
Lecture  12 
Tue. 10.2.2012

Hamiltonian vs. Lagrange mechanics
in Generalized Curvilinear Coordinates (GCC)

(Unit 1 Ch. 12, Unit 2 Ch. 2-7, Unit 3 Ch. 1-3)
Review of Lectures 9-11 procedures: 
Lagrange prefers      Covariant gmn with Contravariant velocity
    

Hamilton prefers Contravariant gmn with Covariant momentum pm

                        Deriving Hamilton’s equations from Lagrange’s equations 
         Expressing Hamiltonian H(pm,qn) using gmn and covariant momentum pm        

Polar-coordinate example of Hamilton’s equations 
      Hamilton’s equations in Runga-Kutta (computer solution) form

  

Examples of Hamiltonian mechanics in effective potentials
         Isotropic Harmonic Oscillator in polar coordinates and effective potential (Simulation)
         Coulomb orbits  in polar coordinates and effective potential  (Simulation)
 

Parabolic and 2D-IHO orbital envelopes
Clues for take-home assignment 7 (Simulation)   

Examples of Hamiltonian mechanics in phase plots
         1D Pendulum and phase plot (Simulation)

1D-HO phase-space control (Simulation)    

 q
m
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Quick Review of Lagrange Relations in Lectures 9-11
0th and 1st equations of Lagrange and Hamilton and their geometric relations
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Quick Review of Lagrange Relations in Lectures 9-11
0th and 1st equations of Lagrange and Hamilton

Starts out with simple demands for explicit-dependence, “loyalty” or “fealty to the colors” 
 

∂L
∂pk

≡ 0 ≡ ∂E
∂pk

∂H
∂vk

≡ 0 ≡ ∂E
∂vk

∂L
∂Vk

≡ 0 ≡ ∂H
∂Vk

Lagrangian and Estrangian 
have no explicit dependence 
on momentum p

Hamiltonian and Estrangian 
have no explicit dependence 
on velocity v

Lagrangian and Hamiltonian 
have no explicit dependence 
on speedinum V

Such non-dependencies hold in spite of “under-the-table” matrix and partial-differential connections 

 

∇vL = ∂L
∂v

= ∂
∂v
viMiv
2

=M iv= p  

∇ pH = v = ∂H
∂p

= ∂
∂p
piM−1ip
2

=M−1ip = v

(Forget Estrangian for now)

Lagrange’s 1st equation(s)                  Hamilton’s 1st equation(s)

   

∂L
∂vk

= pk      or:       ∂L
∂v

= p
   

∂H
∂pk

= vk      or:       ∂H
∂p

= v

  

∂L
∂v1

∂L
∂v2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
m1 0

0 m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

v1

v2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

p1

p2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

  

∂H
∂p1

∂H
∂p2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
m1
−1 0

0 m2
−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

p1

p2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

v1

v2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

p. 60 of
Lecture 9
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p2=m2v2

p1
=m1v1

Hamiltonian plot
H(p)=const.=p•M-1•p/2(b)Lagrangian plot

L(v)=const.=v•M•v/2

v2=p2 /m2

L=const = E

v1=
p1 /m1

(a)

v v = ∇∇pH
=M-1•p

p = ∇∇vL
=M•v

p

Lagrangian tangent at velocity v
is normal to momentum p

Hamiltonian tangent at momentum p
is normal to velocity v

(c) Overlapping plots
v

p

v

p

p

v (d) Less mass

(e) More mass

H=const = E

L=const = E

H=const = E

Unit 1
Fig. 12.2 

1st equation of Lagrange

1st equation of Hamilton

p. 61 of
Lecture 9
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Lagrange prefers Covariant gmn with Contravariant velocity 
GCC Lagrangian definition
GCC “canonical” momentum pm definition
GCC “canonical”       force    Fm definition

Coriolis “fictitious” forces  (… and weather effects)

 q
m

Review of Lagrange Equations in Lecture 11

(Review of Lecture 11)
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    Lagrange prefers Covariant gmn with Contravariant velocity 

Use polar coordinate Covariant gmn metric (1-page back)

 

grr grφ
gφr gφφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 r2
⎛

⎝⎜
⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

 L( r,
φ) =2

1M (grr r
2 + gφφ φ

2)−U(r,φ) =2
1M (1·r2 + r2 ·φ 2)−U(r,φ)

Lagrangian KE-U is supposed to be explicit function of velocity.    

 L(v) =2
1Mviv−U = 2

1Mri r−U = 2
1M (Em q

m)i(En q
n)−U = 2

1M (gmn q
m qn)−U = L( q)

(Review of Lecture 11)
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    Lagrange prefers Covariant gmn with Contravariant velocity 

Use polar coordinate Covariant gmn metric (1-page back)

 

grr grφ
gφr gφφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 r2
⎛

⎝⎜
⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

 L( r,
φ) =2

1M (grr r
2 + gφφ φ

2)−U(r,φ) =2
1M (1·r2 + r2 ·φ 2)−U(r,φ)

GCC Lagrange equations follow.  1st L-equation is momentum pm definition for each coordinate qm:

 
pr =

∂L
∂ r

= M grr r = M r
 
pφ =

∂L
∂ φ

= Mgφφ φ = Mr2 φ
Nothing too surprising;
radial momentum pr has the
usual linear M·v form

Wow! gφφ gives moment-of-inertia
factor Mr2 automatically for the 
angular momentum pφ=Mr2ω.

Lagrangian KE-U is supposed to be explicit function of velocity.    

 L(v) =2
1Mviv−U = 2

1Mri r−U = 2
1M (Em q

m)i(En q
n)−U = 2

1M (gmn q
m qn)−U = L( q)

(Review of Lecture 11)
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    Lagrange prefers Covariant gmn with Contravariant velocity 

Use polar coordinate Covariant gmn metric (1-page back)

 

grr grφ
gφr gφφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 r2
⎛

⎝⎜
⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

 L( r,
φ) =2

1M (grr r
2 + gφφ φ

2)−U(r,φ) =2
1M (1·r2 + r2 ·φ 2)−U(r,φ)

GCC Lagrange equations follow.  1st L-equation is momentum pm definition for each coordinate qm:

 
pr =

∂L
∂ r

= M grr r = M r
 
pφ =

∂L
∂ φ

= Mgφφ φ = Mr2 φ
Nothing too surprising;
radial momentum pr has the
usual linear M·v form

Wow! gφφ gives moment-of-inertia
factor Mr2 automatically for the 
angular momentum pφ=Mr2ω.

 
pr =

∂L
∂r

= M
2

∂gφφ
∂r
φ 2 − ∂U

∂r
= M r φ 2− ∂U

∂r  
pφ =

∂L
∂φ

= 0 − ∂U
∂φ

Centrifugal
force Mrω2

2nd L-equation involves total time derivative pm  for each momentum pm:   i

Angular momentum pφ is conserved if 
potential U has no explicit φ-dependence

Lagrangian KE-U is supposed to be explicit function of velocity.    

 L(v) =2
1Mviv−U = 2

1Mri r−U = 2
1M (Em q

m)i(En q
n)−U = 2

1M (gmn q
m qn)−U = L( q)

(Review of Lecture 11)
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    Lagrange prefers Covariant gmn with Contravariant velocity 

Use polar coordinate Covariant gmn metric (1-page back)

 

grr grφ
gφr gφφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 r2
⎛

⎝⎜
⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

 L( r,
φ) =2

1M (grr r
2 + gφφ φ

2)−U(r,φ) =2
1M (1·r2 + r2 ·φ 2)−U(r,φ)

GCC Lagrange equations follow.  1st L-equation is momentum pm definition for each coordinate qm:

 
pr =

∂L
∂ r

= M grr r = M r
 
pφ =

∂L
∂ φ

= Mgφφ φ = Mr2 φ
Nothing too surprising;
radial momentum pr has the
usual linear M·v form

Wow! gφφ gives moment-of-inertia
factor Mr2 automatically for the 
angular momentum pφ=Mr2ω.

 
pr =

∂L
∂r

= M
2

∂gφφ
∂r
φ 2 − ∂U

∂r
= M r φ 2− ∂U

∂r  
pφ =

∂L
∂φ

= 0 − ∂U
∂φ

Centrifugal
force Mrω2

 

pr ≡
dpr
dt

= M r

 

pφ ≡
dpφ
dt

= 2Mrr φ +Mr2φCentrifugal (center-fleeing) force

2nd L-equation involves total time derivative pm  for each momentum pm:   i

 
pm ≡ dpm

dt
= d
dt
M (gmn q

n ) = M ( gmn q
n+ gmnq

n )Find      directly from 1st L-equation:         pm
 i

Angular momentum pφ is conserved if 
potential U has no explicit φ-dependence

Torque relates to two distinct parts:
Coriolis and angular acceleration 

Lagrangian KE-U is supposed to be explicit function of velocity.    

 L(v) =2
1Mviv−U = 2

1Mri r−U = 2
1M (Em q

m)i(En q
n)−U = 2

1M (gmn q
m qn)−U = L( q)

(Review of Lecture 11)
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    Lagrange prefers Covariant gmn with Contravariant velocity 

Use polar coordinate Covariant gmn metric (1-page back)

 

grr grφ
gφr gφφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

Er iEr Er iEφ

Eφ iEr Eφ iEφ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 r2
⎛

⎝⎜
⎞

⎠⎟

This gives polar GCC form (Actually it’s an OCC or Orthogonal Curvilinear Coordinate form)

 L( r,
φ) =2

1M (grr r
2 + gφφ φ

2)−U(r,φ) =2
1M (1·r2 + r2 ·φ 2)−U(r,φ)

GCC Lagrange equations follow.  1st L-equation is momentum pm definition for each coordinate qm:

 
pr =

∂L
∂ r

= M grr r = M r
 
pφ =

∂L
∂ φ

= Mgφφ φ = Mr2 φ
Nothing too surprising;
radial momentum pr has the
usual linear M·v form

Wow! gφφ gives moment-of-inertia
factor Mr2 automatically for the 
angular momentum pφ=Mr2ω.

 
pr =

∂L
∂r

= M
2

∂gφφ
∂r
φ 2 − ∂U

∂r
= M r φ 2− ∂U

∂r  
pφ =

∂L
∂φ

= 0 − ∂U
∂φ

Centrifugal
force Mrω2

 

pr ≡
dpr
dt

= M r

= M r φ 2− ∂U
∂r  

pφ ≡
dpφ
dt

= 2Mrr φ +Mr2φ

= 0 − ∂U
∂φ

Centrifugal (center-fleeing) force
equals total

Centripetal (center-pulling) force Angular momentum pφ is conserved if 
potential U has no explicit φ-dependence

2nd L-equation involves total time derivative pm  for each momentum pm:   i

 
pm ≡ dpm

dt
= d
dt
M (gmn q

n ) = M ( gmn q
n+ gmnq

n )Find      directly from 1st L-equation:         pm
 i

 pmEquate it to     in 2nd L-equation:

Angular momentum pφ is conserved if 
potential U has no explicit φ-dependence

Torque relates to two distinct parts:
Coriolis and angular acceleration 

Lagrangian KE-U is supposed to be explicit function of velocity.    

 L(v) =2
1Mviv−U = 2

1Mri r−U = 2
1M (Em q

m)i(En q
n)−U = 2

1M (gmn q
m qn)−U = L( q)

(Review of Lecture 11)
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(makes φ positive)
..

 

pr ≡
dpr
dt

= M r

= M r φ 2− ∂U
∂r  

pφ ≡
dpφ
dt

= 2Mrr φ +Mr2φ

= 0 − ∂U
∂φ

Centrifugal (center-fleeing) force
equals total

Centripetal (center-pulling) force Angular momentum pφ is conserved if 
potential U has no explicit φ-dependence

Torque relates to two distinct parts:
Coriolis and angular acceleration 

Rewriting GCC Lagrange equations :

Conventional forms
                     radial force:                                            angular force or torque:

 
M r = M r φ 2− ∂U

∂r  
Mr2φ = −2Mrr φ − ∂U

∂φ

L

Northern hemisphere rotation
φ >0

Inward flow to pressure Low
r<0

Coriolis acceleration with φ >0 and r<0
φ = -2 r φ /r

L

Field-free (U=0)
         radial acceleration:                                                angular acceleration: r = r φ

2

 
φ = −2 r

φ
r

Effect on 
Northern

Hemisphere
local weather

Cyclonic flow
around lows

...makes wind turn to the right

(with φ = 0)
.

(Review of Lecture 11)
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 Hamilton prefers Contravariant gmn with Covariant momentum pm

                        Deriving Hamilton’s equations from Lagrange’s equations 
         Expressing Hamiltonian H(pm,qn) using gmn and covariant momentum pm 
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Consider total time derivative of Lagrangian L=T-U 
that is explicit function of coordinates and velocity   ...   

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt

!q

Deriving Hamilton’s equations from Lagrangian theory 
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Consider total time derivative of Lagrangian L=T-U 
that is explicit function of coordinates and velocity   ...   

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt
+ ∂L
∂t

dt
dt

...of coordinates and velocity and time, too. 

!q

(You can safely drop last chain-rule factor [1=dt/dt] )

Deriving Hamilton’s equations from Lagrangian theory 
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Consider total time derivative of Lagrangian L=T-U 
that is explicit function of coordinates and velocity   ...   

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt
+ ∂L
∂t

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U(t)-dial.)  

!q

...smaller! 
NO,BIGGER!
...NO,smaller!
NO,BIGGER!....

Deriving Hamilton’s equations from Lagrangian theory 
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Consider total time derivative of Lagrangian L=T-U 
that is explicit function of coordinates and velocity   ...   

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt
+ ∂L
∂t

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)  

!q

  
pm = ∂L

∂qm
  
pm = ∂L

∂ qmRecall Lagrange equations:

   
L q, q,t( ) = dL

dt
= pm

dqm

dt
+ pm

d qm

dt
+ ∂L
∂t

...smaller! 
NO,BIGGER!
...NO,smaller!
NO,BIGGER!

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt

Deriving Hamilton’s equations from Lagrangian theory 
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Consider total time derivative of Lagrangian L=T-U 
that is explicit function of coordinates and velocity   ...   

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt
+ ∂L
∂t

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)  

!q

  
pm = ∂L

∂qm
  
pm = ∂L

∂ qmRecall Lagrange equations:

   

L q, q,t( ) = dL
dt

= pm
dqm

dt
+ pm

d qm

dt
+ ∂L
∂t

               = dL
dt

= d
dt

pm q
m( ) + ∂L

∂t

...smaller! 
NO,BIGGER!
...NO,smaller!
NO,BIGGER!

Use product rule:

 
u dv
dt

+u d v
dt

= d
dt
(u v)

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt

Deriving Hamilton’s equations from Lagrangian theory 
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L q, q,t( ) = dL
dt

= pm
dqm

dt
+ pm

d qm

dt
+ ∂L
∂t

               = dL
dt

= d
dt

pm q
m( ) + ∂L

∂t

Consider total time derivative of Lagrangian L=T-U 
that is explicit function of coordinates and velocity   ...   

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt
+ ∂L
∂t

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)  

!q

  
pm = ∂L

∂qm
  
pm = ∂L

∂ qmRecall Lagrange equations:

   
d
dt

pm q
m − L( ) = − ∂L

∂t
= dH

dt
where : H = pm q

m − L

and switch the dL/dt and ∂L/∂t to define the Hamiltonian function    H (p) = p iv − L(v)

...smaller! 
NO,BIGGER!
...NO,smaller!
NO,BIGGER!

Use product rule:

 
u dv
dt

+u d v
dt

= d
dt
(u v)

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt

Deriving Hamilton’s equations from Lagrangian theory 
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L q, q,t( ) = dL
dt

= pm
dqm

dt
+ pm

d qm

dt
+ ∂L
∂t

               = dL
dt

= d
dt

pm q
m( ) + ∂L

∂t

Consider total time derivative of Lagrangian L=T-U 
that is explicit function of coordinates and velocity   ...   

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt
+ ∂L
∂t

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)  

!q

  
pm = ∂L

∂qm
  
pm = ∂L

∂ qmRecall Lagrange equations:

   
d
dt

pm q
m − L( ) = − ∂L

∂t
= dH

dt
where : H = pm q

m − L

Define the Hamiltonian function    H (p) = p iv − L(v)

   
 ∂H
∂pm

= qm

Hamilton’s 1st GCC equation

(Recall              ) 
  

∂L
∂pm

≡ 0

...smaller! 
NO,BIGGER!
...NO,smaller!
NO,BIGGER!

(That’s the old Legendre transform)

Use product rule:

 
u dv
dt

+u d v
dt

= d
dt
(u v)

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt

Deriving Hamilton’s equations from Lagrangian theory 
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Consider total time derivative of Lagrangian L=T-U 
that is explicit function of coordinates and velocity   ...   

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt
+ ∂L
∂t

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)  

!q

  
pm = ∂L

∂qm
  
pm = ∂L

∂ qmRecall Lagrange equations:

   
d
dt

pm q
m − L( ) = − ∂L

∂t
= dH

dt
where : H = pm q

m − L

Define the Hamiltonian function    H (p) = p iv − L(v)

   
 ∂H
∂pm

= qm
   

∂H
∂qm

= 0·0− ∂L
∂qm

=− pm

  

∂H
∂qm

= − pm

Hamilton’s 1st GCC equation Hamilton’s 2nd GCC equation

(Recall:              

  
  

∂L
∂pm

≡ 0

   

∂H
∂ qm

≡ 0and:                   ) 

...smaller! 
NO,BIGGER!
...NO,smaller!
NO,BIGGER!

(That’s the old Legendre transform)

Use product rule:

 
u dv
dt

+u d v
dt

= d
dt
(u v)

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt

   

L q, q,t( ) = dL
dt

= pm
dqm

dt
+ pm

d qm

dt
+ ∂L
∂t

               = dL
dt

= d
dt

pm q
m( ) + ∂L

∂t

Deriving Hamilton’s equations from Lagrangian theory 
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L q, q,t( ) = dL
dt

= pm
dqm

dt
+ pm

d qm

dt
+ ∂L
∂t

               = dL
dt

= d
dt

pm q
m( ) + ∂L

∂t

Consider total time derivative of Lagrangian L=T-U 
that is explicit function of coordinates and velocity   ...   

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt
+ ∂L
∂t

...of coordinates and velocity and time, too. (Imagine Mad Scientist turning U-dial.)  

!q

  
pm = ∂L

∂qm
  
pm = ∂L

∂ qmRecall Lagrange equations:

   
d
dt

pm q
m − L( ) = − ∂L

∂t
= dH

dt
where : H = pm q

m − L

Define the Hamiltonian function    H (p) = p iv − L(v)

   
 ∂H
∂pm

= qm

  

∂H
∂qm

= − pm

Hamilton’s 1st GCC equation Hamilton’s 2nd GCC equation

(Recall:              

  
  

∂L
∂pm

≡ 0

   

∂H
∂ qm

≡ 0and:                   ) 
a most peculiar relation
involving partial vs total

...smaller! 
NO,BIGGER!
...NO,smaller!
NO,BIGGER!

(That’s the old Legendre transform)

Use product rule:

 
u dv
dt

+u d v
dt

= d
dt
(u v)

   
L q, q,t( ) = dL

dt
= ∂L
∂qm

dqm

dt
+ ∂L
∂ qm

d qm

dt

Deriving Hamilton’s equations from Lagrangian theory 
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        Polar-coordinate example of Hamilton’s equations 
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Using Legendre transform of Lagrangian L=T-U with covariant metric definitions of L and pm

We already have:                             and:                                          and:                                        

Now we combine all these:

 Hamilton prefers Contravariant gmn with Covariant momentum pm  

 L( q) = 2
1Mgmn q

m qn−U
 
pm = ∂L

∂ qm
= Mgmn q

n

  H = pm q
m − L
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Using Legendre transform of Lagrangian L=T-U with covariant metric definitions of L and pm

We already have:                             and:                                          and:                                        

Now we combine all these:

 Hamilton prefers Contravariant gmn with Covariant momentum pm  

   

H = pm q
m − L = Mgmn q

n( ) qm − 2
1 Mgmn q

m qn−U( )
= Mgmn q

m qn−2
1 Mgmn q

m qn +U

 L( q) = 2
1Mgmn q

m qn−U
 
pm = ∂L

∂ qm
= Mgmn q

n

  H = pm q
m − L
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Using Legendre transform of Lagrangian L=T-U with covariant metric definitions of L and pm

We already have:                             and:                                          and:                                        

Now we combine all these:

 Hamilton prefers Contravariant gmn with Covariant momentum pm  

   

H = pm q
m − L = Mgmn q

n( ) qm − 2
1 Mgmn q

m qn−U( )
= Mgmn q

m qn−2
1 Mgmn q

m qn +U

   H =2
1 Mgmn q

m qn +U = T +U  
   ( Numerically

correct ONLY!
) 

 L( q) = 2
1Mgmn q

m qn−U
 
pm = ∂L

∂ qm
= Mgmn q

n

  H = pm q
m − L

This gives an “illegal dependence” for the Hamiltonian (It musn’t be “explicit” in velocity   .) q
m
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Using Legendre transform of Lagrangian L=T-U with covariant metric definitions of L and pm

We already have:                             and:                                          and:                                        

Now we combine all these:

 Hamilton prefers Contravariant gmn with Covariant momentum pm  

   

H = pm q
m − L = Mgmn q

n( ) qm − 2
1 Mgmn q

m qn−U( )
= Mgmn q

m qn−2
1 Mgmn q

m qn +U

   H =2
1 Mgmn q

m qn +U = T +U  
   ( Numerically

correct ONLY!
) 

  
H = 1

2M
gmn pm pn +U = T +U ≡ E

 
   ( Formally and Numerically

correct
)

 L( q) = 2
1Mgmn q

m qn−U
 
pm = ∂L

∂ qm
= Mgmn q

n

  H = pm q
m − L

This gives an “illegal dependence” for the Hamiltonian (It musn’t be “explicit” in velocity   .)

An inverse metric relation                          gives correct form that depends on momentum pm.
 
qm = 1

M
gmn pn

 q
m
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Using Legendre transform of Lagrangian L=T-U with covariant metric definitions of L and pm

We already have:                             and:                                          and:                                        

Now we combine all these:

 Hamilton prefers Contravariant gmn with Covariant momentum pm  

   

H = pm q
m − L = Mgmn q

n( ) qm − 2
1 Mgmn q

m qn−U( )
= Mgmn q

m qn−2
1 Mgmn q

m qn +U

   H =2
1 Mgmn q

m qn +U = T +U  
   ( Numerically

correct ONLY!
) 

  
H = 1

2M
gmn pm pn +U = T +U ≡ E

 
   ( Formally and Numerically

correct
)

 L( q) = 2
1Mgmn q

m qn−U
 
pm = ∂L

∂ qm
= Mgmn q

n

  H = pm q
m − L

This gives an “illegal dependence” for the Hamiltonian (It musn’t be “explicit” in velocity   .)

An inverse metric relation                          gives correct form that depends on momentum pm.
 
qm = 1

M
gmn pn

 q
m

 L( r,
φ,r,φ) = 2

1M (grr r
2 + gφφ φ

2)−U(r,φ) = 2
1M ( r2 + r2 ·φ 2)−U(r,φ)

Polar coordinate Lagrangian was given as:
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Using Legendre transform of Lagrangian L=T-U with covariant metric definitions of L and pm

We already have:                             and:                                          and:                                        

Now we combine all these:

 Hamilton prefers Contravariant gmn with Covariant momentum pm  

   

H = pm q
m − L = Mgmn q

n( ) qm − 2
1 Mgmn q

m qn−U( )
= Mgmn q

m qn−2
1 Mgmn q

m qn +U

   H =2
1 Mgmn q

m qn +U = T +U  
   ( Numerically

correct ONLY!
) 

  
H = 1

2M
gmn pm pn +U = T +U ≡ E

 
   ( Formally and Numerically

correct
)

 L( q) = 2
1Mgmn q

m qn−U
 
pm = ∂L

∂ qm
= Mgmn q

n

  H = pm q
m − L

This gives an “illegal dependence” for the Hamiltonian (It musn’t be “explicit” in velocity   .)

An inverse metric relation                          gives correct form that depends on momentum pm.
 
qm = 1

M
gmn pn

 q
m

 L( r,
φ,r,φ) = 2

1M (grr r
2 + gφφ φ

2)−U(r,φ) = 2
1M ( r2 + r2 ·φ 2)−U(r,φ)

Polar coordinate Lagrangian was given as:

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2)+U(r,φ) = 1
2M

(pr
2 + 1

r2
·pφ
2)+U(r,φ)

Polar coordinate Hamiltonian is given here:
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                        Deriving Hamilton’s equations from Lagrange’s equations 
         Expressing Hamiltonian H(pm,qn) using gmn and covariant momentum pm 

        Polar-coordinate example of Hamilton’s equations 
      Hamilton’s equations in Runga-Kutta (computer solution) form
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H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2)+U(r,φ) = 1
2M

(pr
2 + 1

r2
·pφ
2)+U(r,φ)

Hamiltonian                                                                   in 2D-polar coordinates satifies:

Hamilton’s 1st equations:                                 Hamilton’s 2nd equations:
   
 ∂H
∂pm

= qm

  

∂H
∂qm

= − pm

H (pr , pφ ,r,φ) =
1
2M

(pr
2 + 1

r2
·pφ
2)+U(r,φ)

Polar coordinate example of Hamilton’s equations
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H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2)+U(r,φ) = 1
2M

(pr
2 + 1

r2
·pφ
2)+U(r,φ)

Hamiltonian                                                                   in 2D-polar coordinates satifies:

Hamilton’s 1st equations:                                 Hamilton’s 2nd equations:
   
 ∂H
∂pm

= qm

  

∂H
∂qm

= − pm

   

 ∂H
∂pr

= r

   

 ∂H
∂pφ

= φ

H (pr , pφ ,r,φ) =
1
2M

(pr
2 + 1

r2
·pφ
2)+U(r,φ)

Polar coordinate example of Hamilton’s equations
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 ∂H
∂r

=-pr

 

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2)+U(r,φ) = 1
2M

(pr
2 + 1

r2
·pφ
2)+U(r,φ)

Hamiltonian                                                                   in 2D-polar coordinates satifies:

Hamilton’s 1st equations:                                 Hamilton’s 2nd equations:
   
 ∂H
∂pm

= qm

  

∂H
∂qm

= − pm

   

 ∂H
∂pr

= r

   

 ∂H
∂pφ

= φ

   

 ∂H
∂φ

=-pφ

H (pr , pφ ,r,φ) =
1
2M

(pr
2 + 1

r2
·pφ
2)+U(r,φ)

Polar coordinate example of Hamilton’s equations
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 ∂H
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=-pr

 

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2)+U(r,φ) = 1
2M

(pr
2 + 1
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·pφ
2)+U(r,φ)
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 ∂H
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=
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2 + 1
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·pφ
2)+U(r,φ)

Polar coordinate example of Hamilton’s equations

33Tuesday, October 2, 2012



   

 ∂H
∂r

=-pr

 

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2)+U(r,φ) = 1
2M

(pr
2 + 1

r2
·pφ
2)+U(r,φ)

Hamiltonian                                                                   in 2D-polar coordinates satifies:
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 ∂H
∂pm

= qm

  

∂H
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 ∂H
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 ∂H
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= φ
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=
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 ∂H
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1
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(pr
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r2
·pφ
2)+U(r,φ)

Polar coordinate example of Hamilton’s equations
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 ∂H
∂r

=-pr

 ∂H
∂r

= − 2
pφ

2

2Mr3
+ ∂U (r,φ)

∂r

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2)+U(r,φ) = 1
2M

(pr
2 + 1

r2
·pφ
2)+U(r,φ)
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 ∂H
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= qm

  

∂H
∂qm
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 ∂H
∂pr
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=
pr
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 ∂H
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=
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 ∂H
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=-pφ

H (pr , pφ ,r,φ) =
1
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(pr
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r2
·pφ
2)+U(r,φ)

Polar coordinate example of Hamilton’s equations
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 ∂H
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pφ
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2 + 1
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·pφ
2)+U(r,φ)

Polar coordinate example of Hamilton’s equations
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 ∂H
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Polar coordinate example of Hamilton’s equations

   
pφ = M r2 φ
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Polar coordinate example of Hamilton’s equations
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Hamilton’s 1st equations:                                 Hamilton’s 2nd equations:
   
 ∂H
∂pm

= qm

  

∂H
∂qm

= − pm

   

 ∂H
∂pr

= r

∂H
∂pr

=
pr
M

   

 ∂H
∂pφ

= φ

∂H
∂pφ

=
pφ

M r2    

 ∂H
∂φ

=-pφ

∂H
∂φ

= ∂U (r,φ)
∂φ

   pr =Mr

   
 pφ=M r2 φ

   

pr =M r =
pφ

2

Mr3
− ∂U (r,φ)

∂r
 

= M r φ2 − ∂rU (r,φ)

   
pφ = 2M r r φ + M r2φ = −∂φU (r,φ)

H (pr , pφ ,r,φ) =
1
2M

(pr
2 + 1

r2
·pφ
2)+U(r,φ)

Polar coordinate example of Hamilton’s equations

   
pφ = M r2 φ

   
pφ = - ∂U (r,φ)

∂φ
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 Hamilton prefers Contravariant gmn with Covariant momentum pm

                        Deriving Hamilton’s equations from Lagrange’s equations 
         Expressing Hamiltonian H(pm,qn) using gmn and covariant momentum pm 

        Polar-coordinate example of Hamilton’s equations 
      Hamilton’s equations in Runga-Kutta (computer solution) form
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   pr =Mr

   
 pφ=M r2 φ

   

pr =M r =
pφ

2

Mr3
− ∂U (r,φ)

∂r
 

= M r φ2 − ∂rU (r,φ)

   
pφ = 2M r r φ + M r2φ = −∂φU (r,φ)

   

r= r(r, pr ,φ, pφ )       =
pr
M

pr =pr (r, pr ,φ, pφ )   =
pφ

2

Mr3
− ∂rU (r,φ)

 φ= φ(r, pr ,φ, pφ )     =
pφ

M r2

pφ=pφ (r, pr ,φ, pφ ) = −∂φU (r,φ)

Polar coordinate example: Hamilton’s equations in Runga-Kutta form

Runga-Kutta form:
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Examples of Hamiltonian mechanics in effective potentials
         Isotropic Harmonic Oscillator in polar coordinates and effective potential (Simulation)
         Coulomb orbits  in polar coordinates and effective potential  (Simulation)
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Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

(Reducing 2D-problem to 1D-problem)
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Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

H is not explicit function of φ , and so Hamilton’s 2nd says:                       
Thus momentum  pφ is conserved constant:    

pφ = − ∂H
∂φ

= 0

   
pφ =  = const.

(Reducing 2D-problem to 1D-problem)
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Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

H is not explicit function of φ , and so Hamilton’s 2nd says:                       
Thus momentum  pφ is conserved constant:    

pφ = − ∂H
∂φ

= 0

   
pφ =  = const.

 

pr
2

2M
+

pφ
2

2Mr2
+ k⋅r

2

2
= pr

2

2M
+ 2

2Mr2
+ k⋅r

2

2
= E = const.

(Reducing 2D-problem to 1D-problem)
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Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

H is not explicit function of φ , and so Hamilton’s 2nd says:                       
Thus momentum  pφ is conserved constant:    

pφ = − ∂H
∂φ

= 0

   
pφ =  = const.

 

pr
2

2M
+

pφ
2

2Mr2
+ k⋅r

2

2
= pr

2

2M
+ 2

2Mr2
+ k⋅r

2

2
= E = const.

(Reducing 2D-problem to 1D-problem)

Same applies to any
radial potential U(r)

 
E =

pr
2

2M
+
2

2Mr2
+U(r)
“real” PE

“effective” PE

“centifugal-barrier” PE
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Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

H is not explicit function of φ , and so Hamilton’s 2nd says:                       
Thus momentum  pφ is conserved constant:    

pφ = − ∂H
∂φ

= 0

   
pφ =  = const.

Same applies to any
radial potential U(r)

 
E =

pr
2

2M
+
2

2Mr2
+U(r)
“real” PE

“effective” PE

“centifugal-barrier” PE

(Reducing 2D-problem to 1D-problem)

 

pr
2

2M
+

pφ
2

2Mr2
+ k⋅r

2

2
= pr

2

2M
+ 2

2Mr2
+ k⋅r

2

2
= E = const.

Solving for momentum : pr
2 = 2ME − 

2

r2
−Mk⋅r2
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Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

H is not explicit function of φ , and so Hamilton’s 2nd says:                       
Thus momentum  pφ is conserved constant:    

pφ = − ∂H
∂φ

= 0

   
pφ =  = const.

Same applies to any
radial potential U(r)

 
E =

pr
2

2M
+
2

2Mr2
+U(r)
“real” PE

“effective” PE

“centifugal-barrier” PE

 
pr = Mr = 2ME −

2

r2
− Mk⋅r2 = 2M E −

2

2Mr2
−
k
2
⋅r2

(Reducing 2D-problem to 1D-problem)

 

pr
2

2M
+

pφ
2

2Mr2
+ k⋅r

2

2
= pr

2

2M
+ 2

2Mr2
+ k⋅r

2

2
= E = const.

Solving for momentum : pr
2 = 2ME − 

2

r2
−Mk⋅r2
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Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

H is not explicit function of φ , and so Hamilton’s 2nd says:                       
Thus momentum  pφ is conserved constant:    

pφ = − ∂H
∂φ

= 0

   
pφ =  = const.

Radial KE is: 
 

Mr2

2
= E −

2

2Mr2
−
k
2
⋅r2

Same applies to any
radial potential U(r)

 
E =

pr
2

2M
+
2

2Mr2
+U(r)
“real” PE

“effective” PE

“centifugal-barrier” PE

 
pr = Mr = 2ME −

2

r2
− Mk⋅r2 = 2M E −

2

2Mr2
−
k
2
⋅r2

(Reducing 2D-problem to 1D-problem)

 

pr
2

2M
+

pφ
2

2Mr2
+ k⋅r

2

2
= pr

2

2M
+ 2

2Mr2
+ k⋅r

2

2
= E = const.

Solving for momentum : pr
2 = 2ME − 

2

r2
−Mk⋅r2
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Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

H is not explicit function of φ , and so Hamilton’s 2nd says:                       
Thus momentum  pφ is conserved constant:    

pφ = − ∂H
∂φ

= 0

   
pφ =  = const.

Radial KE is: 
 

Mr2

2
= E −

2

2Mr2
−
k
2
⋅r2

Same applies to any
radial potential U(r)

 
E =

pr
2

2M
+
2

2Mr2
+U(r)
“real” PE

“effective” PE

“centifugal-barrier” PE

 
pr = Mr = 2ME −

2

r2
− Mk⋅r2 = 2M E −

2

2Mr2
−
k
2
⋅r2

(Reducing 2D-problem to 1D-problem)

 
r = dr

dt
= 2E

M
− 2

M 2r2
− k
M

⋅r2

 

pr
2

2M
+

pφ
2

2Mr2
+ k⋅r

2

2
= pr

2

2M
+ 2

2Mr2
+ k⋅r

2

2
= E = const.

Solving for momentum : pr
2 = 2ME − 

2

r2
−Mk⋅r2

Radial velocity: 

54Tuesday, October 2, 2012



Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

H is not explicit function of φ , and so Hamilton’s 2nd says:                       
Thus momentum  pφ is conserved constant:    

pφ = − ∂H
∂φ

= 0

   
pφ =  = const.

Radial KE is: 
 

Mr2

2
= E −

2

2Mr2
−
k
2
⋅r2

Same applies to any
radial potential U(r)

 
E =

pr
2

2M
+
2

2Mr2
+U(r)
“real” PE

“effective” PE

“centifugal-barrier” PE

 
pr = Mr = 2ME −

2

r2
− Mk⋅r2 = 2M E −

2

2Mr2
−
k
2
⋅r2

(Reducing 2D-problem to 1D-problem)

 
r = dr

dt
= 2E

M
− 2

M 2r2
− k
M

⋅r2 Time vs r:

 

t = dr
2E
M

− 2

M 2r2
− k
M

⋅r2r<

r>

∫

 

pr
2

2M
+

pφ
2

2Mr2
+ k⋅r

2

2
= pr

2

2M
+ 2

2Mr2
+ k⋅r

2

2
= E = const.

Solving for momentum : pr
2 = 2ME − 

2

r2
−Mk⋅r2

Radial velocity: 
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Effective potential analysis
Polar coordinate Hamiltonian can take advantage of H-conservation and pm-conservation

H (pr , pφ ,r,φ) =
1
2M

(grr pr
2 + gφφ pφ

2) + k⋅r2/2 = 1
2M

(pr
2 +

1
r2
·pφ

2) + k⋅r
2

2
= E = const.

Consider polar coordinate Hamiltonian for Isotropic Harmonic Oscillator potential U(r) =kr2/2:

H is not explicit function of φ , and so Hamilton’s 2nd says:                       
Thus momentum  pφ is conserved constant:    

pφ = − ∂H
∂φ

= 0

   
pφ =  = const.

Same applies to any
radial potential U(r)

 
E =

pr
2

2M
+
2

2Mr2
+U(r)
“real” PE

“effective” PE

“centifugal-barrier” PE

 
pr = Mr = 2ME −

2

r2
− Mk⋅r2 = 2M E −

2

2Mr2
−
k
2
⋅r2

(Reducing 2D-problem to 1D-problem)

 

t = dr
2E
M

− 2

M 2r2
− 2U(r)

M
r<

r>

∫

 

pr
2

2M
+

pφ
2

2Mr2
+ k⋅r

2

2
= pr

2

2M
+ 2

2Mr2
+ k⋅r

2

2
= E = const.

Solving for momentum : pr
2 = 2ME − 

2

r2
−Mk⋅r2

Radial KE is: 
 

Mr2

2
= E −

2

2Mr2
−
k
2
⋅r2

 
r = dr

dt
= 2E

M
− 2

M 2r2
− k
M

⋅r2 Time vs r:

 

t = dr
2E
M

− 2

M 2r2
− k
M

⋅r2r<

r>

∫

Radial velocity: Time vs r for any radial U(r):

Called the “quadrature” or 
1/4-cycle solution if 

r<=0 and r>=max amplitude
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E =

pr
2

2M
+
2

2Mr2
+
k
2
r2

µ = 1.2

µ = 0.5

µ = 0.16

ρ+ ( for E=1.65)ρ−

ρstable

µ = 0

Perigee is
faster

turning point
ρ-

Apogee is
slower

turning point
ρ+

ρ

radius ρ

x

y

angle φ

major radius
a=ρ+

minor radius
b=ρ−

b

Energy:
E=k(a2+b2)/2

Angular momentum:
µ=√(km) ab

Hamiltonian dynamics for Isotropic Harmonic Oscillator potential U(r) =kr2/2

“real” PE

“effective” PE

“centifugal-barrier” PE
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Examples of Hamiltonian mechanics in effective potentials
         Isotropic Harmonic Oscillator in polar coordinates and effective potential (Simulation)
         Coulomb orbits  in polar coordinates and effective potential  (Simulation)
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Hamiltonian dynamics for Coulomb potential U(r) =-k/r

 
E =

pr
2

2M
+
2

2Mr2
−
k
r

“real” PE

“effective” PE

“centifugal-barrier” PE

 
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Minimum

Energy

Needed to:

Escape from....... ρ=0.5 .......... to ∞

Orbit at ρ=0.5

Sit at ρ=0.5

0

k=1 m=1

ρ

Angular momentum µ=1/√2
Angular momentum µ=0
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Sitting at ρ=0.0
at dead-center of a
Sophomore-physics-
Earth of radius R⊕=0.5

Minimum

Energy

Needed to:

Escape from....... ρ=0.5 .......... to ∞

Orbit at ρ=0.5

Sit at ρ=0.5

0

k=1 m=1

ρ

Angular momentum µ=1/√2
Angular momentum µ=0

The
Three
Equal
Steps

to 
∞
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Parabolic and 2D-IHO elliptic orbital envelopes
Some clues for take-home assignment 7.2 (Simulation)   
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Exploding-starlet elliptical envelope 
and contacting elliptical trajectories
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Focus of envelope

Focus of α=30° orbit
Line to contact point 
                   of α=30° orbit 
                               with envelope 
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Examples of Hamiltonian mechanics in phase plots
         1D Pendulum and phase plot (Simulation)

1D-HO phase-space control (Simulation)    
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R
R

x
h

x2=h(2R-h) ~ 2hR
(Euclid mean)

1/2(Mg/R)x
2

~ Mgh

h

(b) Energy geometry

θR

x=R sinθ ~Rθ

(a) Force geometry

θ

θ- MgR sin θ=Fθ
=-Mg x

Mg

θ
R

(c) Time geometry

ε=θ/2

PE:
V=MgY
=-MgRcosθ

ε

M

1D Pendulum and phase plot 

Lagrangian function L= KE - PE = T - U where potential energy is U(θ) =

   
L( θ ,θ) = 1

2
I θ2 −U (θ) = 1

2
I θ2 + MgRcosθ  

  −MgRcosθ  

NOTE:   Very common
loci of ± sign blunders
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R
R

x
h

x2=h(2R-h) ~ 2hR
(Euclid mean)

1/2(Mg/R)x
2

~ Mgh

h

(b) Energy geometry

θR

x=R sinθ ~Rθ

(a) Force geometry

θ

θ- MgR sin θ=Fθ
=-Mg x

Mg

θ
R

(c) Time geometry

ε=θ/2

PE:
V=MgY
=-MgRcosθ

ε

M

  
H ( pθ ,θ) = 1

2I
pθ

2 +U (θ) = 1
2I

pθ
2 − MgRcosθ  = E

1D Pendulum and phase plot 

Lagrangian function L= KE - PE = T - U where potential energy is U(θ) =

   
L( θ ,θ) = 1

2
I θ2 −U (θ) = 1

2
I θ2 + MgRcosθ  

  −MgRcosθ  

Hamiltonian function H= KE + PE = T +U where potential energy is U(θ) =   −MgRcosθ  

=const.

NOTE:   Very common
loci of ± sign blunders
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R
R

x
h

x2=h(2R-h) ~ 2hR
(Euclid mean)

1/2(Mg/R)x
2

~ Mgh

h

(b) Energy geometry

θR

x=R sinθ ~Rθ

(a) Force geometry

θ

θ- MgR sin θ=Fθ
=-Mg x

Mg

θ
R

(c) Time geometry

ε=θ/2

PE:
V=MgY
=-MgRcosθ

ε

M

  
H ( pθ ,θ) = 1

2I
pθ

2 +U (θ) = 1
2I

pθ
2 − MgRcosθ  = E

1D Pendulum and phase plot 

Lagrangian function L= KE - PE = T - U where potential energy is U(θ) =

   
L( θ ,θ) = 1

2
I θ2 −U (θ) = 1

2
I θ2 + MgRcosθ  

  −MgRcosθ  

Hamiltonian function H= KE + PE = T +U where potential energy is U(θ) =   −MgRcosθ  

=const.

  pθ = 2I E + MgRcosθ( )implies:

NOTE:   Very common
loci of ± sign blunders
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H ( pθ ,θ) = E = 1

2I
pθ

2 − MgRcosθ  ,   or:   pθ = 2I E + MgRcosθ( )
Example of plot of Hamilton for 1D-solid pendulum in its Phase Space (θ,pθ)

(unstable
“balancing”

point)
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H ( pθ ,θ) = E = 1

2I
pθ

2 − MgRcosθ  ,   or:   pθ = 2I E + MgRcosθ( )
Example of plot of Hamilton for 1D-solid pendulum in its Phase Space (θ,pθ)

 

q
p

⎛
⎝⎜

⎞
⎠⎟
=

∂ pH
−∂qH

⎛
⎝⎜

⎞
⎠⎟
= eH × −∇H( )=(H-axis) × (fall line), where:

(H-axis)=eH=eq × ep
(fall line)=-∇H

⎧
⎨
⎩

 

(unstable
“balancing”

point)

Funny way to look at Hamilton’s equations:
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2. Examples of Hamiltonian dynamics and phase plots
         1D Pendulum and phase plot (Simulation)

Phase control (Simulation)
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(e) Geometry of Linear Force with Constant Mg and Quadratic Potential

u(y)= (1/4)y2 +y

F(Y)=-kY-Mg

Ushift= -(Mg)2 /2k

Yshift= -Mg /k

y=1 y=2 y=3y=-3 y=-2 y=-1y=-6 y=-5 y=-4

u=3

u=2

u=1

U(Y)=(1/2)kY2+Mg Y

f(y)= -(1/2)y -1 u(y)= y

Simulation of atomic classical (or semi-classical) dynamics using varying phase control

Unit 1
Fig. 7.4 
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Lecture  12 ends here 
Thur. 10.2.2012
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