Symmetry eigensolutions on the Cheap

Going beyond "Gruppenpest"

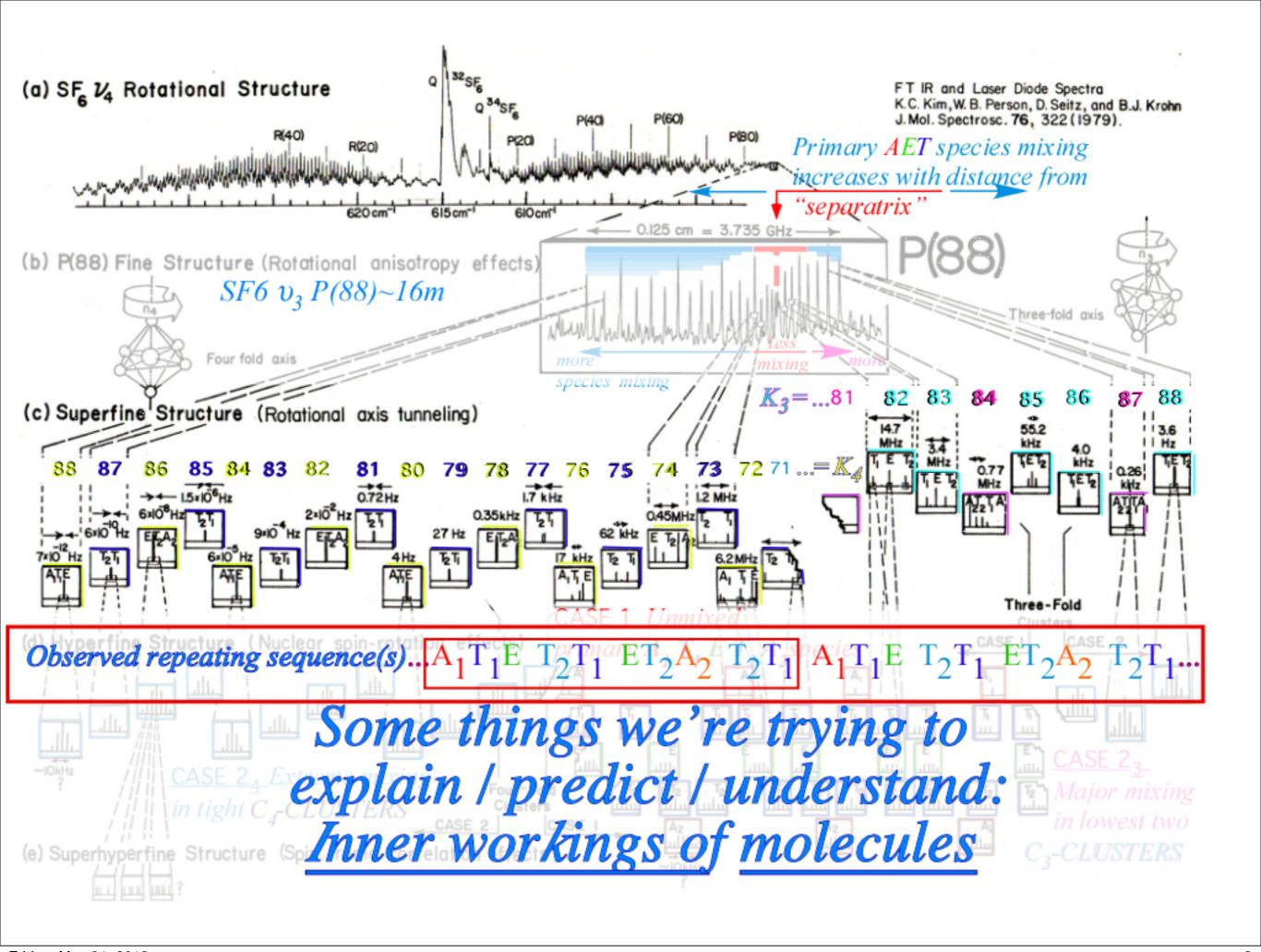
Exploiting local symmetry algebra and geometry of a quantum "Mock-Mach" principle

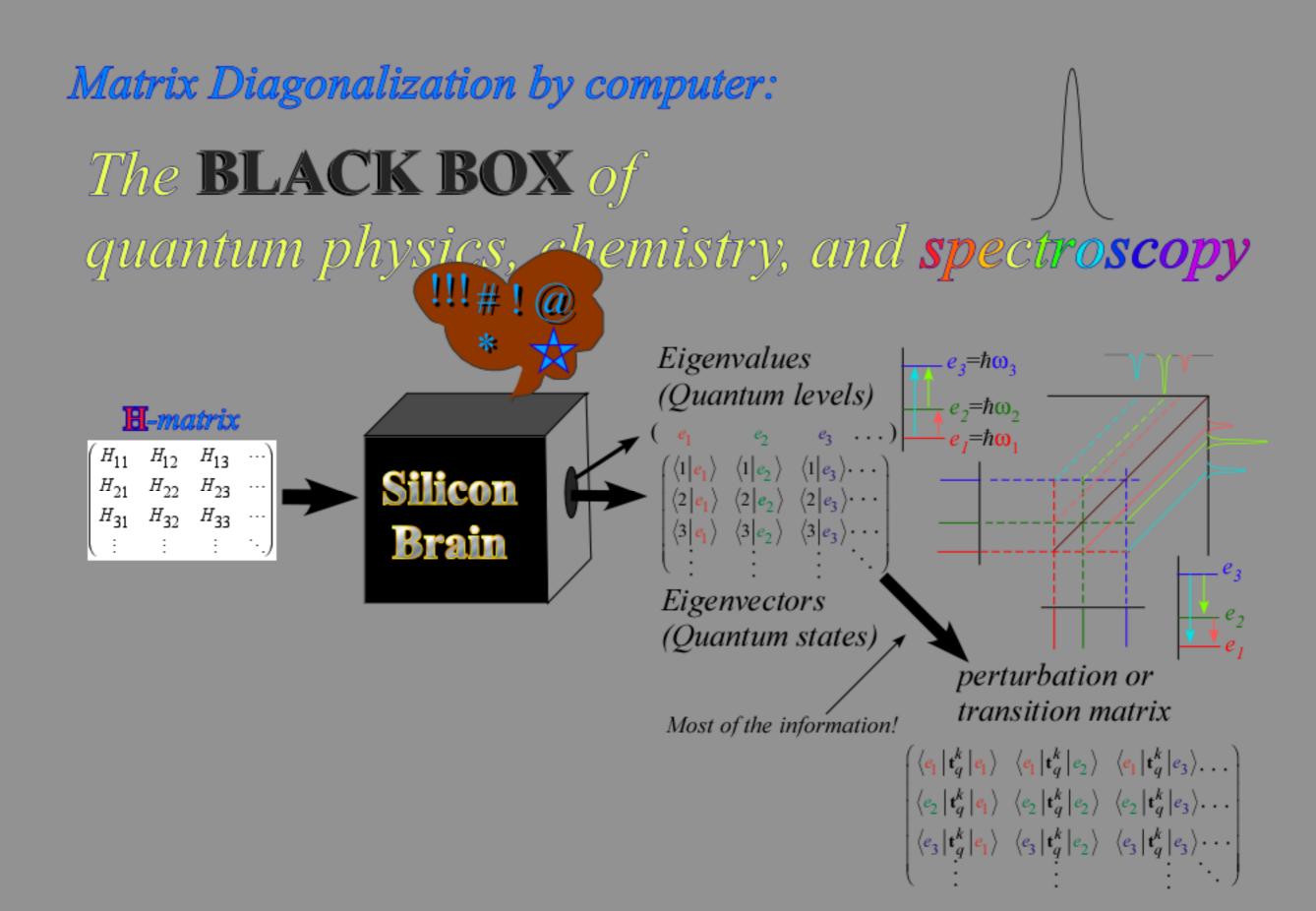
William G. Harter Department of Physics, University of Arkansas Fayetteville, AR 72701

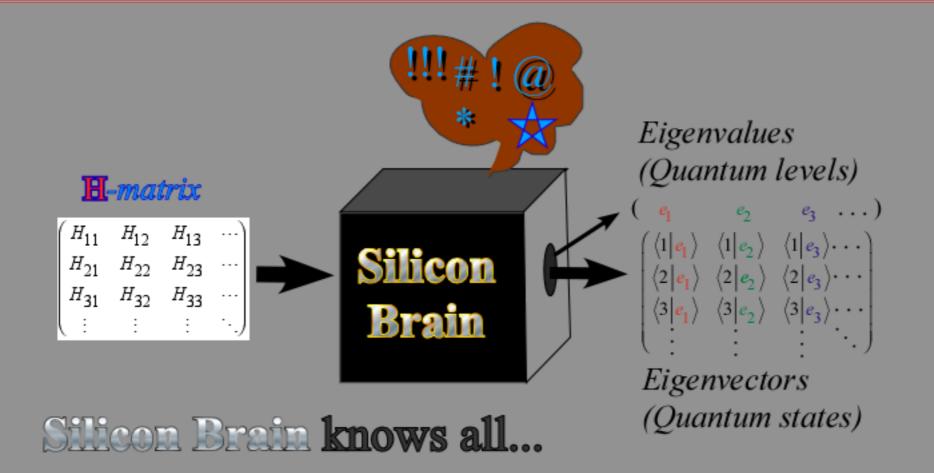
Justin Mitchell,

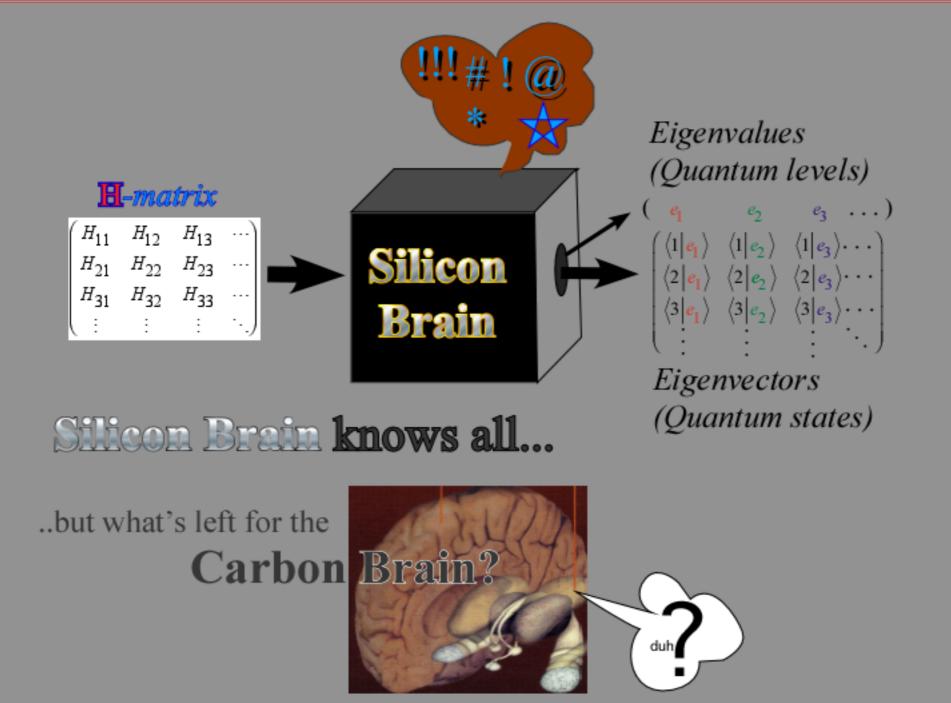
...and friend*

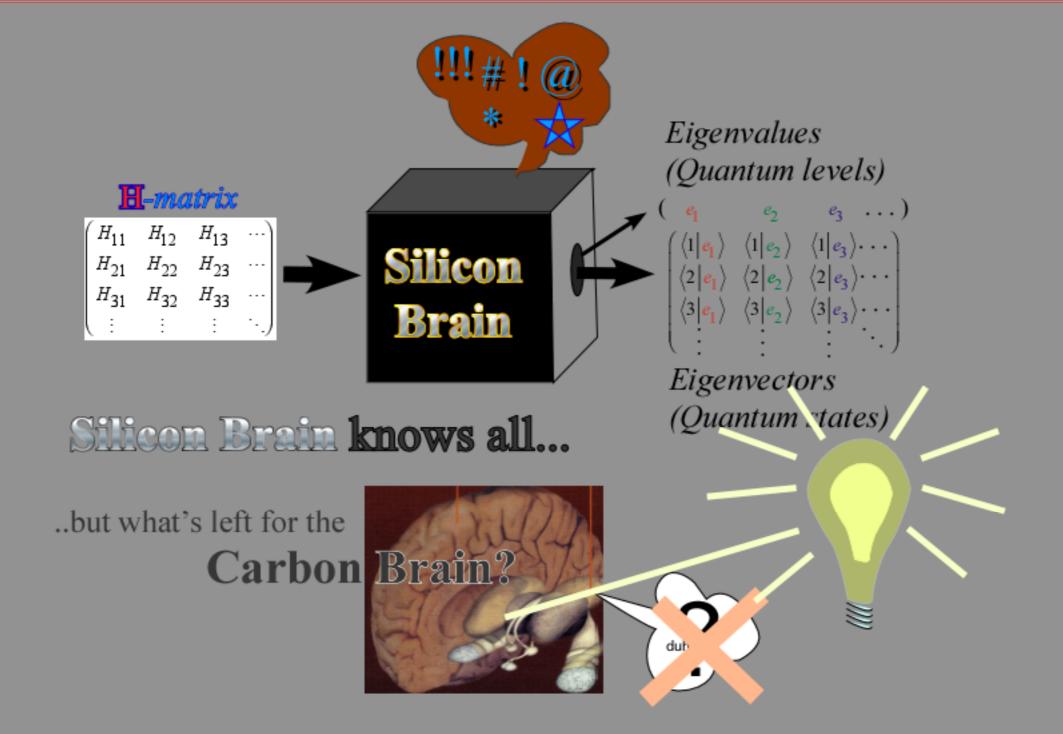
 $*(O_h slide rule)$











New symmetry analysis techniques come to rescue old Carbon Brain!

(Commuting) • Abelian symmetry = Fourier analysis (Back to our roots $1^{1/N} = e^{2\pi i m/N}$) Group product table => Hamiltonian \mathbb{H} -matrices (C_2 and C_6 examples) \mathcal{C}_{C_2} Group roots => **H**-matrix spectral resolution by $P^{(m)}$ projectors

Commutivity conundrum... ? H·g=g·H ?

• New symmetry insights: Local vs. Global symmetry Projector invariance "Mock-Mach" principle Conway, et.al, May (2008) Cvitanovic, (2008)

(Non-Commuting)

• Non-Abelian symmetry analysis I. (Simplest example: D3)

Local vs. Global product tables => **H**-matrices

All-commuting invariants => Global invariant (character) $P^{(\alpha)}$ projectors

Mutually-commuting sets => Local vs. Global eigensolutions by $P_{m,n}^{(\alpha)}$ projectors

H-matrix spectral resolution by $P_{m,n}^{(\alpha)}$ projectors

• Non-Abelian symmetry analysis II. (Octahedral example: Oh) Global-local product tables => **H**-matrices...

... and all the above ...

=> eigensolution formulas by local-symmetry defined $P_{n,n}^{(\alpha)}$ projectors

· Local vs Global symmetry in rovibronic phase space How group operators analyze rovibronic tunneling effects at high J. (SF examples)

• Abelian symmetry = Fourier analysis (Back to our roots $1^{1/N} = e^{2\pi i m/N}$)

Group product table => Hamiltonian H-matrices (C_2 and C_6 examples)

Group roots => H-matrix spectral resolution by $P^{(m)}$ projectors

Commutivity conundrum... ? H·g=g·H ?

- New symmetry insights: Local vs. Global symmetry Projector invariance "Mock-Mach" principle Conway, et.al, May (2008) Cvitanovic, (2008)
- (Non-Commuting)

 Non-Abelian symmetry analysis I. (Simplest example: D₃)

 Local vs. Global product tables => \mathbf{H} -matrices

 All-commuting invariants => Global invariant (character) $\mathbf{P}^{(\alpha)}$ projectors

 Mutually-commuting sets => Local vs. Global eigensolutions by $\mathbf{P}^{(\alpha)}_{m,n}$ projectors

 => \mathbf{H} -matrix spectral resolution by $\mathbf{P}^{(\alpha)}_{m,n}$ projectors
- Non-Abelian symmetry analysis II. (Octahedral example: Oh)
 Global-local product tables => **H**-matrices...
 ... and all the above ...
 => eigensolution formulas by local-symmetry defined $P_{n,n}^{(\alpha)}$ projectors

 Local vs Global symmetry in rovibronic phase space

Expand C_6 symmetric **H**=

using C_6 group table $\binom{gg^T}{form}$

$$\mathbf{H} = r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 + \dots + r_{n-1} \mathbf{r}^{n-1} = \sum r_q \mathbf{r}^k$$

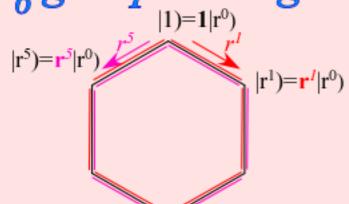
 C_6 group table gives **r**-matrices,...

Expand C_6 symmetric **H**=

using C_6 group table $\binom{gg^T}{form}$

$$\mathbf{H} = r_0 \mathbf{r}^0 + r_1 \mathbf{r}^1 + r_2 \mathbf{r}^2 + \dots + r_{n-1} \mathbf{r}^{n-1} = \sum r_q \mathbf{r}^k$$

 C_6 group table gives **r**-matrices,... C_6 -allowed **H**-matrices...



Nearest neighbor coupling

$$\begin{pmatrix} r_0 & r_5 & & & r_1 \\ r_1 & r_0 & r_5 & & & \\ & r_1 & r_0 & r_5 & & \\ & & r_1 & r_0 & r_5 & \\ & & & r_1 & r_0 & r_5 \\ & & & & r_1 & r_0 & r_5 \\ r_5 & & & & r_1 & r_0 \end{pmatrix}$$

$$|\mathbf{r}^{5}) = \mathbf{r}^{5} |\mathbf{r}^{0}\rangle$$

$$|\mathbf{r}^{1}) = \mathbf{r}^{4} |\mathbf{r}^{0}\rangle$$

$$|\mathbf{r}^{4}) = \mathbf{r}^{4} |\mathbf{r}^{0}\rangle$$

$$|\mathbf{r}^{2}) = \mathbf{r}^{2} |\mathbf{r}^{0}\rangle$$

ALL neighbor coupling

$$\begin{pmatrix} r_0 & r_5 & r_4 & r_3 & r_2 & r_1 \\ r_1 & r_0 & r_5 & r_4 & r_3 & r_2 \\ r_2 & r_1 & r_0 & r_5 & r_4 & r_3 \\ r_3 & r_2 & r_1 & r_0 & r_5 & r_4 \\ r_4 & r_3 & r_2 & r_1 & r_0 & r_5 \\ r_5 & r_4 & r_3 & r_2 & r_1 & r_0 \end{pmatrix}$$

2nd Step

H diagonalized by spectral resolution of r, $r^2,...,r^6=1$

or wave-number

All $x=r^p$ satisfy $x^0=1$ and use 6^{th} -roots-of-1 for eigenvalues

$$\psi_{I}^{0}=I
\psi_{I}^{1}=e^{2\pi i/6}
\psi_{I}^{2}=\psi_{2}^{1}=e^{4\pi i/6}
\psi_{I}^{3}=\psi_{3}^{1}=-1
\psi_{I}^{4}=\psi_{4}^{1}=\psi_{I}^{-2}=e^{-4\pi i/6}
\psi_{I}^{5}=\psi_{5}^{1}=\psi_{I}^{-1}=e^{-2\pi i/6}$$

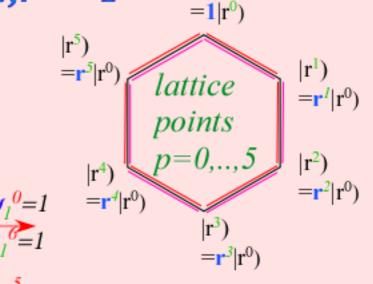
$$D^{m}(\mathbf{r}) = e^{-2\pi i m/6} = \chi_{1}^{m} = \psi_{1}^{m*}$$

$$D^{m}(\mathbf{r}^{p}) = e^{-2\pi i m \cdot p/6} = \chi_{p}^{m} = \psi_{p}^{m*}$$

$$p = power \ (exponent)$$

$$or \ position \ point$$

$$m = momentum$$



11)

Groups "know" their roots and will tell you them if you ask nicely! You efficiently get:

- •invariant projectors
- •irreducible projectors
- •irreducible representations (irreps)
- •H eigenvalues
- •H eigenvectors
- T matrices
- dispersion functions

6th-roots of 1 m=0,...,5

2nd Step (contd.)

H diagonalized by spectral resolution of r, $r^2,...,r^6=1$

top-row flip not needed...

 $\mathbf{P}^{(m)} = \mathbf{P}^{(m)}$

All $x=r^p$ satisfy $x^6=1$ and use 6^{th} -roots-of-1 for eigenvalues

$$\psi_{l}^{0}=1$$

$$\psi_{l}^{1}=e^{2\pi i/6}$$

$$\psi_{l}^{2}=\psi_{2}^{1}=e^{4\pi i/6}$$

$$\psi_{l}^{3}=\psi_{3}^{1}=-1$$

$$\psi_{l}^{4}=\psi_{4}^{1}=\psi_{l}^{-2}=e^{-4\pi i/6}$$

$$\psi_{l}^{5}=\psi_{5}^{1}=\psi_{l}^{-1}=e^{-2\pi i/6}$$

$$D^{m}(\mathbf{r}) = e^{-2\pi i m/6}$$

$$D^{m}(\mathbf{r}^{p}) = e^{-2\pi i m \cdot p/6}$$

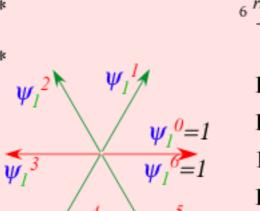
$$p = power (exponent)$$

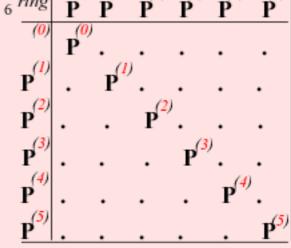
$$or position point$$

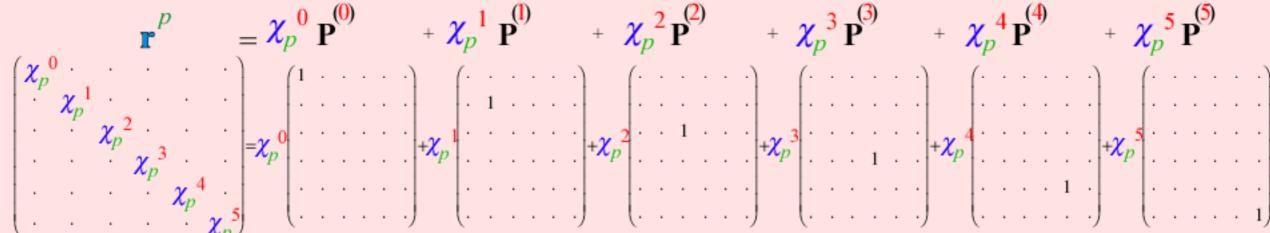
$$m = momentum$$

$$\psi$$

or wave-number







Projectors P(m) are eigenvalue "placeholders" having orthogonal-idempotent products, eigen-equations,

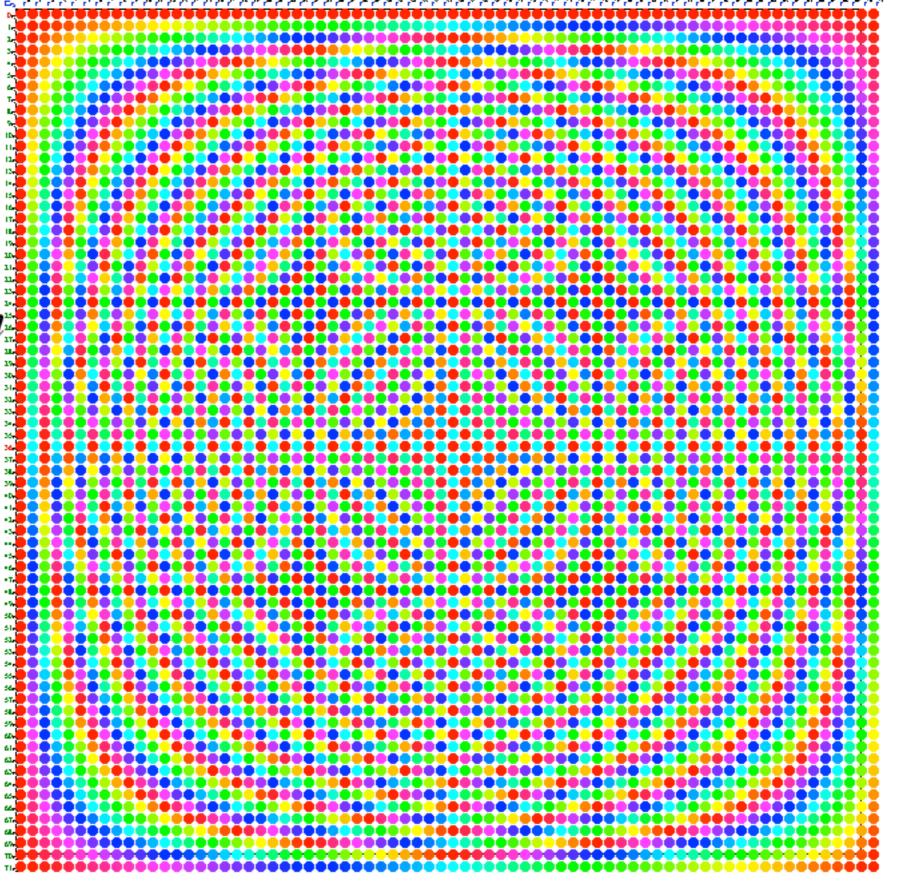
$$\mathbf{P}^{(m)}\mathbf{P}^{(n)} = \delta^{mn}\mathbf{P}^{(m)} \qquad \qquad \mathbf{r}^{p} \mathbf{P}^{(n)} = \chi_{p}^{n}\mathbf{I}$$

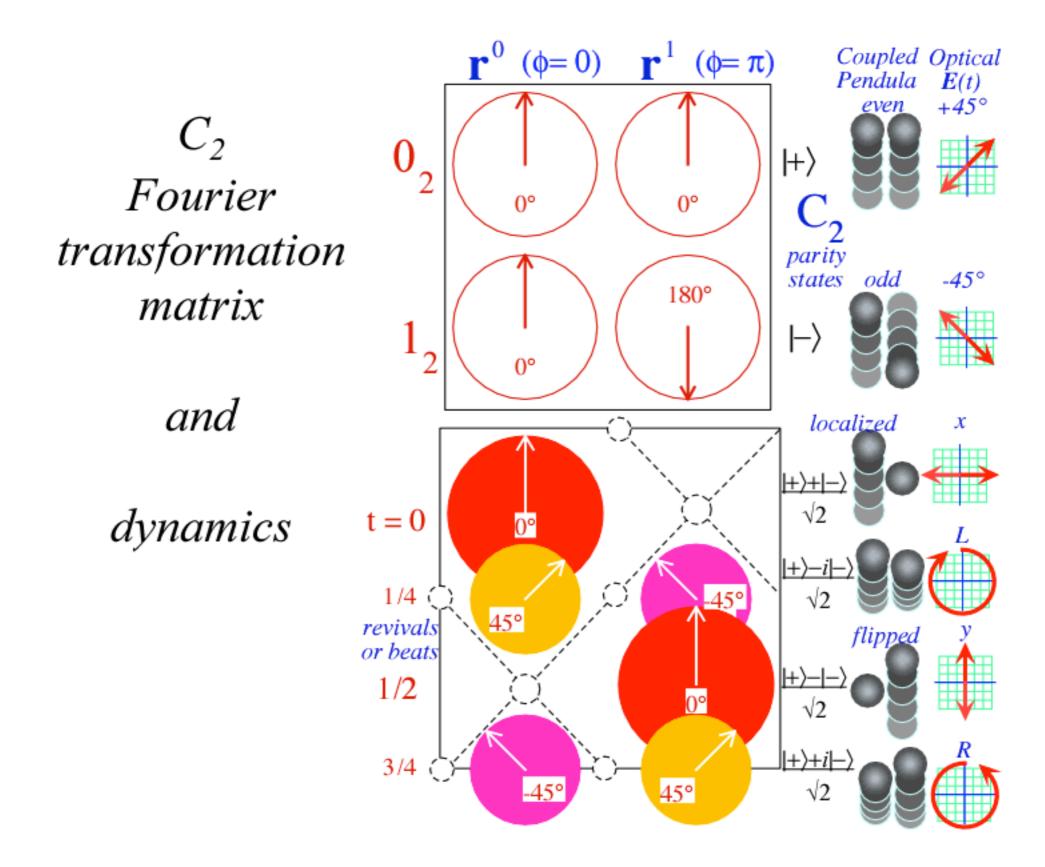
and one completeness rule: P(0)+P(1)+P(2)+...+P(5)=1

2nd Step (contd.)

H diagonalized by spectral resolution of r, $r^2,...,r^6=1$ top-row flip not needed... All $x=r^p$ satisfy $x^0=1$ and use 6^{th} -roots-of-1 for eigenvalues $\mathbf{P}^{(m)} = \mathbf{P}^{(m)}$ $\psi_{l}^{I} = e^{2\pi i/6}$ p=power (exponent) $\psi_{1}^{3} = \psi_{3}^{1} = -1$ or position point m = momentum $\psi_1^5 = \psi_5^I = \psi_1^{-1} = e^{-2\pi i/6}$ or wave-number Inverse C_6 spectral resolution m-wave $\psi_p^{m}=D^{m*}(r^p)=e^{+2\pi i m \cdot p/6}$: $\psi_0^4 \psi_1^4 \psi_2^4 \psi_3^4 \psi_4^4 \psi_5^4$ $m=5 | \psi_0^5 \psi_1^5 \psi_2^5 \psi_3^5 \psi_4^5 \psi_5^5$

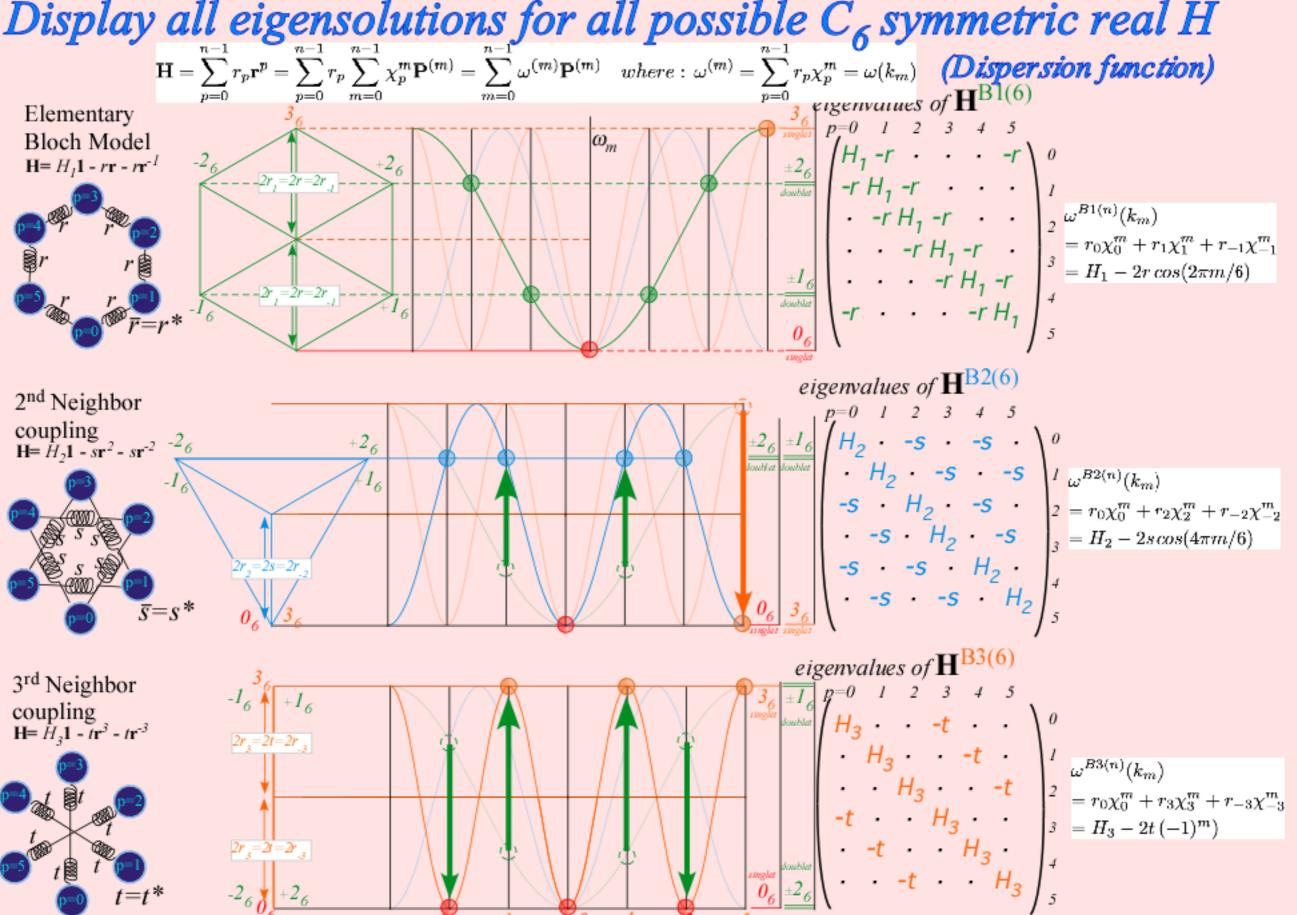
C₇₂
Fourier
transformation
matrix





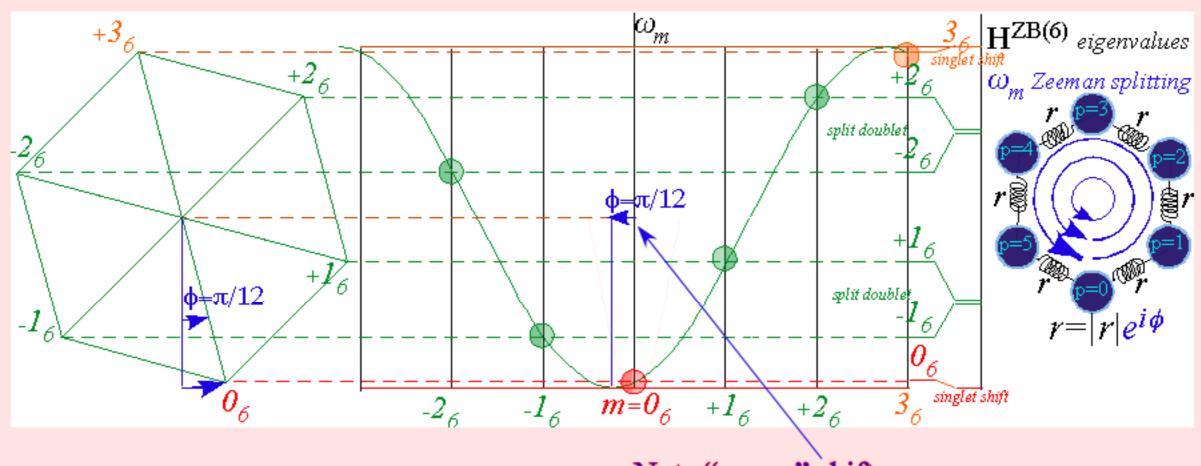
3rd Step

Display all eigensolutions for all possible C_6 symmetric real H



3rd Step (contd.)

...eigensolutions for all possible
$$C_6$$
 symmetric complex H $H = \sum_{p=0}^{n-1} r_p \mathbf{r}^p = \sum_{p=0}^{n-1} r_p \sum_{m=0}^{n-1} \chi_p^m \mathbf{P}^{(m)} = \sum_{m=0}^{n-1} \omega^{(m)} \mathbf{P}^{(m)}$ where $: \omega^{(m)} = \sum_{p=0}^{n-1} r_p \chi_p^m = \omega(k_m)$ (Dispersion function)



Note "gauge" shift

• Abelian symmetry = Fourier analysis (Back to our roots $1^{1/N} = e^{2\pi i m/N}$)

Group product table => Hamiltonian H-matrices (C_2 and C_6 examples)

Group roots => H-matrix spectral resolution by $P^{(m)}$ projectors

Commutivity conundrum... ? H·g=g·H ?

- New symmetry insights: Local vs. Global symmetry Projector invariance
 "Mock-Mach" principle

 Conway, et.al, May (2008)

 Cvitanovic, (2008)
- (Non-Commuting)

 Non-Abelian symmetry analysis I. (Simplest example: D_3)

 Local vs. Global product tables => **H**-matrices

 All-commuting invariants => Global invariant (character) $P^{(\alpha)}$ projectors

 Mutually-commuting sets => Local vs. Global eigensolutions by $P^{(\alpha)}_{m,n}$ projectors

 => **H**-matrix spectral resolution by $P^{(\alpha)}_{m,n}$ projectors
- Non-Abelian symmetry analysis II. (Octahedral example: Oh)
 Global-local product tables => H-matrices...
 ... and all the above ...
 => eigensolution formulas by local-symmetry defined P(\omega) projectors

 Local vs Global symmetry in rovibronic phase space

<u>Abelian</u> (Commutative) C_2 , C_2 , ..., C_6 ... H diagonalized by r^p symmetry operators that COMMUTE with H ($r^pH=Hr^p$), and with each other ($r^pr^q=r^{p+q}=r^qr^p$).

Versus...

Non-Abelian (do not commute) D_3 , O_k ...

While all H symmetry operations COMMUTE with H (UH=HU)

most do not with each other ($UV \neq VU$).

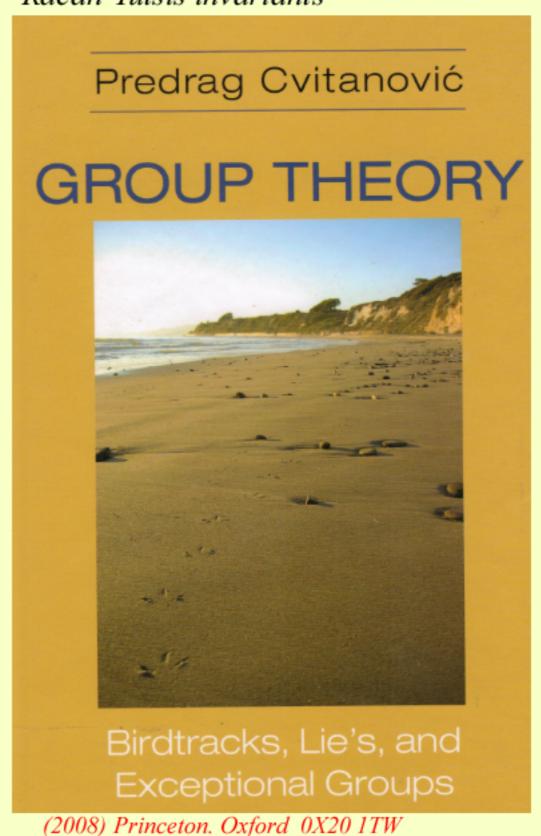
Q: So how do we write H in terms of non-commutative U?

Time to examine how we..
...classify symmetry
...apply it ...

...from PURE group theory...
A revolutionary simplification
to classify all groups and their algebras

The SYMMETRIES THINGS A "kaleidoscopic" approach that uses an "intrinsic" group John H. Conway • Heidi Burgiel • Chaim Goodman-Strauss (2008) A.K. Peters Ltd. Wellesley, MA 02482

...from APPLIED (to string theory)...
A new/old approach to Clebsch-Gordon-Racah-Yutsis invariants



...from PURE group theory...
A revolutionary simplification
to classify all groups and their algebras

The Symmetries

Main ideas:

...intrinsic group relativity...

...all groups are lattices...

...a generalization of the space-group approach to floppy molecules.

(P. Gronier and S. Altman)

(2008) A.K. Peters Ltd. Wellesley, MA 02482

...from APPLIED (to supersymmetry)...

A new/old approach to Clebsch-Gordon-Racah-Yutsis invariants

Predrag Cvitanović

GROUP THEORY

A main message:

...use invariant projectors...

lower-dimensional reps. Most of computations to follow implement the spectral decomposition

$$\mathbf{M} = \lambda_1 \mathbf{P}_1 + \lambda_2 \mathbf{P}_2 + \dots + \lambda_r \mathbf{P}_r,$$

which associates with each distinct root λ_i of invariant matrix M a projection operator (3.48):

Ch. 3
$$\mathbf{P}_i = \prod_{j \neq i} \frac{\mathbf{M} - \lambda_j \mathbf{1}}{\lambda_i - \lambda_j}.$$

The exposition given here in sections. 3.5–3.6 is taken from refs. [73, 74]. Who wrote this down first I do not know, but I like Harter's exposition [155, 156, 157] best.

Birdtracks, Lie's, and Exceptional Groups

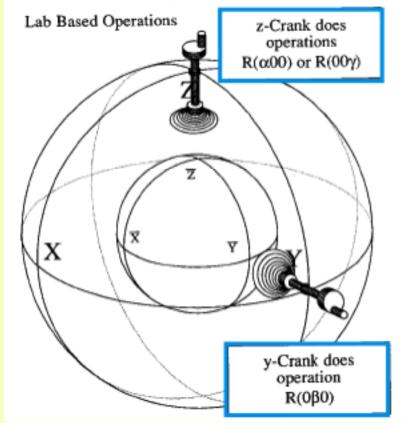
(2008) Princeton. Oxford 0X20 1TW

"Give me a place to stand... and I will move the Earth"

Archimedes 287-212 B.C.E

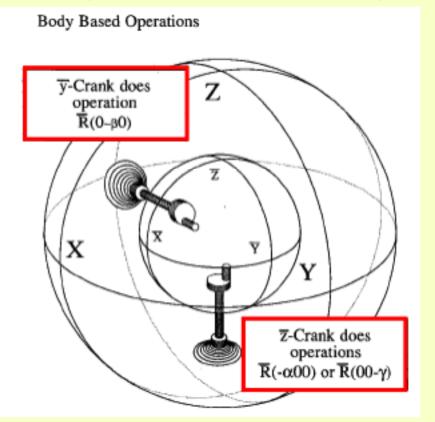
Ideas of duality/relativity go way back (...VanVleck, Casimir..., Mach, Newton, Archimedes...)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local)R



R commutes with all \bar{R}

Mock-Mach relativity principle $\mathbf{R}|1\rangle = \mathbf{\bar{R}}^{-1}|1\rangle$...for one state |1) only!



...But how do you actually make the \mathbb{R} and $\overline{\mathbb{R}}$ operations?

• Abelian symmetry = Fourier analysis (Back to our roots $1^{1/N} = e^{2\pi i m/N}$) Group product table => Hamiltonian \mathbb{H} -matrices (C_2 and C_6 examples) C_2 Group roots => **H**-matrix spectral resolution by $P^{(m)}$ projectors

Commutivity conundrum... ? H·g=g·H ?

• New symmetry insights: Local vs. Global symmetry Projector invariance

(Non-Commuting)

Non-Abelian symmetry analysis I.

(Simplest example: D3)

Local vs. Global product tables => **H**-matrices

All-commuting invariants => Global invariant (character) $P^{(\alpha)}$ projectors

Mutually-commuting sets => Local vs. Global eigensolutions by $P_{m,n}^{(\alpha)}$ projectors

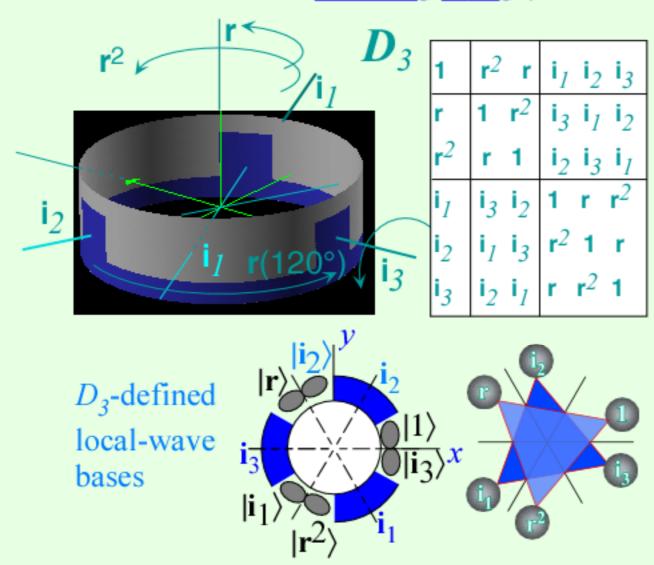
H-matrix spectral resolution by $P_{m,n}^{(\alpha)}$ projectors

 Non-Abelian symmetry analysis II. (Octahedral example: Oh) Global-local product tables => **H**-matrices... ... and all the above ...

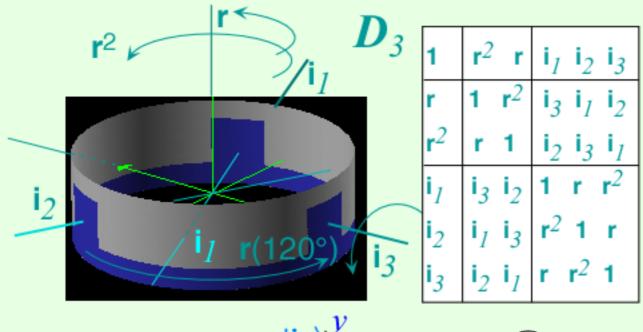
=> eigensolution formulas by local-symmetry defined $P_{n,n}^{(\alpha)}$ projectors

Local vs Global symmetry in rovibronic phase space

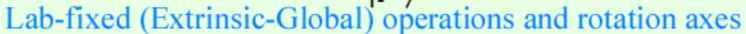
Example of GLOBAL vs LOCAL projector algebra for D3~C3v

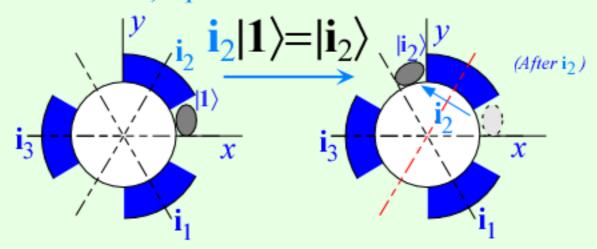


Example of GLOBAL vs LOCAL projector algebra for D3~C3v



 D_3 -defined local-wave bases $\begin{vmatrix} \mathbf{r} & \mathbf{i}_2 \\ \mathbf{i}_3 & \mathbf{i}_1 \end{vmatrix} = \begin{vmatrix} \mathbf{r} & \mathbf{i}_2 \\ \mathbf{i}_3 & \mathbf{i}_3 \end{vmatrix}$

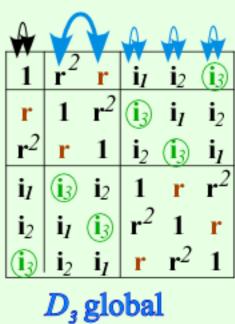


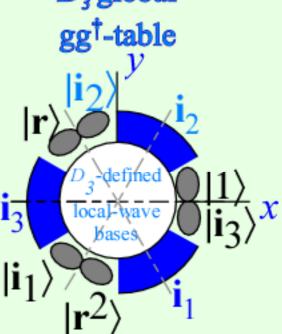


Example of RELATIVITY-DUALITY for $D_3 \sim C_{3v}$

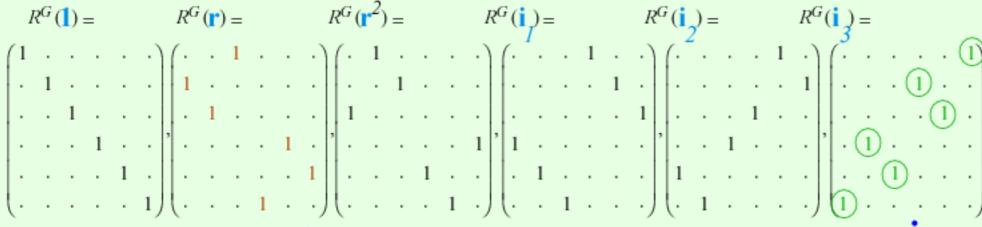
To represent external $\{..T,U,V,...\}$ switch $g = g^{\dagger}$ on top of group table

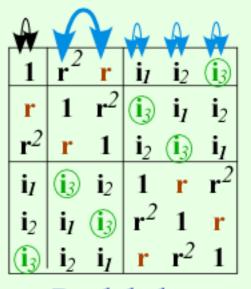
$$R^{G}(\mathbf{1}) = R^{G}(\mathbf{r}) = R^{G}(\mathbf{r}^{2}) = R^{G}(\mathbf{i}) = R^{G}(\mathbf{i}$$





To represent external {..T,U,V,...} switch g g on top of group table





 D_3 global gg^{\dagger} -table

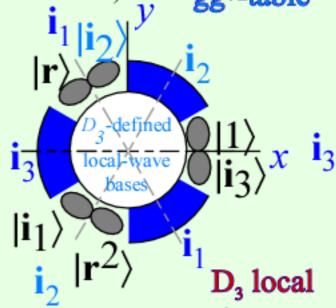
g[†]g-table

$\frac{RESULT:}{Any R(T)}$

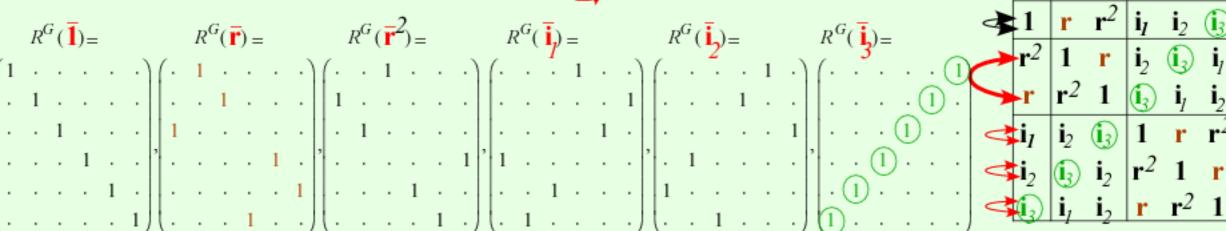
commute (Even if T and U do not...)

with any $R(\overline{\mathbf{U}})$...

...and $\mathbf{T} \cdot \mathbf{U} = \mathbf{V}$ if \mathbf{V} only if $\mathbf{T} \cdot \mathbf{\overline{U}} = \mathbf{\overline{V}}$.

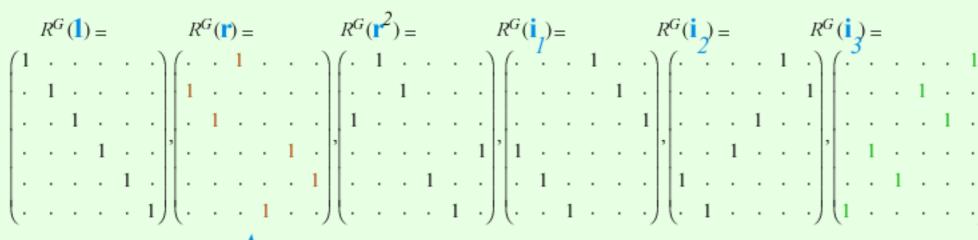


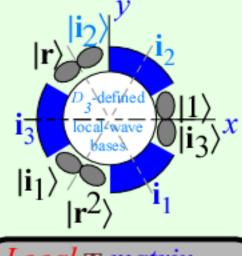
To represent *internal* $\{..\overline{T}, \overline{U}, \overline{V},...\}$ switch $g \not = g^{\dagger}$ on side of group table



Example of RELATIVITY-DUALITY for $D_3 \sim C_{3v}$

To represent external {..T,U,V,...} switch g g





Local **I** matrix parametrized by **g**

 $\frac{RESULT:}{Any \ R(T)} \longrightarrow commute$ with any $R(\overline{U})...$

So an **III**-matrix having **Global** symmetry **D**₃

$$\mathbb{H} = H\mathbf{I}_{+}^{0} \mathbf{r}_{1} \mathbf{\bar{r}}_{+}^{1} \mathbf{r}_{2} \mathbf{\bar{r}}_{2}^{2} + i_{1} \mathbf{\bar{l}}_{1} + i_{2} \mathbf{\bar{l}}_{2} + i_{3} \mathbf{\bar{l}}_{3}$$

is made from

Local symmetry matrices

 $H = \langle 1 \mid \mathbb{H} \mid 1 \rangle = H^*$ $r_I = \langle r \mid \mathbb{H} \mid 1 \rangle = r_2^*$ $r_2 = \langle r^2 \mid \mathbb{H} \mid 1 \rangle = r_I^*$ $i_I = \langle i_1 \mid \mathbb{H} \mid 1 \rangle = i_I^* \mathbf{i}_{\overline{3}}$ $i_2 = \langle i_2 \mid \mathbb{H} \mid 1 \rangle = i_2^*$ $i_3 = \langle i_3 \mid \mathbb{H} \mid 1 \rangle = i_3^*$

local D₃ defined

Hamiltonian matrix

All these global g commute with general local matrix.

To represent *internal* $\{..\overline{T}, \overline{U}, \overline{V},...\}$ switch $g \neq g$

$$R^{G}(\overline{1}) = R^{G}(\overline{r}) = R^{G}(\overline{r}^{2}) = R^{G}(\overline{1}) = R^{G}(\overline{1}$$

 $[\equiv |1\rangle |r\rangle |r^2\rangle |\mathbf{i}_1\rangle |\mathbf{i}_2\rangle |\mathbf{i}_3\rangle \\ (1|H|\mathbf{r}_1|\mathbf{r}_2|\mathbf{i}_1|\mathbf{i}_2|\mathbf{i}_3)$

Example of RELATIVITY-DUALITY

To represent *external* {..T,U,V,...}

Any R(T) — commute with any $R(\overline{U})$...

RESULT:

$$\mathbf{H} = H\mathbf{I}_{+}^{0} \mathbf{r}_{1} \mathbf{\bar{r}}_{+}^{1} \mathbf{r}_{2} \mathbf{\bar{r}}_{+}^{2} + \mathbf{i}_{1} \mathbf{\bar{i}}_{1} + \mathbf{i}_{2} \mathbf{\bar{i}}_{2} + \mathbf{i}_{3} \mathbf{\bar{i}}_{3}$$

is made from **Local** symmetry matrices

To represent *internal* $\{..\overline{T}, \overline{U}, \overline{V},...\}$ sv

$$R^{G}(\overline{1}) = R^{G}(\overline{r}) = R^{G}(\overline{r}^{2}) =$$

$$\begin{pmatrix} 1 & \cdot & \cdot & \cdot & \cdot \\ \cdot & 1 & \cdot & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & 1 & \cdot & \cdot \\ \cdot & \cdot & \cdot & 1$$

$$H = \langle 1 | \mathbb{H} | 1 \rangle = H^*$$

$$r_1 = \langle \mathbf{r} | \mathbb{H} | 1 \rangle = r_2^*$$

$$r_2 = \langle \mathbf{r}^2 | \mathbb{H} | 1 \rangle = r_1^*$$

$$i_1 = \langle \mathbf{i}_1 | \mathbb{H} | 1 \rangle = i_1^* \mathbf{i}_3^*$$

$$i_2 = \langle \mathbf{i}_2 | \mathbb{H} | 1 \rangle = i_2^*$$

$$i_3 = \langle \mathbf{i}_3 | \mathbb{H} | 1 \rangle = i_3^*$$

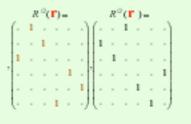
local-D₃-defined

Hamiltonian matrix

$$\mathbb{H} \equiv |\mathbf{1}| |\mathbf{r}| |\mathbf{r}^{2}| |\mathbf{i}_{1}| |\mathbf{i}_{2}| |\mathbf{i}_{3}|
(\mathbf{1} | H | r_{1} | r_{2} | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{3}|
(\mathbf{r} | r_{2} | H | r_{1} | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{1}|
(\mathbf{r}^{2} | r_{1} | r_{2} | H | \mathbf{i}_{3} | \mathbf{i}_{1} | \mathbf{i}_{2}|
(\mathbf{i}_{1} | \mathbf{i}_{1} | \mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{2} | r_{1} | r_{2}|
(\mathbf{i}_{2} | \mathbf{i}_{3} | \mathbf{i}_{3} | \mathbf{i}_{1} | \mathbf{i}_{2} | r_{1} | r_{2}| H$$

Q: How do you reduce/diagonalize all these matrices?

- A:(1) Divide & Conquer (Use subgroup chains and sub-classes)
 - (2) Find commuting invariants (Using character projection algebra)
 - (3) Assemble



local-D₃-defined

Hamiltonian matrix

Q: How do you reduce/diagonalize all these matrices?

 $R^{S}(\mathbf{r}) = R^{S}(\mathbf{r}) =$ $\begin{pmatrix}
\cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot
\end{pmatrix}$

- A:(1) Divide & Conquer (Use subgroup chains and sub-classes)
 - (2) Find commuting invariants (Using character projection algebra)
 - (3) Assemble

$local-D_q$ -defined

Hamiltonian matrix

Important invariant numbers or "characters"

 ℓ^{α} = Irreducible representation (irrep) dimension or level degeneracy For symmetry group or algebra G

Centrum: $\kappa(G) = \sum_{irrep(\alpha)} (\ell^{\alpha})^0$ = Number of classes, invariants, irrep types, all-commuting ops

Rank: $\rho(G) = \sum_{irrep(\alpha)} (\ell^{\alpha})^{1}$ = Number of irrep idempotents $\mathbf{P}_{n,n}^{(\alpha)}$, mutually-commuting ops

Order: ${}^{\circ}(G)=\Sigma_{irrep(\alpha)}(\ell^{\circ})^2=Total$ number of irrep projectors $\mathbf{P}_{m,n}^{(\alpha)}$ or symmetry ops

Q: How do you reduce/diagonalize all these matrices?

 $R^{G}(\mathbf{r}) = R^{G}(\mathbf{r}) =$ $\begin{pmatrix} 1 & \cdots & & & \\ & 1 & \cdots & & \\ & & 1 & \cdots & \\ & & & 1 & \cdots \\ & & & & 1 & \\ & & & & & 1 \end{pmatrix}$

- A:(1) Divide & Conquer (Use subgroup chains and sub-classes)
 - (2) Find commuting invariants (Using character projection algebra)
 - (3) Assemble

local-D₃-defined

Hamiltonian matrix

 $D_{3} \kappa = 1 | r^{1} + r^{2} | i_{1} + i_{2} + i_{3} |$

 $\ell^{A_2} = 1$

Important invariant numbers or "characters"

 ℓ^{α} = Irreducible representation (irrep) dimension or level degeneracy For symmetry group or algebra G

 $\mathbf{P}^{A_1} = \begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 1 & -1 & 6 \\ 1 & 1 & -1 & 6 \\ 2 & -1 & 0 & 3 \end{vmatrix}$

Centrum: $\kappa(G) = \sum_{irrep(\alpha)} (\ell^{\alpha})^0$ = Number of classes, invariants, irrep types, all-commuting ops

Rank: $\rho(G) = \sum_{irrep(\alpha)} (\ell^{\alpha})^{1} = \text{Number of irrep idempotents } \mathbf{P}_{n,n}^{(\alpha)}, mutually-commuting ops$

Order: ${}^{\circ}(G) = \sum_{irrep(\alpha)} (\ell^{\alpha})^2 = Total$ number of irrep projectors $\mathbf{P}_{m,n}^{(\alpha)}$ or symmetry ops

Centrum: $\kappa(D_3) = \sum_{(\alpha)} (\ell^{\alpha})^0 = 1^0 + 1^0 + 2^0 = 3$ $\ell^{A_I} = 1$

Example: $G=D_3$ Rank: $\rho(D_3)=\Sigma_{(\alpha)}(\ell^{\alpha})^1=1^l+1^l+2^l=4$

 $\ell^{E} = 2$

Order: ${}^{0}(D_{3})=\Sigma_{(\alpha)}(\ell^{\alpha})^{0}=1^{2}+1^{2}+2^{2}=6$

Spectral analysis of non-commutative "Group-table Hamiltonian"

 D_3 Example

1st Step: Spectral resolution of Center (Class algebra of D_3)

_						
	1	\mathbf{r}^1	${f r}^2$	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3
	${f r}^2$	1	${f r}^1$	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_1
	${f r}^1$	\mathbf{r}^2	1	\mathbf{i}_3	\mathbf{i}_1	\mathbf{i}_2
	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	1	${f r}^1$	\mathbf{r}^2
	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_1	\mathbf{r}^2	1	\mathbf{r}^1
	\mathbf{i}_3	\mathbf{i}_1	\mathbf{i}_2	\mathbf{r}^1	${f r}^2$	1

Each class-sum $\underline{\kappa}_k$ commues with all of D_3 .

	$\kappa_1=1$	$\kappa_2={f r}^1+{f r}^2$	$\kappa_3=\mathbf{i}_1+\mathbf{i}_2+\mathbf{i}_3$
\rightarrow	κ_2	$2\kappa_1 + \kappa_2$	$2\kappa_3$
	κ_3	$2\kappa_3$	$3\kappa_1 + 3\kappa_2$

Class products give spectral polynomial and

all-commuting projectors $\mathbf{P}^{(\alpha)} = \mathbf{P}^{A_I}$, \mathbf{P}^{A_2} , and \mathbf{P}^E

$$0 = \kappa_3^3 - 9\kappa_3 = (\kappa_3 - 3 \cdot 1)(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1)$$

Algebra Center like cell nucleus; Its invariants are made here.

- •characters (invariant)
- •projectors (invariant)
- •Heigenvalues (depend on local sym.)
- Heigenvectors (depend on local sym.)

Spectral analysis of non-commutative "Group-table Hamiltonian"

D₂ Example

1st Step: Spectral resolution of Center (Class algebra of D_3)

_)						
	1	\mathbf{r}^1	${f r}^2$	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	
	\mathbf{r}^2	1	${f r}^1$	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_1	T
	\mathbf{r}^1	\mathbf{r}^2	1	\mathbf{i}_3	\mathbf{i}_1	\mathbf{i}_2	
	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	1	${f r}^1$	${f r}^2$	T
	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_1	\mathbf{r}^2	1	${f r}^1$	
	\mathbf{i}_3	\mathbf{i}_1	\mathbf{i}_2	\mathbf{r}^1	${f r}^2$	1	

Each class-sum $\underline{\kappa}_k$ commues with all of D_3 .

	$\kappa_1=1$	$\kappa_2={f r}^1+{f r}^2$	$\kappa_3=\mathbf{i}_1+\mathbf{i}_2+\mathbf{i}_3$
\rightarrow	κ_2	$2\kappa_1 + \kappa_2$	$2\kappa_3$
	κ_3	$2\kappa_3$	$3\kappa_1 + 3\kappa_2$

Class products give spectral polynomial and

all-commuting projectors $\mathbf{P}^{(\alpha)} = \mathbf{P}^{A_I}$, \mathbf{P}^{A_2} , and \mathbf{P}^E

$$0 = \kappa_3^3 - 9\kappa_3 = (\kappa_3 - 3 \cdot 1)(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1)$$

$$0 = (\kappa_3 - 3 \cdot 1) \mathbf{P}^{A_1} \qquad 0 = (\kappa_3 + 3 \cdot 1) \mathbf{P}^{A_2}$$
$$\kappa_3 \mathbf{P}^{A_1} = +3 \cdot \mathbf{P}^{A_1} \qquad \kappa_3 \mathbf{P}^{A_2} = -3 \cdot \mathbf{P}^{A_2}$$

$$0 = (\kappa_3 + 3 \cdot 1) \mathbf{P}^A$$

$$\kappa_{\mathbf{3}}\mathbf{P}^{A_2} = -3\cdot\mathbf{P}^{A_2}$$

Class resolution into sum of eigenvalue · Projector $\kappa_1 = 1 \cdot \mathbf{P}^{A_1} + 1 \cdot \mathbf{P}^{A_2} + 1 \cdot \mathbf{P}^E$

$$\kappa_1 = 1 \cdot \mathbf{P}^{A_1} + 1 \cdot \mathbf{P}^{A_2} + 1 \cdot \mathbf{P}^E$$

$$\kappa_2 = 2 \cdot \mathbf{P}^{A_1} - 2 \cdot \mathbf{P}^{A_2} - 1 \cdot \mathbf{P}^E$$

$$\kappa_3 = 3 \cdot \mathbf{P}^{A_1} - 3 \cdot \mathbf{P}^{A_2} + 0 \cdot \mathbf{P}^E$$

$$0 = (\kappa_3 - 0 \cdot \mathbf{1}) \mathbf{P}^E$$

$$\kappa_{\mathbf{3}}\mathbf{P}^E = +0 \cdot \mathbf{P}^E$$

$$\mathbf{P}^{A_1} = \frac{(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1)}{(+3 + 3) (+3 - 0)}$$

$$\mathbf{P}^{A_2} = \frac{(\kappa_3 - 3 \cdot 1)(\kappa_3 - 0 \cdot 1)}{(-3 - 3)(-3 - 0)}$$

$$\mathbf{P}^{E} = \frac{(\mathbf{\kappa_3} - 3 \cdot \mathbf{1})(\mathbf{\kappa_3} + 3 \cdot \mathbf{1})}{(+0 - 3) (+0 + 3)}$$

Spectral analysis of non-commutative "Group-table Hamiltonian"

D₂ Example

1st Step: Spectral resolution of Center (Class algebra of D_3)

_							
	1	\mathbf{r}^1	${f r}^2$	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	
	\mathbf{r}^2	1	${f r}^1$	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_1	
	\mathbf{r}^1	\mathbf{r}^2	1	\mathbf{i}_3	\mathbf{i}_1	\mathbf{i}_2	
	\mathbf{i}_1	\mathbf{i}_2	\mathbf{i}_3	1	${f r}^1$	${f r}^2$	
	\mathbf{i}_2	\mathbf{i}_3	\mathbf{i}_1	\mathbf{r}^2	1	${f r}^1$	
	\mathbf{i}_3	\mathbf{i}_1	\mathbf{i}_2	\mathbf{r}^1	${f r}^2$	1	

Each class-sum $\underline{\kappa}_k$ commues with all of D_3 .

	$\kappa_1 = 1$	$\kappa_2={f r}^1+{f r}^2$	$\kappa_3=\mathbf{i}_1+\mathbf{i}_2+\mathbf{i}_3$
<i>\</i>	κ_2	$2\kappa_1 + \kappa_2$	$2\kappa_3$
	κ_3	$2\kappa_3$	$3\kappa_1 + 3\kappa_2$

Class products give spectral polynomial and

all-commuting projectors $\mathbf{P}^{(\alpha)} = \mathbf{P}^{A_I}$, \mathbf{P}^{A_2} , and \mathbf{P}^E

$$0 = \kappa_3^3 - 9\kappa_3 = (\kappa_3 - 3 \cdot 1)(\kappa_3 + 3 \cdot 1)(\kappa_3 - 0 \cdot 1)$$

$$0 = (\kappa_3 - 3 \cdot 1) \mathbf{P}^{A_1} \qquad 0 = (\kappa_3 + 3 \cdot 1) \mathbf{P}^{A_2}$$
$$\kappa_3 \mathbf{P}^{A_1} = +3 \cdot \mathbf{P}^{A_1} \qquad \kappa_3 \mathbf{P}^{A_2} = -3 \cdot \mathbf{P}^{A_2}$$

$$0 = (\kappa_3 + 3 \cdot 1) \mathbf{P}^A$$

$$\kappa_{\mathbf{3}}\mathbf{P}^{A_2} = -3\cdot\mathbf{P}^{A_2}$$

$$0 = (\kappa_3 - 0 \cdot 1)\mathbf{P}^E$$
$$\kappa_3 \mathbf{P}^E = +0 \cdot \mathbf{P}^E$$

Class resolution into sum of eigenvalue · Projector $\kappa_1 = 1 \cdot \mathbf{P}^{A_1} + 1 \cdot \mathbf{P}^{A_2} + 1 \cdot \mathbf{P}^E$

$$\kappa_1 = 1 \cdot \mathbf{P}^{A_1} + 1 \cdot \mathbf{P}^{A_2} + 1 \cdot \mathbf{P}^E$$

$$\kappa_2 = 2 \cdot \mathbf{P}^{A_1} - 2 \cdot \mathbf{P}^{A_2} - 1 \cdot \mathbf{P}^E$$

$$\kappa_3 = 3 \cdot \mathbf{P}^{A_1} - 3 \cdot \mathbf{P}^{A_2} + 0 \cdot \mathbf{P}^E$$

$$\mathbf{P}^{A_{1}} = \frac{(\kappa_{3} + 3 \cdot 1)(\kappa_{3} - 0 \cdot 1)}{(+3 + 3)(+3 - 0)}$$

$$\mathbf{P}^{A_{2}} = \frac{(\kappa_{3} - 3 \cdot 1)(\kappa_{3} - 0 \cdot 1)}{(-3 - 3)(-3 - 0)}$$

$$\mathbf{P}^{E} = \frac{(\kappa_{3} - 3 \cdot 1)(\kappa_{3} + 3 \cdot 1)}{(+0 - 3)(+0 + 3)}$$

Inverse resolution gives D_3 Character Table

$$\mathbf{P}^{A_1} = (\kappa_1 + \kappa_2 + \kappa_3)/6 = (\mathbf{1} + \mathbf{r}^1 + \mathbf{r}^2 + \mathbf{i}_1 + \mathbf{i}_2 + \mathbf{i}_3)/6$$

$$\mathbf{P}^{A_2} = (\kappa_1 + \kappa_2 - \kappa_3)/6 = (\mathbf{1} + \mathbf{r}^1 + \mathbf{r}^2 - \mathbf{i}_1 - \mathbf{i}_2 - \mathbf{i}_3)/6$$

$$\mathbf{P}^E = (2\kappa_1 - \kappa_2)/3 = (2\mathbf{1} - \mathbf{r}^1 - \mathbf{r}^2)/3$$

Spectral reduction of non-commutative "Group-table Hamiltonian"

 D_3 Example

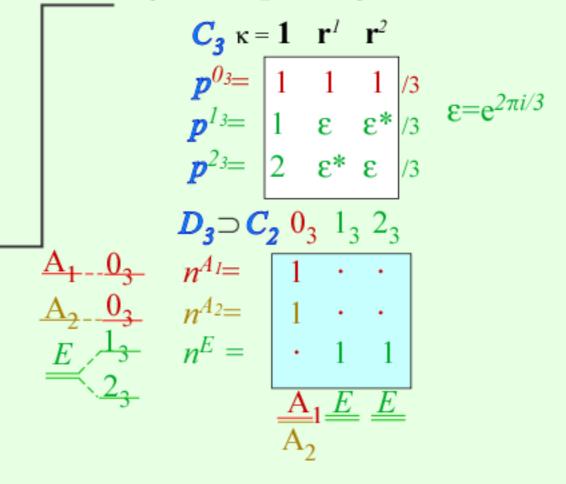
2nd Step: Spectral resolution of Class Projector(s) of D_3

Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$ or ELSE $C_3(\mathbf{r})$ (C_2 and C_3 don't commute)

$$C_2 \kappa = 1$$
 i_3
 $p^{0_2} = \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} / 2$
 $p^{I_2} = \begin{bmatrix} 1 & -1 \\ 1 & -1 \end{bmatrix} / 2$

level
$$A_1 - 0_2$$
splitting $E_1 - 0_2$

$$\begin{array}{c|c} \mathbf{D_3} \supset \mathbf{C_2} & \mathbf{0_2} & \mathbf{1_2} \\ \mathbf{n^{A_1}} = & \mathbf{1} & \cdot \\ \mathbf{n^{A_2}} = & \cdot & \mathbf{1} \\ \mathbf{n^E} = & \mathbf{1} & \mathbf{1} \\ & & \mathbf{E} & \overline{E} \\ & & \mathbf{E} & \mathbf{E} \\ & & \mathbf{1} \\ & & \mathbf{E} & \mathbf{E} \\ & & \mathbf{1} \\ & & \mathbf{E} & \mathbf{E} \\ & & \mathbf{1} \\ & & \mathbf{1} \\ & & \mathbf{1} \\ & & \mathbf{E} & \mathbf{E} \\ & & \mathbf{1} \\ & & & \mathbf{1} \\ & & \mathbf{$$



Spectral reduction of non-commutative "Group-table Hamiltonian"

D_3 Example

2nd Step: Spectral resolution of Class Projector(s) of D_3

Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$ or ELSE $C_3(\mathbf{r})$ (C_2 and C_3 don't commute)

$$n^{A_{I}} = \begin{bmatrix} 1 & \cdot & \cdot \\ n^{A_{2}} = & \cdot & 1 & 1 \\ n^{E} = & \cdot & 1 & 1 \end{bmatrix}$$

Correlation shows products of $\mathbb{P}^{(\alpha)}$ by the C_2 -unit or by the C_3 -unit make IRREDUCIBLE $P_{n,n}^{(\alpha)}$

Rank
$$\rho(\mathbf{D_3})=4$$

idempotent $\mathbf{P}_{n_2,n_2}^{(\alpha)}$

$$\mathbf{P}^{A_{I}} = \begin{bmatrix} \mathbf{P}^{0_{2}} + \mathbf{p}^{I_{2}} \\ \mathbf{P}^{A_{I}} & \cdot \\ \cdot & \mathbf{P}^{A_{2}}_{1_{2} 1_{2}} \\ \mathbf{P}^{E} = & \mathbf{P}^{E}_{0_{2} 0_{2}} \mathbf{P}^{E}_{1_{2} 1_{2}} \end{bmatrix}$$

4 different idempotent
$$\mathbf{P}_{n_3,n_3}^{(\alpha)}$$

$$\mathbf{P}^{A_{I}} = \begin{bmatrix} \mathbf{P}^{0_{3}} + \mathbf{p}^{1_{3}} + \mathbf{p}^{2_{3}} \\ \mathbf{P}^{A_{I}} & \cdot & \cdot \\ \mathbf{P}^{A_{2}} & \mathbf{P}^{A_{2}} \\ \mathbf{P}^{E} & \cdot & \mathbf{P}^{E}_{1_{3}1_{3}} & \mathbf{P}^{E}_{2_{3}2_{3}} \end{bmatrix}$$

Spectral reduction of non-commutative "Group-table Hamiltonian"

 D_3 Example

2nd Step: Spectral resolution of Class Projector(s) of D_3

Correlate D_3 characters with its subgoup(s) $C_2(\mathbf{i})$ or ELSE $C_3(\mathbf{r})$ (C_2 and C_3 don't commute)

$$C_2 \kappa = 1$$
 i_3
 $p^{0_2} = 1$ $1/2$
 $p^{I_2} = 1$ $-1/2$

$$\begin{array}{c|cccc}
\boldsymbol{C_3} & \kappa = 1 & \mathbf{r}^{l} & \mathbf{r}^{2} \\
\boldsymbol{p}^{03} & = 1 & 1 & 1 & 1 \\
\boldsymbol{p}^{l3} & = 1 & 1 & 1 & 1 & 1 \\
\boldsymbol{p}^{l3} & = 1 & 1 & 1 & 1 & 1 & 1 \\
1 & \epsilon & \epsilon^* & \epsilon^* & 1 & 1 & 1 & 1 \\
2 & \epsilon^* & \epsilon & \epsilon^* & \epsilon^* & 1 & 1 & 1 & 1 \\
\end{array}$$

Correlation shows products of $\mathbb{P}^{(\alpha)}$ by the C_2 -unit or by the C_3 -unit make IRREDUCIBLE $P_{n,n}^{(\alpha)}$

Rank
$$\rho(\mathbf{D_3})=4$$
 idempotent $\mathbf{P}_{n_2,n_2}^{(\alpha)}$

$$\mathbf{P}^{A_{I}} = \begin{bmatrix}
\mathbf{P}^{0_{2}} + \mathbf{p}^{I_{2}} \\
\mathbf{P}^{A_{I}} & \cdot \\
\mathbf{P}^{A_{2}} & \cdot \\
\mathbf{P}^{E}_{0_{2} 0_{2}} & \mathbf{P}^{E}_{1_{2} 1_{2}} \\
\mathbf{P}^{E}_{0_{2} 0_{2}} & \mathbf{P}^{E}_{1_{2} 1_{2}}
\end{bmatrix}$$

$$\mathbf{P}_{0_{2}0_{2}}^{A_{1}} = \mathbf{P}_{1_{1}}^{A_{1}} \mathbf{p}_{0_{2}}^{D_{2}} = \mathbf{P}_{1_{1}}^{A_{1}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}_{1}^{I} + \mathbf{r}_{2}^{I} + \mathbf{i}_{1}^{I} + \mathbf{i}_{2}^{I} + \mathbf{i}_{3}^{I})/6$$

$$\mathbf{P}_{1_{2}1_{2}}^{A_{2}} = \mathbf{P}_{1_{2}1_{2}}^{A_{2}} = \mathbf{P}_{1_{2}1_{2}}^{A_{2}} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}_{1}^{I} + \mathbf{r}_{2}^{I} - \mathbf{i}_{1}^{I} - \mathbf{i}_{2}^{I} - \mathbf{i}_{3}^{I})/6$$

$$\mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}_{1_{2}1_{2}}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{2} - \mathbf{r}_{1}^{I} - \mathbf{r}_{2}^{I} - \mathbf{i}_{1}^{I} - \mathbf{i}_{2}^{I} - \mathbf{i}_{3}^{I})/6$$

$$\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}_{1_{2}1_{2}}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{2} - \mathbf{r}_{1}^{I} - \mathbf{r}_{2}^{I} + \mathbf{i}_{1}^{I} + \mathbf{i}_{2}^{I} - \mathbf{i}_{3}^{I})/6$$

$$\mathbf{I} = \mathbf{p}^{0_3} + \mathbf{p}^{1_3} + \mathbf{p}^{2_3}$$
4 different idempotent
$$\mathbf{P}^{A_1} = \begin{bmatrix}
\mathbf{P}^{A_1} & \cdot & \cdot \\
\mathbf{P}^{A_2} & \cdot & \cdot \\
\mathbf{P}^{A_2} & \cdot & \cdot \\
\mathbf{P}^{A_3} & \cdot & \cdot \\
\mathbf{P}^{E} & \cdot & \mathbf{P}^{E} \\
\mathbf{P}^{E} & \cdot & \cdot \\
\mathbf{P}^{E} & \cdot &$$

$$\mathbf{P}_{0_{2}0_{2}}^{A_{1}} = \mathbf{P}_{0_{2}0_{2}}^{A_{1}} \mathbf{p}_{0_{2}}^{0_{2}} = \mathbf{P}_{0_{2}0_{2}}^{A_{1}} (1+\mathbf{i}_{3})/2 = (1+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3})/6$$

$$\mathbf{P}_{1_{2}1_{2}}^{A_{1}} = \mathbf{P}_{0_{2}0_{2}}^{A_{2}} \mathbf{p}_{0_{2}}^{1_{2}} = \mathbf{P}_{0_{2}0_{2}}^{A_{2}} (1+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3})/6$$

$$\mathbf{P}_{0_{2}0_{2}}^{A_{2}} = \mathbf{P}_{0_{2}0_{2}}^{E} \mathbf{p}_{0_{2}}^{E} = \mathbf{P}_{0_{2}0_{2}}^{E} (1+\mathbf{i}_{3})/2 = (21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{l}-\mathbf{i}_{2}+2\mathbf{i}_{3})/6$$

$$\mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}_{0_{2}0_{2}}^{E} \mathbf{p}_{0_{2}}^{E} = \mathbf{P}_{0_{2}0_{2}}^{E} (1+\mathbf{i}_{3})/2 = (21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{l}-\mathbf{i}_{2}+2\mathbf{i}_{3})/6$$

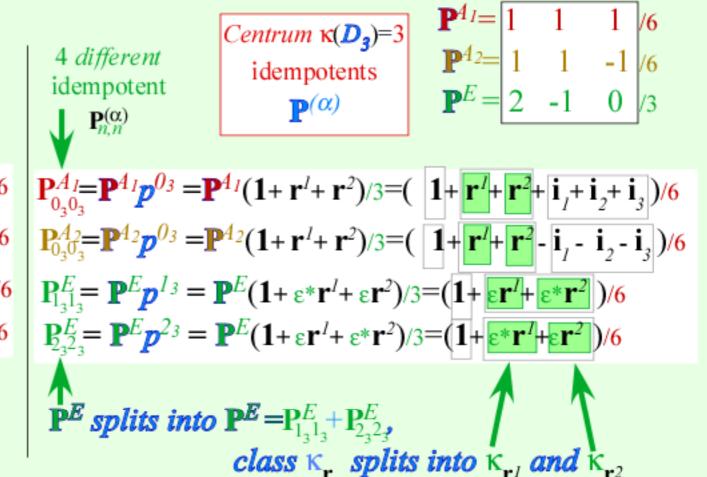
$$\mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}_{0_{2}0_{2}}^{E} (1+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{r$$

2nd Step: (contd.) While some class projectors $\mathbf{P}^{(\alpha)}$ split in two,

so ALSO DO some classes K

Rank
$$\rho(\mathbf{D_3})=4$$
 idempotents $\mathbf{P}^{(\alpha)}$

$$\begin{aligned} \mathbf{P}_{0_{2}0_{2}}^{A_{I}} = \mathbf{P}^{A_{I}} \boldsymbol{p}^{0_{2}} = \mathbf{P}^{A_{I}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{I} + \mathbf{r}^{2} + \mathbf{i}_{I} + \mathbf{i}_{2} + \mathbf{i}_{3})/6 \\ \mathbf{P}_{0_{2}0_{2}}^{A_{2}} = \mathbf{P}^{A_{2}} \boldsymbol{p}^{I_{2}} = \mathbf{P}^{A_{2}} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{I} + \mathbf{r}^{2} - \mathbf{i}_{I} - \mathbf{i}_{2} - \mathbf{i}_{3})/6 \\ \mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} \boldsymbol{p}^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} + \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{I} - \mathbf{r}^{2} - \mathbf{i}_{I} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6 \\ \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \boldsymbol{p}^{I_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{I} - \mathbf{r}^{2} + \mathbf{i}_{I} + \mathbf{i}_{I} - 2\mathbf{i}_{J})/6 \\ \mathbf{P}^{E} \text{ splits into } \mathbf{P}^{E} = \mathbf{P}^{E} + \mathbf{P}^{E} \\ \mathbf{class} \ \kappa_{i} \text{ splits into } \kappa_{i} \text{ and } \kappa_{i}, \end{aligned}$$



 $D_{2} \kappa = 1 || \mathbf{r}^{1} + \mathbf{r}^{2} || \mathbf{i}_{1} + \mathbf{i}_{2} + \mathbf{i}_{3} ||$

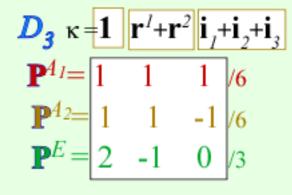
2nd Step: (contd.) While some class projectors $\mathbf{P}^{(\alpha)}$ split in two,

so ALSO DO some classes κ_k

Rank
$$\rho(D_3)=4$$
 idempotents $\mathbf{P}^{(\alpha)}$

$$\begin{aligned} \mathbf{P}_{0_{2}0_{2}}^{A_{I}} = \mathbf{P}^{A_{I}} \boldsymbol{p}^{0_{2}} = \mathbf{P}^{A_{I}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{I} + \mathbf{r}^{2} + \mathbf{i}_{I} + \mathbf{i}_{2} + \mathbf{i}_{3})/6 \\ \mathbf{P}_{0_{2}0_{2}}^{A_{2}} = \mathbf{P}^{A_{2}} \boldsymbol{p}^{I_{2}} = \mathbf{P}^{A_{2}} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{I} + \mathbf{r}^{2} - \mathbf{i}_{I} - \mathbf{i}_{2} - \mathbf{i}_{3})/6 \\ \mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} \boldsymbol{p}^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} + \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{I} - \mathbf{r}^{2} - \mathbf{i}_{I} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6 \\ \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \boldsymbol{p}^{I_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (2\mathbf{1} - \mathbf{r}^{I} - \mathbf{r}^{2} + \mathbf{i}_{I} + \mathbf{i}_{I} - 2\mathbf{i}_{J})/6 \\ \mathbf{P}^{E} \text{ splits into } \mathbf{P}^{E} = \mathbf{P}^{E} + \mathbf{P}^{E} \\ class \kappa_{\mathbf{i}} \text{ splits into } \kappa_{\mathbf{i}} \text{ and } \kappa_{\mathbf{i}_{3}} \end{aligned}$$

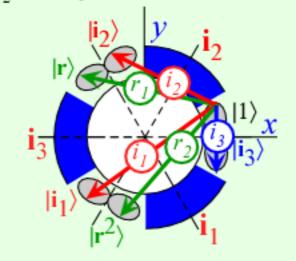
4 different idempotent Centrum $\kappa(D_3)=3$ idempotents $\mathbf{p}(\alpha)$



$$\begin{array}{c} \mathbf{P}_{0_{2}0_{2}}^{A_{1}} = \mathbf{P}^{A_{1}} p^{0_{2}} = \mathbf{P}^{A_{1}} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{l} + \mathbf{r}^{2} + \mathbf{i}_{l} + \mathbf{i}_{2} + \mathbf{i}_{3})/6 \\ \mathbf{P}_{1_{2}1_{2}}^{A_{2}} = \mathbf{P}^{A_{2}} p^{1_{2}} = \mathbf{P}^{A_{2}} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{l} + \mathbf{r}^{2} - \mathbf{i}_{l} - \mathbf{i}_{2} - \mathbf{i}_{3})/6 \\ \mathbf{P}_{1_{2}1_{2}}^{A_{2}} = \mathbf{P}^{A_{2}} p^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{1} + \mathbf{r}^{l} + \mathbf{r}^{2} - \mathbf{i}_{l} - \mathbf{i}_{2} - \mathbf{i}_{3})/6 \\ \mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} p^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} + \mathbf{i}_{3})/2 = (\mathbf{2} \mathbf{1} - \mathbf{r}^{l} - \mathbf{r}^{2} - \mathbf{i}_{l} - \mathbf{i}_{2} + 2\mathbf{i}_{3})/6 \\ \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} p^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{2} \mathbf{1} - \mathbf{r}^{l} - \mathbf{r}^{2} + \mathbf{i}_{l} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6 \\ \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} p^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{2} \mathbf{1} - \mathbf{r}^{l} - \mathbf{r}^{2} + \mathbf{i}_{l} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6 \\ \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} p^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{2} \mathbf{1} - \mathbf{r}^{l} - \mathbf{r}^{2} + \mathbf{i}_{l} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6 \\ \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} p^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{2} \mathbf{1} - \mathbf{r}^{l} - \mathbf{r}^{2} + \mathbf{i}_{l} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6 \\ \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} p^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} - \mathbf{r}^{l} - \mathbf{r}^{2} + \mathbf{i}_{l} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6 \\ \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} p^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} - \mathbf{r}^{l} - \mathbf{r}^{2} + \mathbf{i}_{l} + \mathbf{i}_{2} - 2\mathbf{i}_{3})/6 \\ \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} p^{0_{2}} = \mathbf{P}^{E} (\mathbf{1} - \mathbf{i}_{3})/2 = (\mathbf{1} - \mathbf{r}^{l} - \mathbf{r}^{l} - \mathbf{i}_{2} - \mathbf{i}_{3})/2 = (\mathbf{1} - \mathbf{r}^{l} - \mathbf{r}^{l} - \mathbf{r}^{l} - \mathbf{i}_{3} - \mathbf{i}_{3} - \mathbf{i}_{3})/2 = (\mathbf{1} - \mathbf{r}^{l} - \mathbf{r}^{l} - \mathbf{i}_{3} - \mathbf{i}_{3}$$

$$r=r_2$$
 $i=i_2$
 $must$ $must$
 $equal$ $equal$
 r_1 i_1

For Local
 $D_3 \supset C_2(\mathbf{i}_3)$
 $symmetry$
 i_3 is free parameter



 $Rank \rho(D_3) = 4$ parameters in either case

$$i=i_1=i_2=i_3$$

For Local

 $D_3 \supset C_3(\mathbf{r}^p)$

symmetry

 r_1 and r_2 are free

Centrum
$$\kappa(D_3)=3$$
 idempotents $\mathbf{P}^{(\alpha)}$

Rank
$$\rho(\mathbf{D_3})=4$$
idempotents
$$\mathbf{P}_{n,n}^{(\alpha)}$$

$$\mathbf{D}_{n,n}^{(\alpha)} = \mathbf{D}_{n,n}^{(\alpha)}$$

$$\mathbf{P}_{x,x}^{A_{I}} = \mathbf{P}_{0_{2}0_{2}}^{A_{I}} = \mathbf{P}^{A_{I}} \boldsymbol{p}^{0_{2}} = \mathbf{P}^{A_{I}} (1+\mathbf{i}_{3})/2 = (1+\mathbf{r}^{I}+\mathbf{r}^{2}+\mathbf{i}_{I}+\mathbf{i}_{2}+\mathbf{i}_{3})/6$$

$$\mathbf{P}_{y,y}^{A_{2}} = \mathbf{P}_{1_{2}1_{2}}^{A_{2}} = \mathbf{P}^{A_{2}} \boldsymbol{p}^{I_{2}} = \mathbf{P}^{A_{2}} (1-\mathbf{i}_{3})/2 = (1+\mathbf{r}^{I}+\mathbf{r}^{2}-\mathbf{i}_{I}-\mathbf{i}_{2}-\mathbf{i}_{3})/6$$

$$\mathbf{P}_{x,x}^{E} = \mathbf{P}_{0_{2}0_{2}}^{E} = \mathbf{P}^{E} \boldsymbol{p}^{0_{2}} = \mathbf{P}^{E} (1+\mathbf{i}_{3})/2 = (21+\mathbf{r}^{I}-\mathbf{r}^{2}-\mathbf{i}_{I}-\mathbf{i}_{2}+2\mathbf{i}_{3})/6$$

$$\mathbf{P}_{y,y}^{E} = \mathbf{P}_{1_{2}1_{2}}^{E} = \mathbf{P}^{E} \boldsymbol{p}^{I_{2}} = \mathbf{P}^{E} (1-\mathbf{i}_{3})/2 = (21+\mathbf{r}^{I}-\mathbf{r}^{2}+\mathbf{i}_{I}+\mathbf{i}_{I}-2\mathbf{i}_{3})/6$$

3rd and Final Step:

Spectral resolution of ALL 6 of D3:

The old 'g-equals-1-times-g-times-1' Trick

$$\mathbf{g} = \sum_{m} \sum_{e} \sum_{b} D_{eb}^{(m)}(\mathbf{g}) \mathbf{P}_{eb}^{(m)}$$
$$\mathbf{P}_{eb}^{(m)} = {}_{(norm)} \sum_{\mathbf{g}} D_{eb}^{(m)}(\mathbf{g}) \mathbf{g}$$

$$\mathbf{g} = \mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1} = (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E}) \cdot \mathbf{g} \cdot (\mathbf{P}_{x,x}^{A_1} + \mathbf{P}_{y,y}^{A_2} + \mathbf{P}_{x,x}^{E} + \mathbf{P}_{y,y}^{E})$$

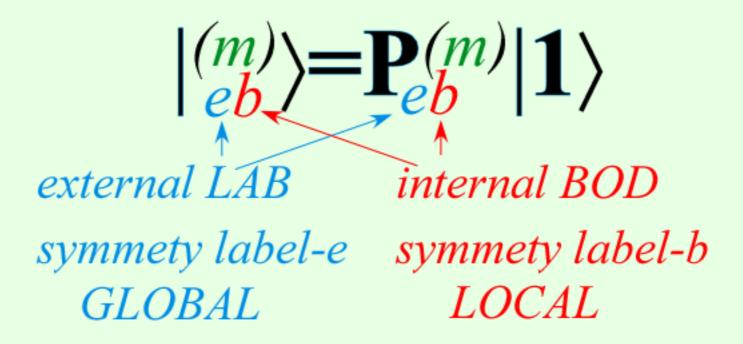
$$\mathbf{g} = \mathbf{P}^{A_1} \cdot \mathbf{g} \cdot \mathbf{P}^{A_1} + \mathbf{P}^{A_2} \cdot \mathbf{g} \cdot \mathbf{P}^{A_2} + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

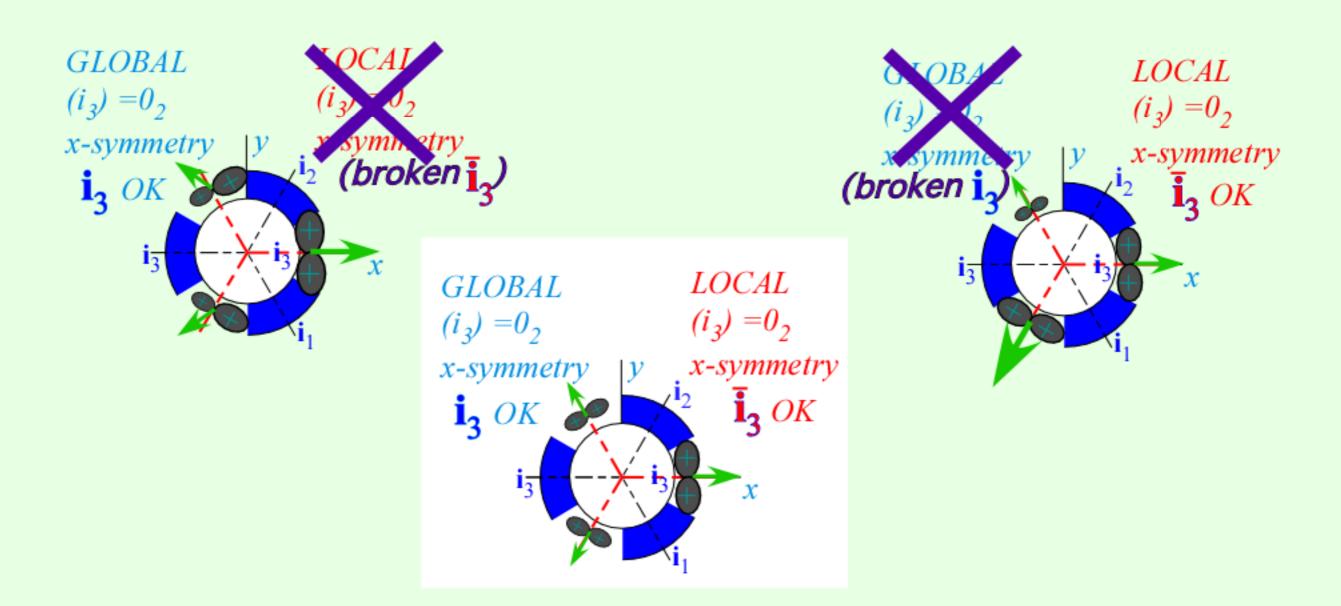
$$\mathbf{g} \cdot \mathbf{P}^{A_1} \cdot \mathbf{g} \cdot \mathbf{P}^{A_2} \cdot \mathbf{g} \cdot \mathbf{P}^{A_2} + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x,x}^{E} + \mathbf{P}_{x,x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y,y}^{E}$$

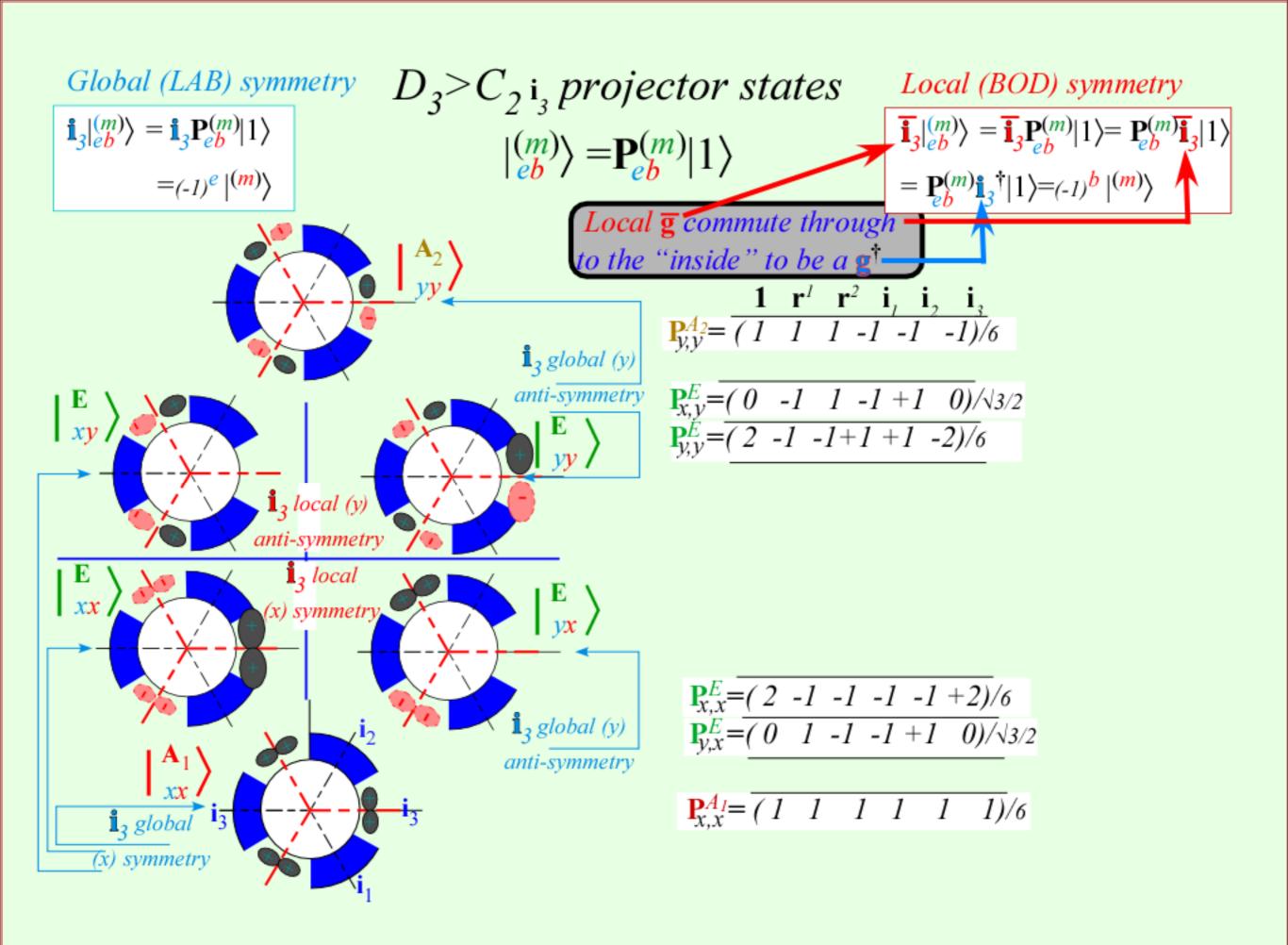
$$\mathbf{p}^{(\alpha)}_{m,n}$$

$$\mathbf{p}^{(\alpha)}_{m,n}$$

Six D_3 projectors: 4 idempotents + 2 nilpotents (off-diag.)







$$\mathbf{P}_{mn}^{(\alpha)} = \frac{\ell^{(\alpha)}}{G} \sum_{\mathbf{g}} D_{mn}^{(\alpha)} (\mathbf{g}) \mathbf{g}$$

Spectral Efficiency: Same D(a)mn projectors give a lot!

•Local symmetery eigenvalue formulae (L.S.=> off-diagonal zero.)

$$r_1 = r_2 = -r_1^* = r$$
, $i_1 = i_2 = -i_1^* = i$
 A_1 -level: $H + 2r + 2i + i_3$
 $gives: A_1$ -level: $H + 2r - 2i - i_3$
 E_x -level: $H - r - i + i_3$
 E_y -level: $H - r + i - i_3$

When there is no there, there...



• Abelian symmetry = Fourier analysis (Back to our roots $1^{1/N} = e^{2\pi i m/N}$)

Group product table => Hamiltonian H-matrices (C_2 and C_6 examples)

Group roots => H-matrix spectral resolution by $P^{(m)}$ projectors

Commutivity conundrum... ? H·g=g·H ?

• New symmetry insights: Local vs. Global symmetry Projector invariance "Mock-Mach" principle Conway, et.al, May (2008) Cvitanovic, (2008)

• Non-Abelian symmetry analysis I. (Simplest example: D3)

Local vs. Global product tables => H-matrices

All-commuting invariants => Global invariant (character) $P^{(\alpha)}$ projectors

Mutually-commuting sets => Local vs. Global eigensolutions by $P_{m,n}^{(\alpha)}$ projectors

=> **H**-matrix spectral resolution by $P_{m,n}^{(\alpha)}$ projectors

• Non-Abelian symmetry analysis II. (Octahedral example: Oh)

Global-local product tables => **H**-matrices...

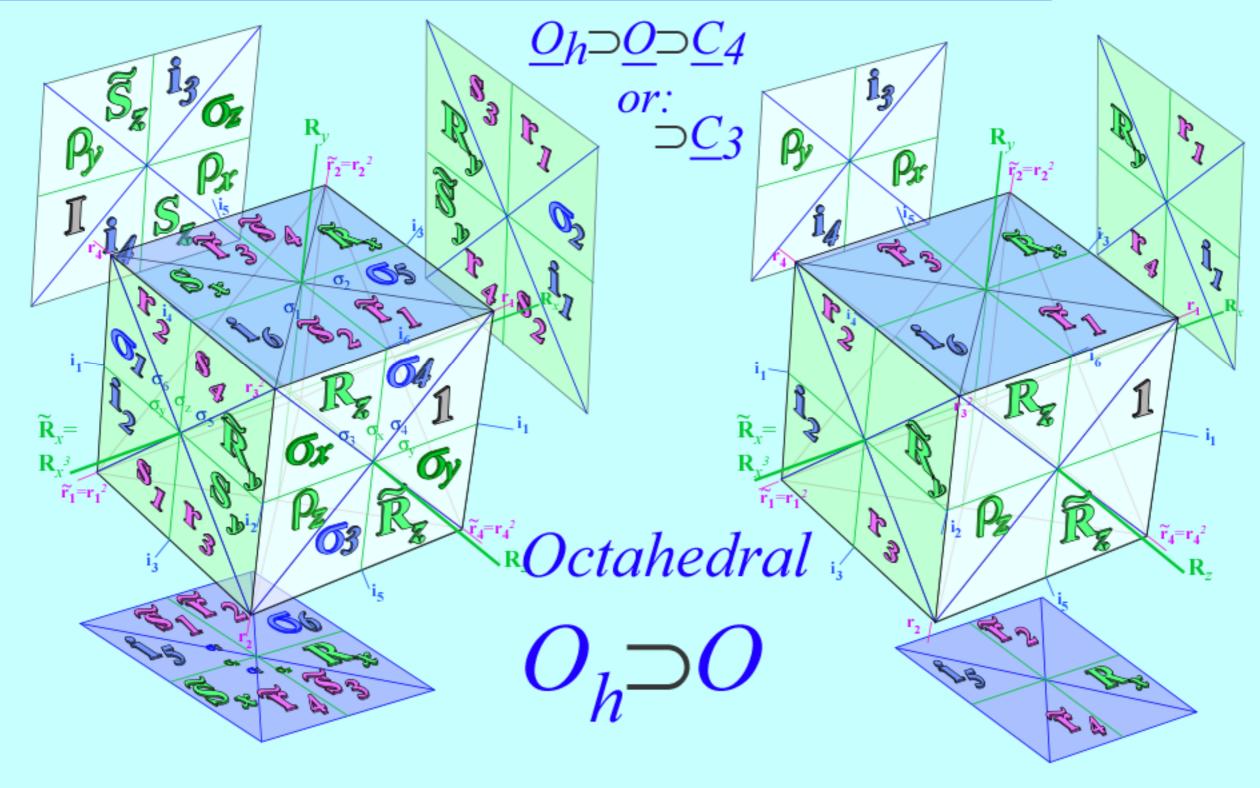
... and all the above ...

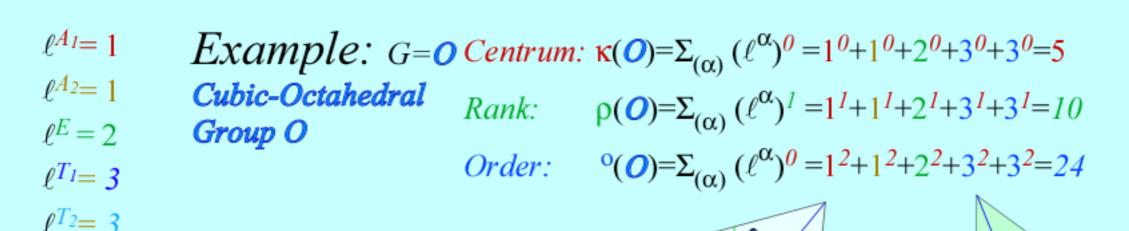
=> eigensolution formulas by local-symmetry defined $P_{n,n}^{(\alpha)}$ projectors

• Local vs Global symmetry in rovibronic phase space

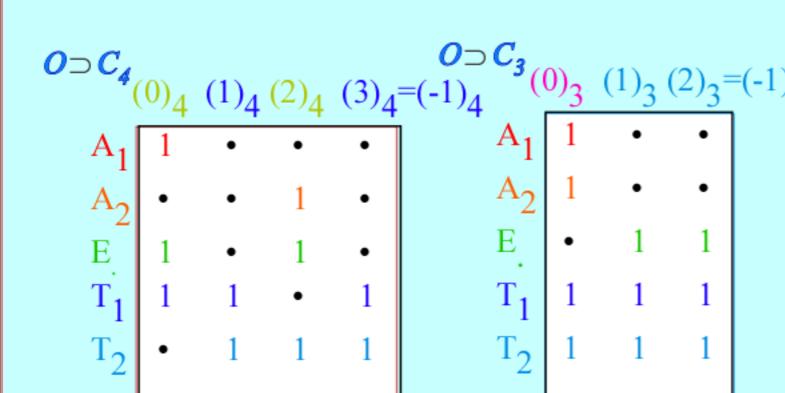
How group operators analyze rovibronic tunneling effects at high J. (SF examples)

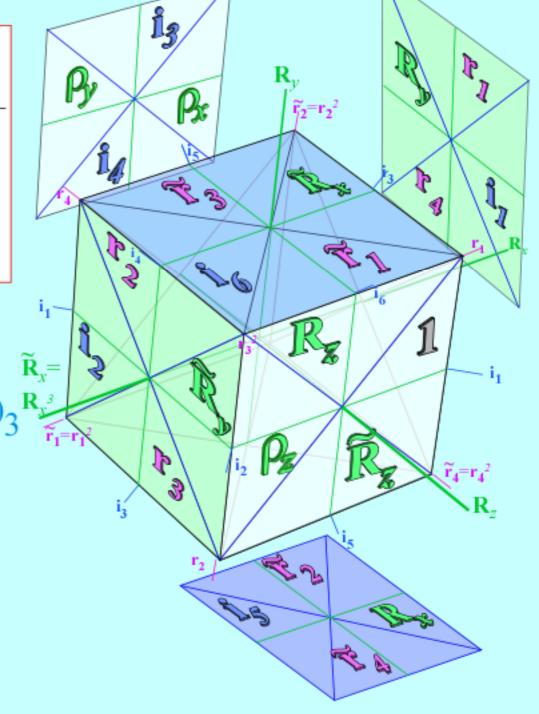
Example of GLOBAL vs LOCAL projector algebra for

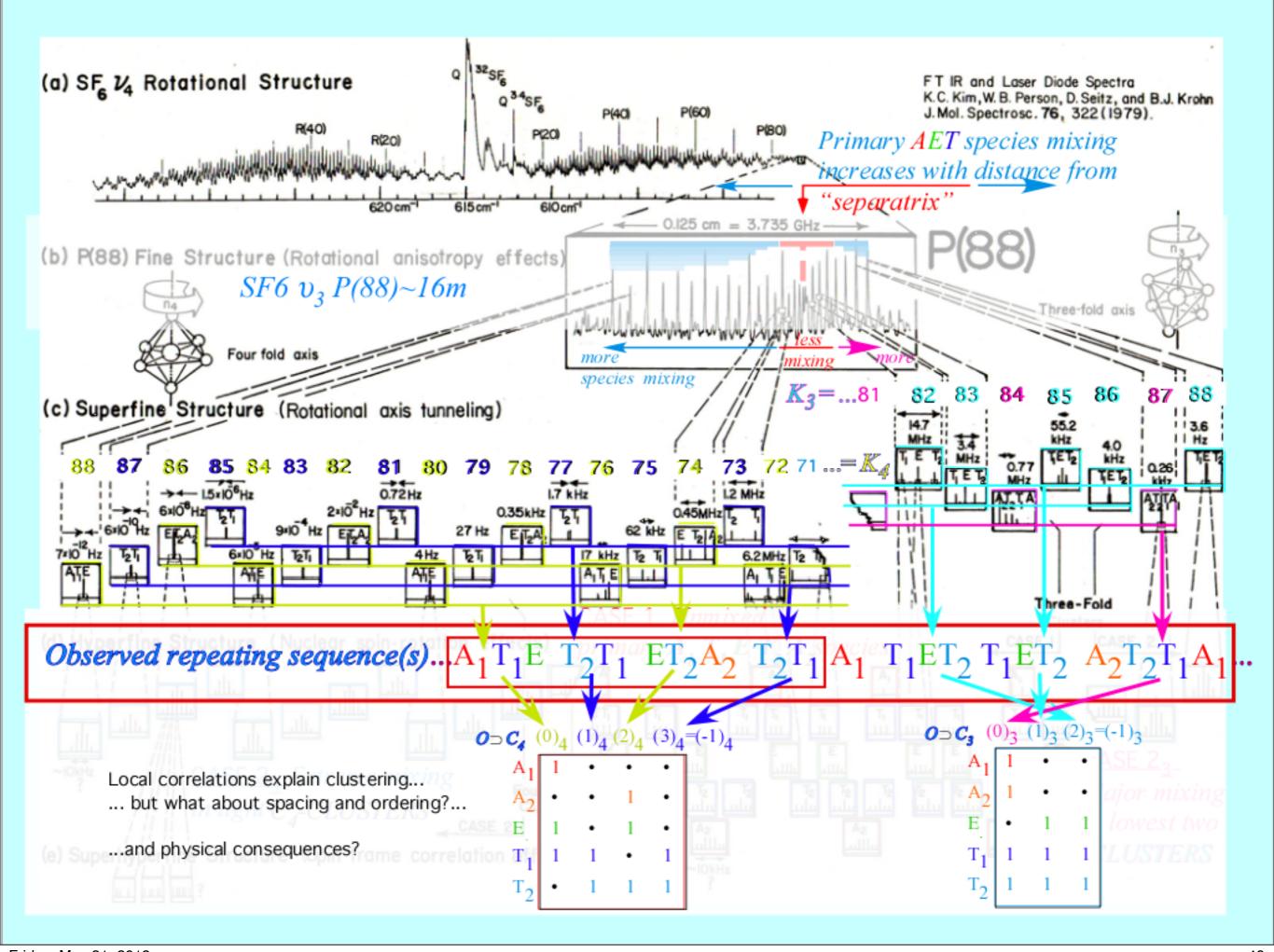


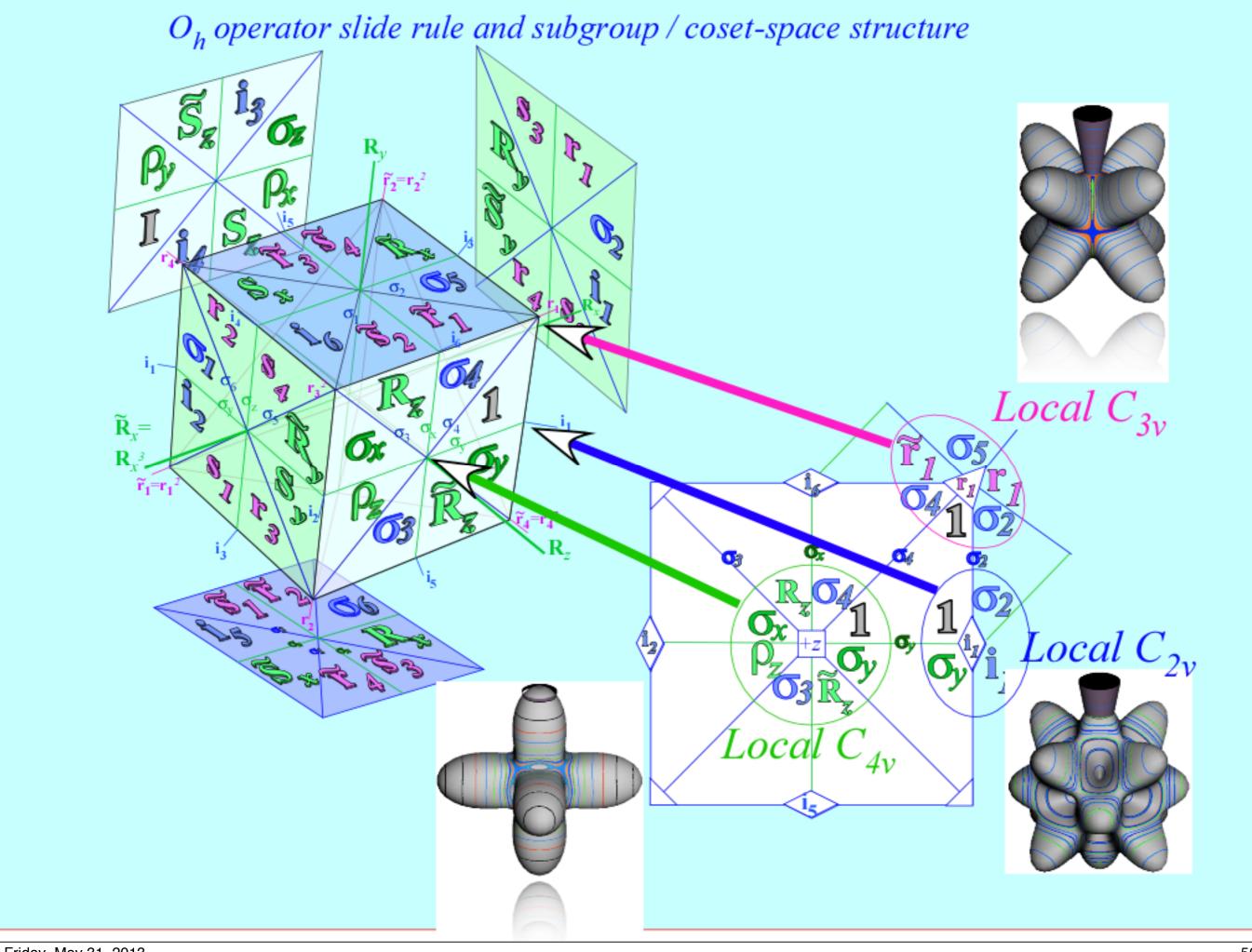


	٠					
	$O\ group \ \chi^{lpha}_{\kappa_{g}}$	g = 1	$r_{1-4} \ ilde{r}_{1-4}$	$ ho_{xyz}$	R_{xyz} \tilde{R}_{xyz}	ι_{1-6}
s-orbital r ²	$\alpha = A_1$	1	1	1	1	1
d-orbitals	A_2	1	1	1	-1	-1
$\{x^2+y^2-2z^2, x^2\}$	$-y^2$ } E	2	-1	2	0	0
p-orbitals{x	$(y, z) T_1$	3	0	-1	1	-1
{xz,yz,xy}	T_2	3	0	-1	-1	1
d aubitale						









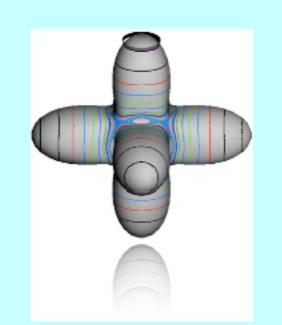
C_4 subgroup correlation to O (largest local symmetry => smallest level-clusters)

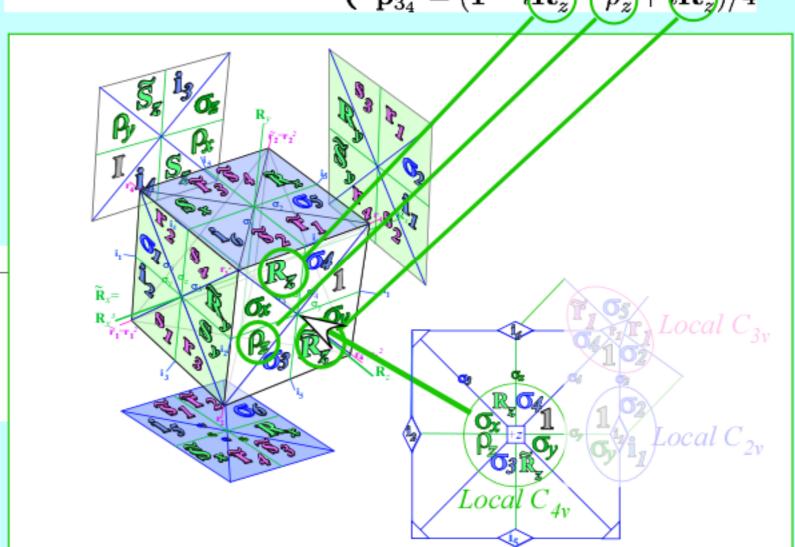
O⊃*C*₄

 C_4 Projectors to split octahedral P^{α}

4					-4	
	$(0)_{4}$	$(1)_{4}$	(2) ₄	(3) ₄	$ \mathbf{p}_{0_4} = \mathbf{p}_{0_4} = (1 + \mathbf{R}_z + \rho_z + \tilde{\mathbf{R}}_z) / \mathbf{p}_{1_4} = (1 + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z) / \mathbf{p}_{1_4} = (1 + i\mathbf{R}_z - \rho_z - i\tilde{\mathbf{R}}_z) $	
A ₁	1	•	•	•	$\mathbf{p}_{m_4} - \sum_{p=0}^{\infty} \frac{\mathbf{r}_z}{4} = \mathbf{p}_{2_4} = (1 - \mathbf{R}_z + \rho_z - \tilde{\mathbf{R}}_z) / \mathbf{r}_z$	4
A_2	•	•	1	•	$(\mathbf{p}_{3_4} = (1 - i\mathbf{R}_z) + (\rho_z) + i\mathbf{R}_z)$	/4
E	1	•	1	•	S is or	
$\begin{bmatrix} 1 \\ T \end{bmatrix}$		1	•	1	Py Pr	
T_2	•	1	1	1		

$1 \cdot \mathbf{P}^{\alpha} =$	$(\mathbf{p}_{0_4}$	$+\mathbf{p}_{1_4}$	$+\mathbf{p}_{2_4}$	$+\mathbf{p}_{3_4})\cdot\mathbf{P}^{lpha}$
	$\mathbf{P}_{0_{4}0_{4}}^{A_{1}}$	+0	+0	+0
$1\cdot \mathbf{P}^{A_2} =$	0	+0	$+{f P}_{2_4 2_4}^{A_2}$	+0
$1\cdot\mathbf{P}^{E}=% \mathbf{P}^{E}\mathbf{P}$	$\mathbf{P}^E_{0_40_4}$	+0	$+\mathbf{P}_{2_42_4}^{E}$	+0
$1 \cdot \mathbf{P}^{T_1} =$	$\mathbf{P}_{0_40_4}^{T_1}$	$+\mathbf{P}_{1_{4}1_{4}}^{T_{1}}$	+0	$+{f P}_{3_43_4}^{T_1}$
$1\cdot\mathbf{P}^{T_2}=$	0	$+\mathbf{P}_{1_{4}1_{4}}^{T_{2}}$	$+{f P}_{2_4 2_4}^{T_2}$	$+{f P}_{3_4 3_4}^{T_2}$





largest local symmetry $C_4 => smallest level-clusters (6-levels)$

C4 subgroup correlation to O

$$0 \supset C_4 (0)_4 (1)_4 (2)_4 (3)_4 = (-1)_4$$

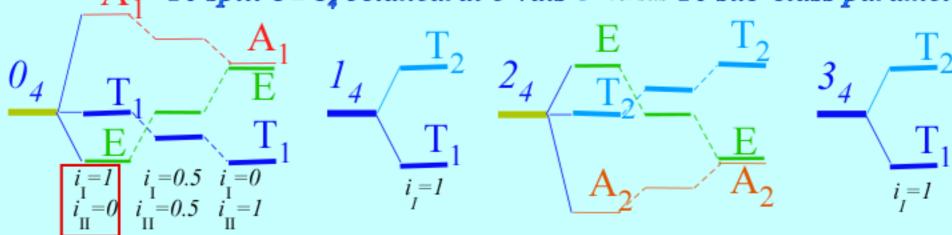
C_4 Projectors to split octahedral P^{α}

$$\mathbf{p}_{m_4} = \sum_{p=0}^{3} rac{e^{2\pi i m \cdot p/4}}{4} \mathbf{R}_z^p = \left\{ egin{array}{l} \mathbf{p}_{0_4} = (\mathbf{1} + \mathbf{R}_z +
ho_z + ilde{\mathbf{R}}_z)/4 \ \mathbf{p}_{1_4} = (\mathbf{1} + i \mathbf{R}_z -
ho_z - i ilde{\mathbf{R}}_z)/4 \ \mathbf{p}_{2_4} = (\mathbf{1} - \mathbf{R}_z +
ho_z - ilde{\mathbf{R}}_z)/4 \ \mathbf{p}_{3_4} = (\mathbf{1} - i \mathbf{R}_z -
ho_z + i ilde{\mathbf{R}}_z)/4 \end{array}
ight.$$

10 split $O \supset C_4$ octahedral P^{α} related to 10 split sub-classes

$\mathbf{P}_{n_4n_4}^{(\alpha)}(O\supset C_4)$	1	$r_1r_2\tilde{r}_3\tilde{r}_4$	$\tilde{r}_1\tilde{r}_2r_3r_4$	$ ho_x ho_y$	$ ho_z$	$R_x \tilde{R}_x R_y \tilde{R}_y$	R_z	$ ilde{R}_z$	$i_1i_2i_5i_6$	i_3i_4
$24 \cdot \mathbf{P}_{0_4 0_4}^{A_1}$	1	1	1	1	1	1	1	1	1	1
$24 \cdot \mathbf{P}_{2_4 2_4}^{A_2}$	1	1	1	1	1	-1	-1	-1	-1	-1
$12 \cdot \mathbf{P}_{0_4 0_4}^E$	1	$-rac{1}{2}$	$-rac{1}{2}$	1	1	$-rac{1}{2}$	1	1	$-rac{1}{2}$	1
$12 \cdot \mathbf{P}_{2_4 2_4}^E$	1	$-rac{1}{2}$	$-rac{1}{2}$	1	1	$+\frac{1}{2}$	-1	-1	$+\frac{1}{2}$	-1
$8 \cdot \mathbf{P}_{1_4 1_4}^{T_1}$	1	$-rac{i}{2}$	$+rac{i}{2}$	0	-1	$+\frac{1}{2}$	-i	+i	$-\frac{1}{2}$	0
$8\cdot \mathbf{P}_{\mathbf{3_4}\mathbf{3_4}}^{T_1}$	1	$+\frac{i}{2}$	$-rac{i}{2}$	0	-1	$+\frac{1}{2}$	+i	-i	$-rac{1}{2}$	0
$8 \cdot \mathbf{P}_{0_4 0_4}^{T_1}$	1	0	0	-1	1	0	1	1	0	-1
$8 \cdot \mathbf{P}_{1_4 1_4}^{T_2}$	1	$+rac{i}{2}$	$-rac{i}{2}$	0	-1	$-rac{1}{2}$	-i	+i	$+\frac{1}{2}$	0
$8\cdot \mathbf{P}_{3_{4}3_{4}}^{T_{2}}$	1	$-rac{i}{2}$	$+rac{i}{2}$	0	-1	$-\frac{1}{2}$	+i	-i	$+\frac{1}{2}$	0
$8\cdot\mathbf{P}_{2_42_4}^{T_2}$	1	0	0	-1	1	0	-1	-1	0	1

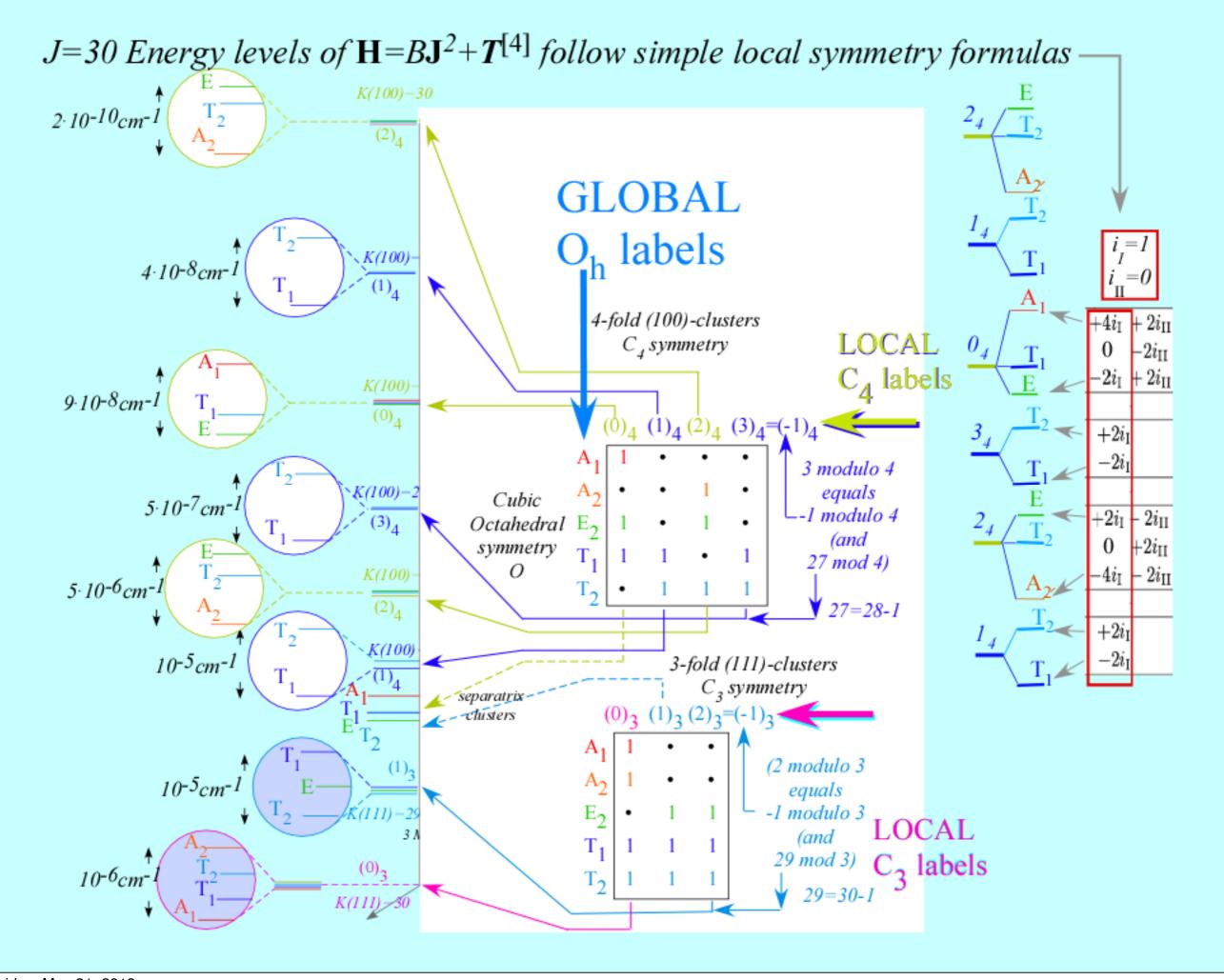
 A_1 10 split $O \supset C_4$ octahedral e-vals ε^{α} versus 10 sub-class parameters



Sequence if $i_I = i_{1256}$ only non-zero parameter: $A_1 T_1 E T_2 T_1 E T_2 A_2 T_2 T_1$

$O\supset C_4$	0°	$r_n 120^{\circ}$	$\rho_n 180^\circ$	R_n90°		$i_{n}18$	80°	
04		$egin{aligned} r_{ m I} &= \operatorname{Re} r_{1234} \ m_{ m I} &= \operatorname{Im} r_{1234} \end{aligned}$	•	$R_z = \text{Re}R_z$ $I_z = \text{Im}R_z$	\ \	$egin{aligned} i_{ ext{II}} &= i \ i_{ ext{II}} &= i \end{aligned}$		
$\begin{array}{c} \varepsilon_{0_4}^{A_1} = \\ \varepsilon_{0_4}^{T_1} \\ \varepsilon_{0_4}^{E} \end{array}$	g_0	$+4r_{ m I}$	$+2 ho_{xy}+ ho_z$	$+4R_{xy}+2R_z$	F	$+4i_{ m I}$		
$arepsilon_{0_4}^{T_1}$	g_0	0	$-2\rho_{xy} + \rho_z$	$+2R_z$			$-2i_{\mathrm{II}}$	
$_{-}$ $\varepsilon_{0_{4}}^{E}$	g_0	$-2r_{ m I}$	$+2\rho_{xy}+\rho_z$	$-2R_{xy}-R_z$		$-2i_{ m I}$	$+2i_{ m II}$	
1_4		•		•				
$arepsilon_{1_4}^{T_2} \ arepsilon_{1_4}^{T_1}$	g_0	$+2m_{ m I}$	$- ho_z$	$-R_{xy}-2I_z$		$+2i_{\mathrm{I}}$		
$_{\underline{}}\varepsilon_{1_{4}}^{T_{1}}$	g_0	$-2m_{ m I}$	$- ho_z$	$+R_{xy}-2I_z$		$-2i_{\mathrm{I}}$		
2_4		•	•	•				
$arepsilon_{2_4}^E \ arepsilon_{2_4}^{T_2} \ arepsilon_{2_4}^{A_2}$	g_0	$-2r_{ m I}$	$+2\rho_{xy}+\rho_z$	$+2R_{xy}-R_z$	-	$+2i_{\mathrm{I}}$	- $2i_{ m II}$	
$arepsilon_{\mathbf{2_4}}^{T_2}$	g_0	0	$-2 ho_{xy}+ ho_z$	$-2R_z$		0	$+2i_{\mathrm{II}}$	
$arepsilon_{2_4}^{A_2}$	g_0	$+4r_{ m I}$	$+2\rho_{xy}+\rho_z$	$-4R_{xy}-2R_z$	_	$-4i_{ m I}$	$-2i_{ m II}$	
3_4		•	•	•				
$arepsilon_{3_4}^{T_2} \ arepsilon_{3_4}^{T_1}$	g_0	$-2m_{ m I}$	$- ho_z$	$-R_{xy} + 2I_z$		$+2i_{\mathrm{I}}$		
$_ \varepsilon_{3_4}^{T_1}$	g_0	$+2m_{\mathrm{I}}$	$- ho_z$	$+R_{xy}+2I_z$	Ц	$-2i_{ m I}$		

53



• Abelian symmetry = Fourier analysis (Back to our roots $1^{1/N} = e^{2\pi i m/N}$)

Group product table => Hamiltonian H-matrices (C_2 and C_6 examples)

Group roots => H-matrix spectral resolution by $P^{(m)}$ projectors

Commutivity conundrum... ? H·g-g·H ?

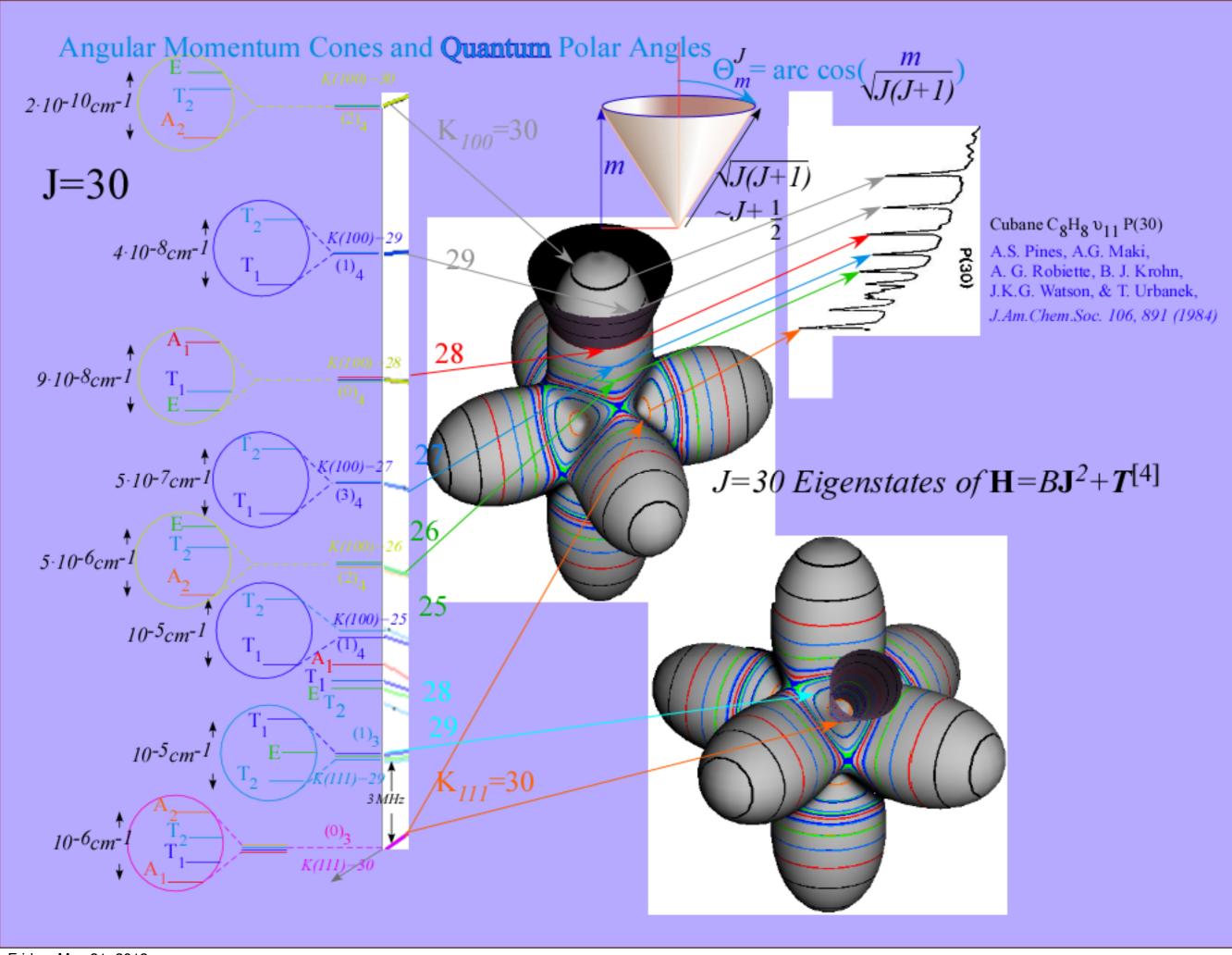
- New symmetry insights: Local vs. Global symmetry Projector invariance "Mock-Mach" principle Conway, et.al, May (2008) Cvitanovic, (2008)
- Non-Abelian symmetry analysis I. (Simplest example: D₃) Local vs. Global product tables => \mathbf{H} -matrices

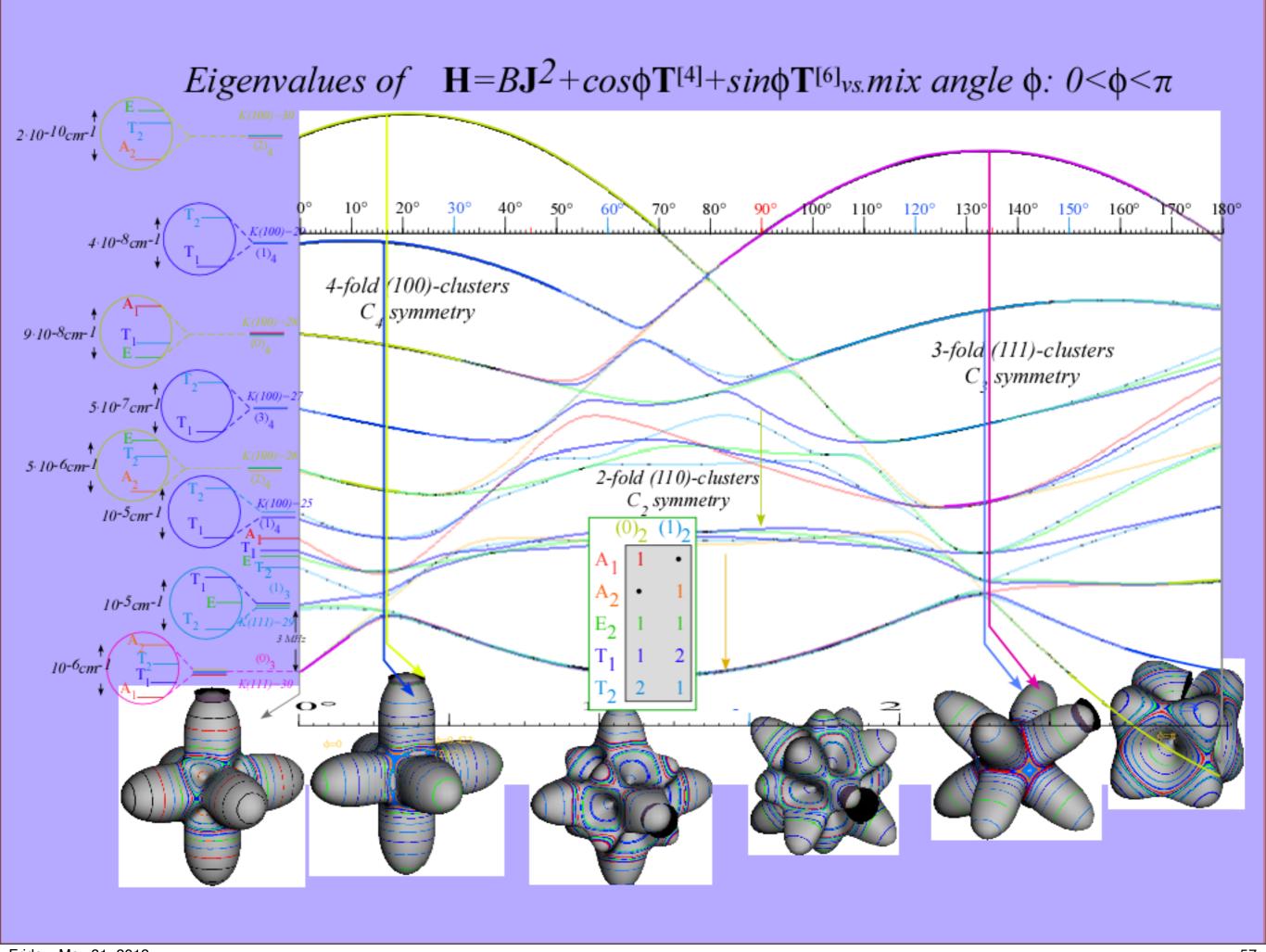
 All-commuting invariants => Global invariant (character) $\mathbf{P}^{(\alpha)}$ projectors

 Mutually-commuting sets => Local vs. Global eigensolutions by $\mathbf{P}^{(\alpha)}_{m,n}$ projectors

 => \mathbf{H} -matrix spectral resolution by $\mathbf{P}^{(\alpha)}_{m,n}$ projectors
- Non-Abelian symmetry analysis II. (Octahedral example: Oh)
 Global-local product tables => H-matrices...
 ... and all the above ...
 - => eigensolution formulas by local-symmetry defined $P_{n,n}^{(\alpha)}$ projectors
- Local vs Global symmetry in rovibronic phase space

 How group operators analyze rovibronic tunneling effects at high J. (SF examples)





Conclusion: H-matrix symmetry analysis greatly improved

Group space tunneling matrix defined nicely by group table.

Each tunneling path matched to group element (complete set of Feynman paths!)

When local symmetry conditions apply:

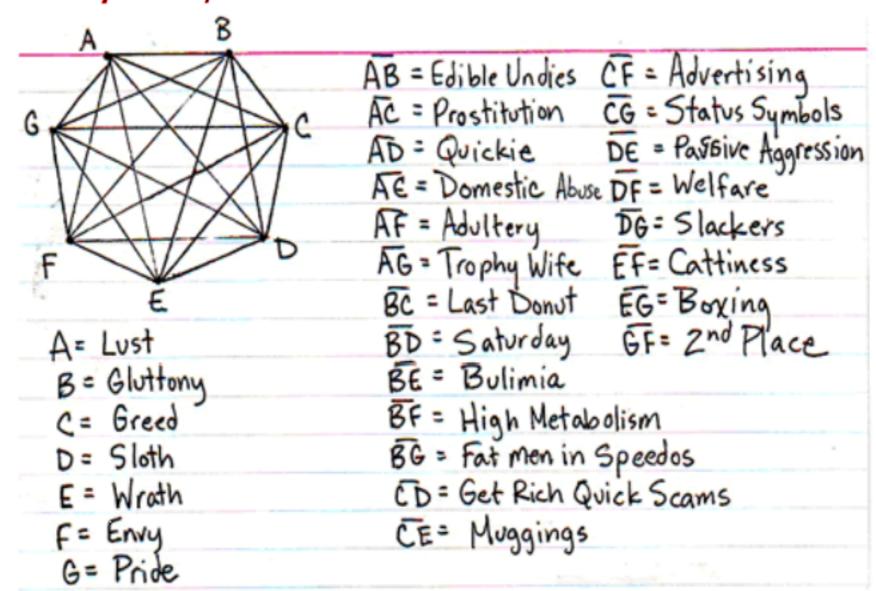
- •Spectral algebra yields closed-form energies and statess (using same table!).
- •Expressions easily deconvoluted (same table, again!).

Transitions between local symmetries clearly defined.

We can now do a D_7 example (Next slide :)

Seven-Deadly-Sin Tunneling Theory

 $D_7 \supset C_7$ sin calculator...(not recommended)



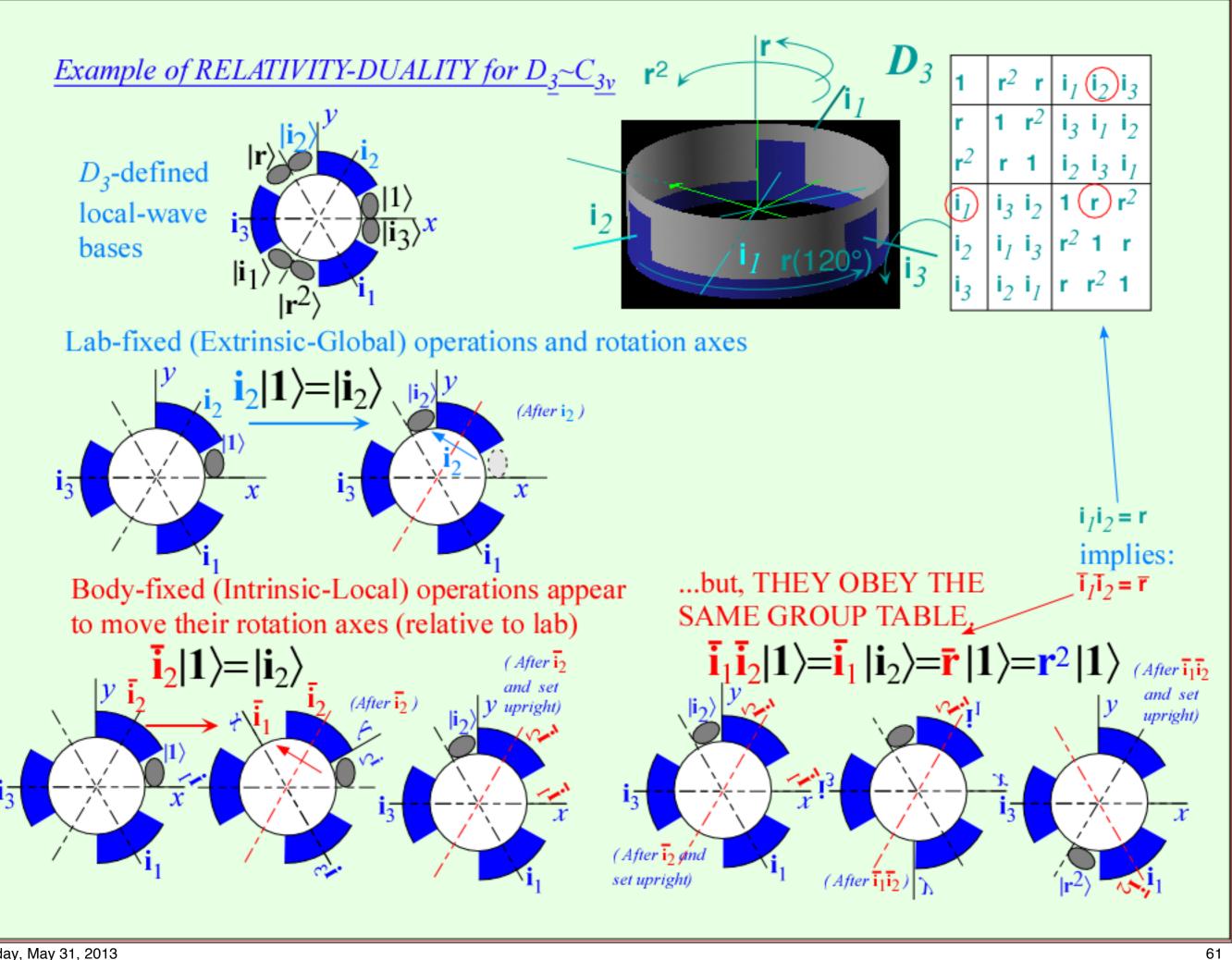
Effects of broken or transition local symmetry for i-class

$$D_{0_40_4}^{A_1}(i_k \mathbf{i}_k) = i_1 + i_2 + i_3 + i_4 + i_5 + i_6$$

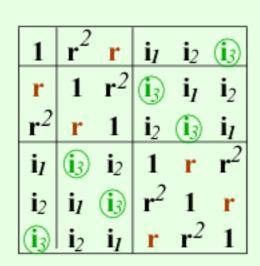
$$D_{2_42_4}^{A_2}(i_k \mathbf{i}_k) = -(i_1 + i_2 + i_3 + i_4 + i_5 + i_6)$$

$$D^{E}(i_{k}\mathbf{i}_{k}) = egin{array}{c|cccc} & 0_{4} & 2_{4} & & & & \\ \hline 0_{4} & -rac{1}{2}(i_{1}+i_{2}+i_{5}+i_{6})+i_{3}+i_{4} & rac{\sqrt{3}}{2}(i_{1}+i_{2}-i_{5}-i_{6}) & & & \\ 2_{4} & h.c. & rac{1}{2}(i_{1}+i_{2}+i_{5}+i_{6})-i_{3}-i_{4} & & & \\ \hline \end{array}$$

$$\begin{array}{|c|c|c|c|c|c|}\hline D^{T_2^*}(i_k\mathbf{i}_k) & 1_4 & 3_4 & 2_4 \\\hline 1_4 & +\frac{1}{2}(i_1+i_2+i_5+i_6) & +\frac{1}{2}(i_1+i_2-i_5-i_6)-i(i_3-i_4) & +\frac{1}{\sqrt{2}}(i_1-i_2)+\frac{i}{\sqrt{2}}(i_5-i_6) \\ 3_4 & h.c. & +\frac{1}{2}(i_1+i_2+i_5+i_6) & -\frac{1}{\sqrt{2}}(i_1-i_2)+\frac{i}{\sqrt{2}}(i_5-i_6) \\ 0_4 & h.c. & h.c. & +(i_3+i_4) \\\hline \end{array}$$



D₃ global group product table



D₃ global projector product table

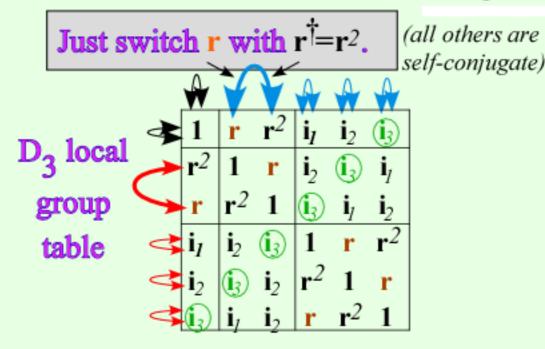
D_3	$\mathbf{P}_{xx}^{A_1}$	$\mathbf{P}_{yy}^{A_2}$	\mathbf{P}_{xx}^{E}	\mathbf{P}_{xy}^{E}	\mathbf{P}_{yx}^{E}	\mathbf{P}_{yy}^{E}
$\mathbf{P}_{\!\scriptscriptstyle XX}^{\!A_1}$	$\mathbf{P}_{xx}^{A_1}$					
$\mathbf{P}_{yy}^{A_2}$		$\mathbf{P}_{yy}^{A_2}$				
\mathbf{P}_{xx}^{E}			\mathbf{P}_{xx}^{E}	\mathbf{P}_{xy}^{E}		
\mathbf{P}_{yx}^{E}			\mathbf{P}_{yx}^{E}	$\mathbf{P}_{yy}^{\dot{E}}$		
\mathbf{P}_{xy}^{E}					\mathbf{P}_{xx}^{E}	\mathbf{P}_{xy}^{E}
$\mathbf{P}_{y}^{\dot{E}}$					\mathbf{P}_{y}^{E}	\mathbf{P}_{y}^{E}

$$\mathbf{P}_{ab}^{(m)}\mathbf{P}_{cd}^{(n)} = \delta^{mn}\delta_{bc} \ \mathbf{P}_{ad}^{(m)}$$

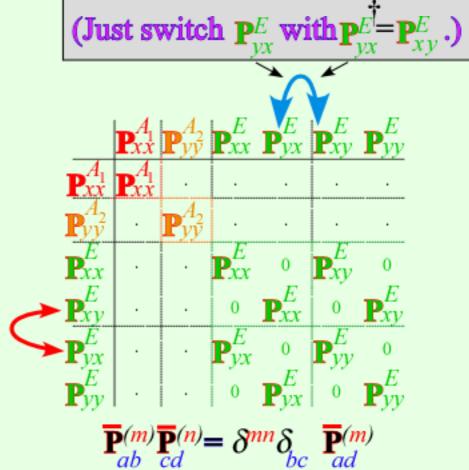
Change Global to Local by switching

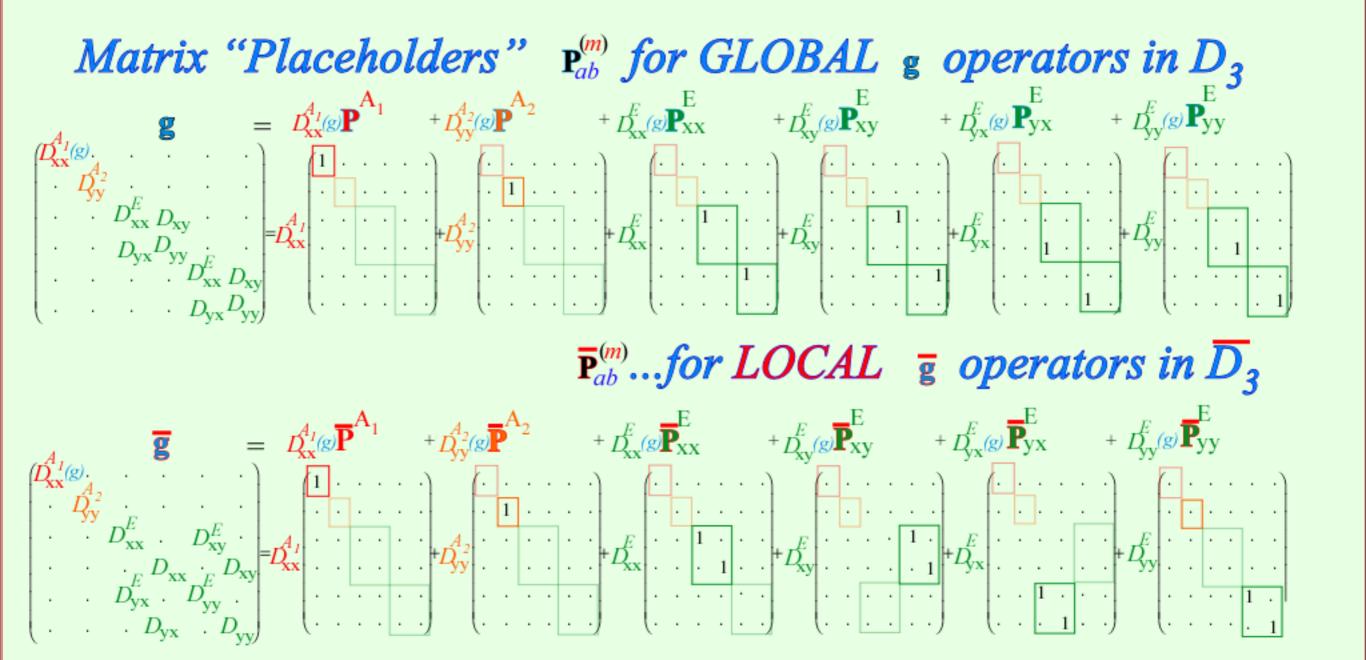
...column-g with column-g

....and row-g with row-g



D₃ local projector product table





Global (LAB) symmetry

$\mathbf{i}_{3}|_{eb}^{(m)}\rangle = \mathbf{i}_{3}\mathbf{P}_{eb}^{(m)}|1\rangle$ $=_{(-1)}^{e}|_{(m)}^{(m)}\rangle$

$D_3 > C_2 i_3 projector states$

$$|{}^{(m)}_{eb}\rangle = \mathbf{P}^{(m)}_{eb}|1\rangle$$

Local (BOD) symmetry

$$|\mathbf{\overline{i}_3}|_{eb}^{(m)}\rangle = |\mathbf{\overline{i}_3}|_{eb}^{(m)}|1\rangle = |\mathbf{P}_{eb}^{(m)}|\mathbf{\overline{i}_3}|1\rangle = |\mathbf{P}_{eb}^{(m)}|\mathbf{\overline{i}_3}|1\rangle = (-1)^b |\mathbf{\overline{m}}\rangle$$

