Poincare, Lagrange, Hamiltonian, and Jacobi

mechanics
(Unit 1 Ch. 12, Unit 2 Ch. 2-7, Unit 3 Ch. 1-3, Unit 7 Ch. 1-2)

Examples of Hamiltonian mechanics in phase plots

1D Pendulum and phase plot (Simulations of pendulum and cycloidulum)
ID-HQO phase-space control (Simulation of “Catcher in the Eye”)

Exploring phase space and Lagrangian mechanics more deeply

A weird “derivation” of Lagrange's equations

Poincare identity and Action, Jacobi-Hamilton equations
How Classicists might have “derived” quantum equations

Huygen's contact transformations enforce minimum action

How to do quantum mechanics if you only know classical mechanics

( “Color- Quantization” s imulations. Davis-Heller “Color-Quantization” or “Classical Chromodynamics”)
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Examples of Hamiltonian mechanics in phase plots

1D Pendulum and phase plot (Simulation)
ID-HO phase-space control (Simulation of “Catcher in the Eye”)
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1D Pendulum and phase plot

(a) Force geometry

(b) Energy geometry

=-MgRcos0

(c) Time geometry

x=R sin®

! /5,(Mg/R )x2 0
~ Mgh

X
____________ h
xX°=h(2R-h) ~ 2hR
(Euclid mean)

Lagrangian function L= KE - PE = T'- U where

L(6,0) = %

1

167 -U(0)= 5]92 + MgR cosO

NOTE: Very common
loci of £ sign blunders

|

ential energy is U(0) = —MgRcos 6
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1D Pendulum and phase plot
(a) Force geometry (b) Energy geometry (c) Time geometry

=-MgRcos0

! /Z(Mg/R)x2

x=R sin®

2 NOTE: Very common
x“=h(2R-h) ~ 2hR loci of * sign blunders

(Euclid mean) — l

Lagrangian function L= KE - PE = T - U where petential energyis U(0) = —MgRcos0

L(,6)= %19‘2 ~U(0) = %192 + MgR cos0

Hamiltonian function H= KE + PE = T +U where potential energy is U(0) = —MgR cos0

1
H(pgy,0) = 2—111992 +U(0) = Zpez — MgRcos6 = E =const.
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1D Pendulum and phase plot
(a) Force geometry (b) Energy geometry (c) Time geometry

=-MgRcos0

! /Z(Mg/R)x2

x=R sin®

2 NOTE: Very common
x“=h(2R-h) ~ 2hR loci of * sign blunders

(Euclid mean) — l

Lagrangian function L= KE - PE = T - U where petential energyis U(0) = —MgRcos0

L(,6)= %19‘2 ~U(0) = %192 + MgR cos0

Hamiltonian function H= KE + PE = T +U where potential energy is U(0) = —MgR cos0

1
H(pgy,0) = 2—111992 +U(0) = Zpez — MgRcos6 = E =const.

lWlleeS Po = \/2I(E+ MchosH)
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Saddle
Point

O=+m

Saddle
Point

6=0
Stable
Point

Example of plot of Hamilton for 1D-solid pendulum in its Phase Space (0,pg)

1

H(pQ,Q):E:Epez—MgRCOSQ, or: pg =21(E + MgRcos)

(unstable
“balancing”

point)
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O=+m

Sgggf f Saddle
Point
69 6=0
Stable
Point
Example of plot of Hamilton for 1D-solid pendulum in its Phase Space (0,pg)

I
H(p9,9):E:Ep92—MgRCOSQ, or: pg =21(E + MgRcos)

Funny way to look at Hamilton's equations.

q. apH —_— >
= 3 H = ey X (—VH ) =(H-axis) x (fall line), where:
P g

(H-axis)=ey=e X e,
(fall line)=-VH

(unstable
“balancing”

point)
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(Simulations of pendulum)

time = 115.520 Y, ©_4
6 =+2.924 ]
® = +0.209
E = +0.998
s l”’
\‘\-—77 Y )
i3 Q“\ /
: 3 R l
-- -3.5
' -4
MN,=4 P-3
;—2.5

momentum pe
and 3.5 Vo f fs -

coordinate ©

| Fourier transformed

L5 2 2,5 3

1 l 1 1 1 L i L L 1 1 l

[4))

http://www.uark.edu/ua/modphys/markup/PendulumWeb.html

See also: http://www.uark.edu/ua/modphys/markup/CycloidulumWeb.html
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http://www.uark.edu/ua/modphys/markup/PendulumWeb.html
http://www.uark.edu/ua/modphys/markup/PendulumWeb.html
http://www.uark.edu/ua/modphys/markup/CycloidulumWeb.html
http://www.uark.edu/ua/modphys/markup/CycloidulumWeb.html

(Simulations of cycloidulum)

time = 137.100 Y
e =+2.011
= +1.000 45

E =+1.999 4

coordinate ©

: (\ﬁ Fourier transformed

.015....1....1i5..,.2....2°5....3

co:_z
5—3.5 E‘l-s
-3\ ~ -~

5_2_5 momentum pe

;2 and

http://www.uark.edu/ua/modphys/markup/CycloidulumVVeb.html
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http://www.uark.edu/ua/modphys/markup/CycloidulumWeb.html
http://www.uark.edu/ua/modphys/markup/CycloidulumWeb.html

Examples of Hamiltonian dynamics and phase plots

1D Pendulum and phase plot (Simulation)
» Phase control (Simulation of “Catcher in the Eye”))

Thursday, October 9, 2014
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U(Y)=(1/2)kY?+Mg Y

y=-0

UShift: -(Mg)2 /2k

u=3 /
u(v)= (114)y° +y /
u=2 ’
f)=-(1/2)y -1 “py
T Unit 1
, ) Fig. 7.4
Y %lﬁ: -Mg /k
y=-5 y=-4 y=-3 y=-2 y=-1 V= y=2 y=5

Simulation of atomic classical (or semi-classical) dynamics using varying phase control

h
Res

g atom K ™

(We call this process
“Catcher in the Eye”)

-2.5

2 0

1.5

||||||||||I||11

2

2.
|

R :1';|3|]|?|||

Reset Field

Simulation is an option in: )
http://www.uark.edu/ua/modphys/mar

ki 'b/Je:rlk'I“t'We'

Thursday, October 9, 2014
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http://www.uark.edu/ua/modphys/markup/JerkItWeb.html
http://www.uark.edu/ua/modphys/markup/JerkItWeb.html

Exploring phase space and Lagrangian mechanics more deeply
» A weird “derivation” of Lagrange’s equations
Poincare identity and Action, Jacobi-Hamilton equations
How Classicists might have “derived”’ quantum equations
Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics

Thursday, October 9, 2014
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A strange “derivation” of Lagrange's equations by Calculus of Variation
Variational calculus finds extreme (minimum or maximum) values to entire integrals

Minimize (or maximize): §(q) = Jdt L(q(t),q'(t),t).

q(t)

0 /]

An arbitrary but small variation function 64(z) 1s allowed at every point ¢ in the figure along the
curve except at the end points 7 and #,. There we demand it not vary at all.(1)

5‘](t0):():6qa1) (1)(7

S(g+6q)= jdt L(q.q, t)+g—L5q+g—L5q} where: 0g = %56]

Ist order L(q+(5q) approximate:
[p q q

Thursday, October 9, 2014 13



A weird “derivation” of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$(q)= [dr L(g(1).4(1).1).

q(t)

0 /]

An arbitrary but small variation function 64(z) 1s allowed at every point ¢ in the figure along the
curve except at the end points #, and #,. There we demand it not vary at all. (1)

—0= «—
Ist order L(q+0q) C[Ppmxzmate 0q(ty)=0=0q(t) (1) / “dt dt/ X\

oL
S(Q+5Q)=jdf L(qqt)+g—L5q+g—L5q} where: 64:%&1 Replace 255 with < aL

q g 9q
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A weird “derivation” of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$(q)= [dr L(g(1).4(1).1).

q(t)

0 /]

An arbitrary but small variation function 64(z) 1s allowed at every point ¢ in the figure along the
curve except at the end points #, and #,. There we demand it not vary at all. (1)

N <
Ist order L(q +(5Q) C[Pl?roxzmate 0q(1,) = 0= 0q(1) (1) / dt dt/ 4\3\

S(Q+5Q)=jdf L(qqt)+g—L5q+g—L5q} where: 54:%&1 Replace @6(] with < aL
" q /51 /
| oL oL y Ne——
S(q+5Q)—t{df[L(qqt)+a—q5q—z(aq]6q} Jdt—(aq(‘)‘qj

Thursday, October 9, 2014 15



A weird “derivation” of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$(q)= [dr L(g(1).4(1).1).

..varied to:

q(1) q(1)+04(1)

0 /]

An arbitrary but small variation function 64(z) 1s allowed at every point ¢ in the figure along the
curve except at the end points #, and #,. There we demand it not vary at all. (1)

—0= «—
Ist order L(q+0q) C[Ppmxzmate 0q(ty)=0=0q(t) (1) / ~dt dt/ X\

S(Q+5Q)=jdf L(qqt)+g—L5q+g—L5q} where: 6q':di5q Replace UL sy with 2 aL

q q t aq/
, J It ’ oL\
1 L d | dL ¢ . d(JdL

S(q+6q)= J.dt{ q.,q, t)+8_q§q_5(8q]5q}- Idt (—&1)

oL d (oL oL
= [ dr L( d _ S S
J rLla.d1) J {aq dt(@ﬂ qu[aq qj

Iy

Ly
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A weird “derivation” of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$(q)= [dr L(g(1).4(1).1).

..varied to:

q(1) q(1)+04(1)

0 /]

An arbitrary but small variation function 64(z) 1s allowed at every point ¢ in the figure along the
curve except at the end points #, and #,. There we demand it not vary at all. (1)

=0= «
Ist order L(q+6q) c[pproxzm 10 040)=0=54()) (1) / - dt/ g\é\

S(Q+5Q)=de L(qqt)+g—L5q+g—L5q} where: 6q':di5q Replace @6(] with < aL

, J e ’ oL\
1 L L ¢ d( oL
S(q+5q)=fdt[ qqt)+a—q§q—z(aq]5q}+ Idt ( j

f . L d (oL ] f) L
= jdt L(q.q.t)+ jd{ S ( oy ﬂéq+ .4 N due to requiring (1)
Third term vanishes by (1). This leaves first order variation: 8S=S(g+dq)- Jd FL d ( ﬂ&]
fo 9q

dq

Extreme value (actually minimum value) of S(g) occurs if and only if Lagrange equation 1s satisfied!
gL ] _%L_o Euler-Lagrange equation(s)
q

5S=0
2( dq

Thursday, October 9, 2014 17



A weird “derivation” of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$(q)= [dr L(g(1).4(1).1).

..varied to:

q(1) q(1)+04(1)

0 /]

An arbitrary but small variation function 64(z) 1s allowed at every point ¢ in the figure along the
curve except at the end points #, and #,. There we demand it not vary at all. (1)

—0= «—
Ist order L(q+0q) C[Ppmxzmate 0q(ty)=0=0q(t) (1) / ~dt dt/ X\

S(Q+5Q)=jdf L(qqt)+g—L5q+g—L5q} where: 6q':di5q Replace @6(] with < aL

, J e ’ oL\
1 L L ¢ d( oL
S(q+5q)=J.dt[ qqt)+a—q5q—z(aq]5q}+ Idt ( )

[ . oL d (oL : ‘
- Jdt L(q,q.t)+ jd{aq - dt(aqﬂéw ‘4 tl
7 0

Third term vanishes by (1). This leaves first order variation: 8S=S(g+dq)- Jd FL d ( ﬂ&]
. dq

dq
Extreme value (actually minimum value) of S(g) occurs if and only if Lagrange equation 1s satisfied!

g;)_g_g -0 Euler-Lagrange equation(s)

But, WHY is nature so inclined to fly JUST SO as to minimize the Lagrangian L =T - U???

oS = O:>(

Thursday, October 9, 2014 18



Exploring phase space and Lagrangian mechanics more deeply
A weird “derivation” of Lagrange’s equations

» Poincare identity and Action, Jacobi-Hamilton equations

How Classicists might have “derived” quantum equations

Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics

Thursday, October 9, 2014
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Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.

Ldt = pev-dt — H-dt = pedr — H-dt (VZ % implies: v-dt=dr

)

Thursday, October 9, 2014
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Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.

‘dt = pev-dt — H-dt = pedr — H-dt (VZ % implies: V-dl‘ZdI‘)

This 1s the time differential dS of action S = J.L'dt whose time derivative 1s rate L. of guantum phase.

dS = [-dt =pedr — H-dt where: [ = %

Thursday, October 9, 2014 21



Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.

L'dt:I)'V'dt—H'dt:podr_H.dt V:d_l‘

This 1s the time differential dS of action S = J.L'dt whose time derivative 1s rate L. of guantum phase.

dS = ldt =pedr — H-dt where: [ = ﬁ

dt

Unit 8 shows E)eBmglie law p:hlaand Elanck law H :haamake quantum plane wave phase P:
©=S/h= | Ldtlh
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Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.

L'dt:I)'V'dt—H'dt:podr_H.dt V:d_l‘

This 1s the time differential dS of action S = J.L'dt whose time derivative 1s rate L. of guantum phase.

dS = ldt =pedr — H-dt where: [ = ﬁ

dt

Unit 8 shows E)eBmglie law p:hlaand Elanck law H :haamakelquantum planey_@e O |

® = S/h = j L-dt/h

. S e
l//(l‘,t)zelS/h _ iper=tn)ih _ i(ker—0-1)
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Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.

L'dt:p°V°dt—H°dt:podr_H.dt V:d_l‘

This 1s the time differential dS of action S = J.L'dt whose time derivative 1s rate L. of guantum phase.

dS = ldt =pedr — H-dt where: [ = ﬁ

dt

Unit 8 shows E)eBmglie law p:hlaand Elanck law H :h@makelquantum pWe O |

® = S/h = j L-dt/h

. S e
l//(l‘,t)zelS/h _ iper=tn)ih _ i(ker—0-1)

Q:When i1s the Action-differential dS integrable? W I

A: A differential dVV=fx(x,y)dx+fy(x,y)dy is integrable to a W(x,y) if: . =——and: /, = o
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Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.
Ldt =pev-dt — H-dt = pedr — H- dt V=

This 1s the time differential dS of action S = J.L'dt whose time derivative 1s rate L. of guantum phase.

dS = ldt =pedr — H-dt where: [ = %

Unit 8 shows E)eBmglie law p:hlaand Elanck law H :haamakelquantum planey_@e O |

©=S/h= | Ldtlh

1S/h i(per—/H-t)/h [(Ker—w-t
l//(l‘ o t) =€ =€ (p ) =€ ( ) Similar to conditions
for integrating work
differential dW=fdr
Q:When is the Action-differential dS integrable? aw to get potential W(r).
A: Difterential dIV=f(x,y)dx+f,(x,y)dy 1s integrable to a W(x,y) if: 1. = —and f, = That condition is no
dy curl allowed. Vxf=0
or 0-symmetry of W:

off, oW o'W _df,
dy dyox oOxdy Ox
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Legendre-Poincare identity and Action

Legendre transform /.(V) = pev — H (P) becomes Poincare’s invariant differential if dt is cleared.
Ldt =pev-dt — H-dt = pedr — H- dt V=u

This 1s the time differential dS of action S = J.L'dt whose time derivative 1s rate L. of guantum phase.

dS

dS = ldt =pedr — H-dt where: [ = m

Unit 8 shows E)eBmglie law p:hlaand Elanck law H :haamakelquantum pwme D |
K

® = S/h = j L-dt/h

iS/h i(per—/H-t)/h i(ker—m-t
l/j(r,t) = € = € (p ) = € ( ) Similar to conditions
for integrating work
differential dW=fdr
Q: When 1s the Action-differential dS integrable? aw to get potential W(r).
A: Difterential dIV=f(x,y)dx+f,(x,y)dy 1s integrable to a W(x,y) if: 1. = —and f, = That condition is no
dy curl allowed. Vxf=0
aS aS or 0-symmetry of W:
dS 1s integrable if: [—: p| and: | —=— oF, W W o,
al' at dy dyox oxdy ox

These conditions are known as Jacobi-Hamilton equations

Thursday, October 9, 2014
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Exploring phase space and Lagrangian mechanics more deeply
A weird “derivation” of Lagrange's equations

Poincare identity and Action, Jacobi-Hamilton equations
How Classicists might have “derived” quantum equations

Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics

Thursday, October 9, 2014
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How Jacobi-Hamilton could have “derived” Schrodinger equations

(Given “quantum wave”)

() =e

dS 1s integrable if{a—S: pJ and: [B—S: — ]
or ot

These conditions are known as Jacobi-Hamilton equations

1S /h — ei(p-r—H-t)/h — ei(k-r—a)-t)

Thursday, October 9, 2014
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How Jacobi-Hamilton could have “derived” Schrodinger equations

(Given “quantum wave ")

l//(r H=e¢e

dS 1s integrable if: [BS pj and: [B—S: — j
or ot

These conditions are known as Jacobi-Hamilton equations

i1S/h — ei(p-r—H-t)/h — ei(k-r—a)-t)

Iry Is' r-derivative of wave |

3, 0 n  O(iS/h) Sisih ds

= = o = /T
or o V0= or e or (l )8 wr.n)
0 | "5 D A
—y(r,t)=(i/h)py(r,t) or: |——wy(r,t)=py(r,t)
or i dr )
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How Jacobi-Hamilton could have “derived” Schrodinger equations

(Given “quantum Wave ")

l//(r H=e¢e

dS 1s integrable if: (BS pJ and: [B—S: — j
or ot

These conditions are known as Jacobi-Hamilton equations

i1S/h — ei(p-r—H-t)/h — ei(k-r—a)-t)

Iry Is' r-derivative of wave |

a a iS/h a(lS/h) lS/h aS
il — — / R
= w(r,t)= = - = (i )8 y(r,z)
) | X k
a—rt/f(r,t)=(l/ h)pw(r,t) or: oY) =py(r)
Try I’ t-derivative of wave | ) ’
0 d s a(iS / h) o511 ds
- , e — /h
= w(r,t) = Y =(i/h)—= o y(r,r)
- 3 B

=(i/n)(=H )y(r,t) or: iha—l//(r,t):Hl//(r,t)

\_ 4 J
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Exploring phase space and Lagrangian mechanics more deeply

A weird “derivation” of Lagrange's equations
Poincare identity and Action, Jacobi-Hamilton equations
How Classicists might have “derived” quantum equations

» Huygen’s contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics

Thursday, October 9, 2014
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Huygen s contact transformations enforce minimum action

Each point ri on a wavefront “broadcasts” in all directions.
Only minimum action path interferes constructively

r n
gl_lme'fﬁdelfendsm 61530? 3S’H — J‘podl’ S,/(r,r)=30 Time-dependent action Sp = J- (p-dl' — H-dt)
vHamitton's redaucea action ro (Hamilton’s principle action) g,
1s a purely spatial integral . S (ry1)=20 is space-time integral .

Sy(ryr)=10
r
1‘20 30
‘ | ‘
% L_'
Optimal path F30
ptimal path rg to rag :
accumulates 2 ,Unlt I
=TtLeast action possible) (T 10:7)ET0 Fig. 12.12

Non-optimal path r( to ry

Leamines 0/ | Sutn=20

Thursday, October 9, 2014
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Yo “g__A

Huygen s contact transformations enforce minimum action

Each point ri on a wavefront “broadcasts” in all directions.
Only minimum action path interferes constructively

n

r
eadatsctn s, = [t S Tnedpenionacion 5, = | (v~ 1)
\ | cal int | I (Hamilton’s principle action) r,

15 a purely spalial Infegral . Sy(ryr)=20 is space-time integral .
ISy )/ A : :

...because action is

: ‘ quantum wave phase
av

Optimal path rg to ra

accumulates 2
east action possible)

Non-optimal path r( to ry

'3
Unit 1
Fig. 12.12

(T 10:7)ET0

S, (X A1)=20

Feynman's path-sum closure relfestign

e ) Iy

5 (r,
r

)= Z,ei(SH(roir')JrSH("':rl))/h _ JASulom ) _ (1],

Thursday, October 9, 2014
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Exploring phase space and Lagrangian mechanics more deeply
A weird “derivation” of Lagrange's equations
Poincare identity and Action, Jacobi-Hamilton equations
How Classicists might have “derived” quantum equations

Huygen's contact transformations enforce minimum action
» How to do quantum mechanics if you only know classical mechanics

Davis-Heller “Color-Quantization” or “Classical Chromodynamics”

Thursday, October 9, 2014
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How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S,/ in amplitude to be an integral multiple n of 2w after a
closed loop integral S, (r,:r,)= j ‘pedr . Theintegern (n =0, 1, 2,...) is a quantum number.

1= <r0‘r0> = eiSH(rO:rO)/h =% for X, =2nhn=hn

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the
current accumulated value of action Sy(0 - r)/h. Adjust energy to quantized pattern (if closed system™)

Su(0:1)=Sp(0,0:x,¢t)+Ht= [ Ldt + Ht.

Thursday, October 9, 2014 35



How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S,/ in amplitude to be an integral multiple n of 2w after a
closed loop integral S, (r,:r,)= j ‘pedr . Theintegern (n =0, 1, 2,...) is a quantum number.

1= {ry|ry) = S0V Gy g s =

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the
current accumulated value of action Sy(0 - r)/h. Adjust energy to quantized pattern (if closed system™)

Su(0:1)=Sp(0,0:x,¢t)+Ht= [ Ldt + Ht.

The hue should represent the phase angle Sy (0 : r)/i modulo 2x as, for example,

O=red, , , 3n/4=green, (opposite of red), Sn/4=indigo, 3n/2=blue, , and 2m=red (full color circle).
Interpolating action on a palette of 32 colors is enough precision for low quanta.

simulation

by
“Color U(2)”

has quantized E.

Standing wave has

only two phases(+)
and red

Wavepacket and Color-quantization:
M. J. Davis and E. J. Heller, J. Chem. Phys. 75, 246 (1981)
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How to do quantum mechanics if you only know classical mechanics
Bohr quantization requires quantum phase S,/ in amplitude to be an integral multiple n of 2w after a
closed loop integral S, (r,:r,)= L° pedr . Theintegern (n =0, 1, 2,...) 1s a quantum number.

1= {ry|ry) = S0V Gy g s =

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the
current accumulated value of action Sy(0 - r)/h. Adjust energy to quantized pattern (if closed system™)

Su(0:1)=Sp(0,0:x,¢t)+Ht= [ Ldt + Ht.

The hue should represent the phase angle Sy (0 : r)/i modulo 2x as, for example,

O=red, , , 3m/4=green, (opposite of red), Sn/4=indigo, 3n/2=blue, , and 2m=red (full color circle).
Interpolating action on a palette of 32 colors is enough precision for low quanta.

*open system has continuous energy

has quantized E

Standing wave has

only two phases(+
and red

m ‘|| |I|||I‘"'“I-I:'I-' ,. |
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A moving wave has a quantum phase velocity found by setting S=const. or dS(0,0:r,t)=0=pedr-/ldt .
v _dr H o
phase — dt_ p _k

Quantum “phase wavefronts”
(b) Sp=0.35 (c) Sp=0.4

wavefront
“cat ears’”
scoot outward..
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A moving wave has a quantum phase velocity found by setting S=const. or dS(0,0:r,t)=0=pedr-/ldt .
v _dr H o
phase — dt_ p _k
This 1s quite the opposite of classical particle velocity which 1s quantum group velocity.

€€ b4 dl' aH aa)
uantum hase wavefronts - —y= —
Q p f Vgroup dt r

(a) Sy=0.3 (b) Sy=0.35 (c) Sy=0.4 dp Jk

Note: This is Hamilton’s 15t Equation

wavefront
“cat ears’”
scoot outward..

e 5 ;_.__.__.__‘_‘ o :
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- \k‘*: f

After a while ...
nothing left but a smile!
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A moving wave has a quantum phase velocity found by setting S=const. or dS(0,0:r,t)=0=pedr-/ldt .
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-
ST
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Unit 1

Quantum “phase wavefronts”
(b) Sp=0.35

it
wLLL T
.:"H._ x:\::l.:{l.-\. [1]

e o
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kN :-‘“"\'ﬂ :
el St o
=T
L

i

dr H o

Vphase - dt - p k
This 1s quite the opposite of classical particle velocity which 1s quantum group velocity.

(c) Sy=0.4

After a while ...
nothing left but a smile!

Vgroup - E -

wavefront
“cat ears’”’
scoot outward..

16th Century carving on St. Wifred’s in Grappenhall ...on St. Nicolas

dr l,._8H_8a)
dp ok

Note: This is Hamilton’s 15t Equation

From Alice’s Adventures in Wonderland by Lewis Carrol (1865)
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A moving wave has a quantum phase velocity found by setting S=const. or dS(0,0:r,t)=0=pedr-/ldt .
v _dr H o
phase — dt_ p _k
This 1s quite the opposite of classical particle velocity which 1s quantum group velocity.

€€ b4 dl' aH aa)
uantum hase wavefronts - —y= —

(b) Sp=0.35 (c) Sy=0.4 dp Ik

Note: This is Hamilton’s 15t Equation

Classical “blast wavefronts”

(b) T=1.0

Unit 1 | .:55.::_::::}}_-__
Fig. 12.15

lower Vphase down heroii higher Vgroup down hel’e :
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Chladni

The diagrams of Ernst Chladni (1756-1827) are the scientific, artistic, and even the sociological birthplace of the modern field of
wave physics and quantum chaos. Educated in Law at the University of Leipzig, and an amateur musician, Chladni soon followed
his love of science and wrote one of the first treatises on acoustics, "Discovery of the Theory of Pitch". Chladni had an inspired
idea: to make waves in a solid material visible. This he did by getting metal plates to vibrate, stroking them with a violin bow. Sand
or a similar substance spread on the surface of the plate naturally settles to the places where the metal vibrates the least, making
such places visible. These places are the so-called nodes, which are wavy lines on the surface. The plates vibrate at pure, audible
pitches, and each pitch has a unique nodal pattern. Chladni took the trouble to carefully diagram the patterns, which helped to
popularize his work. Then he hit the lecture circuit, fascinating audiences in Europe with live demonstrations. This culminated with
a command performance for Napoleon, who was so impressed that he offered a prize to anyone who could explain the patterns.
More than that, according to Chladni himself, Napoleon remarked that irreqularly shaped plate would be much harder to
understand! While this was surely also known to Chladni, it is remarkable that Napoleon had this insight. Chladni received a sum
of 6000 francs from Napoleon, who also offered 3000 francs to anyone who could explain the patterns. The mathematician Sophie
Germain took he prize in 1816, although her solutions were not completed until the work of Kirchoff thirty years later. Even so, the
patterns for irregular shapes remained (and to some extent remains) unexplained. Government funding of waves research goes
back a long way! (Chladni was also the first to maintain that meteorites were extraterrestrial; before that, the popular theory was
that they were of volcanic origin.) One of his diagrams is the basis for image, which is a playfully colored version of Chaldni's
original line drawing. Chladni's original work on waves confined to a region was followed by equally remarkable progress a few
years later.
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Q@versity Museum, University of Arkansas, Fayetteville, AK )
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"Approaching Chaos: Visions from the Quantum Frontier"

Approaching Chaos is supported by a grant from the National Science Foundation and by MIT Museum and the
Center for Theoretical Physics at the Massachusetts Institute of Technology.
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Arlington, VA
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Q@versity Museum, University of Arkansas, Fayetteville, AK )
October 2002 - December 2002

"Approaching Chaos: Visions from the Quantum Frontier"

Approaching Chaos is supported by a grant from the National Science Foundation and by MIT Museum and the
Center for Theoretical Physics at the Massachusetts Institute of Technology.

*UAF Museum closed after this exhibit
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