(0)=331=3=225
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The Story of e (A 1ale of Great $Interest$)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.

Semester compounded interest gives pG)=01+r4)p©0) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate »=1 earns $2.25.

P (O=(+rH)pE)=(1+r5y(1+r$)p(0)=331=3=225

Trimester compounded interest gives p¢)=a+rL)po) at the 1/3™-period £ or 1% trimester and
then use that to figure the 2™ trimester and so on. Now $1.00 at rate =1 earns $

(1) = A+rHpRH=0+rd)yU+rHpE) =0+ A+ r5) A+ r5)p0)=3531=5=237
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The Story of e (A 1ale of Great $Interest$)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.

Semester compounded interest gives pG)=01+r4)p©0) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate »=1 earns $2.25.

p*(O)=(+r5)p()= 1+ 1) (+rH)p0)=331=3=225

Trimester compounded interest gives p¢)=+r1)p©o) at the 1/3-period £ or 1% trimester and
then use that to figure the 2™ trimester and so on. Now $1.00 at rate =1 earns $2.37. g

PP (O=1+r5H)p@5) =+ r5rA+r5)pG) = A+rd)-(1+rd)-(1+r5)p0) =t 441=5=23 ;

So if you compound interest more and more frequently, do you approach INFININTEREST? 0
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The Story of e (A 1ale of Great $Interest$)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.

Semester compounded interest gives pG)=01+r4)p©0) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate »=1 earns $2.25.

p*(O)=(+r5)p()= 1+ 1) (+rH)p0)=331=3=225

Trimester compounded interest gives p¢)=+r1)p©o) at the 1/3-period £ or 1% trimester and

then use that to figure the 2™ trimester and so on. Now $1.00 at rate =1 earns $2.37.

(1) = A+rHpRH=0+rd)yU+rHpE) =0+ A+ r5) A+ r5)p0)=3531=5=237

So if you compound interest more and more frequently, do you approach INFININTEREST?
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The Story of e (A Tale of Great $Interesty)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.

Semester compounded interest gives pG)=01+r4)p©0) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate »=1 earns $2.25.

p*(O)=(+r5)p()= 1+ 1) (+rH)p0)=331=3=225

Trimester compounded interest gives p¢)=+r1)p©o) at the 1/3-period £ or 1% trimester and

then use that to figure the 2™ trimester and so on. Now $1.00 at rate =1 earns $2.37.

(1) = A+rHpRH=0+rd)yU+rHpE =0+ A+r5) A+ rHp0)=3531=5=23

So if you compound interest more and more frequently, do you approach INFININTEREST?

=(1)-
=(3)"
pi()=1+r5) p0)=(3]-
(5)"

pi(0)=1+r5)* p(0)=
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The Story of e (A Tale of Great $Interesty)

Simple interest at some rate » based on a 1 year period.
You gave a principal p(0) to the bank and some time ¢ later they would pay you p(t)=(1+rt)p(0).
$1.00 at rate »=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=/year.

Semester compounded interest gives pG)=01+r4)p©0) at the half-period { and then
use P(3) during the last half to figure final payment. Now $1.00 at rate »=1 earns $2.25.

P (O=(+rH)pE)=(1+r5y(1+r$)p(0)=331=3=225

Trimester compounded interest gives p¢)=+r1)p©o) at the 1/3-period £ or 1% trimester and

then use that to figure the 2™ trimester and so on. Now $1.00 at rate =1 earns $2.37.

(1) = A+rHpRH=0+rd)yU+rHpE =0+ A+r5) A+ rHp0)=3531=5=23

So if you compound interest more and more frequently, do you approach INFININTEREST?

NOT!!
¢

1 1 12
pl (@)= (1+rt) p(0)= (%) 1=1=2.00 Monthly:  p(t)=(1+r5)"?2 p(0) = (%) 1=2613
, +25¢ “
pr(t)=(1+r5)? p(0)= (%) 1=3=225 Weekly: pgz(t)=(1+r'§2)52p(0)=(%%) 1=
+12¢
3 365
PP (0)=(1+r5)° p(0)= (%) 1=57=2.37 Daily:  p (1) = (1+r365)365p(0)=(§69) 1=2.7145 §
+7¢
4 8760
pi()=(+r5) p0)=(3) 1=532 =244 Hrly: po (1) = (1+r60)" p(0) = (18] 1=2.7181
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Interest product formula is really inefficient: 10° products for 6-figures! .. .10° products for 9 ...

p D)= (L)

1 \m-rt
Let: mrt=n (1+m)
or. I/m=rtn (1 _I_:_l-t )n

m—yoo

m—>oo

AN
/7

n—oo

> e

.2.718281828459..

—e

ret
€

r

pm(1) = 27169239322
pm(]) = 2.7181459268
pim(l) = 27182682372
pm(]) = 2.7182804693
pm(l) = 2.7182816925
plm(]) =2.7182818149
pim(]) = 27182818271

for m = 1,000

for m = 10,000

form = 100,000
form = 1,000,000

for m = 10,000,000
for m = 100,000,000
for m = 1,000,000,000
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Interest product formula is really inefficient: 10° products for 6-figures! .. .10° products for 9 ...

pim(l) =2.7169239322  form = 1,000
2.718281828459.. p""(1) = 2.7181459268 form = 10,000

p D)= (L)

e =0 plm(]) = 27182682372  form = 100,000
{ omert e pim(]) = 27182804693  form = 1,000,000
Let: mrr—n Fm) m—es € plm(]) = 27182816925  form = 10,000,000
or: 1m=rt/n (g rayn i pim(l) =2.7182818149  for m = 100,000,000
Z e pim(]) =2.7182818271  form = 1,000,000,000

Can improve computational efficiency using binomial theorem:

_ nn—1) . _ nn—-1)(n-2) ,_ _
x+y)" =x"+n-x""y+ (2' ) gn-2y2 1 3)'( I T
. 2 . 3 . . .
ret r-t nn=ND(r-t nn—=1Dn=)(r-t Define: Factorials(!):
(1+—)”=1+n-(— + (n=1) j + = X )( ) T 0111, 21=12, 31=123,...
n n 2! n 3! n
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Interest product formula is really inefficient: 10° products for 6-figures! .. .10° products for 9 ...

pim(l) =2.7169239322  form = 1,000
2.718281828459.. p""(1) = 2.7181459268 form = 10,000

p D)= (L)

e =0 plm(]) = 27182682372  form = 100,000
{ omert e pim(]) = 27182804693  form = 1,000,000
Let: mrr—n Fm) m—es € plm(]) = 27182816925  form = 10,000,000
or: 1m=rt/n (g rayn i pim(l) =2.7182818149  for m = 100,000,000
Z e pim(]) =2.7182818271  form = 1,000,000,000

Can improve computational efficiency using binomial theorem:

_ nn—1) ,_ nn—1)n-2) ,_ _
x4+ =x"+n-x"y+ (2' )x” 2y + ( 3)'( )x" YV 4 +nxy" Ty
2 N3 . S
ret r-t nn—=10(r-t nn—-D)n-2)(r-t Define: Factorials(!):
(1+7)n:1+”’(7)+ 3 ( - ) + Y ( " ) T o111, 21=12, 31=123, ..
p As n — oo et :
1 1 o \r-t
eM:1+r-t+—(r-t)2+—(r-t)3+...= Y 1) 2
2! 3! p=0 P! nin—-1)—-n,

nin—-1)(n-2)—> n’ , erc.
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Interest product formula is really inefficient: 10° products for 6-figures! .. .10° products for 9 ...

pim(l) =2.7169239322  form = 1,000
2.718281828459.. p""(1) = 2.7181459268 form = 10,000

p D)= (L)

Mm—>co —=p plml) =2.7182682372 for m = 100,000
| 4L ymr Crt plm(l) =2.7182804693 for m = 1,000,000
Let: m-rt=n (1+m) Moo C plml) =2.7182816925 for m = 10,000,000
or: I/m= rit/n AR o rt ptm(l) =2.7182818149 for m = 100,000,000
(1477 n—e € plml) =2.7182818271 for m = 1,000,000,000
Can improve computational efficiency using binomial theorem:
_ -1 ,_ -D(n-2) ,_ _
x+y)" =x"+n-x"y+ n(nz' )x” 2y + it 3)'(” )x” IV x4y
reto, r-t nn—=10(r-t 2 nn—-D)n-2)(r-t 3 Define: Factorials(!):
(1+7) = 1+”’(7)+ X ( - ) + 3 ( - ) T ol=l=1, 2=12, 31=123,...
p Asn — oolet :
0 -t
eM:1+r-t+i(r-t)2+i(r-t)3+...= ) 1) )
2! 3! p=0 P! nin—-1)—-n,
Precision order:  (0o=1)-e-series = 2.00000 =1+1 n(n—1)(n—2) = n’, e.

(0=2)-e-series = 2.50000 =1+1+1/2
(0=3)-e-series = 2.66667 =1+1+1/2+1/6
(0=4)-e-series = 2.70833 =1+1+1/2+1/6+1/24
(0=35)-e-series = 2.71667 =1+1+1/2+1/6+1/24+1/120
(0=6)-e-series = 2.71805 =1+1+1/2+1/6+1/24+1/120+1/720
(0=7)-e-series = 2.71825
(0=8)-e-series = 2.71828 About 12 summed quotients
for 6-figure precision (A lot better!)
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Power Series Good!

Need general power series development

Start with a general power series with constant coefficients co, ¢, etc. Set =0 to get co = x(0).

_ 2 3 4 5 n
xX(t)=cytet+c,t+et” +e b et +tc b+

Monday, October 13, 2014
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc.
. 2 3 4 5 n
xX(t)=cytet+c,t+et” +e b et +tc b+

Rate of change of position x(?) 1s velocity v(t).

d 2 3 4
v(t)=Ex(t)=O+cl+2czt+3c3t +4dc t” +5¢st” + ...+ ne, t

Set =0 to get co = x(0).

Set =0 to get ¢; = v(0).

n—1

_|_
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + cst5 +..t+c "+

Rate of change of position x(?) 1s velocity v(t). Set 1=0 to get c; = v(0).

n—1

d 2 3 4
v(t)zEx(t)=O+cl+202t+3c3t +4c t” +5¢st” + ...+ ne, b+

Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).
d —
a(t) = —-v(1)=0+2c, + 233 + 3dc,t” +4-5ct” + ..t n(n—1lye 1" +
t
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
x(t)=cy+ct+ 62t2 + c3t3 + c4t4 + CSIS +..t+c "+

Rate of change of position x(?) 1s velocity v(t). Set 1=0 to get c; = v(0).

n—1

d 2 3 4
v(t)zzx(t)=0+cl+2czt+3c3t +4c t” +5¢st” + ...+ ne, b+

Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).
a(t) = % v(t)=0+2c, +23c5t + 3de,t” +4-5ct” + .ot n(n— e, "% +
1
Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set =0 to get c3 = 31 j(0).

d
J(t) = Ea(t) =0+23¢c;+2:34c,t+ 3‘4‘56’5t2 +..+nn—-1)(n- 2)cnt"_3 —

Monday, October 13, 2014 16



Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + csts +..t+c "+

Rate of change of position x(?) 1s velocity v(t). Set 1=0 to get c; = v(0).

n—1

d 2 3 4
v(t)zzx(t)=0+cl+2czt+3c3t +4c t” +5¢st” + ...+ ne, b+

Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).
a(t) = % v(t)=0+2c, +23c5t + 3de,t” +4-5ct” + .ot n(n— e, "% +
1
Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set =0 to get c3 = 31 j(0).

d
J(t) = Ea(t) =0+23¢c;+2:34c,t+ 3-4-5c5t2 +..+nn—-1)(n- 2)cnt”_3 +
Change of jerk j(?) is inauguration i(t). (Be silly like NASA!) Set =0 to get c4 =1, i(0).

d J—
(1) = 7 j#)=0+234c, +2:34-5cst+...+n(n—1)(n-2)(n- 3)Cnt” 44
A
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢, efc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + cst5 +..t+c "+
Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).

n—1

d
v(f) = ;x(t) =0+c, +2¢,t +3cyt” +4c,t” +5ct™ + .. +ne 1" +
5
Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).

d
a(t) = —v(t) 0+2c, +2:3¢5t +3de,t” +4-5ct> + .t n(n—)e, "% +

Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set =0 to get ¢c3 = %! J(0).
() = %a(t) =0+23¢; + 234yt +345ct” + ...+ n(n—1)(n—2)c, "> +
Change of jerk j(?) is inauguration i(t). (Be silly like NASA!) Set =0 to get ¢4 =4,i(0).
i(f) = % j)=0+234c, +2:345ct+..+n(n—1)(n—2)n-3)c " * +
Gives Maclaurin (or Taylor) power series

[x(t):x(0)+v(())t+ a(0)t* +3, j(O) +4, i(0)* +3, r(0)F + ...+%, xWe" + ]
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢y, etc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + cst5 +..t+c "+
Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).
_d _ 2 3 4 n—1
v(t)= Ex(t) =0+c¢ +2cyt+3c5t" +4cyt” +5¢st” +...+nc t” "+
Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).

d
a(t) = —v(t) 0+2c, +2:3¢5t +3de,t” +4-5ct> + .t n(n—)e, "% +

1
Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set =0 to get c3 = 31 j(0).
d
J(t) = Ea(t) =0+23¢c;+2:34c,t+ 3-4-505t2 +..+nn—-1)(n- 2)cnt"_3 —

Change of jerk j(?) is inauguration i(t). (Be silly like NASA!) Set =0 to get ¢4 =4,i(0).
i(t)= dij(f) =0+234c, +2345ct+ ...+ n(n—1)(n—2)(n— 3)cnt”_4 +
l

Gives Maclaurin (or Taylor) power series

x(2) = x(0) + v(0)t +3, a(0)t>|+3, j(O)E +3,i(0)* +3, r(0) + ... +% x"t" + ]

/

Good old UP | formula!
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Power Series Good! Need general power series development

Start with a general power series with constant coefficients co, ¢, efc. Set =0 to get co = x(0).
x(t)=cy+ct+ czt2 + c3t3 + c4t4 + cst5 +..t+c "+
Rate of change of position x(?) 1s velocity v(t). Set t=0 to get c; = v(0).

n—1

d
v(f) = ;x(t) =0+c, +2¢,t +3cyt” +4c,t” +5ct™ + .. +ne 1" +
5
Change of velocity v(?) is acceleration a(t). Set =0 to get ¢ =%a( 0).

d
a(t) = —v(t) 0+2c, +2:3¢5t +3de,t” +4-5ct> + .t n(n—)e, "% +

Change of acceleration a(?) 1s jerk j(t). (Jerk 1s NASA term.) Set =0 to get ¢c3 = %! J(0).
() = %a(t) =0+23¢; + 234yt +345ct” + ...+ n(n—1)(n—2)c, "> +
Change of jerk j(?) is inauguration i(t). (Be silly like NASA!) Set =0 to get ¢4 =4,i(0).
i(f) = % j)=0+234c, +2:345ct+..+n(n—1)(n—2)n-3)c " * +
Gives Maclaurin (or Taylor) power series

x(2) = x(0) + v(0)t +3, a(0)t>|+3, j(O)E +3,i(0)* +3, r(0) + ... +% x"t" + ]

f Setting all iitial values to /= x(0) = v(0) = a(0) =j(0) =i(0) = ....
Good old UP | formula!
gives exponential: €' =1+1+y, 17 43,17 3, 17 45+ r 1+
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But, how good are power series s

|'10,0

quartic

quadratic
(parabola)

Gives Maclaurin (or Taylor) power series

[x(t):x(0)+v(0)t+ a(0)t* +3, j(O) +4, i(0)* +3, r(0)F + ...+%, xWe" + ]

Setting all initial values to /= x(0) = v(0) = a(0) =j(0) =i(0) = ....

gives exponential: €' =1+1+y, 17 43,17 3,17 45+ r 1+
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How good are power series? Depends...

t2 ¢ ¢ ¢
COStE 1+O——+O+—+O——+O+§...
| | 20t}|1 |
2nd : [ |° ' ;
[oth, IStW
qu-adratlc
(pdrabola) '.
" Unit 1
| 13 t5 17 t9 Fig. 10.3

O+“O__+O+_+O__+O+E'“
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1. The Story of e (A Tale of Great $Interest$)

How good are those power series?
laylor-Maclaurin series,
imaginary interest, and complex exponentials

Monday, October 13, 2014
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Suppose the fancy bankers really went bonkers and made interest rate » an imaginary number r=i0.
Imaginary numberi=v-1 powers have repeat-after-4-pattern: i’=1, i'=i, i’=-1, i’=-i, i*=1,etc...
e e 3 Y| A\
(i0) N (i0) N (i0) N (i0) L
2! 3! 4! 5!
6> .0 o 6>

—1+i0-— —i— +— +i— —.. (i=~-1imples:i'=i,i*=-1,i°=i,i*=+1,i’=i,..)
2! 31 4] 51

0° o* 0> O
:[1— + —...}+(i9—i—+i——...}
21 41 31 51

% =1+i0+

(From exponential series)
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Suppose the fancy bankers really went bonkers and made interest rate » an imaginary number r=i0.
Imaginary numberi=v-1 powers have repeat-after-4-pattern: i’=1, i’=i, i’=-1, ’=-i, i*=1,etc...
) NG 4 :\D
o) (6 G6)  @0)
2! 3! 4! 5!
> .0 o 6

% =1+i0+

(From exponential series)

=1tif-— —ios o+ i (i =~-1imples: i'=i, i*=-1,i°=i,i*=+1, i’ =i,..)
r x> xt o x®
ne . =l-—+——-—+
92 94 93 95 cosine . COS X : : :
=|l-——+——...|+|i0—i—+i——...| To match series for - 2t 416!
2! 4! 31 5! I
sine:sinx=x——+———++---
o\ 30 5T
eV = cos O +  isin® (a) x(t)=cos t AN

2--

Euler-DeMoivre Theorem

quartic

-‘;dratic
drabola)
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Suppose the fancy bankers really went bonkers and made interest rate » an imaginary number r=i0.

Imaginary numberi=v-1 powers have repeat-after-4-pattern: i’=1, i’=i, i’=-1, ’=-i, i*=1,etc...

| .92 .93 .94 .95
e =1+i0+ Go) +(l ) +(l ) +(l ) + (From exponential series)
2! 3! 41 5!
9? 0> o* 0
—1+i0—— —i— +— +i— —.. (i=~-1imples:i'=i,i’=-1,i°=-i,i*=+1,i"=i,...)
2! 3! 41 5!
r x> xt X
ne : =]l-—+———+
92 94 93 95 cosine . CoS X : : :
= 1-——+ +iO—i—+i——... To match series for < 2t 4l 6!
2! 4' 3! 5! TN
sine:sinx=x——+———+--.
B \ 30 5T
e? = cosB + i sin@ "*., (a) x(t)=cos t / ;"
Euler-DeMoivre Theorem | o /

quartic
Imaginary axis - . ~
. . . : 1 . . . : 1 | . 20t1} .
(z axzs) 6 \y Wm é\ j/

quadratlc 1
(parabola)

i0 . Unit 1
proee g :Z:re =Xty | . Fig. 10.3

\ (b) x(t) Esint_/ /

N N

l_l_t\

IlI

re' = rcos@+ isin®
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2. What Good Are Complex Exponentials?

Easy trig
— Easy 2D vector analysis
Yy a5y oscillator phase analysis

Easy rotation and “dot” or “cross” products

Monday, October 13, 2014
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What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

ia b

Can't remember is cos(a+b) or sin(a+b)? Just factor @™ = &% ...
ei(a+b) _ eia eib

cos(a+b) +isin(a+b) = (cos a +isina) (cos b+ isinb)
cos(a+b)/+ isin(a+b)/=/[cos a cos b - sin a sin b]/H/[Sin a cos b + cos a sin b/ /
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What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"”

Can't remember is cos(a+b) or sin(a+b)? Just factor @™ = &% ...

oy : :
ez(a b) _ e ezb

cos(a+b) +isin(a+b) = (cos a +isina) (cos b+ isinb)
cos(a+b)/+ isin(a+b)/=/[cos a cos b - sin a sin b]/H/[Sin a cos b + cos a sin b] /

2. Complex numbers add like vectors. zsum =z+z'=((x+iy) +x' +iy)=(x+x)+i(y+y)
zdiff =z—-z'=(x+tiy)-x'+iy)=x-x) tily-y)

(a)

y=ImZ—Z ,
/=Imz/ > -y
Y / 2 q)*

x=Rez x=RezZ’

|ZSUM| = J(z + z')*(z +7) = J(rei‘f’ + 1 e? )*(rei‘z’ + r’ei‘P') = J(re_i‘f’ +re” 9 )(rei¢ + r'ei¢')

- ‘/r2 24 rr'(ei(fp—fp') + e-i(fi’—fP’)) — ‘/r2 +r2+2m cos(¢p—¢’)  (quick derivation of Cosine Law)
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What Good Are Complex Exponentials? (contd.)

3.Complex exponentials Ae™ track position and velocity using Phasor Clock.
(a) Complex plane and unit vectors

imaginary . imaginary
axis o : e V2= 1 axis
ev=xt1y |
'y etMA=(1+)A2
=sin 0 .
v eiM=_] ]  real

v

e+i57t/4: e-i3n/4

= _(1+)N?2 eM2=_;
(b) Quantum Phasor Clock ¢y = Ae '@l = Acoswi—i ASinot=x+iy  Unit |
Fig. 10.5
Im Y |(The “Gonna’be”)
Re y
x(t) = Acosmt
Phase angle or Argument Re Y CARTESIAN
0=—w1 = ATAN[v(1)/0x(1)] (The “Is” )ICOMPONENTS
POLAR <+—ImVy
COMPONENTS Y(t)=v(t)/o= -Asinot
Magnitude or Modulus it
A=lyl= Vv Yy Ae
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What Good Are Complex Exponentials? (contd.)

3.Complex exponentials Ae™ track position and velocity using Phasor Clock.
(a) Complex plane and unit vectors

imaginary imaginary

axis e T 2=+i axis

eO=x+iy
/ W_y
=sin 0 .
* e:l:lTC:_I

FIMA=(1+ N2

] real

axis

> X—a | real
cos 0

e+i57t/4: e—i3n/4

e

axis

A=(1-)N2

= -(I+)N2 e 2=

(b) Quantum Phasor Clock y = Ae il = Acosw i—i Asinot=x+iy

Im y

(The “Gonna’be”)

Re y
x(t) = Acosmt

Phase angle or Argument Re Y CARTESIAN
O0=—m1 = ATAN[v(?)/0x(1)] w()h(The “Is») COMPONENTS
POLAR <—Im Y

COMPONENTS
Magnitude or Modulus

A:IwI:\/w*w

y(t)=v(t)/mw= -Asinwt

Unit 1
Fig. 10.5

Some Rect-vs-Polar relations worth remembering

Cartesian

4

*

v

(x,y) form )

(

.

re

re

E S
v =Rey(t) =x(1)= Acoswt=w+w
— b
v :Iml//(t)Zﬂz—Asina)tzw W
Y 0 2i

+i0 —iwt

=re = r(cos @t —ismmt)

—i0 _ _ +iwt

=re = r(cos @t +ismwt)

(7,0)

form

Polar )

-

\

_1
cos0=5 (e

.1
sin6=5. (e

r=A=lyl=w,2 vy 2=y
0 = —a)tzarctan(l//y/ v.)
+i60 4+ —i9)

e Rey=

+i6 . e—ie) Iml//: .
21

R

*

y—v
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2. What Good Are Complex Exponentials?

Easy trig
Easy 2D vector analysis

Easy oscillator phase analysis
—  Fasy rotation and “dot” or “cross” products
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What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
¢z = (cosd + i sind):(x + iy)= x cosh — y sind + i (xsing +ycosd )

R, r = (xcos@—ysing)e +(xsinqb+ycosqb)éy

cos¢ —sing@ BN XCcos¢—ysin@
sing cos¢ J\y - xsing+ ycoso

Monday, October 13, 2014
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What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.

¢z = (cosd + i sind):(x + iy)= x cosh — y sind + i (xsing +ycosd )

R, or =(xcos¢— ysing)e +(xsin¢+ ycos¢)éy
(cosq) —sin (p]{x] 3 (x COs ¢ — ysin (p]
sing cos¢ J\y - xsing+ ycoso

i6 i0 ,i0

el acts on this: z=re to give this: e ¢z =re

Imaginary axis Imaginary axis

(i axis) (i axis)

\ V7 =re

z=re? = x+iy

z<p i0

(1 axis)

=r 9" =3 +iy

Monday, October 13, 2014
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What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
el®-z = (cos® + i sin®)-(x + iy)= x cosd — y sing +i (xsing +ycosd)

R, or =(xcos¢— ysing)e +(xsin¢+ ycosqb)éy
(cosq) —sin (p}[x] 3 (x COs ¢ — ysin (p]
sing cos¢ J\y - xsing+ ycoso

5. Complex products provide 2D “dot”(¢) and “cross”(x) products.
Two complex numbers A=A4.+iA, and B=B.+iB, and their “star” (*)-product 4 *B.
A*B=(A,+iA,) (B, +iB,)= (A, —iA,)(B, +iB,)
=(AB,+A,B)+i(AB,— AB)=A*B+ilAXBl,

Real part 1s scalar or “dot”(e) product A*B. T
Imaginary part is vector or “cross”’(X) product, but just the Z-component normal to xy-plane.

Rewrite A*B in polar form.
A*B=(Ale%) (|B|ef)=|A|e”™ |B|ef =|A||B| PO
=|A||B|cos(Bp —6,)+i|A||B|sin(0p —60,) = A*B+ilAxBlz, ,
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What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.
el®-z = (cos® + i sin®)-(x + iy)= x cosd — y sing +i (xsing +ycosd)
R+¢-r =(xcos@—ysing)e +(xsin@+ ycosqb)ey

cos¢ —sing@ BN XCcos¢—ysin@
sing cos¢ J\y - xsing+ ycoso

5. Complex products provide 2D “dot”(¢) and “cross”(x) products.

Two complex numbers A=A4.+iA, and B=B.+iB, and their “star” (*)-product 4 *B.

A*B=(A,+iA,) (B, +iB,)= (A, —iA,)(B, +iB,)
=(AB,+A,B)+i(AB,— AB)=A*B+ilAXBl,

Real part 1s scalar or “dot”(e) product A*B. T
Imaginary part is vector or “cross”’(X) product, but just the Z-component normal to xy-plane.

Rewrite A*B in polar form.
A*B=(Ale%) (|B|ef)=|A|e”™ |B|ef =|A||B| PO
=|A||B|cos(Bp —6,)+i|A||B|sin(0p —60,) = A*B+ilAxBlz, ,

A *B=|A||B|cos(05—6,) |AXBI| =|A||B|sin(65 —6,)
=|A|cos6, |B|cosOg +|A|sin6, |B|sin Oy =|A|cos6, |B|sin6g —|A|sin6, | B|cos O
= A.B, + AyB, = A\B, -  AB,
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What Good are complex variables?

Easy 2D vector calculus
— Easy 2D vector derivatives
Easy 2D source-free field theory
Easy 2D vector field-potential theory

Monday, October 13, 2014

37



What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative gf; and “star” z*-derivative. %Z*
< =X+iy X:% (Z +Z*) df: gng —|—gygf :lgf —Lgf d _1
% . i Applying dz < 0x 20Yy 20x 20y dz
z =x—1iy y=y; (2 =¥ e df _9x of 9y of _19f Lidf 4 .-

dz*  dz*ox +8z*8y ~20x 20y

Monday, October 13, 2014
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What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative gf and “star” z*-derivative. %Z*
<

= x+i df_ xf L vof _1of _idf |
+ d 19F i C |
Z* Y dz~ 0dz0x +8z8y “20x 20y Zﬁz =%§x—§§y
T G WY DY Y Y Ll

dz*  dz*ox +8z*8y ~20x 20y

d 19 id

dz ~29x 20y p

¢ shows real part’of c_lf has 2D divergence Vef and imaginary part has curl V< f.
. creence ¥-

1 3f, 9 (& — a3) —LVef +5IVxfly | 1 )y

=t e if) =35G8 ) et if) =3 Gl 5 +5 Gl -5

Derivative chain-

39
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What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative gf and “star” z*-derivative. %Z*
<

= x+i df_ xf L vof _1of _idf |
+ d 19F i C |
Z* Y dz~ 0dz0x +8z8y “20x 20y Zﬁz =%§x—§§y
T G WY DY Y Y Ll

dz*  dz*ox +8z*8y ~20x 20y

d 19 id

dz ~29x 20y p

¢ shows real part’of c_lf has 2D divergence Vef and imaginary part has curl V< f.
. creence ¥-

1 3f, 9 (& — a3) —LVef +5IVxfly | 1 )y

=t e if) =35G8 ) et if) =3 Gl +5 Gl -5

Derivative chain-

7. Invent source-free 2D vector fields [V-F=0 and VxF=0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.

Take any function f(z), conjugate it (change all i’s to —i) to give f*(z*) for which gf -0
74

40
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What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(V+F) and “curl”(VxF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative gf and “star” z*-derivative. %Z*
<

S_ o Y 1Y _idf|
dz~ dzox dzdy ~ 20x 20dy dz 2

19
20
df _dx dof ,0y df _19df ,idf d _19
dz+=oz¢ox Tor¥dy —2ax T2y

d 19 id

dz ~29x 20y p

¢ shows real part’of c_lf has 2D divergence Vef and imaginary part has curl V< f.
. creence ¥-

J =g (fo+i fy) = (gx—iaéy)(fx+ify) (my)hm) 2V'f+2|VXf|ZL(xy)

Derivative chain-

7. Invent source-free 2D vector fields [V-F=0 and VxF=0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.

Take any function f(z), conjugate it (change all i’s to —i) to give f*(z*) for which gf -0
74

For example: if f{z)=a'z then f*(z*)=a-z*=a(x-iy) is not function of z so it has zero z-derivative.
F=(Fx,Fy)=(f3)=(ax,-a'y) has zero divergence: VeF=0 and has zero curl: IVxFI=0.

oF aFy a(ax) oF (—ay) , OF, _d(=ay) dF(ax)

ox By ox dy ox dy  Ox dy
A DFL field ¥ (Divergence-Free-Laminar)

=0

VeF = =0 IVXFl, | ()=

41
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What Good Are Complex Exponentials? (contd.)

7. Invent source-free 2D vector fields [V-F=0 and VxF =0]

We can invent source-free 2D vector fields that are both zero-divergence and zero-curl.
Take any function f(z), conjugate it (change all i’s to —i) to give f*(z*) for which

For example: if f(z)=az then f*(z*)=a-z*=a(x-iy) is not function of z so it has zero z-derivative.
F=(Fx,Fy)=(~f)=(ax,-a'y) has zero divergence: VeF=0 and has zero curl: IVxFI=0.
oF  dF,  d(ax) +8F (—ay) doF, OF, _ d(=ay) dF(ax) _

Vel'= i ox dy ox dy

— 0
ox dy ox dy

0 IVxFIZL(X,y):

precursor to
Unit 1
Fig. 10.7

F=(f"v.fy) =(ax,-a'y) is a divergence-free laminar (DFL) field.
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What Good are complex variables?

Easy 2D vector calculus
Easy 2D vector derivatives
Easy 2D source-free field theory

— Easy 2D vector field-potential theory

Monday, October 13, 2014
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA) potentials

Any DFL field F is a gradient of a scalar potential field ® or a curl of a vector potential field A.
F=Vo® F= VXA
A complex potential ¢(z)=D(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d ¢*/dz* giving DFL field F.

Monday, October 13, 2014
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F is a gradient of a scalar potential field ® or a curl of a vector potential field A.
F=VO F= VXA

A complex potential ¢(z)=D(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d ¢*/dz* giving DFL field F.

To find p=D+iA integrate f(z)=a'z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F 1s a gradient of a scalar potential field ® or a curl of a
F=VO® F= VX
A complex potential ¢(z)=P(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d ¢*/dz* giving DFL field F.

To find ¢=D+i

f@=% =

¢

integrate f(z)=a'z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
= () +1 Azjf-dzzjaz-dzz%azz
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F is a gradient of a scalar potential field ® or a curl of a vector potential field A.
F=VO F= VXA
A complex potential ¢(z)=D(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d ¢*/dz* giving DFL field F.
To find p=D+iA integrate f(z)=a'z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
f=% = ¢= d +1i Azjfdzzjazdzz%azzz%a(x+iy)2

A
N\

=% a(xz—yz) +1 axy
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials
Any DFL field F is a gradient of a scalar potential field ® or a curl of a
F=VoO F=Vx
A complex potential ¢(z)=P(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d ¢*/dz* giving DFL field F.

To find p=D+iA integrate f(z)=a-z to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.
fo=i = ¢= @ +i A=|f-dz=[az -dz=5 az’ =5 a(x +iy)’

A
~

" 2 2
=5 a(x”—y7) +i

T T_l 1 ]|
ik

1T

ILh

3
2

Field:

I (z¥)=z%=x-iy
Fey)=(x,-y)

Potential:
0(z)=2’
:X2-y2+i
= O +i

Lh

T

]
iLh

TrrrroIrrrTrr
»
~—
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What Good Are Complex Exponentials? (contd.)

8. Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

Any DFL field F is a gradient of a scalar potential field ® or a curl of a
F=VO F=Vx

A complex potential ¢(z)=P(x,y)+iA(x,y) exists whose z-derivative 1s f(z)=d ¢/dz.
Its complex conjugate ¢*(z*)=D(x,y)-iA(x,y) has z*-derivative [ (z*) =d ¢*/dz* giving DFL field F.

To find ¢=D+iA integrate f(z)=az to get ¢ and isolate real (Re ¢ =®) and imaginary (Im ¢ =A) parts.

r N ’

:% a(x® —y?) +i Get a free
- coordinate
:c system/
|_'. .
29 The (D,A) grid 1s a GCC
Fl coordinate system™:
i; _: q]: () :(XZ—)/Z)/2 — const.
_t- E i q2: — (Xy) — const.

- ——— 4 *Actually it’s OCC.

Field:

I (z¥)=z%=x-iy
Fey)=(x,-y)

Potential:

0(z)=2

Lh

T

]
iLh

:X2-y2+i
= O +i

TrrrroIrrrTrr
»
~—
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What Good are complex variables?

Easy 2D vector calculus
Easy 2D vector derivatives
Easy 2D source-free field theory

—) o5y 2D vector field-potential theory

é The half-n™-half results: (Riemann-Cauchy Derivative Relations)

Monday, October 13, 2014
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

dA

foL)
Derivative 4% has 2D gradient Vd)-[gfb ]of scalar @ and curl vy A_[ . of vector A (and they re equal!)

dy

f(Z)_dq) = dy
d Aacb ”a N |
gl LQ LQ
dz T20x 29y
f 343,
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

oD 0A
Derivative ¢ 3 . has 2D gradient v = [3’; ]of scalar @ and curl vx A_{ )

f(z)= c_ifb — dy dy

of vector A (and they re equall)

/- A

i 0" = e (P—iA)= =1 +za ND—iA) 2(ax+aayq’)+2(a —id=tvao+lvxa

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

oD 0A
Derivative ¢ 3 - has 2D gradient v = [g’; ]of scalar @ and curl vx A_[ )

f=% = ’ 2

of vector A (and they re equall)

dy

/- N\

i 0" = e (P—iA)= =1 +za ND—iA) z(ax+aayq))+2(a —id=tvao+lvxa

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO

Given ¢: || ¢ = D +i A The half-n’-half result

1,2 2
find: = a(x” —y") +i axy or find: l

%‘D 3 Q(Xz — yz) l ax 5 5 axy
2 ax

V(I) — a);) — axa ) ’ — ( ]: F VXA = ay = ay = ( ]: F
» ) (e =) ) =@y 5 ) \faw) 79
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

dy

9D ]
Derivative 4% has 2D gradient Vq"{ifp ]of scalar @ and curl vy _[ ay J of vector A (and they re equal!)

f(0)=% =

L ¢ =4 (@-iA)=h @ +i2 XD-iA) =5GP +i8%) 41 (3 -id) =LV +1Vx

Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO

Given ¢: ¢ = 0] +1 The half-n’-half result
find: =5 a(x* —y%) +i :
JD da, 2 2 d d
> (X7 =y7) l 9 9
) st ) - 5 ) (Haw)
Scalar static potential lines ®=const. and vector =const. define DF'L field-net.

Field:

f*(z*) =z¥=x-iy
Fey=(x,-y)
Potential:

0(z)=2’

:x_7_y2+l'
=D +i
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What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential ¢ contains “scalar’(F=V®) and “vector’(F=V xA ) potentials

...and either one (or half-n’-halfl) works just as well.

oD dA
Derivative 4% has 2D gradient vq){gfb ]of scalar ® and CuerxA{ a; ot vector A (and they re equall)
o T ox
” A The half-n*- result
d @\, 1/0A .0A _1 I
L (b (CI) IA)= =5 (8 +’a ND—iA)= =5 (ax +1 ay )+2( —135, ) =5 VO +5 VXA
Note, mathematician definition of force field F=+V® replaces usual physicist’s definition F=-VO
Given ¢: || ¢ = 0] +i A The half-n*-half result
find: =5 a(x” —y%) +i axy :
JD da, 2 2 oA 0
X x_(x -y ) l = = axy
Vo= 8= 2T :(ax]:F vxa=| ¥ |2 :(“XJZF
w) G- - ) (Baw) o
Scalar static potential lines ®=const. and vector =const. define DF'L field-net.
The half-n’-half results
are called

Riemann-Cauchy
Derivative Relations

Field: i 05 “"“' Qq) —_ QA 1O aRef(Z) lef(z)
S @) =z=x-iy ox ~— dy 1811 9 dy

F (x,y)f(x;'y) =—

py— & 0P _ 9A ._||dRef(z)_  dlmf(z)
Xy BE dy — ox 1S. dy T ox

= @ +i E i
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— . Riemann-Cauchy conditions what’s analytic? (...and what’s not?)
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Review (z,z*) to (x,y) transformation relations
df dx o f dy df

7 =X+Iy x:%(z + 7%)

*

7 =x—iy y=1(z —2z%) df _dxdf 3y af _

dz* 07" ax 0z dy 2 Ox 218y 2

laf

1 df

1df

d; 0z ax dz dy 2 0x 218y 2

laf

_!

1

d - d
ox dy
Jd .d
+1
ox y

Criteria for a field function f = f«(x,y) +i f,(x,y) to be an analytic function f(z) of z=x+iy:
. d

First, f(z) must not be a function of z*=x-iy,

This implies f(z) satisfies differential equations known as the @iemann-Cauchy conditions

daf o 1( 9 o, 9, Jdf 9
dz*_O_Z(ax yj(f Hi=5 [ax 8yj+ (ax ayjzmphes

d_f:l(i_ i)(f‘F f)__[af;c_|_ fyj_|_i(af;)_afx):af;‘+laf;:
dz 2\odx ox dy ) 2\ dx dy ox  ox

A = and : %:—

ax 0x

of, B df, 0 N .
dy l dy  Ox (Jeti1,)= diy (f+i],)
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Review (z,z*) to (x,y) transformation relations

. | df _dxdf dydf _13f 1af 1(9 0
= X+ —— sk _ _
¢ AT . 2(Z +2%) dz 9z ax Jz dy 2 0x 218)/ 2\ dx lay /
* .
7 =x—iy y=5; (2 —2%) & _9xdf dydf 19f 19f (0 o)

a7t 97 ax 9z dy 29x 2idy 2ldx Iy

Criteria for a field function f = f«(x,y) +i f,(x,y) to be an analytic function f(z) of z=x+iy:
First, f(z) must not be a function of z*=x-iy, that is: %=
This implies f(z) satisfies differential equations known as the

d—f=0=l(a j(f f)— [af afyj+ (af afjlmplles afx:afy and : %:—afx
dz * 2\ ox ox dy ox dy o0x  dy ox dy

(0 d d
d_f:l(i_ ai)(f_l_ f)__[afx+ fy)_|_L( fy_afx):afx+i fy: fy—iafx=§ (fx+ify):i.(fx+ify)
X diy

( ° ° o \
Riemann-Cauchy conditions

dz 2\ ox ox dy ox dy ox odx dy dy

Criteria for a field function f = f«(x,y) +i f,(x,y) to be an analytic function f(z*) of z*=x-iy:

First, f(z*) must not be a function of z=x+1iy, that iS.'Z—j;=0
This implies f(z*) satisfies differential equations we call Anti q{iemann-Cauchy conditions

\ .
iz 1(8 j(f f)—_(af;C‘Fny +i(afy—aﬁcj=l‘n’Ipli€Sl anZ—% and : afy:aafx
Y

a_x_l_y dx dy ox dy | 0x dy ox /)

J . o1 8fx_8fy ifafy of. | of. .afy__afy . D ) |
( +i )(fﬁlfy)— (ax ay]+2\ax+ay)_ax+’ax_ 8y+lay_8x(fx+lfy)_ E)iy(fxﬂfy)

58
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What s analytic? (...and what's not?)

Example: Is f(x,y) = 2x + iy an analytic function of z=z+i)?
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)

Monday, October 13, 2014

62



What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-z*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-z*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x> + y° an analytic function of z=z+iy?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.
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What s analytic? (...and what's not?)

Example: Q: Is f(x,y) = 2x + i4y an analytic function of z=z+i)?

Well, test it using definitions: z = x + iy and: z*=x-1y
or: x = (z+z%)/2 and: v =-i(z-z%)/2

fx,y) =2x +idy =2 (z+z%)/2 +i4(-i(z-2*)/2)
= ztz* 4+ (2z-2z%)
= 3z-zF

A: NO! It a function of z and z* so not analytic for either.

Example 2: Q: Is r(x,y) = x> + y° an analytic function of z=z+iy?

A: NO! r(xy)=z*z is a function of z and z* so not analytic for either.

Example 3: Q: Is s(x,y) = x*-y? + 2ixy an analytic function of z=z+iy?
P Y Y 34 y

A: YES! s(xy)=(x+iy)? =z is analytic function of z. yy
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4. Riemann-Cauchy conditions whats analytic? (...and what’s not?)

- (15 2D civculation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis
Easy 2"-multipole field and potential expansion
Easy stereo-projection visualization
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What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between pomt z; and point z2 1s potential difference Ap =¢(z2)- ¢(z1)

Ag = ¢(Zz) (P(Z )= Jf(Z)dZ_q)(xzayz) CI)(xl,yl)+z[A(x2,y2) A(xpyl)]
21 — — ee———
AQ = AD +1 AA

In DFL-field F, A¢ 1s independent of the integration path z(?) connecting z; and z>.
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What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between pomt z; and point z2 1s potential difference Ap =¢(z2)- ¢(z1)

AQ = ¢(ZZ) ¢(Zl)—ff(2)d2—q)(x2,y2) CI)(xl,yl)+z[A(x2,y2) A(xpyl)]

Zl — i
—

AQ = AD +1 AA

In DFL-field F, A¢ 1s independent of the integration path z(?) connecting z; and z>.
[ £(2)dz = j(f*(z*)) dz = j(f*(z*)) (dx+idy)= j(f; " ify*) (dx+idy)= j(f; _ if;‘)(dx+ i dy)

= [(fydx+ [, dy)+i [(f, dy = [, dx)
= [Fedr +i[F X dree
= [Fedr +i[Fedrxe,

= [Fedr +i[FedS where:  dS=drxe,

VA
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What Good Are Complex Exponentials? (contd.)

9. Complex integrals [ f(z)dz count 2D “circulation”( [F<dr) and “flux”([Fxdr)

Integral of f(z) between pomt z; and point z; 1s potential difference Agp =¢(z2)- o(z1)

Ag = ¢(ZZ) ¢(Z )= jf(Z)dZ_q)(xzayz) (I)(xl,yl)+z[A(x2,y2) A(xpyl)]

Zl — i
—

AQ = AD +1 AA

In DFL-field F, A¢ 1s independent of the integration path z(?) connecting z; and z>.
[ £(2)dz = j(f*(z*)) dz = j(f*(z*)) (dx+idy)= j(f: " ify*) (dx+idy)= j(f; _ if;‘)(dx+ i dy)

= [(fydx+ [, dy)+i [(f, dy = [, dx)
= [Fedr +i[F X dree

Z
= [Fedr +i[Fedrxe,
ds
- o +1|[ FedS here: dS=drxe
[ Fedr i|| Fed where:  dS=drxe, e
F dr f-BlgF «dS \

! / Big;.dr \ part J12 FedS = AA
Real part fl Fedr = AD sums F projection across path dr
sums F projections along path that 1s, thru surface
dr that 1s, circulation on path clements dS=drxez normal to dr

to get AD . to get AA.
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Here the scalar potential ®=(x*-y?)/2 is stereo-plotted vs. (x,y)
The ®=(x*-y?)/2=const. curves are topography lines

The curves are streamlines normal to topography lines
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4. Riemann-Cauchy conditions whats analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
——p- ['05y 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis
Easy 2"-multipole field and potential expansion
Easy stereo-projection visualization
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What Good Are Complex Exponentials? (contd.)
10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:
q1= d Z(xZ—yZ)/Z — const.

q2= — (xy) — const.
. f(z%)=z*=x-iy
*Actually it’s OCC. Ficy ()
o(z)=2’
=x-y°+i
=@ +i
dg' dq' ob Jb ox  dx ox  Ox
BV B _ @ 3 9 -

Kajobian = ox = ox Oy = S A Jacobian = 9 e J®  d :iz(x yj
0 9g" | |94 941 \y x)<E 9O 9y | |9 | -y X
ox  dy ox dy dq' 9q’ 8(%) aT RN

E, E E, E
E ’E E OE 2 O @
Metrictensor = Boe Bou |_[ To™te ® =" , | where: rr=x"+y’
80 &8 E 'Ecp E ‘E 0 r
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What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:

q1= () Z(xZ—yZ)/Z — const.

6]2: — (xy) — const.
[ E)=zr=x-iy
*Actually it’s OCC. P =(x,3)
0(z)=2
=x-y°+i
=@ +i
dg' dq' ob Jb ox  dx ox  Ox
ax dy | | ox dy - ¢ d' 9 | | od oA
Kajobian = ox dy _ ox dy _(* v «—E Jacobian | %4 9 |_|o® 9 :%(x )’j
dg> o’ | |94 94| \y x)«E Oy 9y | |9y dy| ri-y x
ox E ox 9y dq' 9q’ 8(%) aT A
E, E E, E
E.,cE, E_ :E 0 ®
Metrictensor = Boe Bou |_[ To™te ® =" , | where: rr=x"+y’
8o 8 E E, E_-E 0 r
Riemann-Cauchy Derivative Relations make coordinates orthogonal
9P d a2 %) The half-n’-half results assure ) d
ox ox2 y ax dy dy ax
QCI) Q ag. 2 2 —ay E(D'E = + 0 0 —ay
dy 8y2(x =y7) ox dx dy dy ~ ~
0D 0D 9D 9D
=— + =0
ox dy dy dx
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What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:

q1= () Z(xZ—yZ)/Z — const.

6]2: — (xy) — const.
*Actually it’s OCC. P =(x,3)
o)==
=x-y°+i
=@ +i
dg' dq' ob Jb ox  dx ox  Ox
A ay | | ax ay - ¢ d' o | | oA
Kajobian = ox oy = ox = ¥ ~y|<E Jacobian = 9 e JI®  d :i( * yj
d> oq | |94 9A | «FE dy 9y | |9y Iy -y X
ox E ox 9y dq' 9q’ 8(%) aT A
E, E E, E
E.c-E, E_-E 0 °
Metrictensor = Boe Bou |_[ To™te ® =" where: r*=x"+y’
80 &8 EE, E E 0 r?
Riemann-Cauchy Derivative Relations make coordinates orthogonal
oL 2 -n’-
& éxz a4(x? —y?) o The half-n results assure g;& gy axy o
VO = = = =F oD A 0D 9 VXA = = = =F
9o = 2 —ay E,E, = + JA d —ay
Jy ayz( =y7) dx dx dy dy —3 —5, axXy
_ 0D acp oD oD 0o
C Ox ay dy ox

of, fy 000 90D _ 82613 0°®

0= =0
Zero divergence requirement. 0==*+ ot o potential ® obeys Laplace equation
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What Good Are Complex Exponentials? (contd.)

10. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (®,A) grid 1s a GCC
coordinate system™:

q1= () Z(xZ—yZ)/Z — const.

6]2: — (xy) — const.
*Actually it’s OCC. Ficy ()
0(z)=2
=x-y°+i
= ® +i
dg' dq' ob JD ox  ox
N B Y _ 0} a 1 a 2
Kajobian = ox = ox _[ Y <E Jacobian = 9 4
9 9’| |94 94} |y x)<E 9y 9y
ox dy ox dy dq' 9q’

g0 8.) \EE, E-E ) (0 -

E,cE, E,:E 0
Metrictensor = (gm 8o ]:( e @ jz (r 2} where: r’=x"+y’

Riemann-Cauchy Derivative Relations make coordinates orthogonal
oL

9 J a X2 2) The half-n’- results assure
ox 8x2 -y ax
VO = = = =F 0D oA 9D 9

QCD g ( . 2) _ay E(D.E = +

dy 8y2 y ox dx dy dy
_ 0D acD oD oD 0o
 ox ay dy ox

or Riemann-Cauchy
_% G/ 0 9 9P _ 82613 0°®

Zero divergence, requirement: 0

/\ ) ox dy

T ox ox

Jx  ox
_|oD oA |_1([Xx ¥
9y dy| ril-y x
o> 9 T
E, E E, E
g)jA g y axy ax
VXA = = = =F
and so does

Yy al o =0 potential ®,0beys Laplace equation

N\
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4. Riemann-Cauchy conditions whats analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
—) Lasy 2D monopole, dipole, and 2"-pole analysis
Easy 2"-multipole field and potential expansion
Easy stereo-projection visualization
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What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nflznﬂ .Itis the » = -/ case.

1

Unit monopole field: f (z)=i= z f(z)=5= az”' Source-a monopole

It has a logarithmic potential O0(z)=a'In(z)=a'In(x+iy).
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What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlznﬂ .Itis the » = -/ case.

1

Unit monopole field: f (z)=i= z f(z)=5= az"' Source-a monopole

It has a logarithmic potential O0(z)=a'In(z)=a'In(x+iy).

d(2)= @ + iA=]f()dz=]7dz=aln(z)
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What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nflznﬂ .Itis the » = -/ case.

1

Unit monopole field: f (z)=i= z f(z)=5= az”' Source-a monopole

It has a logarithmic potential O(z)=a-In(z)=a‘In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’®)=i6, and z=re".
()= ® + iA=]f(2)dz=[%z=aln(z)=aln(re”)

=aln(r) + iab
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What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlz” 1 1t is the case.
Unit monopole field: f (Z)Zi: z7} f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a'In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e”®)=i6, and z=re.
()= ® + iA=][f(2)dz=][%z=aln(z)=aln(re)

=aln(r) + iab
(a) Unit Z—line—ﬂx field f(z)=1/z

R A R
llllllllllll

f(z%)=1/z=e"/r
Fan=(xy)/r

Potential:

0(z)=Inz
=Inr+i
=@ +{

81
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What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlz” 1 1t is the case.

1

Unit monopole field: f (z)=i: z f(z)=5= az"' Source-a monopole

It has a logarithmic potential O(z)=a'In(z)=a-In(x+iy). Note: In(a-b)=In(a)+In(b), In(e”®)=i6, and z=re.
()= ® + iA=][f(2)dz=][%z=aln(z)=aln(re)

=aln(r) + iab
(a) Unit Z-line-flux field f(z)=1/z (b) Unit Z-line-vortex field f(z)=i/z

| AT TR

-15 05 2 S| S e g 9.5\ 1! 1.5
L e A li,"ll._ L L — T T ||||| | "I_.‘l_!i.!_l__t_.wil.'_i:I_.I‘I_I_L_II‘lllIIl

—
| &

Field:
(z*%)=-i/z*=-ie"/r
Fey=0,-x)/r
Potential:

Tn‘T‘.—rT‘r =

f(z%)=1/z=e"/r
Fan=(xy)/r

I
.

Potential: i:

0(z)=Inz t-i 3 Oz)=ilnz
=In r+i =0 +i
=@ + L-’_’, =@ +|

Monday, October 13, 2014 82



What Good Are Complex Exponentials? (contd.)

11. Complex integrals define 2D monopole fields and potentials
Of all power-law fields f(z)=az" one lacks a power-law potential ¢(z)= nﬁlznﬂ .Itis the » = -/ case.

- f(z)=5= az™' Source-a monopole

Unit monopole field: f (z):i: z

It has a logarithmic potential O(z)=a-In(z)=a‘In(x+iy). Note: In(a-b)=In(a)+In(b), In(e’®)=i6, and z=re".

0()= @+ iA=[f(2)dz=]¢dz=aln(z)=aln(re")
=aln(r) + iab

A monopole field is the only power-law field whose integral (potential) depends on path of integration.
path that goes N times

around origin (r=0) at

constant r = R.

dz 0=27N J( Re'® 6=2nN
A¢=5f>f(z)dz=a§f> =a j ° )=a | id@zai@‘(z)ﬂN=2a7riN
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(a) Unit Z-line-flux field f(z)=1/z

L

= In(r) + i

f(z*)=1/z%=e"/r
Fy)=(xy)/r

Potential:
O(z)=Inz
=In r+i
=D +i
1-pole(flux) 1-pole(flux)
X,y X,y

Each turn around origin

adds 27i to vector potential i

~
I-pole(flux) 1-pole(flux) e |
X,y Alxy
] A
~
27

(
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YT
!:—_l 5

(a) Unit Z-line-flux field f(z)=1/z

(b) Unit Z-line-vortex field f(z)=i/z

X

I
Lh

~ ¥ 1 o
= 'l P L L5 l = - ’) - .
—+ | I A |--;I-;l 2 !"l_u il I i__’l;_-l| L | = o B 5 1 h ‘,: F l.__l__
'F ca ot _L.r_ 8 1 :h;__l_.'_ il
=07 E_-U.L‘:
L . i : = Field:

F9=1/2=e - R T (2 =-i/z*=-ie"/r
F(x,;)f(X, Wi E P'_ / Fay=0, X)/r?
Poten_tzal: Fis N Potential:
d(z)=Inz | E 15 d(z)=ilnz

=In r+i F _2 N =0 +i

=@ +i [ F 2 ;

T~ = +i
I-pole(flux) 1-pole(flux)
X,y X,y 1-pole(vortex) 1-pole(vortex)
X,y XY
‘:1}' V.)
\ \
/ //
: . ‘\.\ |
LY Mk Y
k \ X XA
Y
1-pole(flux) 1-pole(flux)
X,y A X,y
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“Vortex” “Hurricane”

x=-3.6 y=3.

[
(W)

(LEE N
12
n
) <
TITRLTT

s
N

—
LA
[*
—
(W)

T LT

l“ ~.

X, : O‘

350 X as ] s sl T ™5 3 5 35“35 ‘. K5 Z—s | 15 25 35

TR FEEER a1 ISURRN EER e INEER - [/ Ty Ly L L S v el U T e L

TR Ay
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4. Riemann-Cauchy conditions whats analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
—) Lasy 2D monopole, dipole, and 2"-pole analysis
Easy 2"-multipole field and potential expansion
Easy stereo-projection visualization
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What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az"!: 2D line monopole field and is its monopole potential¢(z)= alnzof source strength a.

] a d 1-pole )
f] pole (2)= Z _ (bdz ¢] pole (z)=alnz

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of /77 -fields is called a ciipole field.

a a —a-A

. . 7—3
fleOle (Z): - = ¢d1p01€ (Z) —q ln(Z _%) e hl(Z +%) —q hl 2

Z+§

So-called
“physical dipole”
has finite A

(+)(-) separation
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What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az"!: 2D line monopole field and is its monopole potential¢(z)= alnzof source strength a.

_ a d 1-pole )
f] pole (Z): Z _ ¢dZ ¢] pole (Z): aan

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of /77 -fields is called a cz’ipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln
42 _a 2_A A

If interval A is tiny and is divided out we get a point-dipole field f?7° that is the z-derivative of f /ol
1-pole

e _=a_dft g prrote 4 _ 497"

2 dz dz Z dz
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What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az"!: 2D line monopole field and is its monopole potential¢(z)= alnzof source strength a.

_ a d 1-pole )
f] pole (Z): Z _ ¢dZ ¢] pole (Z): aan

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of /77 -fields is called a cz’ipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln
42 _a 2_A A

If interval A is tiny and is divided out we get a point-dipole field f?7° that is the z-derivative of f /ol

1-pole
—a df]-pole B d¢2-pole ¢2-pole B E _ d¢

f2-pole _

72 dz dz Z dz
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What Good Are Complex Exponentials? (2D monopole, dipole, and 2"-pole analysis)
12. Complex derivatives give 2D dipole fields

Start with f(z)=az"!: 2D line monopole field and is its monopole potential¢(z)= alnzof source strength a.

_ a d 1-pole )
f] pole (Z): Z _ ¢dZ ¢] pole (Z): aan

Now let these two line-sources of equal but opposite source constants +a and —a be located at z=+A/2
separated by a small interval A. This sum (actually difference) of /77 -fields is called a cz’ipole field.

dipol a a —a-A : Z_§
[P @O = 97" ()=aln(z-3)-aln(z+5)=aln
42 _a 2_A A

If interval A is tiny and is divided out we get a point-dipole field f?7° that is the z-derivative of f /ol

1-pole
—a df]-pole B d¢2-p0le ¢2-pole _a _ d¢

72 dz dz Z dz

A point-dipole potential $>7°'¢ (whose z-derivative is f?7°¥) is a z-derivative of (/0%

f2-pole _

= —= +1 =—c0os@—i—sin@

¢2_p016_a_ a a x-—iy ax —ay a a
z x+iy x+iyx—iy x24y*  xP4y? 7 r

_ (I)2-pole 4 A2-pole
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A point-dipole potential ¢>°'¢ (whose z-derivative is f>7°¥) is a z-derivative of ¢p/P0%,

¢2_p016 a a a x-—1Iy ax . —ay a a

= — = : . +1i =—cos@—i—sinf
z x+ily x+iyx—iy x24y?  xP4y? 7 r

_ (I)Z—pole 4 2-pole

Scalar potentials
o= (a/r)cos O=const.

.

o A3 TN

IIIIIIIII
— - — - s

a/D

|
=(a/)")sin ©

f(z*)=1/z>*=e'*%/y?
F(x,0)=(c0s26,5in20)/r*
Potential.:

O(z)=1/z
=(cos0)/r+i
= @ +i

— (Cl/?‘) sin O=const.
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2"-]?0[6 analySiS (quadrupole:2°=4-pole, octapole:2°=8-pole, ..., poie dancer,

What if we put a (-)copy of a 2-pole near its original?
Well, the result is 4-pole or quadrupole field f4r° and potential ¢+,

Each a z-derivative of 27/ and ¢?»,

a _lde-pOIe B d¢4-p016 ¢4_p016 B i_ld¢2-p0k

f4-pole _
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L -pOl e analys 1S (quadrupole:2°=4-pole, octapole:23=8-pole, ..., poie dancer,

What if we put a (-)copy of a 2-pole near its original?
Well, the result is 4-pole or quadrupole field f#rele and potential p#+o,

Each a z-derivative of /27 and ¢?»,

a 1 de-pole - d¢4-pole

f4-pole _ ____“ “y

4-pole
X,V

?
—— —

Field:
(z%)=1/23*=¢3%/43
F(x.0)=(c0s38,5in30)/i
Potential:
20(z)=1/z°
=(c0s20)/r’+i

= O +i
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4. Riemann-Cauchy conditions whats analytic? (...and what’s not?)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2"-pole analysis
> Easy 2"-multipole field and potential expansion
Easy stereo-projection visualization
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2"-]90]8 analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.

d -3 —2 —1 2 3 4 5
d—fzf(z)z..a_ﬂ + a,7 "+ a2z + ay + @z + ar7Z" + a7z + ayz + asz +..

22-pole 21-pole 20 -pole 21—pole 22-pole 23-pole 24 -pole 2° -pole 26-pole

(quadrupﬁle) (d%'pole) (monapoée) (dipole (quadrupole) (octapole) (hexadecapole)
at z= at z=0 at =

at z= 7=o0 atz=oo  atz=oo  atz=oo atz=oo  at z=oo
[ fdz=
a_, _ a_» _ a a a a a
N)=.—=27°+ =27 + a lnz + ayz + Lz + 27 + 3B 4+ AP 50 4
—2 -1 2 3 4 5 6

All field terms am-1z"! except -pole ;—1 have potential term a,,-:z"/m of a 2"-pole.

These are located at z=0 for m<0 and at z=o0 for m>0.

(octapole)o  (quadrupole)y (dipole)o (monopole) (dipole) (quadrupole)» (octapole)«
a_, _— a_~ _ a_» _ a a
¢(Z)=-..—4Z . +—37 2 4 —27 by a_Inz + agz + —lzz + —223 + ...
-3 -2 -1 2 3
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2”-]?0]8 analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.
do -3 -2 -1 2 3 4 5
7 =f(z)=.a3z " + ay,z " + a4z + a + aqz + azzm + a3z + agz + asz +...

e 22 -pole 21 -pole 20 -pole 21 -pole 2° -pole 23 -pole 24 -pole 2° -pole 20 -pole ---
(quadrupgle) (dipole) (monopole) (dipole) (quadrupole) (octapole) (hexadecapole)
at z=0 at z=0 at z=0 at z= =00 t

tz=c0 atz= at z=oo At z=oo At z=oo At g=oo
[fdz=
a_s _ a_, _ a a a a a
¢(Z)=...—3Z 2+ —27 by a_ylnz + agz + —122 + —2Z3 + —324 + —425+ —516 + ...
-2 —1 2 3 4 5 6

All field terms am-1z"! except -pole ;—1 have potential term a,,-:z"/m of a 2"-pole.

These are located at z=0 for m<0 and at z=o0 for m>0.

(octapole)o  (quadrupole)y (dipole)o (monopole) (dipole) (quadrupole)» (octapole)«

a , _ a , a , _ da a
¢(Z)=---—3Z R e a Inz + ayz + L2+ 2 4
-2 -2 -1 2 3
a_ _ _ _ a_ _ a a

(W)= ..—=w 3+—23w ‘+ 2w 4 oa nw + ggw + 2wt 4+ %w3 +

(with z=w')

Monday, October 13, 2014 97



2"-]?016 analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function f(z) around z=0.
a¢ _ _ -3 -2 -1 2 3 4 5
0 =f()=.az2° + a,z" + a2z + ay + aqz + az” + a7z + a2 + az +..

.22 pole  2'-pole  2'-pole  2'-pole 2%pole 2°-pole 2%-pole 2°-pole 2°-pole ---
(quadlg/tpale) (dipgle) (m0nI())pOZe) (dl'glj)ale) (qualc)lrupale) (ocglpole) (hexgdecapale) b b

J.deZ at Z:O at Z:O at Z:O at 7=oco at 7=co at 7z=o0 at z=oo at z7=oo at z=oo
52, G2 - a a a a a
O(z)=..—z 2 =21 a  Inz + ayz + a2 L 23 4 34 4S5, 506
—2 -1 2 3 4 5

All field terms am-1z"! except -pole ;—1 have potential term a,,-:z"/m of a 2"-pole.

These are located at z=0 for m<0 and at z=o0 for m>0.

(octapole)o  (quadrupole)y (dipole)o (monopole) (dipole) (quadrupole)» (octapole)«
a4, -3 a3 - a_» _ a - a, 3
¢(Z)=...—4Z 570 ¢ =2 4 a_Inz + agz + R S
-3 —2 —1 2 3
a_ _ _ _ a_ _ a a
o(w)=. TP By 2227 4 a_lnw + aggw + Ty? 4+ 22y 4
— —2 — 2 3
>< e
a, _ ar _ — a_ a_ a_
:'”?22 ) +Elz % a7 ' T alnz + —12z + —23z2 + =27 4

(with w=z"1)
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N |Z|:tan6/2:|W|_]
N
Z-pldl’le = /W 1 DY sing 0/2
2
0
] cos/6/2 /
— 2
2o cos~ 0/2
0/2
S |W|:cot6/2:|Z|_]
w-plane W=UTLY
=1/z
a _ a_» _ a_» _ a a
O(z)= —_:jz S I8 22y a_Inz + agz + 2 ?223 + ...
(OCthlZlee)o_ (qzélacémpolze)o (&z’ipzole)o (monopole) (dipole)w (qu&zdrupzole)oo (oactapoée)oo
¢(w)=...;3w +—w "+ —=w  + a_lnw + agyw + T+ 297 4+
N B (with z—w)
a, _ a _ _ a._ a_ a_
=277 477 4 gt - o+ 4+ B4 =P 4
D _dg _
(a) = (b) N ¢(Z) - 1 < ¢(Z) — %Z 2
g 3‘\ f@)=a_z F@)=a
(+) monopoleﬁeld dipoleﬁeld centered quadrupoleﬁeld centered
at North Pole at North Pole at North Pole
s (-) monopole field is constant field is quadratic field
near SouthPole near SouthPole near South Pole
R o(w) = agw (W) = agw?
}ﬂ k\( = fw=aq FO9)=aw
Monday, October 13, 2014
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-3 ~2 -1 2 3 4 5
f(@)=.a3z2” + ay,z " + a2+ a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, 27” $ f(z)dz
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-3 ~2 -1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f(z)dz = @a_lz_ldz =2mia_, Zm $ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series of Laurent coefficient expressions.
rdg :2%7:1' §2° f()dz . a_p = 277:1 §2'f(2)dz , a 1_2}1 §f(2)dz , ay = 272:1 95f(Z) » 4 = 2m f(Z)

Z
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, 27” ¢ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §(z-a)"'dz=2xri.
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-3 ~2 -1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f(z)dz = @a_lz_ldz =2mia_, 27” $ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series of Laurent coefficient expressions.
g :2%7:1' §2°f(2)dz a_p = 277:1 §z' f(2)dz . a 1_2}1 P f(2)dz , ay = 272:1 95f(Z) » 41 = 2m f(Z)
Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)
< /@) Sﬁf (a)

<~ Cl
(but any Contour that doesn’ t touch a gIves same answer)

Monday, October 13, 2014 103



-3 ~2 -1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, 27” ¢ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series of Laurent coefficient expressions.
g :2%7:1' §2°f(2)dz a_p = 277:1 §z' f(2)dz . a 1_2}1 P f(2)dz , ay = 272:1 95f(Z) » 41 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral.
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, 27” ¢ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df(a) _ 1 g VACII
da  2mi (z— a)

9
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, 27” ¢ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df(a) _ 1 § f(Z) dzf(a) 2 § f(Z)
da  2mi (z— a) © o gg: 2w (z— a)

9
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, 27” ¢ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df@_ 1, f@) . df@_ 2, /@) , df@_ 3, /) ,
da  2mi (z-a) = da? 2 (z— a) © 4l 2w (z—a)*
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, 27” ¢ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

d@_1 ., /@  dEf@_2 [  df@_3 . & df@_n . f()
d 95 Z b 2 Cﬁ b 96 Z, ) - Cﬁ dZ
a  2mi (z— a) da 27 (z— a)

da® 27 (z— a) da" 27 (z—g)"!
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-3 —2 ~1 2 3 4 5
f(@)=.a3z” + ay,z " + a2 + a + aqz + azm + a3z + a7 + asz +..

Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

§f(2)dz=¢a_z"'dz="2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p= 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)

Z

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

d@_1 ., /@  dEf@_2 [  df@_3 . & df@_n . f()
d 95 Z b 2 Cﬁ b 96 Z, ) - Cﬁ dZ
a  2mi (z— a) da 27 (z— a)

da® 27 (z— a) da" 27 (z—g)"!

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.
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f(Z)=...a_3z_3 + a_zz_z + a_lz_l + a + az + a2z2 + a3z3 + a4z4 + a5z5 + ...
Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f()dz=¢a_z 'dz =2mia_, =+ ¢ f(2)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.

(Z) (z)

SR =2%ri cﬁzzf(z)dz , a_y 27rz E]SZ fdz , a 1_2}, $ f(2)dz dy = 27;, Cﬁ > 4 27rz 98

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) 1s just f(a) on a u, circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

df(a) _ 1 § G4 d’f(a) _ 24-) ACI d3f(a): 3 s f@ o 4@ nl JACINN

da  2mi’ (;—q)’ da® 27 (s a) L ddd i (z—a)t T dd" 2mi (z— )™

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

f(2)= § an(Z—d)n where : a_ = : $ /(@) dz£: 1 d"f(a)

for : nZO]
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Of all 2-pole field terms an-1z!, only the m=0 monopole a-;z"/ has a non-zero loop integral (10.39).

$ f(z)dz = qsa_lz_ldz =2mia_, 27” $ f(z)dz
This m=1-pole constant-a-; formula 1s just the first in a series Of Laurent coefficient expressions.
rd :2%7:1' §2° f()dz . a_p = 277:1 §2'f(2)dz , a 1_2_77:1 §f(2)dz , ay = 272:1 Cﬁf(Z) 4 = 2m f(Z)
z°

Source analysis starts with 1-pole loop integrals ¢z"'dz=2zi or, with origin shifted §G:-a) 'dz=27i |

They hold for any loop about point-a. Function f(z) is just f(a) on a ., circle around point-a.

(assume siny circle around z= a)

(2) (a) 1 f@)
G = gL fay=5—§1% 4
7— a 2w z—a

(but any Contour that doesn’ t touch a gIves same answer)

The f(a) result 1s called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

@ 1, /6 , df@_ 2, /6 , &f@_ 3 f@ o @ e (6

da 27 (z_q  dd®  2mi (z- a) L dd 2 (z-a) L da" 27 (z—g)"t!

This leads to a general Taylor-Laurent power series expansion of function f(z) around point-a.

= 1 1 d"
f()= ¥ a (z—a) where : a =—¢ A dz| = AC) for: n=0
N=—o00 271 (Z — a)n+1 n! dan
(quadrupole)y (dipole)o (monopole) (dipole)s (quadrupole)« (octapole)s (hexadecapole)s ...

-3 -2 —1 2 3 4 5
f(Z) =...4_3Z + ad_»Zl + a_i< + ap + < + arZ? + aszg + au,? + asZ + .
dipole monopole
moment moment
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5. Mapping and Non-analytic 2D source field analysis
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The half-n’-half results

are called
Riemann-Cauchy
Derivative Relations

=S
Il

SSISY

<

VI VIV
|l
SSIISY

= e

1S:

1S:

dRed(z) _
0x _

oRei(z) __
dy -

dlme(z)
dy

_ 9lm¢(z)
dx

Or.

Or.

dRef(z) _

ox

dlmf(z)
dy

dRef(z)_ _ AImf(z)

dy

ox

1S:

1S:

af.(2) _
dx

df (z) _
dy

af,(2)
dy

af,(2)
~ ox

RC applies to analytic potential (D(Z ) =@P+iA and analytic field f(z ) = fx + lf y and any analytic function
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The half-n’-half results

are called
Riemann-Cauchy
Derivative Relations

= S

Vv Vlw
=
|l

JdA |: .| dRed(z) _  dIm¢(z)

dy 159 9x — dy

_0A|: | dRed(z)_ _ dIm(z)
ox 15 dy — ox

Or.

Or.

dRef(z) _

ox

dlmf(z) |.

dy

dRef(z)_ _ AImf(z)

dy

ox

is: gﬁx(Z):

is: gﬁxw:

af,(2)
dy

af,(2)
~ ox

RC applies to analytic potential ((z) =D +1iA and analytic field f(z) = f, +1f. yand any analytic function

Common notation for mapping: w(z)=u+1v

Y z=xtiy 4 W= 1 +i V
space space
w(z) ]
Z(w)
X u
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Common notation for mapping: w(z)=u+1v

The half-n’-half results
are called

Riemann-Cauchy

Derivative Relations

=
SSISY
<

SEIISSRERSSIISY
= o

|l
Ul

Al.

X

1S:

1S.

dRe@(z) _
ox -

oRei(z) __
dy _

dlme(z)
dy

dlme(z)

T 0x

Or.

Or.

dRef(z)_  dlmf(z)

ox — dy
dRef(z) _ _ dImf(z)
dy — dx

1S:

1S:

af.(2) _
dx

df (z) _
dy

af,(2)
dy

af,(2)
dx

RC applies to analytic potential ((z) =D +1iA and analytic field f(z) = f, +1f. yand any analytic function

y

z=x+tiy

space

du

ox

dv=—
Y dx

ou

dx+—dy

dy
ov

dx+—dy

dy

X

Jacobian for mapping:

Ju

y
v

dy

ou
ox
v
ox

dx
dy

Complex derivative for mapping:

4 W=1U +i V
W(Z) — space
()
u
d_W:l[i_,-ij(uﬂv)
dz 2\ 0x 9y

1 —_ a_u+_
“2{ox 9y

1 ov

J+

i

2

(

v Jdu

dx dy

1
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The half-n’-half results
are called

Riemann-Cauchy

Derivative Relations

=
Il

QI Qv

= e

QI

SSIISY
<

Al.

X

1S:

1S.

dRe@(z) _
ox -

oRei(z) __
dy _

T 0x

dlme(z)
dy

dlme(z)

Or.

Or.

dRef(z) _
ox

dRef(z) _ _

dy

dlmf(z)

dy

dImf(z)

ox

- |9f(2) _
is: [37=
is: gﬁxw:

af,(2)
dy

af,(2)
dx

RC applies to analytic potential ((z) =D +1iA and analytic field f(z) = f, +1f. yand any analytic function

Common notation for mapping: w(z)=u+1v

y

z=x+tiy

space

Ju
du=—dx+—d
ox dy Y

ov
dv=2"ax+ L4
T et

du

}:

X

ou
ox
v
ox

v
|5
| oy

ox

J+

i
2
dv

(

v du

ox dy
eL%

|4 W=1U +iV
space
u
Complex derivative for mapping:
d_w—l i_li (u+l’v)—l a_u+@
dz 2\ 9x 9y “2lox 9y
_u_,du
dx dy

Complex derivative abs-square:

f@g
dz

2

(

du jz Jdu 2
R + -
ox dy

(

) ( v
PR + R
dy ox

i

|
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The half-n’-half results
are called

Riemann-Cauchy

Derivative Relations

= S

QI Qv

= e

QI

SSIISY
<

Al.

X

1S:

1S.

dRed(z) _
0x _'

JdRe¢(z) _
dy —

dIme(z)
dy

dIm¢(z)
0x

Or.

Or.

dRef(z) _
ox

dRef(z) _ _

dy

dlmf(z)

dy

dImf(z)
ox

- |9f(2) _
is: [37=
is: gﬁxw:

af,(2)
dy

af,(2)
dx

RC applies to analytic potential ((z) =D +1iA and analytic field f(z) = f, +1f. yand any analytic function

Common notation for mapping: w(z)=u+1v

y

z=x+tiy

space

ou
du=—dx+—d
ox dy Y
v
dv="Cax+2%q
T et

du

}:

X

du
ox
v
ox

...equals Jacobian Determinant

ou

v W=1u +iV
space
w(z) —
()
u
Complex derivative for mapping:
d_w—l i_li (u+l’v)—l a_u+@ +i i__
dz 2\ ox 9y “2(ox 9y) 2lax 9y
ou . du ov . 0dv
=——]1— =_+l_
dx dy dy Ox
_ov Complex derivative abs-square:
R RCRE RO
? dy dz|  \ox dy ) (ady ox)
y

|
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The half-n’-half results
are called
Riemann-Cauchy
Derivative Relations

o0 _9A |. | dRei(z)_  dlmiz)| .| ORef(z)_  dImf(z) |... [0fi(z)_ 9/, (2)
dx ~ dy 153 9x — Jdy O} 5x - 5.5y = dy
oD __9A|; | dRep(z)_ _ dlm@(z) | | ORef(z)_ _ dimf(z) |; . | of(2)_ _ 9/, (2)
dy ~  0x 1S. dy — dx Or. dy - 1S. dy ~  Odx

RC applies to analytic potential ((z) =D +1iA and analytic field f(z) = f, +1f. yand any analytic function

Common notation for mapping: w(z)=u+1v

y

z=x+tiy

du=—dx+—d
ox dy Y

dv=""ax+ g
T et

du

X
Jacobian for mapping is scaled rotation:
o
dx dy dx | cos@ —sinb dx
J dv  dv [ dy ] “ [ sin@  cosé )( dy
ox dy
o v v
| ox 9y dx | | dy ox dx
IR EE R
dy 0x ox dy

|

Important result:
W=1U +i V
_ i0
space dw=+~J-e” -dz
is scaled rotation of dz.
u

Complex derivative for mapping:

d_w—l i_li (u+l’v)—l a_u+@ +i i_a_u
dz 2\ 9x 9y “2lox 9y 2lox 9y
du .du 8v+.8v

Complex derivative abs-square:
dw
dz
...equals Jacobian Determinant

2 2 2 2 2
ou ou ov v

R I B A il
(ax) +(8y] (ayj +(axj e| |
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7> gives parabolic OCC

wiz)=-91 +1-19

w(z)

24 +155

7=

15 mapped into

wi(z)= AzM22

U
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7> gives parabolic OCC

wiz)=-91 +1-19

w(z)

24 +155

7=

15 mapped into

wi(z)= AzM22

w'"? gives hyperbolic OCC

8 E
=

(N =

.. =

Q :

S .

) E/=
m o |l e = I i_ ._., ..n_.
= wul 1ol I ol [ Lo

”.U. __.|_|n

P E

L

SIE
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w(z)=z> gives parabolic OCC

z=-324 +155

15 mapped into

wiz)=-91 +1-19

Y

4

3

I|.2

=

aw
I

WK
=

wi(z)= AzM22

w= (u+ )= 2" = (z+1iy)’ is analytic function of z and w

Expansion: u=2"—y" and v =22y may be solved using |w |=| 2* |=| z |’

VI E Expansion: |w = yu® +v* =2’ +¢* = 2
- 3 [ 2 2 . [, 2 2
Solution: xz — m y2 — m
= 2 2
ﬂ
- @ - % % 2v 2y
- 1L dy _ E* _ 2x —Qy] ou v :(]_i‘, E): -2y 2z
| h 2 N @ En +2y 23} % @ u v 4(1;2 +y2)
= - - - dy ou Ov
Lill II || INEEN] | I I 11 || L1 L iil 1] II
3 U
T
-3
4
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Non-analytic potential, force, and source field functions

A general 2D complex field may have:
1. non-analytic potential field function ¢(z,z*)=®(x,y)+iA(x,y),

2. non-analytic force field function f(z,z*) = fx(x,y) + ify(x,y) ,
3. non-analytic source distribution function s(z,z*) = p(x,y) + i l(x,y).

Source definitions are made to generalize the f* field equations (10.33) based on relations (10.31) and (10.32).

df” Y _
2%:5*(2,2*) PE s(z,2°)
4
Field equations for the potentials are like (10.33) with an extra factor of 2.
do” _ .« .
2@=f(z,z*) 2—=1"(z,z)
dz dz

Source equations (10.46) expand like (10.32) into a real and imaginary parts of divergence and curl terms.

* * dr’ | [ * s *
s(z,z):2f _ d a]fx(x,y)ﬂ'fy(x,y)} =p—il, Where:fxzfx,and:fy:—fy

—1
dz |dx Jdy
off of, | |of, af : :
_ fx_|_ fy 4+ fy_ /s :[Vof :|+i|:v><f:|
dx dy dx dy VA
Real part: Poisson scalar source equa;ion icharge density p). Imaginary part: Biot-Savart vector source equatiorfk(current density I)
Vef =p Vxf =-1
Field equations (10.47) expand into Re and Im parts; x and y components of grad ® and curl4z from potential ¢ = ® +i4 or ¢p'= P - iA.
f (z,z )=2—F= +1i O—-id)=f +if
dz ox dy ( ) oY
o0 . JD dA .d4
— +i + —1 = VO |+| VXA
dx l&y } {8y l&x :l [ ] [ Z:I
Two parts: gradient of scalar potential called the longitudinal field f;i and curl of a vector potential called the transverse field f; :
f'=f, +1; f =Vo fr=VxA

(For source-free analytic functions these two fields are identical.)
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Potential, force, and source field equations

Field equations

Vector Field
f(zz")

| RS
| Imf=f

f(z2)=)

J.s' dz

0" @)=} f d

Potential
0" (z,2")
¢ =D(x,y) +iA(x,y

24" *
4d¢(.z,z)=s
dz dz

Source
5'(z,2")
s=p(x,y)+il(x,y)

VS.

, @) _

position, velocity, and acceleration equations

Newton equations

Acceleration

Monday, October 13, 2014

123



Example 1
Consider a non -analytic field f{z) = (z*)? or f*(z) = 2.

The non-analytic potential function follows by integrating

The longitudinal field f;

f+f

34 3x2+y2 3 2
ff=vo=v| T2 || T3 | fj=VxA=Vx| 22
2 2

Xy

The longitudinal field f; has no curl and the transverse field

2

or: p=4x,

*\2 . 2
0.2 )= 5] f()de= (" de = ZEL L ORI

or: ®=

is quite different from the transverse field f; .

f; has no divergence. The sum field has both making a violent storm, indeed, as shown by a plot of in Fig. 10.17.

x3 +)Cy2

s*(z,z*) = 2£ =4z=4x+idy,
dz

and: I=-4y.

y2 —1i2xy)

2

32
S and:A=u.

2

04
z 04 '
_o4 o

ox

f*:f;}f;: w xz; u + _3yT_x { xzz;yyz } Vel " =Vefy =dx=p, Vxf'=Vxfi=4y=-1.
/?//ﬁ?g‘ﬁi\i X
SRR AN
’f/f“‘—“f‘““ Vi
Hii:ii” NI
H;qkf__ﬂrﬁhﬁ?"x"z’ff;fffi gt
_ ~ luﬁlaau FE" dllfl rlf-iﬂ.-lf'f'fgz'ﬁ:};
,—-ﬁﬁﬁﬂxf . PR X
=2 N ——
"/”////”H:::;::: EE;S““?“
"xh_..._;y,! ) i
7 \\\\\“Q:;:ﬂw/ \\\
/ZAAAANNNNRS, AP FR ERN
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