Main Control Panel
Doppler blue shift factor (b) =
|
|
|
Display Settings
Vertex count for plotting curves =
|
|
Aspect Ratio {W/H} =
|
|
Font Scale Factor =
|
|
Colors
Relativity, LearnIt, & Harter-Soft Links
|
|
|
|
|
Circlular Views
|
|
Inset Information
|
|
Line Labeling
|
|
Line Groups
|
|
Related hyperbolic elements
Curves
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Sword line width =
|
|
Minkowski
|
Grid
|
Cells = (2n)2, n =
|
|
Color:
|
|
Alpha:
|
|
Hyperbola Branches - cp:
|
|
E:
|
|
|
|
|
Inset textual information
|
|
Per-Space/Time Views
|
|
|
|
Group & Phase Vectors
|
|
Shaded Regions
|
|
H. Sapiens Acuity Strip
|
|
Minkowski Cells (+) =
|
|
Main elements Line Width
|
|
Hyperbola Branches - ck:
|
|
ω:
|
Reference Circles
|
|
|
Labels
|
|
|
Information
|
|
|
Compton Scattering Views
|
|
Axis Titles - Horizontal:
|
|
Vertical:
|
Axis Labels - Horizontal:
|
|
Vertical:
|
Hyperbola Branches - Horizontal:
|
|
Vertical:
|
Constant Rho Lines:
|
|
Slope ±1 Grid-Lines:
|
|
Constraint on Relative Initial Motion
|
|
|
Frequency Values
|
|
Energyi = ℏωi = coef*basei, where i is integral ranging from start to stop
Energyi = Estart , ... , Estop, with N frequency divisions
Space-Space Views
|
|
Curved Element Placement
|
|
Axis Titles - Horizontal:
|
|
Vertical:
|
Axis Labels - Horizontal:
|
|
Vertical:
|
Occam’s Sword -
|
|
Line Width:
|
|
Protractor - Type:
|
|
|
Reference Circles
|
|
|
Textual Information
|
|
Listing of Modern Physics material form 2012
Hit return after selecting one
Units
|
|
Lectures
|
|
Papers & Talks
|
|
|
|
|
|
Hyperbolic Views
|
|
Show Hyperbolic Functions
|
|
Show Circular Functions
|
|
Reference Square linewidth
|
|
Draw Axes
|
|
Reference Circles
|
|
|
|
|
Asymptotes
|
|
Hyperbola Branches - Hori:
|
|
Vert:
|
Show (# of) Geometric Representations
Coordinates Views
|
|
Wavenumber κ =
|
|
|
Frequency υ =
|
|
|
|
Coordinates Views
|
|
|
|
Group & Phase Vectors
|
|
Right & Left K Vectors
|
|
Space-Time Verbosity
|
|
Wavevector-Frequency Verbosity
|
|
Shaded Regions
|
|
Minkowski Cells (+) =
|
|
Line width =
|
|
Hyperbola Branches - x':
|
|
ω:
|
Axis Titles - Horizontal:
|
|
Vertical:
|
Axis Labels - Horizontal:
|
|
Vertical:
|
Font Scale =
|
|
Tick-mark Scale =
|
|
Tick marks
|
|
|
Time Sense: Time evolves
|
|
\begin{array}{*{10}{|c|c|cc|cc|cc|c|}}
\hline
{time} & \color{red}{b_{RED}^{Doppler}} & {\frac{{\color{green}{V_{group}}}}{c}}&{\frac{{\color{green}{\upsilon _{group}}}}{{\color{green}{\upsilon _A}}}} & {\frac{{\color{blue}{\tau _{phase}}}}{{\color{blue}{\tau _A}}}}&{\frac{{\color{blue}{\upsilon _{phase}}}}{{\color{blue}{\upsilon _A}}}} & {\frac{{\color{green}{\tau _{group}}}}{{\color{green}{\tau _A}}}}&{\frac{{\color{blue}{V_{phase}}}}{c}} & \color{blue}{\color{darkorchid}b_{BLUE}^\color{darkorchid}{Doppler}} \\
\hline
{space} & {\frac{1}{\color{blue}{\color{darkorchid}b_{BLUE}^\color{darkorchid}{Doppler}}}} & {\frac{c}{{\color{blue}{V_{phase}}}}}&{\frac{{\color{blue}{\kappa _{phase}}}}{{\color{blue}{\kappa _A}}}} & {\frac{{\color{green}{\lambda _{group}}}}{{\color{green}{\lambda _A}}}}&{\frac{{\color{green}{\kappa _{group}}}}{{\color{green}{\kappa _A}}}} & {\frac{{\color{blue}{\lambda _{phase}}}}{{\color{blue}{\lambda _A}}}}&{\frac{c}{{\color{green}{V_{group}}}}} & {\frac{1}{\color{red}{b_{RED}^{Doppler}}}} \\
\hline
{_{{\text{ }}\rho }^{rapidity}} & {\color{red}{e^{ - \rho }}} & \color{green}{\tanh \rho }&{\sinh \rho } & {\operatorname{sech} \rho }&{\cosh \rho } & {{\text{csch}}\rho }&\color{blue}{\coth \rho } & \color{darkorchid}{{e^{ + \rho }}} \\
\hline
{_{\beta = 3/5}^{value\,for}} & {\frac{1}{\color{red}2}{\kern 1pt} \negthickspace= \negthickspace\color{red}{0.5}} & \color{green}{\frac{3}{5}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace0.6}&{\frac{3}{4}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace0.75} & {\frac{4}{5}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace0.80}&{\frac{5}{4}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace1.25} & {\frac{4}{3}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace1.33}&\color{blue}{\frac{5}{3}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace\color{blue}{1.67}} & {\frac{\color{darkorchid}2}{1}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace\color{darkorchid}{2.0}} \\
\hline
\end{array}
\begin{array}{*{10}{|c|c|cc|cc|cc|c|}}
\hline
{time} & \color{red}{b_{RED}^{Doppler}} & {\frac{{\color{green}{V_{group}}}}{c}}&{\frac{{\color{green}{\upsilon _{group}}}}{{\color{green}{\upsilon _A}}}} & {\frac{{\color{blue}{\tau _{phase}}}}{{\color{blue}{\tau _A}}}}&{\frac{{\color{blue}{\upsilon _{phase}}}}{{\color{blue}{\upsilon _A}}}} & {\frac{{\color{green}{\tau _{group}}}}{{\color{green}{\tau _A}}}}&{\frac{{\color{blue}{V_{phase}}}}{c}} & \color{blue}{\color{darkorchid}b_{BLUE}^\color{darkorchid}{Doppler}} \\
\hline
{space} & {\frac{1}{\color{blue}{\color{darkorchid}b_{BLUE}^\color{darkorchid}{Doppler}}}} & {\frac{c}{{\color{blue}{V_{phase}}}}}&{\frac{{\color{blue}{\kappa _{phase}}}}{{\color{blue}{\kappa _A}}}} & {\frac{{\color{green}{\lambda _{group}}}}{{\color{green}{\lambda _A}}}}&{\frac{{\color{green}{\kappa _{group}}}}{{\color{green}{\kappa _A}}}} & {\frac{{\color{blue}{\lambda _{phase}}}}{{\color{blue}{\lambda _A}}}}&{\frac{c}{{\color{green}{V_{group}}}}} & {\frac{1}{\color{red}{b_{RED}^{Doppler}}}} \\
\hline
{_{{\text{ }}\rho }^{rapidity}} & {\color{red}{e^{ - \rho }}} & \color{green}{\tanh \rho }&{\sinh \rho } & {\operatorname{sech} \rho }&{\cosh \rho } & {{\text{csch}}\rho }&\color{blue}{\coth \rho } & \color{darkorchid}{{e^{ + \rho }}} \\
\hline
{_{{\text{ }}angle{\text{ }}\sigma }^{stellar{\text{ }}\forall }} & {1{\kern 1pt} /{\kern 1pt} \color{darkorchid}{e^{ + \rho }}} & \color{green}{\sin \sigma }&{\tan \sigma } & {\cos \sigma }&{\sec \sigma } & {\cot \sigma }&\color{blue}{{\text{csc}}\sigma } & {1{\kern 1pt} /{\kern 1pt} \color{red}{e^{ - \rho }}} \\
\hline
{\beta {\kern 1pt} \equiv {\kern 1pt} \frac{u}{c}} & {\sqrt {\frac{{1{\kern 1pt} - \beta }}{{1{\kern 1pt} + \beta }}} } & {\frac{\beta }{1}}&{\frac{1}{{\sqrt {{\beta ^{ - 2}} - {\kern 1pt} 1} }}} & {\frac{{\sqrt {1{\kern 1pt} - {\beta ^2}} }}{1}}&{\frac{1}{{\sqrt {{1-\beta ^2} } }}} & {\frac{{\sqrt {{\beta ^{ - 2}} - {\kern 1pt} 1} }}{1}}&{\frac{1}{\beta }} & {\sqrt {\frac{{1{\kern 1pt} + \beta }}{{1{\kern 1pt} - \beta }}} } \\
\hline
{_{\beta = 3/5}^{value\,for}} & {\frac{1}{\color{red}2}{\kern 1pt} \negthickspace= \negthickspace\color{red}{0.5}} & \color{green}{\frac{3}{5}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace0.6}&{\frac{3}{4}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace0.75} & {\frac{4}{5}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace0.80}&{\frac{5}{4}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace1.25} & {\frac{4}{3}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace1.33}&\color{blue}{\frac{5}{3}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace\color{blue}{1.67}} & {\frac{\color{darkorchid}2}{1}{\kern 1pt} \negthickspace= {\kern 1pt} \negthickspace\color{darkorchid}{2.0}} \\
\hline
\end{array}
\begin{array}{*{10}{|c|c|cc|cc|cc|c|}}
\hline
{group} & \color{red}{b_{RED}^{Doppler}} & {\frac{{\color{green}{V_{group}}}}{c}}&{\frac{{\color{green}{\upsilon _{group}}}}{{\color{green}{\upsilon _A}}}} & {\frac{{\color{blue}{\tau _{phase}}}}{{\color{blue}{\tau _A}}}}&{\frac{{\color{blue}{\upsilon _{phase}}}}{{\color{blue}{\upsilon _A}}}} & {\frac{{\color{green}{\tau _{group}}}}{{\color{green}{\tau _A}}}}&{\frac{{\color{blue}{V_{phase}}}}{c}} & \color{blue}{\color{darkorchid}b_{BLUE}^\color{darkorchid}{Doppler}} \\
\hline
{phase} & {\frac{1}{\color{blue}{\color{darkorchid}b_{BLUE}^\color{darkorchid}{Doppler}}}} & {\frac{c}{{\color{blue}{V_{phase}}}}}&{\frac{{\color{blue}{\kappa _{phase}}}}{{\color{blue}{\kappa _A}}}} & {\frac{{\color{green}{\lambda _{group}}}}{{\color{green}{\lambda _A}}}}&{\frac{{\color{green}{\kappa _{group}}}}{{\color{green}{\kappa _A}}}} & {\frac{{\color{blue}{\lambda _{phase}}}}{{\color{blue}{\lambda _A}}}}&{\frac{c}{{\color{green}{V_{group}}}}} & {\frac{1}{\color{red}{b_{RED}^{Doppler}}}} \\
\hline
{rapidity\\
\rho = {\rm{tStrRap}}} & {\color{red}{e^{ - \rho }}} & \color{green}{\tanh \rho }&{\sinh \rho } & {\operatorname{sech} \rho }&{\cosh \rho } & {{\text{csch}}\rho }&\color{blue}{\coth \rho } & \color{darkorchid}{{e^{ + \rho }}} \\
\hline
{stellar{\text{ }}aberration\\
\sigma = {\rm{tStrSig}}} & {1{\kern 1pt} /{\kern 1pt} \color{darkorchid}{e^{ + \rho }}} & \color{green}{\sin \sigma }&{\tan \sigma } & {\cos \sigma }&{\sec \sigma } & {\cot \sigma }&\color{blue}{{\text{csc}}\sigma } & {1{\kern 1pt} /{\kern 1pt} \color{red}{e^{ - \rho }}} \\
\hline
{velocity{\text{ }}(rescaled{\text{ }}by{\text{ }}c)\\
\beta = {\rm{tStrVel}}} & {\sqrt {\frac{{1{\kern 1pt} - \beta }}{{1{\kern 1pt} + \beta }}} } & {\frac{\beta }{1}}&{\frac{1}{{\sqrt {{\beta ^{ - 2}} - {\kern 1pt} 1} }}} & {\frac{{\sqrt {1{\kern 1pt} - {\beta ^2}} }}{1}}&{\frac{1}{{\sqrt {{1-\beta ^2} } }}} & {\frac{{\sqrt {{\beta ^{ - 2}} - {\kern 1pt} 1} }}{1}}&{\frac{1}{\beta }} & {\sqrt {\frac{{1{\kern 1pt} + \beta }}{{1{\kern 1pt} - \beta }}} } \\
\hline
{effects} & {\color{red}{b_{RED}^{Doppler}}} & {{\rm{Relativity }}\\
{\rm{parameter}}} & {Lorentz\\
\rm{off - diagonal}\\
\rm{asimultaneity}} & {Lorentz\\
\rm{contraction}} & {Einstein\\
\rm{time\:dilation}} & {\rm{Inverse\\
\:asimultaneity}} & {\color{blue}{V_{phase}}} & \color{blue}{\color{darkorchid}b_{BLUE}^\color{darkorchid}{Doppler}} \\
\hline
{functions} & {\frac{1}{\color{blue}{\color{darkorchid}b_{BLUE}^\color{darkorchid}{Doppler}}}} & {V_{group}= c\,{\rm{tanh}}\rho} & {momentum\\
\rm{cp=Mc2sinh\rho}} & {-Lagrangian\\
\rm{L}} & {Hamiltonian\\
\rm{H=Mc2=:\\rm{cosh}\:\rho}} & {DeBroglie\\
\lambda=(1/Mc)\:\rm{csch}\:\rho} & {\color{blue}{V_{phase}}{\\=c\:\rm{coth}\:\rho}} & {\frac{1}{\color{red}{b_{RED}^{Doppler}}}} \\
\hline
\begin{array}{*{10}{|c|c|cc|cc|cc|c|}}
\hline
{time} & \color{red}{b_{RED}^{Doppler}} & {\frac{{\color{green}{V_{group}}}}{c}}&{\frac{{\color{green}{\upsilon _{group}}}}{{\color{green}{\upsilon _A}}}} & {\frac{{\color{blue}{\tau _{phase}}}}{{\color{blue}{\tau _A}}}}&{\frac{{\color{blue}{\upsilon _{phase}}}}{{\color{blue}{\upsilon _A}}}} & {\frac{{\color{green}{\tau _{group}}}}{{\color{green}{\tau _A}}}}&{\frac{{\color{blue}{V_{phase}}}}{c}} & \color{blue}{\color{darkorchid}b_{BLUE}^\color{darkorchid}{Doppler}} \\
\hline
{space} & {\frac{1}{\color{blue}{\color{darkorchid}b_{BLUE}^\color{darkorchid}{Doppler}}}} & {\frac{c}{{\color{blue}{V_{phase}}}}}&{\frac{{\color{blue}{\kappa _{phase}}}}{{\color{blue}{\kappa _A}}}} & {\frac{{\color{green}{\lambda _{group}}}}{{\color{green}{\lambda _A}}}}&{\frac{{\color{green}{\kappa _{group}}}}{{\color{green}{\kappa _A}}}} & {\frac{{\color{blue}{\lambda _{phase}}}}{{\color{blue}{\lambda _A}}}}&{\frac{c}{{\color{green}{V_{group}}}}} & {\frac{1}{\color{red}{b_{RED}^{Doppler}}}} \\
\hline
{_{{\text{ }}\rho }^{rapidity}} & {\color{red}{e^{ - \rho }}} & \color{green}{\tanh \rho }&{\sinh \rho } & {\operatorname{sech} \rho }&{\cosh \rho } & {{\text{csch}}\rho }&\color{blue}{\coth \rho } & \color{darkorchid}{{e^{ + \rho }}} \\
\hline
Elliptical Views
|
|
Horizontal Semi-Axis =
|
|
Vertical Semi-Axis =
|
|
x Amplitude =
|
|
y Amplitude =
|
|
x Phasor Hour Hand =
|
|
y Phasor Hour Hand =
|
|
Initial x Phase (degrees) =
|
|
Initial y Phase (degrees) =
|
|