Symmetry eigensolutions on the Cheap

Going beyond "Gruppenpest"

Exploiting local symmetry algebra and geometry of a quantum "Mock-Mach" principle
William G. Harter
Department of Physics, University of Arkansas
Fayetteville, AR 72701

(a) $\mathrm{SF}_{6} \nu_{4}$ Rotational Structure

FT IR and Laser Diode Spectra K.C. Kim, W. B. Person, D. Seitz, and B.J. Krohn J. Mol. Spectrosc. 76, 322 (1979).

(b) P(88) Fine Structure (Rotational anisotropy effects)

 SF6 $v_{3} P(88) \sim 16 m$

Observed repeating sequence(s)... $\mathrm{A}_{1}^{\mathrm{T}} \mathrm{T}_{1} \mathrm{E}_{2} \mathrm{~T}_{1} \mathrm{ET}_{2} \mathrm{~A}_{2} \mathrm{~T}_{2} \mathrm{~T}_{1} \mathrm{~A}_{1} \mathrm{~T}_{1} \mathrm{E}_{2} \mathrm{~T}_{2} \mathrm{~T}_{1} \mathrm{ET}_{2} \mathrm{~A}_{2} \mathrm{~A}_{2} \mathrm{~T}_{2} \mathrm{~T}_{1}$.
Some things we're trying to
explain / predict / understand:
Inner workings of molecules

Matrix Diagonalization by computer:
The BLACK BOX of
quantum physics, hemistry: and spectroscopy

..but what's left for the Carbon

New symmetry analysis techniques come to rescue old Carbon Brain!

- Abelian symmetry $=$ Fourier analysis (Back to our roots $1^{1 / N}=e^{2 \pi i m N}$) Group product table $=>$ Hamiltonian $\mathbb{1}$-matrices (C_{2} and C_{6} examples) Group roots $=>$ B-matrix spectral resolution by $\mathrm{P}^{(\mathrm{m})}$ projectors
\qquad禺

Commutivity comundrum...
? $\mathbb{E} \cdot \mathrm{g}=\mathrm{g} \cdot \mathrm{B}$?

- New symmetry insights:
"Mock-Mach" principle

Local vs. Global symmetry Conway, et.al, May (2008)

Projector invariance
Cvitanovic, (2008)

- Non-Abêlian symmetry analysis I. (Simplest example: D3) Local vs. Global product tables $=>$ B-matrices All-commuting invariants $=>$ Global invariant (character) $\mathrm{P}^{(\alpha)}$ projectors Mutually-commuting sets $=>$ Local vs. Global eigensolutions by $\mathrm{P}_{\mathrm{m}, \mathrm{n}}^{(\alpha)}$ projectors $=>$ 1B-matrix spectral resolution by $\mathrm{P}_{\mathrm{m}, \mathrm{h}}^{(\alpha)}$ projectors
- Non-Abelian symmetry analysis II. (Octahedral example: O_{h}) Global-local product tables => Bl-matrices...
... and all the above ...
$=>$ eigensolution formulas by local-symmetry defined $\mathrm{P}_{\mathrm{n}, \mathrm{n}}^{(\alpha)}$ projectors
- Local vs Global symmetry in rovibronic phase space

How group operators analyze rovibronic tunneling effects at high J. (SF examples)

? $\mathrm{E} \cdot \mathrm{g}=\mathrm{g}$ 眡 ?

- New symmetry insights: Local vs. Global symmetry Projector invariance Conway, et.al, May (2008) Cvitanovic, (2008)
> - Non-Abelian symmetry analysis I.
> (Simplest example: D_{3})
> Local vs. Global product tables => B-matrices
> All-commuting invariants $=>$ Global invariant (chatacter) $\mathrm{P}^{(\alpha)}$ projectors Mutually-commuting sets $=>$ Local vs. Global eigensolutions by $\mathrm{P}_{\mathrm{m}, \mathrm{n}}^{(\alpha)}$ projectors $=>\quad$ EI-matrix spectral resolution by $\mathrm{P}_{\mathrm{m}, \mathrm{n}}^{(\alpha)}$ projectors

$1^{\text {st }}$ Step
Expand C_{6} symmetric $\mathbf{H}=$
using C_{6} group table $\binom{g g^{\dagger}}{$ form }

C_{6}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}
$\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}
\mathbf{r}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}
\mathbf{r}^{2}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}
\mathbf{r}^{3}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}
\mathbf{r}^{4}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}
\mathbf{r}^{5}	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$

$\mathbf{H}=r_{0} \mathbf{r}^{0}+r_{l} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}+\ldots+r_{n-1} \mathbf{r}^{n-l}=\Sigma r_{q} \mathbf{r}^{k}$

C_{6} group table gives r-matrices,...

Expand C_{6} symmetric $\mathbf{H}=$
$\left[\begin{array}{cccccc}E & W & 0 & 0 & 0 & W \\ W & E & W & 0 & 0 & 0 \\ 0 & W & E & W & 0 & 0 \\ 0 & 0 & W & E & W & 0 \\ 0 & 0 & 0 & W & E & W \\ W & 0 & 0 & 0 & W & E\end{array}\right]$
using C_{6} group table (form $\left.{ }^{g g^{\dagger}}\right)$

C_{6}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}
$\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}
\mathbf{r}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}
\mathbf{g}^{2}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}
\mathbf{r}^{3}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}
\mathbf{r}^{4}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}
\mathbf{r}^{5}	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$

$\mathbf{H}=r_{0} \mathbf{r}^{0}+r_{1} \mathbf{r}^{1}+r_{2} \mathbf{r}^{\mathbf{r}^{2}}+\ldots+r_{n-1} \mathbf{r}^{n-l}=\Sigma r_{q} \mathbf{r}^{k}$

C_{6} group table gives r -matrices,... C_{σ} allowed H -matrices...

Nearest neighbor coupling

ALL neighbor coupling

$2^{\text {nd }}$ Step

H diagonalized by spectral resolution of $r, r^{2}, \ldots, r^{6}=1$
All $x=r^{p}$ satisfy $x^{6}=1$ and use $6^{\text {th }}$-roots-of- 1 for eigenvalues
$\psi_{l}^{0}=1$
$\psi_{l}^{l}=e^{2 \pi i} 6$
$\psi_{l}^{2}=\psi_{2}^{l}=e^{-4 \pi i / 6}$
$\psi_{l}^{3}=\psi_{3}^{l}=-1$
$\psi_{l}{ }^{4}=\psi_{4}^{l}=\psi_{l}^{-2}=e^{-4 \pi i 6}$
$\psi_{l}^{5}=\psi_{5}^{l}=\psi_{l}{ }^{-l}=e^{-2 \pi i / 6}$

$$
\begin{aligned}
& \begin{array}{l}
D^{m}(\boldsymbol{r})=e^{-2 \pi i m / 6} \\
D^{m}\left(\boldsymbol{r}^{p}\right)=e^{-2 \pi i m} \cdot p / 6 \\
p=\chi_{l}^{m}=\psi_{l}^{m^{*}} \\
p=\chi_{p}^{m}=\psi_{p}^{m^{*}} \\
\text { or position point }
\end{array} \\
& \begin{array}{l}
\text { momponent) } \\
\text { or wave-number }
\end{array}
\end{aligned}
$$

Groups "know" their roots and will
$6^{\text {hh}}$-roots of 1 tell you them if you ask nicely!
You efficiently get:
-invariant projectors

- irreducible projectors
-irreducible representations (irreps)
- H eigenvalues
- H eigenvectors
-T matrices
-dispersion functions

$2^{\text {nd }}$ Step (contd.)

H diagonalized by spectral resolution of $r, r^{2}, \ldots, r^{6}=1 \quad \begin{gathered}\text { top-row hip } \\ \text { nop needed } \\ \text {, }\end{gathered}$ All $x=r^{\prime}$ satisfy $x^{h}=1$ and use $6^{\text {th }}$-roots-of- 1 for eigenvalues

$$
\begin{aligned}
& \psi_{l}^{0}=1 \\
& \psi_{l}^{l}=e^{2 \pi i / 6} \\
& \psi_{l}^{2}=\psi_{2}^{l}=e^{4 \pi i / 6} \\
& \psi_{l}^{3}=\psi_{3}^{l}=-1 \\
& \psi_{l}^{4}=\psi_{4}^{l}=\psi_{l}^{-2}=e^{-4 \pi i / 6} \\
& \psi_{l}^{5}=\psi_{5}^{l}=\psi_{l}^{-l}=e^{-2 \pi i 6}
\end{aligned}
$$

Projectors $\mathbf{P}^{(n)}$ are eigenvalue "placeholders"having orthogonal-idempotent products, eigen_equations,

$$
\mathbf{P}^{(m)} \mathbf{P}^{(n)}=\delta^{m n} \mathbf{P}^{(m)} \quad \mathbf{r}^{p} \mathbf{P}^{(n)}=\chi_{p}{ }^{n} \mathbf{P}^{(n)}
$$

and one completeness rule: $\mathbf{P}^{(0)+\mathbf{P}^{(1)}+\mathbf{P}^{(2)}+\ldots+\mathbf{P}^{(5)}=1}$

$$
\begin{aligned}
& \mathbb{r}^{p}=\chi_{p}^{0} \mathbf{P}^{(0)} \\
& +\chi_{p}{ }^{1} \mathbf{P}^{(1)} \\
& +\chi_{p}^{2} \mathbf{P}^{(2)} \\
& +\chi_{p}^{3} \mathbf{P}^{(3)} \\
& +\chi_{p}^{4} \mathbf{P}^{(4)}+\chi_{p}^{5} \mathbf{P}^{(5)}
\end{aligned}
$$

$2^{\text {nd }}$ Step (contd.)

H diagonalized by spectral resolution of $r, r^{2}, \ldots, r^{6}=1$
top-row flip not needed...
$\mathbf{P}^{(m)}=\mathbf{P}^{(m)}{ }^{+}$

${ }^{\text {ring }}$	$\mathbf{P}^{(0)}$	$\mathbf{P}^{(l)}$	$\mathbf{P}^{(2)}$	$\mathbf{P}^{(3)}$	$\mathbf{P}^{(4)}$	$\mathbf{P}^{(5)}$
(0)	$\mathbf{P}^{(0)}$	\cdot	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}^{(l)}$	\cdot	$\mathbf{P}^{(1)}$	\cdot	\cdot	\cdot	\cdot
$\mathbf{P}^{(2)}$	\cdot	\cdot	$\mathbf{P}^{(2)}$	\cdot	\cdot	\cdot
$\mathbf{P}^{(3)}$	\cdot	\cdot	\cdot	$\mathbf{P}^{(3)}$	\cdot	\cdot
$\mathbf{P}^{(4)}$	\cdot	\cdot	\cdot	\cdot	$\mathbf{P}^{(4)}$	\cdot
$\mathbf{P}^{(5)}$	\cdot	\cdot	\cdot	\cdot	\cdot	$\mathbf{P}^{(5)}$

$$
\begin{aligned}
& \psi_{l}^{0}=1 \\
& \psi_{l}^{l}=e^{2 \pi i 6} \\
& \psi_{l}^{2}=\psi_{2}^{l}=e^{4 \pi i 6} \\
& \psi_{I}^{3}=\psi_{3}^{l}=-1 \\
& \psi_{l}^{4}=\psi_{4}^{l}=\psi_{l}^{-2}=e^{-4 \pi i 6} \\
& \psi_{1}^{5}=\psi_{5}^{l}=\psi_{l}^{-1}=e^{-2 \pi i 6}
\end{aligned}
$$

$$
\mathbb{r}^{p}=\chi_{p}^{0} \mathbf{P}^{(0)}
$$

$$
+\chi_{p}^{1} \mathbf{P}^{(\mathrm{I})}
$$

$$
+\chi_{p}^{2} \mathbf{P}^{(2)}
$$

$$
+\chi_{p}^{3} \mathbf{P}^{(3)}
$$

$$
+\chi_{p}^{4} \mathbf{P}^{(4)}
$$

$$
\chi_{p}^{5} \mathbf{P}^{(5)}
$$

$\mathbf{P}^{(4)}+\chi_{p}^{5} \mathbf{P}^{(5)}$

$$
\mathbf{P}^{(m)}=\quad \psi_{0}^{m} \mathbf{r}^{0} \quad+\psi_{l}^{m} \mathbf{r}^{l}
$$

$+\psi_{2}{ }^{m} \mathbf{r}^{2}$
$+\psi_{3}{ }^{m} \mathbf{r}^{3}$
$+\psi_{4}^{m} \mathbf{r}^{4} \quad+\psi_{5}{ }^{m} \mathbf{r}^{5}$
position p (or power of \mathbf{r}^{p})

 , ,

 matrix

$3^{\text {rd }}$ Step

Display all eigensolutions for all possible C_{6} symmetric real H

$$
\mathbf{H}=\sum_{p=0}^{n-1} r_{p} \mathbf{r}^{p}=\sum_{p=0}^{n-1} r_{p} \sum_{m=0}^{n-1} \chi_{p}^{m} \mathbf{P}^{(m)}=\sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)} \quad \text { where }: \omega^{(m)}=\sum_{p=0}^{n-1} r_{p} \chi_{p}^{m}=\omega\left(k_{m}\right) \quad \text { (Dispersion function) }
$$

Elementary

eigenvalues of $\mathbf{H}^{\mathrm{B} 2(6)}$

$3^{\text {rd }}$ Neighbor coupling
$\mathbf{H}=H_{3} \mathbf{1}-\mathbf{t r} \mathbf{r}^{3}-t \mathbf{r}^{-3}$

$$
\begin{aligned}
& \text { eigenvalues of } \mathbf{H}
\end{aligned}
$$

$3^{\text {rd }}$ Step (contd.)

...eigensolutions for all possible C_{6} symmetric complex H

(Commuting)

- Abelian symme try $=$ Fourier analysis (Back to our roots $\left.1^{1 N N}=e^{2 \pi i m N N}\right)$ Grour product table => Hamiltonian II-matrices
Group roots => B-matrix spectral resolution by $\mathrm{P}^{(\mathrm{m})}$ projectors

? $\mathrm{Br} \mathrm{g}=\mathrm{g}$ 道 ?

- New symmetry insights:

"Mock-Mach" principle

Local vs. Global symmetry
Conway, et.al, May (2008)

Projector invariance
Cvitanovic, (2008)
(Non-Commuting)

- Non-Abelian symmetry analysis I.
(Simplest example: D_{3})
Local ψ s. Global product tables $=>$ BI-matrices
All-commuting invariants $=>$ Global invariant $\left(\right.$ chavacter) $\mathrm{P}^{(\alpha)}$ projectors Mutually-commuting sets $=>$ Local vs. Global eigensolutions by $\mathrm{P}_{\mathrm{m} . \mathrm{n}}^{(\alpha)}$ projectors $=>\quad$ E-matrix spectral resolution by $\mathrm{P}_{\mathrm{m}, \mathrm{n}}^{(\alpha)}$ projectors
- Non-Abelian symmetry analysis II. (Octahedral example: O_{h}) Global-local product tables => B-matrices...
... and all the above ...
$=>$ eigensolution formulas by local-symme iny defthed $\mathrm{P}_{\mathrm{n}, \mathrm{n}}^{(\alpha)}$ projectors - Local vs Global symmetry in rovibronic phase space How group operators analyze rovibronic tunneling effects at high J.

Abelian (Commutative) $C_{2}, C_{2}, \ldots, C_{6} \ldots$
H diagonalized by r^{p} symmetry operators that COMMUTE with $H \quad\left(r^{p} H=H r^{p}\right)$,
and with each other $\left(r^{p} r^{q}=r^{p+q}=r^{q} r^{p}\right)$.

Versus...

Non-Abelian (do not commute) D_{3}, O_{h}, \ldots
While all H symmetry operations COMMUTE with H ($\mathbf{U} H=H \mathbf{U}$)
most do not with each other ($\mathbf{U} \neq \mathbf{V} \mathbf{~)}$.
Q: So how do we write \boldsymbol{H} in terms of non-commutative \mathbf{U} ?
Time to examine how we..
.classify symmetry
. apply it ...
...from PURE group theory... A revolutionary simplification to classify all groups and their algebras
The
SYMMETRIES

A "kaleidoscopic approach that uses an "intrinsic" group

Jobn H. Conway • Heidi Burgiel • Chaim Goodman-Strauss (2008) A.K. Peters Ltd. Wellesley, MA 02482
...from APPLIED ${ }_{\text {(to string theory)... }}$ A new/old approach to Clebsch-Gordon-Racah-Yutsis invariants

Predrag Cvitanović

GROUP THEORY

Birdtracks, Lie's, and Exceptional Groups
(2008) Princeton. Oxford 0X20 1TW
...from PURE group theory... ...from APPLIED fro supersymmetry)... $^{\text {fr }}$ A revolutionary simplification to classify all groups and their algebras
 A new/old approach to Clebsch-Gordon-

Racah-Yutsis invariants

A main message:

 Predrag Cvitanović
 GROUP THEORY

$$
\mathbf{M}=\lambda_{1} \mathbf{P}_{1}+\lambda_{2} \mathbf{P}_{2}+\cdots+\lambda_{r} \mathbf{P}_{r}
$$

which associates with each distinct root λ_{i} of invariant matrix M a projection operator (3.48):

Ch. 3
 excerpt

$$
\mathbf{P}_{i}=\prod_{j \neq i} \frac{\mathbf{M}-\lambda_{j} \mathbf{1}}{\lambda_{i}-\lambda_{j}} .
$$

The exposition given here in sections. 3.5-3.6 is taken from refs. [73, 74]. Who wrote this down first I do not know, but I like Harter's exposition [155, 156, 157] best.
"Give me a place to stand... and I will move the Earth"

Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}$

Body Based Operations

...But how do you actually make the \mathbf{R} and $\overline{\mathbf{R}}$ operations?

(Commuting) Abelian symmetry = Fourier analysis (Back to our roots $\left.1^{1 / N}=e^{2 \pi i m / N}\right)$ Group product table => Hamiltonian \mathbb{B}-matrices $\left(C_{2}\right.$ and C_{6} examples $)$ Group roots $=>$ B-matrix spectral resolution by $\mathrm{P}^{(\mathrm{m})}$ projectors

? $\mathrm{B} \cdot \mathrm{g}=\mathrm{g} \cdot \mathrm{B}$?
 - New symmetry insights:

Local vs. Global product tables => IE-matrices All-commuting invariants $=>$ Global invariant (character) $\mathrm{P}^{(\alpha)}$ projectors Mutually-commuting sets $=>$ Local vs. Global eigensolutions by $\mathrm{P}_{\mathrm{m}, \mathrm{n}}^{(\alpha)}$ projectors $=>\quad$ Bl-matrix spectral resolution by $\mathrm{P}_{\mathrm{m}, \mathrm{n}}^{(\alpha)}$ projectors

- Non-Abelian symmetry analysis II. (Octahedral example: O_{h}) Global-local product tables => B-matrices...

and all the above

$=>$ eigensolution formulas by local-symmetry defined $\mathrm{P}_{\mathrm{n}, \mathrm{n}}^{(\alpha)}$ projectors

Example of GLOBAL vs LOCAL projector algebra for $D 3 \sim$ C $3 v$

D_{3}-defined local-wave bases

Example of GLOBAL vs LOCAL projector algebra for $D 3 \sim C 3 v$

D_{3}-defined local-wave bases

Lab-fixed (Extrinsic-Global) operations and rotation axes

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$
To represent external $\left\{. . \mathrm{T}, \mathbf{U}, \mathbf{V}, \ldots\right.$ \}switch $\mathrm{g} \mathrm{g}^{\dagger}$ on top of group table

$$
\begin{aligned}
& R^{G}(\mathbf{l})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}(\mathbf{i})=\quad R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)=
\end{aligned}
$$

D_{3} global
gg ${ }^{\dagger}$-table

क Яि कि की		
1	,	$\begin{array}{llll}\mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{i}_{3}\end{array}$
\mathbf{r}^{2}	$\begin{array}{ll}1 & \mathbf{r}^{2} \\ \mathrm{r} & 1\end{array}$	$\left(i_{3}\right) \mathbf{i}_{1} \quad \mathbf{i}_{2}$ $\mathbf{i}_{2}\left(\mathbf{i}_{3}\right) \mathbf{i}_{1}$
\mathbf{i}_{1} \mathbf{i}_{2}	(i3) \mathbf{i}_{2}	$\begin{array}{ccc}1 & \mathbf{r} & \mathbf{r}^{2} \\ \mathbf{r}^{2} & \mathbf{1} & \mathbf{r} \\ \mathbf{r} & \mathbf{r}^{2} & 1\end{array}$

Example of RELATIVITY-DUALITY for $D_{3} \sim_{3 v}$

To represent external $\left\{. . \mathrm{T}, \mathrm{U}, \mathrm{V}, \ldots\right.$ \}switch $\mathrm{g} \underset{\rightarrow}{ } \mathrm{g}^{\dagger}$ on top of group table

$$
\begin{align*}
& R^{G}(\mathbf{l})=\quad R^{G}(\mathbf{r})=\quad R^{G}\left(\mathbf{r}^{2}\right)=\quad R^{G}\left(\mathbf{i}_{1}\right)=\quad R^{G}\left(\mathbf{i}_{2}\right)=\quad R^{G}\left(\mathbf{i}_{3}\right)=
\end{align*}
$$

D_{3} global gg ${ }^{\dagger}$-table

To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ switch $\mathbf{g} \underset{\rightarrow}{\boldsymbol{\sim}} \mathbf{g}^{\dagger}$ on side of group table

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathrm{T}, \mathbf{U}, \mathrm{V}, \ldots\right.$. \}switch $\mathrm{g} \underset{\sim}{\sim} \mathrm{g}^{\dagger}$

All these global g commute with general local IB matrix.

Local गB matrix parametrized by $\overline{\mathrm{g}}$'s

RESULT: Any $R(\mathrm{~T})$ commute
with any $R(\overline{\mathbf{U}}) \ldots \quad \quad \mathbb{B}=H \overline{\mathbf{I}}^{0}+r_{1} \overline{\mathbf{r}}^{I}+r_{2} \overline{\mathbf{r}}^{2}+i_{1} \overline{\mathbf{i}}_{1}+i_{i} \overline{\mathbf{i}}_{2}+i_{3} \overline{\mathbf{i}}_{3}$ is made from Local symmetry matrices

$$
\begin{aligned}
& H=\langle 1| \operatorname{Bi}] 1\rangle=H^{*} \\
& r_{I}=\langle\mathrm{r}| \mathbb{B}|1\rangle=r_{2}^{*} \\
& r_{2}=\left\langle\mathrm{r}^{2}\right| \mathbb{B}|1\rangle=r_{I}^{*}
\end{aligned}
$$ having Global symmetry D_{3}

$i_{I}=\left\langle\mathrm{i}_{1}\right| \mathbb{B}|1\rangle=i_{I}{ }^{*} \mathbf{i}$
$i_{2}=\left\langle\mathrm{i}_{2}\right| \mathbb{1 8}|1\rangle=i_{2}$ *
$i_{3}=\left\langle\mathrm{i}_{3}\right| \mathbb{B}|1\rangle=i_{3}$ *

To represent internal $\left\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\right.$ \} switch $\mathbf{g} \underset{\sim}{\sim} \mathbf{g}^{\dagger}$

IBIa $\left.\left.\left.\left.\mid \mathbf{1}) \mid \mathrm{r}) \mid \mathrm{r}^{2}\right) \mid \mathrm{i}_{1}\right) \mid \mathrm{i}_{2}\right) \mid \mathrm{i}_{3}\right)$ | $(\mathbf{1}\|\mid H$ | r_{I} | r_{2} | i_{I} | i_{2} | i_{3} | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |
| $(\mathrm{r}$ | $\\|$ | r_{2} | H | r_{I} | i_{2} | i_{3} |
| i_{I} | | | | | | |
| $\left(\mathrm{r}^{2}\right.$ | r_{I} | r_{2} | H | i_{3} | i_{I} | i_{2} |
| $\left(\mathrm{i}_{1} \mid\right.$ | i_{I} | i_{2} | i_{3} | H | r_{I} | r_{2} |
| $\left(\mathrm{i}_{2}\right.$ | i_{2} | i_{3} | i_{2} | r_{2} | H | r_{I} |
| $\left(\mathrm{i}_{3} \mid\right.$ | i_{3} | i_{I} | i_{2} | r_{I} | r_{2} | H |$|$

Example of RELATIVITY-DUALITI

$$
H=\langle 1| \text { 四 } 1\rangle=H^{*}
$$

To represent external \{..T,U,V,... \}

$$
r_{1}=\langle\mathrm{r}| \mathbb{B}|1\rangle=r_{2} *
$$

$$
r_{2}=\left\langle\mathrm{r}^{2}\right| \mathbb{E}|1\rangle=r_{1}^{*}
$$

$$
i_{1}=\left\langle i_{1} \mid \mathbb{Z} \| 1\right\rangle=i_{l}{ }^{*} \mathrm{i}_{3}-
$$

$$
i_{2}=\left\langle i_{2}\right| \mathbb{Z}|1\rangle=i_{2}^{*}
$$

$$
i_{3}=\left\langle i_{3}\right| \mathbb{B}|1\rangle=i_{3} *
$$

Hamiltonian matrix

Q: How do you reduce/diagonalize all these matrices?

A:(1) Divide \& Conquer (Use subgroup chains and sub-classes)
(2) Find commuting invariants (Using character projection algebra)
(3) Assemble
local-D ${ }_{3}$-defined Hsamiltonison matrix

[1]						i,	
(1)	H	r_{i}	r		i_{1}	l_{2}	
	r_{2}	H			i_{2}		
(r^{2}	1		H		i_{3}	il	i_{2}
(i_{1}	l_{I}	i_{2}			H	r	
(i_{2}	i_{2}					H	
			i_{1}			r_{2}	

Q: How do you reduce/diagonalize all these matrices?

A:(1) Divide \& Conquer (Use subgroup chains and sub-classes)

local-D ${ }_{3}$-defined	
	Hemuiltonisn matrix
	$\begin{array}{llllll}H & n & i_{2} & i_{3} & i_{1}\end{array}$
	$\begin{array}{lllllll} \\ l^{2} & n & r_{2} & H & i_{3} & i_{1} & i_{2}\end{array}$
	$i_{l} i_{2} i_{3} H_{l} r_{1} r_{2}$
	$l_{2} i_{2} i_{3} i_{3} i_{2} r_{2} H^{\prime} r_{1}$

Important invariant numbers or "characters"

$\ell^{\alpha}=\underset{\text { For symmetry group or algebra } G}{\text { Irreducible representation (irrep) dimension or level degeneracy }}$

$D_{3} \mathrm{~K}=1$			+i
$\mathbf{P}^{4_{l}}=1$	1		6
$\mathbf{P}^{1_{2}}=1$	1	-	
$\mathbf{P}^{E}=2$	-1	0	

Centrum: $\kappa(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{0}=$ Number of classes, invariants, irrep types, all-commuting ops
Rank: $\quad \rho(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{l}=$ Number of irrep idempotents $\mathbf{P}_{n, n}^{(\alpha)}$, mutually-commuting ops
Order: $\quad{ }^{\circ}(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{2}=$ Total number of irrep projectors $\mathbf{P}_{m, n}^{(\alpha)}$ or symmetry ops

Q: How do you reduce/diagonalize all these matrices?

A:(1) Divide \& Conquer (Use subgroup chains and sub-classes)
(2) Find commuting invariants (Using character projection algebra)
(3) Assemble

Important invariant numbers or "characters"

$\ell^{\alpha}=$ Irreducible representation (irrep) dimension or level degeneracy

$D_{3} \mathrm{\kappa}=\mathbf{1} \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$	$\mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}$		
$\mathbf{P}^{4_{l}}=1$	1		6
${ }_{2}=1$	1		6

Centrum: $\kappa(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{0}=$ Number of classes, invariants, irrep types, all-ctommuting ops
Rank: $\quad \rho(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{l}=$ Number of irrep idempotents $\mathbf{P}_{n, n}^{(\alpha)}$, mutually-commyxting ops
Order: $\quad{ }^{\circ}(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{2}=$ Total number of irrep projectors $\mathbf{P}_{m, n}^{(\alpha)}$ or symmetry ops
Example: $G=\boldsymbol{D}_{3} \quad$ Rank: $\quad \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{l}=1^{l}+1^{l}+2^{l}=4 \quad \begin{aligned} & \ell^{A_{2}}=1 \\ & \ell^{E}=2\end{aligned}$
Order: $\quad{ }^{\circ}\left(D_{3}\right)=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{0}=1^{2}+1^{2}+2^{2}=6$

Spectral analysis of non-commutative "Group-table Hamiltonian" D_{3} Example 1st Step: Spectral resolution of Center (Class algebra of D_{3})

1	$\mathrm{r}^{1} \mathrm{r}^{2}$	$\begin{array}{lll}\mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{i}_{3}\end{array}$
r^{2}	$1 \mathrm{r}^{1}$	$\begin{array}{lll}\mathrm{i}_{2} & \mathrm{i}_{3} & \mathrm{i}_{1}\end{array}$
r^{1}	$\mathrm{r}^{2} 1$	$\mathrm{i}_{3} \quad \mathbf{i}_{1} \quad \mathbf{i}_{2}$
i_{1}	$\mathrm{i}_{2} \quad \mathbf{i}_{3}$	$1 \begin{array}{lll}1 & \mathbf{r}^{1} & \mathbf{r}^{2}\end{array}$
i_{2}	$\mathrm{i}_{3} \quad \mathbf{i}_{1}$	$\begin{array}{lll}\mathrm{r}^{2} & 1 & \mathrm{r}^{1}\end{array}$
i_{3}	$\mathrm{i}_{1} \quad \mathbf{i}_{2}$	$\begin{array}{lll}\mathrm{r}^{1} & \mathrm{r}^{2} & 1\end{array}$

\rightarrow| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| κ_{2} | $2 \kappa_{1}+\kappa_{2}$ | $2 \kappa_{3}$ |
| | κ_{3} | $2 \kappa_{3}$ |

Class products give spectral polynomial and all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{l}}, \mathrm{P}^{A_{2}}$, and \mathbf{P}^{E}

$$
0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)
$$

Algebra Center like cell nucleus; Its invariants are made here.

- characters
- projectors
-H eigenvalues (depend on local sym.)
-H eigenvectors (depend on local sym.)

Spectral analysis of non-commutative "Group-table Hamiltonian" D_{3} Example 1st Step: Spectral resolution of Center (Class algebra of D_{3})

1	$\mathrm{r}^{1} \mathrm{r}^{2}$	$\begin{array}{lll}\mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{i}_{3}\end{array}$
r^{2}	$1 \mathrm{r}^{1}$	$\begin{array}{lll}\mathrm{i}_{2} & \mathrm{i}_{3} & \mathrm{i}_{1}\end{array}$
r^{1}	$\mathrm{r}^{2} 1$	$\mathrm{i}_{3} \quad \mathbf{i}_{1} \quad \mathbf{i}_{2}$
i_{1}	$\begin{array}{ll}\mathbf{i}_{2} & \mathbf{i}_{3}\end{array}$	$1 \mathrm{r}^{1} \quad \mathrm{r}^{2}$
i_{2}	$\mathrm{i}_{3} \mathrm{i}_{1}$	$\begin{array}{lll}\mathbf{r}^{2} & \mathbf{1} & \mathbf{r}^{1}\end{array}$
i_{3}	$\mathrm{i}_{1} \quad \mathbf{i}_{2}$	$\begin{array}{lll}\mathrm{r}^{1} & \mathrm{r}^{2} & 1\end{array}$

\rightarrow| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| κ_{2} | $2 \kappa_{1}+\kappa_{2}$ | $2 \kappa_{3}$ |
| | κ_{3} | $2 \kappa_{3}$ |

Class products give spectral polynomial and
all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{l}}, \mathrm{P}^{A_{2}}$, and \mathbf{P}^{E}

$$
0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)
$$

$$
\left|\begin{array}{l}
0=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}} \\
\kappa_{\mathbf{3}} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}
\end{array} \quad\right| \begin{aligned}
& 0=\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{2}} \\
& \kappa_{\mathbf{3}} \mathbf{P}^{A_{2}}=-3 \cdot \mathbf{P}^{A_{2}}
\end{aligned}
$$

Class resolution into sum of eigenvalue \cdot Projector

$$
\begin{aligned}
& \kappa_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E} \\
& \kappa_{2}=2 \cdot \mathbf{P}^{A_{1}}-2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \\
& \kappa_{3}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \kappa_{\mathbf{3}} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}=}=\frac{\left(\kappa_{3}+3 \cdot 1\right)\left(\kappa_{3}-0 \cdot 1\right)}{(+3+3)(+3-0)} \\
& \mathbf{P}^{A_{2}}=\frac{\left(\kappa_{3}-3 \cdot 1\right)\left(\kappa_{3}-0 \cdot 1\right)}{(-3-3)(-3-0)} \\
& \mathbf{P}^{E}=\frac{\left(\kappa_{3}-3 \cdot \mathbf{1}\right)\left(\kappa_{3}+3 \cdot 1\right)}{(+0-3)(+0+3)}
\end{aligned}
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" D_{3} Example 1st Step: Spectral resolution of Center (Class algebra of D_{3})
 Each class-sum $\underline{\kappa}_{\mathrm{k}}$ commues with all of D_{3}.

\rightarrow| | $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ |
| :---: | :---: | :---: |
| κ_{2} | $2 \kappa_{1}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ | |
| | κ_{3} | $2 \kappa_{3}$ |

Class products give spectral polynomial and
all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{l}}, \mathrm{P}^{A_{2}}$, and \mathbf{P}^{E}

$$
0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)
$$

$$
\left|\begin{array}{l}
0=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}} \\
\kappa_{\mathbf{3}} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}
\end{array} \quad\right| \begin{aligned}
& 0=\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{2}} \\
& \kappa_{\mathbf{3}} \mathbf{P}^{A_{2}}=-3 \cdot \mathbf{P}^{A_{2}}
\end{aligned}
$$

Class resolution into sum of eigenvalue \cdot Projector

$$
\begin{aligned}
& \kappa_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E} \\
& \kappa_{2}=2 \cdot \mathbf{P}^{A_{1}}-2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \\
& \kappa_{3}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \kappa_{\mathbf{3}} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

$$
\text { Inverse resolution gives } D_{3} \text { Character Table }
$$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}=}=\frac{\left(\kappa_{3}+3 \cdot 1\right)\left(\kappa_{3}-0 \cdot 1\right)}{(+3+3)(+3-0)} \\
& \mathbf{P}^{A_{2}}=\frac{\left(\kappa_{3}-3 \cdot 1\right)\left(\kappa_{3}-0 \cdot 1\right)}{(-3-3)(-3-0)} \\
& \mathbf{P}^{E}=\frac{\left(\kappa_{3}-3 \cdot \mathbf{1}\right)\left(\kappa_{3}+3 \cdot 1\right)}{(+0-3)(+0+3)}
\end{aligned}
$$

$$
\mathbf{P}^{A_{1}}=\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbf{P}^{A_{2}}=\left(\kappa_{1}+\kappa_{2}-\kappa_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\mathbf{P}^{E}=\left(2 \kappa_{1}-\kappa_{2}\right) / 3 \quad=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}\right) / 3
$$

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)
$D_{3} \kappa=1 \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mid \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$

$\boldsymbol{C}_{\mathbf{2}}=\mathbf{1}=\mathbf{1}$
\boldsymbol{i}_{3}
$\boldsymbol{p}^{0_{2}}=\begin{array}{ll}1 & 1 \\ \boldsymbol{p}^{t_{2}} & =1 \\ 1 & -1\end{array} 2_{2}$

level
un-splitting
or clustering

Spectral reduction of non-commutative "Group-table Hamiltonian"
D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i}\} \quad$ or $E L S E C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

$D_{3} \mathrm{\kappa}=1$	$\mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}$		
$\mathbf{P}^{4}=1$	1		1
$\mathbb{P}^{4_{2}}=1$	1	-	
= 2	-1		

$$
C_{3} \mathrm{k}=\mathbf{1} \quad \mathbf{r}^{l} \quad \mathbf{r}^{2}
$$

$$
\begin{aligned}
& D_{\mathbf{3}} \supset \boldsymbol{C}_{\mathbf{2}} 0_{2} 1_{2} \\
& n^{A_{l}}=\begin{array}{|ll}
1 & \cdot \\
n^{A_{2}}= \\
n^{E}= & \cdot \\
1 & 1 \\
1 & 1
\end{array}
\end{aligned}
$$

$$
\boldsymbol{D}_{\mathbf{3}} \supset \boldsymbol{C}_{\mathbf{2}} 0_{3} 1_{3} 1_{3}
$$

$$
\begin{aligned}
& n^{A_{l}}= \\
& \left.n^{A_{2}}=\begin{array}{lll}
1 & \cdot & \cdot \\
n^{E} & = & \cdot \\
\cdot & \cdot \\
\cdot & 1 & 1
\end{array}\right]
\end{aligned}
$$

Correlation shows products of $\mathbf{P}^{(\alpha)}$ by the C_{2}-unit or by the C_{3}-unit make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

$$
\begin{aligned}
& C_{2}{ }^{\kappa}=1 \quad \mathrm{i}_{3} \\
& \begin{array}{c}
\boldsymbol{p}^{0_{2}}=1 \\
\boldsymbol{p}^{l_{2}}=1 \\
1
\end{array} 1_{1}^{1 / 2}
\end{aligned}
$$

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example

2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i}\} \quad$ or $E L S E C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)
$D_{3} \kappa=1 \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$

$$
\begin{array}{rlll}
\boldsymbol{D}_{\mathbf{3}} \boldsymbol{\kappa}=\mathbf{1} & \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} & & \boldsymbol{C}_{\mathbf{2}} \boldsymbol{\kappa}=\mathbf{1} \\
\mathbf{P}_{3} \mathbf{i}_{3} \\
\mathbf{P}_{l=1}=1 & 1 & 1 & 16
\end{array} \begin{array}{lll}
\boldsymbol{p}^{0_{2}}=1 & 1 \\
\mathbf{P}^{4_{2}}=1 & 1 & -1 / 6
\end{array}
$$

$$
\begin{aligned}
& D_{\mathbf{3}} \supset \boldsymbol{C}_{\mathbf{2}} 0_{2} 1_{2} \\
& n^{A_{l}=} \begin{array}{|ll}
1 & \cdot \\
n^{A_{2}}= \\
n^{E}= & 1 \\
1 & 1
\end{array}
\end{aligned}
$$

Correlation shows products of $\mathbf{P}^{(\alpha)}$ by the C_{2}-unit or by the C_{3}-unit make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

$\boldsymbol{1}=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$			$\boldsymbol{=} \boldsymbol{p}^{0_{3}}+\boldsymbol{p}^{1_{3}}+\boldsymbol{p}^{2_{3}}$		
$\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4$			4 differ		$\mathrm{p}_{0}^{4_{l}} \cdot \cdots \cdot$
idempotent		- P_{1}	idempotent		
$\downarrow{ }^{\text {P }} \mathrm{P}_{n_{2} n_{2}}^{(\alpha)}$	\mathbf{P}^{E}	${ }_{2}{ }_{2} \mathbf{P}_{1} \mathbf{1}_{2}^{E}$	$\downarrow{ }^{\text {d }} \mathbf{P}_{n_{3} n_{3}}^{(\alpha)}$	$\mathbf{P}^{E}=$	- $\mathbf{P}_{1313}^{E} \mathbf{P}_{2,2}^{E}$
$\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{4} p^{0_{2}}=\mathbf{P}^{4 l}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$			$\mathbf{P}_{0_{3} 3_{3}}^{A_{l}}=\mathbf{P}^{4 /} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{4}\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$		
$\mathbf{P}_{1_{2}}^{42}=\mathbb{P}^{42} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$			$\mathrm{P}_{0_{3} 0_{3}^{4}=\mathbb{P}^{4} \boldsymbol{p}^{4} \boldsymbol{p}^{0_{3}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}-\mathbf{i}_{l}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6}$		
$\mathrm{P}_{\mathrm{2}_{0} \mathrm{O}_{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{O_{2}}=\mathbf{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{l}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6$			$\mathbf{P}_{1_{3} 1_{3}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{l_{3}}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{l}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon \mathbf{r}^{l}+\varepsilon^{*} \mathbf{r}^{2}\right) / 6$		
$\mathbf{P}_{2}^{12} L_{2}^{2}=\mathbf{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbf{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6$			$\mathbf{P}_{2,2}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{23}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{\prime}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{l}+\varepsilon \mathbf{r}^{2}\right) / 6$		

2nd Step: (contd.)While some class projectors $\mathbf{P}^{(\alpha)}$ split in two, so ALSO DO some classes κ_{k}

Rank $\rho\left(\boldsymbol{D}_{3}\right)=4$
idempotents
$\boldsymbol{v}^{(\alpha)}$

$\mathbf{P}^{(\alpha)}$

4 different
idempotent
$\downarrow \mathbf{P}_{n, n}^{(\alpha)}$

$$
\mathbf{P}_{0_{3} 0_{3}}^{A_{l}}=\mathbf{P}^{A_{l}} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}\right) / 3=\left(1+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{0_{3}}^{A_{3}}=\mathbb{P}^{1_{2}} \boldsymbol{p}^{0_{3}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\mathbf{P}_{1_{3}^{1}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{l_{3}}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{l}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{l}+\varepsilon^{*} \mathbf{r}^{2}\right) / 6
$$

$$
\mathbf{3}_{3_{3}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{2_{3}}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{l}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon \mathbf{r}^{2}\right) / 6
$$

\mathbf{P}^{E} splits into $\mathbf{P}^{E}=\mathbf{P}_{1_{3} 1_{3}}^{E}+\mathbf{P}_{2_{3} 2,}^{E}$, class $\kappa_{\mathbf{r}}$ splits into $\kappa_{\mathbf{r} l}$ and $\kappa_{\mathbf{r} 2}$

2nd Step: (contd.)While some class projectors $\mathbf{P}^{(\alpha)}$ split in two, so ALSO DO some classes κ_{k}
$\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4$
idempotents
$\mathbf{P}^{(\alpha)}$

$$
\begin{aligned}
& \mathbf{P}_{0_{2} A_{2}}^{A_{l}}=\mathbf{P}^{A_{l}} \boldsymbol{p}^{O_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{1_{2} I_{2}}^{A_{2}}=\mathbf{P}^{A_{2}} \boldsymbol{p}^{l_{2}}=\mathbf{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{O_{2}}=\mathbf{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{1_{2} L_{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbf{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}^{E} \text { splits into } \mathbf{P}^{E}=\mathbf{P}_{0_{2} 0_{2}}^{E}+\mathbf{P}_{1_{2} \mathbf{l}_{2}}^{E}
\end{aligned}
$$ class K_{i} splits into K_{12} and $\mathrm{K}_{\mathbf{i}_{3}}$

$$
\begin{aligned}
& 4 \text { different } \\
& \text { idempotent } \\
& \downarrow \mathbf{P}_{n, n}^{(\alpha)} \\
& \mathbf{P}_{0_{3} 0_{3}}^{A_{l}}=\mathbf{P}^{4_{l}} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{4_{l}}\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}\right) / 3=\left(1+\sqrt{\mathbf{r}^{1}}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathrm{P}_{0,3}{ }_{2}{ }_{3}=\mathbb{P}^{12} \boldsymbol{p}^{0_{3}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{1_{3}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{l_{3}}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{l}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{1 /}+\varepsilon^{*} \mathbf{r}^{2}\right)^{2} / 6 \\
& \mathbf{P}_{2_{3}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{2_{3}}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{I}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{I}+\mathbf{r}^{2}\right) / 6 \\
& \mathbf{P}^{E} \text { splits into } \mathbf{P}^{E}=\mathbf{P}_{1_{3} 1_{3}}^{E}+\mathbf{P}_{2_{3}}^{E} \text {, } \\
& \text { class } \kappa_{\mathbf{r}} \text { splits into } \kappa_{\mathbf{r}^{2}} \text { and } \kappa_{\mathbf{r} 2}
\end{aligned}
$$

$$
i=i_{1}=i_{2}=i_{3}
$$

For Local
$D_{3} \supset C_{3}\left(\mathbb{r}^{p}\right)$
symmetry
r_{1} and r_{2} are free

Centrum $\mathrm{k}\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$
idempotents
$\mathbf{P}^{(\alpha)}$

$$
\mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}=} \mathbf{P}^{4_{l}} \boldsymbol{p}^{O_{2}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2} 2_{2}}^{2_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{2}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6
$$

$$
\mathbf{P}_{x, x}^{E}=\mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6
$$

3 rd and Final Step:

$$
\mathbf{P}_{y, y}^{E}=\mathbf{P}_{2_{2}^{1}}^{E_{2}}=\mathbf{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbf{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6
$$

Spectral resolution of ALL 6 of D_{3} :

The old 'g-equals-1-times-g-times-1' Trick

$$
\mathbf{g}=\Sigma_{m} \Sigma_{e} \Sigma_{b} D_{e b}^{(m} \psi_{g)} \mathbf{P}_{e b}^{(m)}
$$

$$
\begin{aligned}
& D_{3} \kappa=1 \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mid \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
& \begin{array}{l}
\left.\mathbf{P}^{4_{1}}=\begin{array}{lll}
1 & 1 & 1 \\
\mathbf{P}^{4_{2}}= & 1 & 1 \\
1 & -1 / 6 \\
\mathbf{P}^{E} & =1 & -1 \\
2 & 0
\end{array}\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
\begin{aligned}
& \mathbf{g}=\mathbf{P}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}^{A_{1}}+\mathbf{P}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}^{A_{2}}+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E} \begin{array}{c}
\text { Order }{ }^{\circ}\left(\boldsymbol{D}_{3}\right)=6 \\
\\
\\
+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}
\end{array} \\
& \text { projectors } \\
& \mathbf{P}_{m, n}^{(\alpha)}
\end{aligned}
\end{aligned}
$$

Six D_{3} projectors: 4 idempotents +2 nilpotents (off-diag.)

symmety label-e symmety label-b GLOBAL LOCAL

Global (LAB) symmetry $\quad D_{3}>C_{2} \mathbf{i}_{3}$ projector states Local (BOD) symmetry

$$
\mathbf{P}_{m n}^{(\alpha)}=\frac{\ell^{(\alpha)}}{{ }^{\circ} G} \Sigma_{\mathbf{g}} D_{m n}^{(\alpha)}\left(\frac{*}{(g)} \mathbf{g}\right.
$$

Spectral Efficiency: Same D(a)mn projectors give a lot!

-Local symmetery eigenvalue formulae (L.S. $=>$ off-diagonal zero.)

$$
\begin{aligned}
& r_{1}=r_{2}=-r_{1}{ }^{*}=r, \quad i_{1}=i_{2}=-i_{1}{ }^{*}=i \\
& A_{1} \text {-level: } H+2 r+2 i+i_{3} \\
& \text { gives: } A_{1} \text {-level: } H+2 r-2 i-i_{3} \\
& \text { Ex-level: } H-r-i+\dot{i} \\
& \text { Ey level: } H-r+i-i_{3}
\end{aligned}
$$

When there is no there, there...

Nobody Home where LOCAL and GLOBAL

4

- Abelian symmetry $=$ Fourier analysis (Back to our roots $\left.1^{1 / N}=e^{2 \pi i m N}\right)$ Group product table => Hamiltonian 1E-matrices
Group roots $=>$ II-matrix spectral resolution by $\mathrm{P}^{(t)}$ projectors

? E•g=g-E ?

- New symmetry insights: Local vs. Global symmetry Projector invariance
> - Non-Abelian symmetry analysis I.
> (Simplest example: D_{3})
> Local vs. Global product tables $=>$ EI-matrices
> All-commuting invariants $=>$ Global invariant (chart ter) $\mathrm{P}^{(4)}$ projectors
> Murually-commuting sets $=>$ Local vs. Global eigensolutions by $\mathrm{P}_{\mathrm{m}, \mathrm{n}}^{(()}$projectors
> => E-matrix spectral resolution by $\mathrm{P}_{\mathrm{m}, \mathrm{i}}^{(\alpha)}$ projectors
- Non-Abelian symmetry analysis II. (Octahedral example: O_{W}) Global-local product tables => B1-matrices...
... and all the above ...
$=>$ eigensolution formulas by local-symmetry defined $\mathrm{P}_{\mathrm{n}, \mathrm{n}}^{(\alpha)}$ projectors

Example of GLOBAL vs LOCAL projector algebra for

$\ell^{A} I=1 \quad$ Example: $G=O$ Centrum: $\kappa(O)=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{0}=1^{0}+1^{0}+2^{0}+3^{0}+3^{0}=5$ $\begin{array}{ll}\ell^{1_{2}}=1 & \text { Cubic-Octahedral } \quad \text { Rank: } \quad \rho(\boldsymbol{O})=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{l}=1^{l}+1^{l}+2^{l}+3^{l}+3^{l}=10 \\ \ell^{E}=2 & \text { Group } 0\end{array}$ $\ell^{T_{l}=3} \quad$ Order: $\quad{ }^{\circ}(O)=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{0}=1^{2}+1^{2}+2^{2}+3^{2}+3^{2}=24$

$O \supset C_{4}$

$\left.{ }^{(0)}\right)_{4}(1)_{4}(2)_{4}(3)_{4}=(-1)_{4} \boldsymbol{C l}_{3}(0)_{3}(1)_{3}(2)_{3}=(-1)_{3}$

A_{1}	1	\bullet	\bullet
$\mathrm{~A}_{2}$	1	\bullet	\bullet
E^{\prime}	\cdot	1	1
$\mathrm{~T}_{1}$	1	1	1
$\mathrm{~T}_{2}$	1	1	1

O_{h} operator slide rule and subgroup / coset-space structure

C_{4} subgroup correlation to O (largest local symmetry $\Rightarrow>$ smallest level-clusters) $\mathrm{O}_{\supset} \mathrm{C}_{4}$
C_{4} Projectors to split octahedral P^{α}

largest local symmetry $C_{4} \Rightarrow$ smallest level-clusters (6-levels)
C_{4} subgroup correlation to O

$$
\boldsymbol{O} \supset \boldsymbol{C}_{4}{ }^{(0)_{4}}{ }^{(1)_{4}}{ }^{(2)}{ }_{4}(3)_{4}=(-1)_{4}
$$

C_{4} Projectors to split octahedral P^{α}

$$
\mathbf{p}_{m_{4}}=\sum_{p=0}^{3} \frac{e^{2 \pi i m \cdot p / 4}}{4} \mathbf{R}_{z}^{p}=\left\{\begin{array}{c}
\mathbf{p}_{0_{4}}=\left(\mathbf{1}+\mathbf{R}_{z}+\rho_{z}+\tilde{\mathbf{R}}_{z}\right) / 4 \\
\mathbf{p}_{1_{4}}=\left(\mathbf{1}+i \mathbf{R}_{z}-\rho_{z}-i \tilde{\mathbf{R}}_{z}\right) / 4 \\
\mathbf{p}_{2_{4}}=\left(\mathbf{1}-\mathbf{R}_{z}+\rho_{z}-\tilde{\mathbf{R}}_{z}\right) / 4 \\
\mathbf{p}_{3_{4}}=\left(\mathbf{1}-i \mathbf{R}_{z}-\rho_{z}+i \tilde{\mathbf{R}}_{z}\right) / 4
\end{array}\right.
$$

$1 \cdot \mathbf{P}^{\alpha}=$	$\left(\mathrm{p}_{4}\right.$	$+\mathrm{p}_{14}$	$+\mathrm{p}_{24}$	$\left.+\mathrm{p}_{3_{4}}\right) \cdot \mathrm{P}^{\alpha}$
$1 \cdot \mathbf{P}^{A_{1}}=$	$\mathrm{P}_{0404}^{A_{1}}$	+0	$+0$	+0
$1 \cdot \mathbf{P}^{A_{2}}=$	0	+0	$+\mathrm{P}_{242_{4}}^{A_{2}}$	+0
$1 \cdot \mathrm{P}^{E}=$	$\mathrm{P}^{0_{4} 0_{4}}$	+0	$+\mathrm{P}_{2424}^{E}$	+0
$\mathbf{1} \cdot \mathbf{P}^{T_{1}}=$	$\mathrm{P}_{0_{4} 0_{4}}^{T_{1}}$	$+\mathbf{P}_{1_{4} 1_{4}}^{T_{1}}$	+0	${ }_{+} \mathbf{P}_{3434}{ }^{T_{1}}$
$\mathbf{1} \cdot \mathbf{P}^{T_{2}}=$	0	$+\mathbf{P}_{14}^{T_{2} 1_{4}}$	$+\mathbf{P}_{24}^{T_{2}{ }^{4}}$	$+\mathbf{P}_{34}^{T_{2}}$

10 split $O_{\supset} C_{4}$ octahedral P^{α}

 related to 10 split sub-classes| $\mathbf{P}_{n_{4} n_{4}}^{(\alpha)}\left(O \supset C_{4}\right)$ | $\mathbf{1}$ | $r_{1} r_{2} \tilde{r}_{3} \tilde{r}_{4}$ | $\tilde{r}_{1} \tilde{r}_{2} r_{3} r_{4}$ | $\rho_{x} \rho_{y}$ | ρ_{z} | $R_{x} \tilde{R}_{x} R_{y} \tilde{R}_{y}$ | R_{z} | \tilde{R}_{z} | $i_{1} i_{2} i_{5} i_{6}$ | $i_{3} i_{4}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $24 \cdot \mathbf{P}_{0_{4} 0_{4}}^{A_{1}}$ | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
| $24 \cdot \mathbf{P}_{24}^{A_{2} 2_{4}}$ | 1 | 1 | 1 | 1 | 1 | -1 | -1 | -1 | -1 | -1 |
| $12 \cdot \mathbf{P}_{0_{4} 0_{4}}^{E}$ | 1 | $-\frac{1}{2}$ | $-\frac{1}{2}$ | 1 | 1 | $-\frac{1}{2}$ | 1 | 1 | $-\frac{1}{2}$ | 1 |
| $12 \cdot \mathbf{P}_{2_{4} 4_{4}}^{E}$ | 1 | $-\frac{1}{2}$ | $-\frac{1}{2}$ | 1 | 1 | $+\frac{1}{2}$ | -1 | -1 | $+\frac{1}{2}$ | -1 |
| $8 \cdot \mathbf{P}_{1_{4} 1_{4}}^{T_{1}}$ | 1 | $-\frac{i}{2}$ | $+\frac{i}{2}$ | 0 | -1 | $+\frac{1}{2}$ | $-i$ | $+i$ | $-\frac{1}{2}$ | 0 |
| $8 \cdot \mathbf{P}_{34}^{T_{1} 3_{4}}$ | 1 | $+\frac{i}{2}$ | $-\frac{i}{2}$ | 0 | -1 | $+\frac{1}{2}$ | $+i$ | $-i$ | $-\frac{1}{2}$ | 0 |
| $8 \cdot \mathbf{P}_{0_{4} 0_{4}}^{T_{1}}$ | 1 | 0 | 0 | -1 | 1 | 0 | 1 | 1 | 0 | -1 |
| $8 \cdot \mathbf{P}_{1_{4} 1_{4}}^{T_{2}}$ | 1 | $+\frac{i}{2}$ | $-\frac{i}{2}$ | 0 | -1 | $-\frac{1}{2}$ | $-i$ | $+i$ | $+\frac{1}{2}$ | 0 |
| $8 \cdot \mathbf{P}_{34}^{T_{2} 3_{4}}$ | 1 | $-\frac{i}{2}$ | $+\frac{i}{2}$ | 0 | -1 | $-\frac{1}{2}$ | $+i$ | $-i$ | $+\frac{1}{2}$ | 0 |
| $8 \cdot \mathbf{P}_{2_{4} 2_{4}}^{T_{2}}$ | 1 | 0 | 0 | -1 | 1 | 0 | -1 | -1 | 0 | 1 |

$\mathrm{A}_{1} 10$ split $O \supset C_{4}$ octahedral e-vals ε^{α} versus 10 sub-class parameters

Sequence if $i_{1}=i_{1256}$ only non-zero parameter: $\mathrm{A}_{1} \mathrm{~T}_{1} \mathrm{E} \mathrm{T}_{2} \mathrm{~T}_{1} \mathrm{ET}_{2} \mathrm{~A}_{2} \mathrm{~T}_{2} \mathrm{~T}_{1}$

$O \supset C_{4}$	0°	$r_{n} 120^{\circ}$	$\rho_{n} 180^{\circ}$	$R_{n} 90^{\circ}$	$i_{n} 180^{\circ}$
0_{4}		$\begin{aligned} & r_{\mathrm{I}}=\operatorname{Re} r_{1234} \\ & m_{\mathrm{I}}=\operatorname{Im} r_{1234} \end{aligned}$		$\begin{aligned} & R_{z}=\operatorname{Re} R_{z} \\ & I_{z}=\operatorname{Im} R_{z} \\ & \hline \end{aligned}$	$\sqrt{i_{\mathrm{I}}=i_{1256}} \sqrt{i_{\mathrm{II}}=i_{34}}$
$\begin{gathered} \varepsilon_{0_{4}}^{A_{1}}= \\ \varepsilon_{0}^{T_{1}} \\ \varepsilon_{0_{0}}^{E} \end{gathered}$	$\begin{aligned} & g_{0} \\ & g_{0} \\ & g_{0} \end{aligned}$	$\begin{array}{r} +4 r_{\mathrm{I}} \\ 0 \\ -2 r_{\mathrm{I}} \end{array}$	$\begin{aligned} & +2 \rho_{x y}+\rho_{z} \\ & -2 \rho_{x y}+\rho_{z} \\ & +2 \rho_{x y}+\rho_{z} \end{aligned}$	$\begin{array}{r} +4 R_{x y}+2 R_{z} \\ +2 R_{z} \\ -2 R_{x y}-R_{z} \end{array}$	$+4 i_{\mathrm{I}}$ $+2 i_{\mathrm{II}}$ 0 $-2 i_{\mathrm{II}}$ $-2 i_{\mathrm{I}}$ $+2 i_{\mathrm{II}}$
14				.	
$\begin{aligned} & \varepsilon_{14}^{T_{2}} \\ & \varepsilon_{1_{1}^{1}}^{T_{1}} \\ & \hline \end{aligned}$		$\begin{aligned} & \hline+2 m_{\mathrm{I}} \\ & -2 m_{\mathrm{I}} \end{aligned}$	$\begin{aligned} & -\rho_{z} \\ & -\rho_{z} \end{aligned}$	$\begin{aligned} & -R_{x y}-2 I_{z} \\ & +R_{x y}-2 I_{z} \\ & \hline \end{aligned}$	$+2 i_{1}$ $-2 i_{1}$
24				.	
$\begin{aligned} & \varepsilon_{2_{4}}^{E} \\ & \varepsilon_{2}^{T_{4}^{2}} \\ & \varepsilon_{2_{2}}^{A_{4}} \end{aligned}$	$\begin{aligned} & g_{0} \\ & g_{0} \\ & g_{0} \end{aligned}$	$\begin{array}{r} -2 r_{\mathrm{I}} \\ 0 \\ +4 r_{\mathrm{I}} \end{array}$	$\begin{aligned} & +2 \rho_{x y}+\rho_{z} \\ & -2 \rho_{x y}+\rho_{z} \\ & +2 \rho_{x y}+\rho_{z} \end{aligned}$	$\begin{array}{r} \hline+2 R_{x y}-R_{z} \\ -2 R_{z} \\ -4 R_{x y}-2 R_{z} \\ \hline \end{array}$	$+2 i_{\mathrm{I}}$ $-2 i_{\mathrm{II}}$ 0 $+2 i_{\mathrm{II}}$ $-4 i_{\mathrm{I}}$ $-2 i_{\mathrm{II}}$
3_{4}		.	.	-	
$\begin{aligned} & \varepsilon_{33_{1}^{\prime}}^{T_{2}} \\ & \varepsilon_{3_{4}}^{T_{4}} \end{aligned}$	g_{0} g_{0}	$\begin{aligned} & -2 m_{\mathrm{I}} \\ & +2 m_{\mathrm{I}} \\ & \hline \end{aligned}$	$\begin{aligned} & -\rho_{z} \\ & -\rho_{z} \end{aligned}$	$\begin{aligned} & -R_{x y}+2 I_{z} \\ & +R_{x y}+2 I_{z} \\ & \hline \end{aligned}$	$\begin{aligned} & +2 i_{I} \\ & -2 i_{\mathrm{I}} \end{aligned}$

$J=30$ Energy levels of $\mathbf{H}=B \mathbf{J}^{2}+\boldsymbol{T}^{[4]}$ follow simple local symmetry formulas

> - Abelian symmetry $=$ Fourier analysis (Back to our roots $1^{1 / N}=e^{2 \pi i m / N}$) Group product table => Hamiltonian 1E-matrices
> Group roots $=>$ B-matrix spectral resolution by $\mathrm{P}^{(\mathrm{m})}$ projectors

- New symmetry insights: Local vs. Global symmetry Projector invariance "Mock-Mach" principle Conway, et.al, May (2008) Cvitanovic, (2008)
- Non-Abelian symmetry analysis I.
(Simplest example: D_{3})
Local vs. Global product tables => BL-matrices
All-commuting invariants $=>$ Global invariant (character) ${ }^{(\alpha)}$ projectors Mutually-commuting sets $=>$ Local vs. Global eigensolutions by $\mathrm{P}_{\mathrm{m}, \mathrm{n}}^{(\alpha)}$ projectors

$$
=>\quad \mathrm{B}-\text { matrix spectral resolution by } \mathrm{P}_{\mathrm{m}, \mathrm{n}}^{(\alpha)} \text { projectors }
$$

- Non-Abelian symmetry analysis II. (Octahedral example: O_{h}) Global-local product tables => B-matrices... ... and all the ubove ...
$=>$ eigensolution formulas by local-symmetry defined $\mathrm{P}_{\mathrm{n}, \mathrm{n}}^{(\alpha)}$ projectors
- Local vs Global symmetry in rovibronic phase space How group operators analyze rovibronic tunneling effects at high J. (SF。 examples)

Eigenvalues of $\mathbf{H}=B \mathbf{J}^{2}+\cos \phi \mathbf{T}^{[4]}+\sin \phi \mathbf{T}^{[6]}$ vs. mix angle $\phi: 0<\phi<\pi$

Conclusion: H -matrix symmetry analysis greatly improved
Group space tunneling matrix defined nicely by group table.
Each tunneling path matched to group element (complete set of Feynman paths!)

When local symmetry conditions apply:

- Spectral algebra yields closed-form energies and statess (using same table!) .
-Expressions easily deconvoluted (same table , again!).
Transitions between local symmetries clearly defined.

$$
\text { We can now do a } \mathrm{D}_{7} \text { example (Next slide :) }
$$

Seven-Deadly-Sin Tunneling Theory $\mathrm{D}_{7} \supset \mathrm{C}_{7} \sin$ calculator...(not recommended)

$A=$ Lust
$B=$ Gluttony
$\overline{A B}=$ Edible Undies $\overline{C F}=$ Advertising
$\overline{A C}=$ Prostitution $\quad \overline{C G}=$ Status Symbols
$\overline{A D}=$ Quickie $\quad \overline{D E}=$ Passive Aggression
$\overline{A E}=$ Domestic Abuse $\overline{D F}=$ Welfare
$\overline{A F}=$ Adultery $\quad \overline{D G}=$ Slackers
$\overline{A G}=$ Trophy Wife $\overline{E F}=$ Cattiness
$\overline{B C}=$ Last Donut
$\overline{E G}=$ Boxing
$\overline{B D}=$ Saturday $\overline{G F}=2^{\text {nd }}$ Place
$C=$ Greed
$\overline{B E}=$ Bulimia
$D=$ Sloth
$\overline{B F}=$ High Metabolism
$E=$ Wrath
$\overline{B G}=$ Fat men in Speedos
$F=$ Envy
$\overline{C D}=$ Get Rich Quick Scams
$G=$ Pride
$\overline{C E}=$ Muggings

Effects of broken or transition local symmetry for i-class

$$
\begin{aligned}
& D_{0_{4} 0_{4}}^{A_{1}}\left(i_{k} \mathbf{i}_{\mathbf{k}}\right)=i_{1}+i_{2}+i_{3}+i_{4}+i_{5}+i_{6} \\
& D_{2_{4} 2_{4}}^{A_{2}}\left(i_{k} \mathbf{i}_{\mathrm{k}}\right)=-\left(i_{1}+i_{2}+i_{3}+i_{4}+i_{5}+i_{6}\right) \\
& \\
& \begin{array}{c|ccc|}
D^{T_{1}^{*}}\left(i_{k} \mathbf{i}_{\mathrm{k}}\right) & 1_{4} & 3_{4} & 0_{4} \\
\hline 1_{4} & -\frac{1}{2}\left(i_{1}+i_{2}+i_{5}+i_{6}\right) & -\frac{1}{2}\left(i_{1}+i_{2}-i_{5}-i_{6}\right)-i\left(i_{3}-i_{4}\right) & -\frac{1}{\sqrt{2}}\left(i_{1}-i_{2}\right)+\frac{i}{\sqrt{2}}\left(i_{5}-i_{6}\right) \\
3_{4} & \text { h.c. } & -\frac{1}{2}\left(i_{1}+i_{2}+i_{5}+i_{6}\right) & +\frac{1}{\sqrt{2}}\left(i_{1}-i_{2}\right)+\frac{i}{\sqrt{2}}\left(i_{5}-i_{6}\right) \\
0_{4} & \text { h.c. } & \text { h.c. } & -\left(i_{3}+i_{4}\right)
\end{array} \\
& \begin{array}{c|ccc|}
D^{T_{2}^{*}}\left(i_{k} \mathbf{i}_{\mathrm{k}}\right) & 1_{4} & 3_{4} & 2_{4} \\
\hline 1_{4} & +\frac{1}{2}\left(i_{1}+i_{2}+i_{5}+i_{6}\right) & +\frac{1}{2}\left(i_{1}+i_{2}-i_{5}-i_{6}\right)-i\left(i_{3}-i_{4}\right) & +\frac{1}{\sqrt{2}}\left(i_{1}-i_{2}\right)+\frac{i}{\sqrt{2}}\left(i_{5}-i_{6}\right) \\
3_{4} & \text { h.c. } & +\frac{1}{2}\left(i_{1}+i_{2}+i_{5}+i_{6}\right) & -\frac{1}{\sqrt{2}}\left(i_{1}-i_{2}\right)+\frac{i}{\sqrt{2}}\left(i_{5}-i_{6}\right) \\
0_{4} & \text { h.c. } & \text { h.c. } & +\left(i_{3}+i_{4}\right)
\end{array}
\end{aligned}
$$

Example of RELATIVITY-DUALITY for $D_{\underline{3}} \underline{\sim} \underline{C}_{3} \underline{v}$
D_{3}-defined local-wave bases

$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{l}	\mathbf{i}_{2}	\mathbf{i}_{3}
\mathbf{r}	1	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{l}	\mathbf{i}_{2}
\mathbf{r}^{2}	\mathbf{r}	1	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{l}
\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	1	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{l}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$

Lab-fixed (Extrinsic-Global) operations and rotation axes

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

$$
\bar{i}_{2}|\mathbf{1}\rangle=\left|\mathbf{i}_{2}\right\rangle_{=}
$$

...but, THEY OBEY THE SAME GROUP TABLE

$$
\bar{i}_{1} \bar{i}_{2}^{2}|\mathbf{1}\rangle=\bar{i}_{1}\left|\mathbf{i}_{2}\right\rangle=\overline{\mathrm{r}}|\mathbf{1}|=\mathbf{r}^{2}|\mathbf{1}\rangle
$$

$$
\left(\text { Affer } \bar{i}_{1} \bar{i}_{2}\right.
$$

D_{3} global						
group	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{1}	\mathbf{i}_{2}	\mathbf{i}_{13}
product	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}	
table	\mathbf{r}_{2}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{l}
\mathbf{i}_{1}	$\left(\mathbf{i}_{13}\right.$	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}	
\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}	
i_{13}	\mathbf{i}_{2}	\mathbf{i}_{1}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$	

D_{3} global projector product table

D_{3}			$\mathbf{P}_{x x}^{E} \mathbf{P}_{x y}^{E}$	$\mathbf{P}_{y x}^{E} \mathbf{P}_{y y}^{E}$
$\mathbf{P}_{x x}^{4_{1}}$	$\mathbf{P}_{x}^{4_{1}}$			
$\mathrm{P}_{\underline{\prime 2}}^{4_{2}}$		\mathbb{P}_{41}^{4}		
$\mathbf{P}_{x x}^{E}$			$\mathbb{P}_{x x}^{E} \mathbf{P}_{x y}^{E}$	
$\mathbf{P}_{\underline{L}}^{E}$			$\mathbf{P}_{y x}^{E} \mathbf{P}_{y y}^{E}$	
\mathbf{P}^{E}				$\mathbf{P}_{x x}^{E} \mathbf{P}_{x y}^{E}$
\mathbf{P}_{y}^{E}				$\mathbf{P}_{y}^{E} \mathbf{P}_{y}^{E}$

Change Global to Local by switching ...column-g with column-g ${ }^{\dagger}$and row-g with row-g \dagger

D_{3} local
projector
product table

Matrix "Placeholders" $\mathbf{P}_{a b}^{(m)}$ for GLOBAL \mathbf{g} operators in D_{3}

$\overline{\mathbf{P}}_{a b}^{(m)} \ldots .$. for LOCAL $\overline{\mathbf{g}}$ operators in $\overline{D_{3}}$

Global (LAB) symmetry $\quad D_{3}>C_{2}$ i $_{3}$ projector states

$$
\begin{aligned}
\mathbf{i}_{3}\left|{ }_{e b}^{(m)}\right\rangle= & =\mathbf{i}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle \\
& \left.=\left.(-1)^{e}\right|^{(m)}\right\rangle
\end{aligned}
$$

$$
\left|{ }_{e b}^{(m)}\right\rangle=\mathbf{P}_{c b}^{(m)}|1\rangle
$$

Local (BOD) symmetry

$$
\begin{aligned}
& \left.\left.\overline{\overline{\mathbf{i}}_{3}}\right|_{e b} ^{(m)}\right\rangle=\overline{\mathbf{i}}_{3} \mathbf{P}_{e b}^{(m)}|1\rangle=\mathbf{P}_{e b}^{(m)} \overline{\mathbf{i}_{3}}|1\rangle \\
& =\mathbf{P}_{e b}^{(m)} \mathbf{i}_{3}^{\dagger}|1\rangle=(-1)^{b}|(m)\rangle
\end{aligned}
$$

