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Analytical eigensolutions for Morse oscillators are used to investigate quantum resonance and
revivals and show how Morse anharmonicity affects revival times. A minimum semi-classical Morse
revival time Tmin−rev found by Heller is related to a complete quantum revival time Trev using a
quantum deviation δN parameter that in turn relates Trev to the maximum quantum beat period
Tmax−beat. Also, number theory of Farey and Thales-circle geometry of Ford is shown to elegantly
analyze and display fractional revivals. Such quantum dynamical analysis may have applications
for spectroscopy or quantum information processing and computing.
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Wavepacket dynamics has a long history that has more
recently been accelerated by graphics that exhibit space-
time behavior. Such studies began with revivals in cav-
ity QED simulations by Eberly [1] and later simulations
of molecular rovibronic dynamics [2, 3]. Ultrafast laser
spectroscopy made it possible to observe wavepacket res-
onance and localized periodic motion in experimental
situations [4–6] involving AMOP dynamics [6, 7]. This
helped reveal new physics and chemistry of ultrafast spec-
troscopy [7, 8].

Some of this involves symmetry and number theo-
retic properties of wavepacket space-time structure, a
still largely unexplored field. The following development
is based upon earlier Cn-group and Farey-sum-tree [9]
analysis of quantum rotors [10, 11] as cited by Schleich et
al. [12, 13] for possible numeric factorizing applications.
That work treated only R(2) rings or 1D infinite-wells
but nevertheless revealed general symmetry properties.

Here Morse oscillators are shown to share Farey-sum
revival structure of R(2) rings or 1D infinite-wells. More-
over, Morse revivals reveal concise ways to find complete
revival times Trev along with new ways to quantify quan-
tum wavepacket dynamics using Ford circles [14][15].

The Morse oscillator potential (Eq. (1a)) is an anhar-
monic potential [16] used to describe covalent molecular
bonding. Some dynamics of Morse states have been stud-
ied [17–21] as a model of vibrational anharmonicity.

VM (x) = D(1− e−αx)2 (1a)

Coordinate x is variation of bond from equilibrium where
the potential has its minimum and zero value at x = 0.
Coefficient D is bond dissociation energy and its maxi-
mum inflection value at infinite x. D relates harmonic
frequency ωe in Eq. (1b) and anharmonic frequency ωχ
in Eq. (1c) that gives width parameter α. The latter is
related to reduced mass µ and anharmonic frequency ωχ.
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ωe
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4ωχ
~ (1b)
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~
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McCoy [22] revived interest in exact eigenfunctions and
eigenvalues [23] of Morse oscillator used in Eqs. (2) and
(3a) below and allows analysis of its quantum dynamics
that may be relevant to anharmonic dynamics in general.

The Morse oscillator, being anharmonic, has vary-
ing spacing of its energy levels in contrast to uniform
(harmonic) spacing. At high quanta n , energy levels
En = ~ωn have low-n spacing ∆E = ~ωe compressed for
positive anharmonic frequency ωχ in Eq. (2).

En = ~ωn = ~ωe(n+
1

2
)− ~ωχ(n+

1

2
)2 (2)

The corresponding Morse eigenfunctions of the eigenval-
ues are given by Eq. (3a) where L2s

n represents a gener-
alized associated Laguerre polynomial [22].

φn(x) = e
−y(x)

2 y(x)s(n)

√
α(ν − 2n− 1)n!

Γ(ν − n)
L2s(n)
n (y(x))

(3a)
Exponentially scaled y(x) has exponent s(n) as given.

y(x) = νe−αx (3b)

s(n) =
1

2
(ν − 2n− 1) (3c)

The scaling parameter ν is as follows.

ν =
4D

~ωe
(3d)

Dynamic waves are combinations of eigenfunctions.

ψ(x, t) =

nmax∑
n=0

cnφn(x)e−i
Ent
~ (4)

Here nmax is the highest bound state. Its eigenvalue is
nearest to dissociative limit D. To get maximum beating
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FIG. 1. The Morse oscillator with a harmonic frequency ωe/2πc = 18(cm−1) and an anharmonic frequency ωχ/2πc = 1(cm−1).
(a) Each of its stationary eigenstate |φn|2 was list-plotted on a energy level of eigenvalue En in the potential well (red-color-line),
these wave functions are normalized (indicated by the same-height dotted-line). (b) The wave packet ψ∗ψ is propagated along
the time steps. (c) The probability density map of the wave packet |ψ| as a function of space and time. The double arrows
connecting (b)-(c) indicate the corresponding time events.

we assume equal Fourier coefficients cn = 1. (We do not
consider shorter revivals had by zeroing select cn.)

A sample Morse oscillator potential shown in Fig. 1(a)
has a total of nine stationary bound states (from n = 0
to nmax = 8). The initial wave packet (Eq. (4) at t = 0)
is a sum of these stationary bound states and evolves as
shown in Fig. 1(b) ending in its lowest ψ(x, T )∗ψ(x, T )
trace as the initial shape fully revived.

Space-time plots of the norm |ψ(x, t)| in Fig. 1 (c) show
resonant beat nodes and anti-nodes that outline semi-
classical trajectories x(t) corresponding to energy values
En ranging from the lowest ground state E0 up to the
highest bound state Enmax .

An essential part of wave packet dynamics analysis of
anharmonic systems is to predict if and when exact wave
packet revival might occur. If Trev is a time for a Morse
oscillator revival , then Wang and Heller [21] have shown

Trev =
π

ωχ
M (5a)

where M is an integer. This revealed two facts about
Morse oscillator dynamics. First, there may be minimum
or fundamental revival period at

Tmin−rev =
π

ωχ
(5b)

This is the shortest revival time for Morse oscillator
found by Wang and Heller [21]. Second, any complete
revival period is made of integer numbers of the funda-
mental period. That is, any complete quantum revival
must contain integer numbers of semiclassical-trajectory-
profile periods (minimum revival period) which is approx-
imately outlined by a classical particle oscillating with a
frequency of 2ωχ in the Morse potential.

To illustrate relations between quantum periods and
semiclassical-trajectory-profile periods, consider three
cases of classical particles with corresponding quantum
eigenvalue energies orbiting in a Morse potential as shown

FIG. 2. Relating the maximum beat period and semiclassical-
trajectory-profile period (the minimum revival period). (a) 3
classical trajectories of particles oscillating in a Morse poten-
tial are plotted in one period time, and one additional classical
trajectory of particle with dissociation energy D is also plot-
ted. The red-dots in (a) and (b) indicate that these classical
particles have the same energies as the corresponding quan-
tum eigenvalue energies. (b) The probability amplitudes of
3 bound quantum eigenfunctions are listed along energy level
in a Morse potential (red-thick-line).

Fig. 2 (a). Here the rainbow-shape trajectory of a clas-
sical particle with energy E2 has a classical oscillating
period T close to the fundamental period of π/ωχ, while
a classical trajectory with energy E3 = D is of a particle
barely escaping from its Morse potential well.

The preceding case has a simple revival period formula.
More analysis is required to determine a specific integer
M of Eq. (5a) for Morse revivals for a given (ωe, ωχ).

Beating of waves with nearby frequency plays a key
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role in quantum dynamics. The maximum beat period
Tmax−beat due to the closest bound energy level pair in
the Morse well is one key to finding its revival period. A
complete revival of |Ψ(x, t)|2 at time Trev must contain
integer numbers of all beat periods including at least one
fundamental time period Tmax−beat for the slowest beat
frequency. This relates it to revival period.

Trev = Tmax−beatN (6)

Here N is an integer. The Morse energy level Eq. (2)
gives a beat-gap between neighboring energy.

∆E = En − En−1 = ~(ωe − 2ωχn) (7)

The ∆E is the minimum for maximum n occurring be-
tween the highest bound quantum numbers nmax and
nmax−1. Planck’s relation E = ~ω gives maximum beat
period.

Tmax−beat =
2π

(∆ω)min
=

2π

Enmax − Enmax−1

~

=
2π

ωe − 2ωχnmax
(8)

To estimate upper bound quantum nmax in Eq. (8),
we suppose nmax is the integer part of a real number
nreal and substitute nreal into energy Eq. (2) to give
Enreal that equals dissociative limit D in Eq. (1b). This
equivalent relation is expressed as

Enreal = ~ωe(nreal +
1

2
)− ~ωχ(nreal +

1

2
)2

= D =
ω2
e

4ωχ
~ (9a)

A perfect square equation gives one root.

nreal =
we

2wχ
− 1

2
(9b)

The integer part or floor of nreal is the highest Morse
quantum number nmax (For Fig. 1, this is nmax = 8).

nmax = Floor[nreal] = Floor[
we

2wχ
− 1

2
] (9c)

The fractional part δN of nreal is quantum defect of dis-
sociative level D and highest allowed bound energy level.

δN = nreal − nmax (9d)

As illustrated in Fig. 2(b), δN is proportional to energy
gap between D and the highest bound energy level.

Then, the fundamental period Tmax−beat in Eq. (8) is
expressed in term of δN .

Tmax−beat =
2π

ωe − 2ωχnmax
=

2π

ωe − 2ωχ(nreal − δN )

=
2π

ωe − 2ωχ( ωe
2ωχ
− 1

2 − δN )

=
π

ωχ(δN + 1
2 )

(10a)

Eq. (10a) is rewritten by substituting Tmin−rev = π/ωχ
given by Eq. (5b).

Tmax−beat =
π

ωχ(δN + 1
2 )

= Tmin−rev
1

(δN + 1
2 )

(10b)

This relates two fundamental building blocks of a com-
plete Morse revival period.

Tmin−rev
Tmax−beat

= δN +
1

2
(11a)

As discussed for Eqs. (5a) and (6), a perfect quantum
revival period of the Morse oscillator Trev is composed of
integer numbers of the fundamental periods as follows.

Trev = Tmin−revM = Tmax−beatN (11b)

Then Eqs. (11a) and (11b) relate N and M integers.

N
M

= δN +
1

2
(11c)

The quantum beat-period approach gives Morse re-
vival time Trev in terms of Tmax−beat and δN as follows.

Trev = Tmax−beatN = Tmax−beatNumerator[δN +
1

2
]

(12a)
The semiclassical-trajectory-profile approach gives Trev
in terms of Tmin−rev and δN as follows.

Trev = Tmin−revM = Tmin−revDenominator[δN +
1

2
]

(12b)
Both Tmin−rev or Tmax−beat serve as a fundamental

building blocks of Trev. Examples of this follow.
Interplay of harmonicity and anharmonicity of Morse

oscillators affects revival period Trev. Consider Fig. 3 (a)-
(c) where the value of Trev is increased from the minimum
revival period Tmin−rev to multiples thereof with fixed
anharmonic frequency wχ/2πc = 1(cm−1).

In Fig. 3(a) with ωe/2πc = 18(cm−1) one per-
fect revival occurs in the minimum revival time:
Trev = Tmax−beat = Tmin−rev giving a unit ratio
Tmin−rev/Tmax−beat = 1/1.

Then in Fig. 3(b) with ωe/2πc = 17(cm−1) and
the same ωχ, is seen a double time for perfect revival
of Trev = Tmax−beat = 2Tmin−rev with a half ratio
Tmin−rev/Tmax−beat = 1/2. We note that this double
revival time Trev = 2Tmin−rev = 2π/ωχ exactly equals
Tapprox in Eq. (13) given by a semiclassical treatment of
general anharmonic oscillators [24–27] that assumes large
quantum numbers n around their average n̄.

Tapprox =
2π

1
2

∣∣∣d2Endn2

∣∣∣
n=n̄

=
2π

wχ
(13)

In Fig. 3(c) with we/2πc = 17 + 1
3 (cm−1) is a perfect

revival time Trev = 2Tmax−beat = 3Tmin−rev with ratio
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FIG. 3. Fibonacci sequence and exchange rate. (a) When δN = 1/2, the Trev is composed of one Tmax−beat and one Tmin−rev.
(b) When δN = 0, the Trev is composed of 1Tmax−beat and 2Tmin−rev. (c) When δN = 1/6, the Trev is composed of 2Tmax−beat
and 3Tmin−rev. (d) Allowed ratios of Tmin−rev to Tmax−beat.

of minimum revival period to maximum beat period of
Tmin−rev/Tmax−beat = 2/3.

All revival periods Trev are composed of an integer
number of fundamental period Tmin−rev (or Tmax−beat)
but have a differing ratios Tmin−rev/Tmax−beat that
range between 1/2 and 3/2. The Fibonacci sequence
{1/1, 1/2, 2/3, 3/5, 5/8, ....} is a subset of the possible ra-
tional ratios Tmin−rev/Tmax−beat.

Fractional or intra-revival structure of Morse vibrators
is quite like that of rotor revivals. In Fig. 4(a) is a Morse
revival of higher frequency ωe/2πc = 42(cm−1) and more
states (nmax = 20) than the one in Fig. 3(a), but with the
same anharmonicity ωχ/2πc = 1(cm−1) and revival pe-
riod: Trev = 1Tmin−rev = 1Tmax−beat = 1/(2c(cm)−1) ≈
16.7(picro− second).

Fractional revival structure is visible as a series of dips
on top of Fig. 4(a) and in Fourier amplitude frequency
ωn sum or autocorrelation A(t) spectra [25] in Fig. 4(b).

A(t) =

nmax∑
n=0

e−i
Ent
~ =

nmax∑
n=0

e−iωnt (14)

|A(t)| spectra match Farey-sum sequence used in 1815
by geologist John Farey [9][28] to analyze tidal beats.

A Farey sequence, starting with fraction 0/1 and end-
ing with fraction 1/1, builds hierarchies of irreducible
rational fractions on a real line between 0.0 and 1.0 [28].

A Farey-sum a
b+ c

d=a+c
b+d is a curious process to locate sig-

nificant fractions n
d between a

b and c
d or overtone (n : d)

resonances in between an (a : b) and a (c : d) resonance.
In 1938, Leslie Ford [14] found a geometric description

that helps elucidate Farey-sums. Ford geometry views
each fraction as a vector and the Farey sum as a vector
sum in Denominator(y)-vs-Numerator(x) space such as
is plotted for 0 ≤ (x, y) ≤ 1 in Fig. 5. A fraction a

b is
drawn as a vector with tail at origin and head at the
point (x = a, y = b) as shown by examples V 0

1
and V 1

1
,

the black and red arrows in Fig. 5 (lower left).

V 0
1

+ V 1
1

=

(
0
1

)
+

(
1
1

)
=

(
1
2

)
= V 1

2
(15a)

The green arrow in Fig. 5 is V 1
2
. Each vector Vn

d
points

to or intersects a real value x = n/d on the top (y = 1)-
line of Fig. 5. Ford [14] discovered that each x = n/d is a
tangent point for a circle having diameter 1/d2 hanging
below the top (y = 1)-line that is itself tangent to infinite
sequences of smaller such circles, each tangent to the next
and converging on x = n/d. The (d = 1)-Ford-circle is a
unit-diameter circle sliced to fit the unit (x, y)-area with
a pair of tangent semi circles belonging to unit Ford base
vectors V 0

1
and V 1

1
. Fractions 0

1 and 1
1 make a second

(d=2)-Ford circle of diameter 1/22 in the upper center of
Fig. 5 pointed out by sum V 1

2
=V 0

1
+V 1

1
in Eq. (15a).
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FIG. 4. The Farey-sum sequence structure appears in Morse oscillator space-time pattern for we/2πc = 42(cm−1) and wχ/2πc =
1(cm−1) with nmax = 20. (a) One complete revival period plot of the wave packet has color denote magnitude |Ψ(x, t)|. (b)
The norm of autocorrelation function (|A(t)| with nmax = 20) is plotted in one complete revival period Trev whose fractions
{ 0
1
, 1
7
, 1
6
, 1
5
, 1
4
, 2
7
, 1
3
, 2
5
, 3
7
, 1
2
, 4
7
, 3
5
, 2
3
, 5
7
, 3
4
, 4
5
, 5
6
, 6
7
, 1
1
} are denoted by the vertical dashed lines. The double arrows connecting (a)-

(b) indicate the corresponding time events having peaks (or nodes) for time fraction n
d

of odd (or even) depth d.

It is tangent to “parent” Ford circles for 0
1 and 1

1 . Also
shown is (d=3)-Ford circle for vector V 1

3
=V 0

1
+V 1

2
that

is tangent to circles of its parent fractions 0
1 and 1

2 .

V 0
1

+ V 1
2

=

(
0
1

)
+

(
1
2

)
=

(
1
3

)
= V 1

3
(15b)

Thales 600-BCE rectangle-in-circle geometry is suffi-
cient to derive Ford geometry. Tangent Ford circles like
the 0

1 , 1
1 , and 1

2 circles in Fig. 5 meet at corners of similar
Thales rectangles whose vertical diagonals are circle di-
ameters hanging below their respective fraction points.
Circle diameters subtend 90◦ corners by Thales theo-
rem. The 0

1 and 1
2 corners meet where the V 1

2
-vector

line crosses the 0
1 -circle. This is the 0

1 - 1
2 -circle-tangent

point. A 0
1 -diameter line through that point intersects

the vertical diameter of the 1
2 -circle at its center thus

defining it. Similar geometry (not drawn) applies to the
1
2 - 1

1 -circle-tangent. A Farey-sum of a circle-tangent pair
is a new Ford circle and fraction as shown by examples
0
1+ 1

2= 1
3 in Eq. (15b) or 1

2+ 1
1= 2

3 listed in level-3 of the
Farey-sum-tree on the righthand side of Fig. 5. Farey
sums that give reducible fractions N

D=n·f
d·f are labeled by

their reduced form n
d with the shortest allowed Ford vec-

tor, least depth or denominator d, and largest possible
Ford circle.

Continued Farey-sums of Ford vectors give sequences
of circles each belonging to an irreducible fraction n

d
and its vector Vn

d
. In Fig. 5, these circles nest in the

FIG. 5. Ford circles and vectors with Farey-sum sequence.

area between their original Farey “grandparent” circles
V 0

1
and V 1

1
. A Farey-sum-tree of fractions of depth

d 6 7 { 0
1 ,

1
7 ,

1
6 ,

1
5 ,

1
4 ,

2
7 ,

1
3 ,

2
5 ,

3
7 ,

1
2 ,

4
7 ,

3
5 ,

2
3 ,

5
7 ,

3
4 ,

4
5 ,

5
6 ,

6
7 ,

1
1}

is shown in box on the right of Fig. 5 and represented
by a total of 19 sequentially and mutually tangent cir-
cles.
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FIG. 6. “Quantization” inside Ford circles: pixel lattices of
{(1x5), (1x4), (1x3), (1x2), (2x3), (3x4), (4x5)} rectangles
lie circumscribed by circles of fractions { 1

5
, 1
4
, 1
3
, 1
2
, 2
3
, 3
4
, 4
5
}.

A revealing portrait emerges of quantum “fractal”
structure filling the area below the top line with ever
tinier 1

d2 -diamter circles as spectral depth d increases.
By construction all Ford-vector and Thales-rectangle

slopes are rational, but surprisingly so are their aspect
ratios “quantized” into n-by-d pixel arrays. For example,
(1x3),(1x2), and(2x3) pixel arrays lie inside { 1

3 ,
1
2 ,

2
3}

circles in Fig. 5, and Fig. 6 shows finer (nxd) arrays of
pixel rectangles circumscribed by n

d -circles.
In conclusion, exact Morse oscillator eigensolutions al-

low more detailed analysis of their quantum dynamics. A
key top-level-to-dissociation gap parameter δN provides
a concise revival time formula in terms of two funda-
mental periods, a semiclassical Tmin−rev found by Wang
and Heller and a longest quantum beat period Tmax−beat.
This shows that complete revival periods may be com-
posed of integer numbers of the two. Finally, fractional
revivals seen in rotor pulse evolution is also shown to be
present in Morse wave dynamics in the form of Farey-sum
spectral sub-structure. A Ford-circles geometry relating
rational fractions to real numbers may be developed to
visualize these phenomena and may eventually have ap-
plication to quantum information processing and com-
puting.
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