Molecules and Molecular Spectroscopy:

Learning about molecules from Quantum theory
and
Learning about Quantum theory from molecules
William G. Harter for Kennefict's Modern Physics class 3.26 . 13
A sketch of modern molecular spectroscopy
The frequency hierarchy Example of16 1 m spectra of CF_{4}
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2 -state $U(2)$-spin tunneling models
$3 D R(3)$-rotor and D-function lab-body wave models
$2 D$ harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots) Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of ∞-Square well and Bohr rotor: What makes that "dipole"spectra?
Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strongly localized ∞-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees

A sketch of modern molecular spectroscopy

Simple molecular-spectra models

2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state U(2)-spin tunneling models
$3 D R(3)$-rotor and D-function lab-body wave models
$2 D$ harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related $\infty-$ Square Well (model of quantum dots) Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of oo-Square well and Bohr rotor: What makes that "dipole"spectra? Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strongly localized oo-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees

A sketch of modern

 molecular spectroscopy

ELECTRON MOTION

From Fig. 6.5.5.
Principles of Symmetry, Dynamics, and
Spectroscopy
W. G. Harter, Wiley Interscience, NY (1993)

Spectral
Quantities
Frequency v
Hertz(sec $^{-1}$)
$\mathrm{THz} \quad 10^{12} \mathrm{~s}^{-1}$
$\mathrm{GHz} \quad 10^{9} \mathrm{~s}^{-1}$
$\mathrm{MHz} \quad 10^{6} \mathrm{~s}^{-1}$
vibronic spectra
rovibrational spectra
$\begin{array}{lll}\mathrm{kHz} & 10^{3} \mathrm{~s}^{-1}\end{array}$
Wavelength λ
meters (m)
fm $10^{-15} m$
pm $10^{-12} \mathrm{~m}$
$\mathrm{nm} \quad 10^{-9} \mathrm{~m}$
$\mu m \quad 10^{-6} \mathrm{~m}$
mm $\quad 10^{-3} \mathrm{~m}$
$\begin{array}{lll}\text { H-Lyman } \alpha & \mathrm{cm} & 10^{-2} \mathrm{~m}\end{array}$
ULTRAVIOLET $\mathrm{km} \quad 10^{3} \mathrm{~m}$
$\mathrm{v}=2.4 \mathrm{PHz}$
$\mathrm{E}_{\text {Ly } \alpha}=10.2 \mathrm{eV}$
$\lambda=125 \mathrm{~nm}$
Typical VISIBLE
$v=600 \mathrm{THz}$
$1 / \lambda=2 \cdot 10^{6} \mathrm{~m}^{-}$
$=2 \cdot 10^{4} \mathrm{~cm}^{-1}$
$\lambda=0.5 \mu \mathrm{~m}$
$=500 \mathrm{~nm}$
$=5000 \mathrm{~A}$
$\mathrm{E}_{\mathrm{eV}}=2.48 \mathrm{eV}$
or
$k m \quad 10^{3} m$
Wavenumber per meter $\left(m^{-1}\right)$ $c^{-1} \quad 10^{2} m^{-1}$

Energy ehv electonVolts (eV)
rovibronic spectra

Example of frequency

 hierarchyfor $16 \mu m$ spectra of CF_{4}
(Freon-14) W.G.Harter Ch. 31

Atomic, Molecular, \& Optical Physics Handbook Am. Int. of Physics Gordon Drake Editor (1996)

Example of frequency

 hierarchyfor $16 \mu m$ spectra of CF_{4}
(Freon-14) W.G.Harter

Fig. 32.7
Springer Handbook of Atomic, Molecular, \& Optical Physics Gordon Drake Editor (2005)
a) CF_{4} vibrational structure

e) Hyperfine (nuclear spin) structure
\square
\square

Case (2) Case (1)

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of16 1 m spectra of CF_{4}
\rightarrow Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state U(2)-spin tunneling models
3D R(3)-rotor and D-function lab-body wave models
$2 D$ harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots)
Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of oo-Square well and Bohr rotor: What makes that "dipole"spectra? Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strongly localized oo-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees

Units of frequency (Hz), wavelength (m), and energy (eV)

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of $16 \mu m$ spectra of CF_{4}
Units of frequency (Hz), wavelength (m), and energy (eV)
\rightarrow Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state U(2)-spin tunneling models
$3 D R(3)$-rotor and D-function lab-body wave models
$2 D$ harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related $\infty-$-Square Well (model of quantum dots)
Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of oo-Square well and Bohr rotor: What makes that "dipole"spectra? Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet

Quantum "blasts" of strongly localized oo-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees

From: Electromagnetic Spectrum Wikepedia Commons (2013)

From: Electromagnetic Spectrum Wikepedia Commons (2013)

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of $16 \mu m$ spectra of CF $_{4}$
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state U(2)-spin tunneling models
$3 D R(3)$-rotor and D-function lab-body wave models
$2 D$ harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots) Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of $\infty-S q u a r e ~ w e l l ~ a n d ~ B o h r ~ r o t o r: ~ W h a t ~ m a k e s ~ t h a t ~ " d i p o l e " s p e c t r a ? ~$ Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet

Quantum "blasts" of strongly localized ∞-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory Farey-Sums and Ford-products
Ford Circles and Farey-Trees

More Advanced Molecular Spectra Models (Use symmetry group theory)

fine structure
2-well tunneling

Bohr mass-on-a-ring

vibrational spectra
$1 D$ harmonic oscillator

Coulomb PE models
Rotational Energy Surface (RES) analysis of rovibronic tensor spectra

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of16 1 m spectra of CF_{4}
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state U(2)-spin tunneling models
3D R(3)-rotor and D-function lab-body wave models
2D harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of ∞-Square well and Bohr rotor: What makes that "dipole"spectra? Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet

Quantum "blasts" of strongly localized oo-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees

Circumference Length $=L=2 \pi r=2 W$
∞-Square Well has same levels

\qquad ± 4

$$
\begin{array}{lc}
& \pm 3 \\
& \pm 2 \\
\bar{\square} & \pm 1 \\
\hline & m=0
\end{array}
$$

Circumference Length $=L=2 \pi r=2 W$ ∞-Square Well has same levels
but half as many states as Bohr Mass-On-a-Ring

Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots) ∞-Square Well has only sine standing
waves $\psi_{n}=A \sin n \phi$

Circumference Length $=L=2 \pi r=2 W$ ∞-Square Well has same levels
but half as many states as Bohr Mass-On-a-Ring

Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots)
∞-Square Well has only sine standing waves $\psi_{n}=A \sin n \phi$

Bohr Ring has sine and cosine standing and $e^{ \pm i m \phi}$ moving waves $\psi_{ \pm m}=A(\cos m \phi \pm i \sin m \phi)=A e^{ \pm i m \phi}$

A sketch of modern molecular spectroscopy

The frequency hierarchy Example of $16 \mu m$ spectra of $C F_{4}$
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state U(2)-spin tunneling models
3D $R(3)$-rotor and D-function lab-body wave models
2D harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots)
Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of ∞-Square well and Bohr rotor: What makes that "dipole"spectra?
Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strongly localized ∞-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees

Quantum levels of ∞-Square well and Bohr rotor
Standing wave $\left\langle x \mid \varepsilon_{n}\right\rangle=\psi_{n}(x)=A \sin \left(k_{n} x\right)$ with boundary conditions $k W=n \pi \quad$ or: $k=n \pi / W$

$$
=A \sin \left(\frac{n \pi x}{W}\right) \quad(n=1,2,3, \ldots \infty)
$$

Quantum levels of ∞-Square well and Bohr rotor

Standing wave $\left\langle x \mid \varepsilon_{n}\right\rangle=\psi_{n}(x)=A \sin \left(k_{n} x\right)$ with boundary conditions $k W=n \pi \quad$ or: $k=n \pi / W$

$$
=A \sin \left(\frac{n \pi x}{W}\right) \quad(n=1,2,3, \ldots \infty)
$$

Quantum levels of ∞-Square well and Bohr rotor

Standing wave $\left\langle x \mid \varepsilon_{n}\right\rangle=\psi_{n}(x)=A \sin \left(k_{n} x\right)$ with boundary conditions $k W=n \pi \quad$ or: $k=n \pi / W$

$$
=A \sin \left(\frac{n \pi x}{W}\right) \quad(n=1,2,3, \ldots \infty)
$$

Quantum levels of ∞-Square well and Bohr rotor

Standing wave $\left\langle x \mid \varepsilon_{n}\right\rangle=\psi_{n}(x)=A \sin \left(k_{n} x\right)$ with boundary conditions $k W=n \pi \quad$ or: $k=n \pi / W$

Gives energy levels:

$$
\begin{aligned}
& =A \sin \left(\frac{n \pi x}{W}\right)(n=1,2,3, \ldots \infty) \\
\varepsilon_{n} & =\frac{\hbar^{2}}{2 M} k^{2}=\frac{\hbar^{2} n^{2} \pi^{2}}{2 M W^{2}}=\left(1^{2}, 2^{2}, 3^{2}, \ldots \text { or } n^{2}\right) \frac{h^{2}}{8 M W^{2}}
\end{aligned}
$$

$$
\mathrm{n}=33^{2} \varepsilon_{1}-\quad \text { Set } W=\pi r \text { to get rotor energy: }
$$

2nd transition

energy $5 \varepsilon_{1}$

1st transition
("beat") energy $3 \varepsilon_{1}$
$\underset{\text { (For } \infty \text {-Square well) }}{\text { (Zero-point energy }} \varepsilon_{1}=\frac{\mathrm{h}^{2}}{8 \mathrm{MW}^{2}}$

Quantum levels of ∞-Square well and Bohr rotor

Standing wave $\left\langle x \mid \varepsilon_{n}\right\rangle=\psi_{n}(x)=A \sin \left(k_{n} x\right)$ with boundary conditions $k W=n \pi \quad$ or: $k=n \pi / W$

Gives energy levels:

$$
\begin{aligned}
& =A \sin \left(\frac{n \pi x}{W}\right)(n=1,2,3, \ldots \infty) \\
& \varepsilon_{n}=\frac{\hbar^{2}}{2 M} k^{2}=\frac{\hbar^{2} n^{2} \pi^{2}}{2 M W^{2}}=\left(1^{2}, 2^{2}, 3^{2}, \ldots \text { or } n^{2}\right) \frac{h^{2}}{8 M W^{2}}
\end{aligned}
$$

$$
\mathrm{n}=3 \quad 3^{2} \varepsilon_{1}
$$

2nd transition

energy $5 \varepsilon_{1}$

1st transition
("beat") energy $3 \varepsilon_{1}$
$\underset{\text { (For } \infty \text {-Square well) }}{\text { Z }}$)
rotor energy B-constant: $=\frac{\hbar^{2}}{2 I}=B$

Quantum levels of ∞-Square well and Bohr rotor
Standing wave $\left\langle x \mid \varepsilon_{n}\right\rangle=\psi_{n}(x)=A \sin \left(k_{n} x\right)$ with boundary conditions $k W=n \pi \quad$ or: $k=n \pi / W$

$$
=A \sin \left(\frac{n \pi x}{W}\right)(n=1,2,3, \ldots \infty)
$$

Gives energy levels:

rotor energy B-constant: $=\frac{\hbar^{2}}{2 I}=B$

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of16 1 m spectra of CF_{4}
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state $U(2)$-spin tunneling models
3D R(3)-rotor and D-function lab-body wave models
2D harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots) Quantum levels of ∞-Square well and Bohr rotor
\longrightarrow Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of ∞-Square well and Bohr rotor: What makes that "dipole"spectra? Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strongly localized ∞-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees

Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands

Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of16 1 m spectra of CF_{4}
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state $U(2)$-spin tunneling models
3D R(3)-rotor and D-function lab-body wave models
2D harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots) Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
\rightarrow Quantum dynamics of ∞-Square well and Bohr rotor: What makes that "dipole"spectra? Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strongly localized ∞-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees

Quantum dynamics of ∞-Square well and Bohr rotor How what makes that "dipole"spectra?

> "Sloshing" charge acts like dipole antenna broadcasting* linear polarized radiation

Fig. 12.1.2 Exercise in prison. Infinite square well eigensolution combination "sloshes" back and forth.
*Or receives (Depending on relative phase)

Quantum dynamics of ∞-Square well and Bohr rotor How what makes that "dipole"spectra?

Fig. 12.1.2 Infinite square well eigensolution combination "sloshes" back and forth.
*Or receives (Depending on relative phase)

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of16 1 m spectra of CF_{4}
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state $U(2)$-spin tunneling models
3D R(3)-rotor and D-function lab-body wave models
2D harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots) Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of ∞-Square well and Bohr rotor: What makes that "dipole"spectra? Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strongly localized ∞-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees

Quantum dynamics of Double-well tunneling

Cheap models of NH_{3} inversion doublet and general 2-state quantum systems

$$
\text { fine structure } \quad \text { rotational spectra }
$$

2-well tunneling

Quantum dynamics of Double-well tunneling

Cheap models of NH_{3} inversion doublet and general 2-state quantum systems

2-well tunneling

Quantum dynamics of Double-well tunneling

Cheap models of NH_{3} inversion doublet and general 2-state quantum systems

2-well tunneling

Quantum dynamics of Double-well tunneling

Cheap models of NH_{3} inversion doublet and general 2-state quantum systems

Quantum dynamics of Double-well tunneling

Cheap models of NH_{3} inversion doublet and general 2-state quantum systems

fine structure

> 2-well tunneling

If you add some excited state (- -symmetry wave...

...to ground state $(+)$-symmetry wave...

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of16um spectra of CF 4
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state U(2)-spin tunneling models
3D $R(3)$-rotor and D-function lab-body wave models
2D harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots) Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of ∞-Square well and Bohr rotor: What makes that "dipole"spectra? Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strongly localized ∞-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory Farey-Sums and Ford-products
Ford Circles and Farey-Trees

Quantum" "blasts" of strongly localized ∞-well or rotor waves A lesson in quantum interference

Quantum "blasts" of strongly localized ∞-well or rotor waves

 A lesson in quantum interference$P W$ widths reduce proportionally with more $C W$ terms (greater Spectral width)

this dimension is time

Spectral width (harmonic frequency range)
$1 C W$ term $\Delta v=v=1 / \tau$

$2 C W$ terms $\Delta v=2 v$
$5 C W$ terms $\Delta v=5 v$
$10 C W$ terms $\Delta v=10 v$

 this dimension is frequency or per-time

Quantum" "blasts" of strongly localized ∞-well or rotor waves A lesson in quantum interference
$P W$ widths reduce proportionally with more $C W$ terms (greater Spectral width)

this dimension is time

Spectral width (harmonic frequency range)
1 CW term $\Delta v=v=1 / \tau$
$2 C W$ terms $\Delta v=2 v$
$5 C W$ terms
$\Delta v=5 v$
$10 C W$ terms
$\Delta v=10 v$

this dimension is frequency or per-time

Fourier-Heisenberg product: $\Delta t \cdot \Delta v=1$
(time-frequency uncertainty relation)

Quantum "blasts" of strongly localized ∞-well or rotor waves

A lesson in quantum interference

$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

Fig. 12.2.2 Ultra-thin prisoner M.
Initial wavepacket combination of 100 energy states.

Quantum "blasts" of strongly localized ∞-well or rotor waves

A lesson in quantum interference

$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

$a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)$

Fig. 12.2.2 Ultra-thin prisoner M.
Initial wavepacket combination of 100 energy states.

Quantum "blasts" of strongly localized ∞-well or rotor waves

A lesson in quantum interference

$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

$a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)$
$\Psi(x)=\frac{2}{W} \sum_{n}^{N_{\max }} \sin k_{n} a \sin k_{n} x$

Fig. 12.2.2 Ultra-thin prisoner M.
Initial wavepacket combination of 100 energy states.

Quantum "blasts" of strongly localized ∞-well or rotor waves

A lesson in quantum interference

$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

$$
a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)
$$

Fig. 12.2.2 Ultra-thin prisoner M.
Initial wavepacket combination of 100 energy states.

Quantum "blasts" of strongly localized ∞-well or rotor waves

A lesson in quantum interference

$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

$$
2 \Delta x=2 \pi / 100
$$

$$
a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)
$$

$$
\begin{aligned}
\Psi(x) & =\frac{2}{W} \sum_{n}^{N_{\max }} \sin k_{n} a \sin k_{n} x \\
& \rightarrow \frac{2}{W} \int_{0}^{K_{\max }} d k \frac{\Delta n}{\Delta k} \sin k a \sin k x \\
& =\frac{2}{W} \frac{W}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x
\end{aligned}
$$

Quantum "blasts" of strongly localized ∞-well or rotor waves

A lesson in quantum interference

$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

Fig. 12.2.2 Ultra-thin prisoner M.
Initial wavepacket combination of 100 energy states.
$a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)$
$\Psi(x)=\frac{2}{W} \sum_{n}^{N_{\max }} \sin k_{n} a \sin k_{n} x$

$$
\rightarrow \frac{2}{W} \int_{0}^{K_{\max }} d k \frac{\Delta n}{\Delta k} \sin k a \sin k x
$$

$$
=\frac{2}{W} \frac{W}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x
$$

$\Psi(x) \cong \frac{2}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x=\frac{1}{\pi} \int_{0}^{K_{\max }} d k(\cos k(x-a)-\cos k(x+a))$

Quantum "blasts" of strongly localized ∞-well or rotor waves

A lesson in quantum interference

$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

Fig. 12.2.2 Ultra-thin prisoner M.
Initial wavepacket combination of 100 energy states.
$a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)$
$\Psi(x)=\frac{2}{W} \sum_{n}^{N_{\max }} \sin k_{n} a \sin k_{n} x$

$$
\begin{aligned}
& \rightarrow \frac{2}{W} \int_{0}^{K_{\max }} d k \frac{\Delta n}{\Delta k} \sin k a \sin k x \\
& =\frac{2}{W} \frac{W}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x
\end{aligned}
$$

$$
\Psi(x) \cong \frac{2}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x=\frac{1}{\pi} \int_{0}^{K_{\max }} d k(\cos k(x-a)-\cos k(x+a))
$$

$$
\cong \frac{\sin K_{\max }(x-a)}{\pi(x-a)}-\frac{\sin K_{\max }(x+a)}{\pi(x+a)} \cong \frac{\sin K_{\max }(x-a)}{\pi(x-a)} \text { for: } x \approx a
$$

Quantum "blasts" of strongly localized ∞-well or rotor waves

 A lesson in quantum interference$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

Fig. 12.2.2 Ultra-thin prisoner M.
Initial wavepacket combination of 100 energy states.

$$
a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)
$$

$$
\Psi(x)=\frac{2}{W} \sum_{n}^{N_{\max }} \sin k_{n} a \sin k_{n} x
$$

$$
\rightarrow \frac{2}{W} \int_{0}^{K_{\max }} d k \frac{\Delta n}{\Delta k} \sin k a \sin k x
$$

$$
=\frac{2}{W} \frac{W}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x
$$

$$
\Psi(x) \cong \frac{2}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x=\frac{1}{\pi} \int_{0}^{K_{\max }} d k(\cos k(x-a)-\cos k(x+a))
$$

$$
\cong \frac{\sin K_{\max }(x-a)}{\pi(x-a)}-\frac{\sin K_{\max }(x+a)}{\pi(x+a)} \cong \frac{\sin K_{\max }(x-a)}{\pi(x-a)} \text { for: } x \approx a
$$

"Last-in-first-out" effect. Last Kmax-value dominates and "inside" K get "smothered" by interference with neighbors.

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of16um spectra of CF 4
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state U(2)-spin tunneling models
3D $R(3)$-rotor and D-function lab-body wave models
2D harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots) Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of ∞-Square well and Bohr rotor: What makes that "dipole"spectra?
Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strongly localized ∞-well or rotor waves: A lesson in quantum interference
Wavepacket explodes! (n) revives)
Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees

Wavepacket explodes!

Time given in units of period τ_{1} (slowest phasor of ground level). fundamental zero-point period $\tau_{1}=1 / v_{1}$

Wavepacket explodes!

Time given in units of period τ_{1} (slowest phasor of ground level).

$$
1
$$ fundamental zero-point period $\tau_{1}=1 / v_{1}$ is

$\mathrm{t}=0.0004 \tau_{1}$

$$
1
$$

$\tau_{1}=\frac{2 \pi}{\omega_{1}}=\frac{2 \pi \hbar}{\varepsilon_{1}}$ $=\frac{h}{h^{2} / 8 M W^{2}}=\frac{8 M W^{2}}{h}$
$t=0.0016 \tau_{1}$

Wavepacket explodes!

Time given in units of period τ_{1} (slowest phasor of ground level). fundamental zero-point period $\tau_{1}=1 / v_{1}$ is

$$
\begin{aligned}
& \tau_{1}=\frac{2 \pi}{\omega_{1}}=\frac{2 \pi \hbar}{\varepsilon_{1}} \\
& =\frac{h}{h^{2} / 8 M W^{2}}=\frac{8 M W^{2}}{h}
\end{aligned}
$$

$\varepsilon_{n-l e v e l ~ c l a s s i c a l ~ v e l o c i t y: ~}^{n}$

$$
\begin{aligned}
& V_{n}=\frac{d \omega_{n}}{d k}=\frac{1}{\hbar} \frac{d \varepsilon_{n}}{d k} \\
& =\frac{1}{\hbar} \frac{\hbar^{2}}{2 M} \frac{d k^{2}}{d k} \\
& =\frac{\hbar 2 k_{n}}{2 M}=\frac{\hbar n \pi}{M W}=\frac{h n}{2 M W}
\end{aligned}
$$

$\mathrm{t}=0.0016 \tau_{1}$
$\mathrm{t}=0.0020 \tau_{1}$

Wavepacket explodes!

Time given in units of period τ_{1} (slowest phasor of ground level). fundamental zero-point period $\tau_{1}=1 / v_{1}$ is

$$
\begin{aligned}
& \tau_{1}=\frac{2 \pi}{\omega_{1}}=\frac{2 \pi \hbar}{\varepsilon_{1}} \\
& =\frac{h}{h^{2} / 8 M W^{2}}=\frac{8 M W^{2}}{h}
\end{aligned}
$$

$\varepsilon_{n-l e v e l ~ c l a s s i c a l ~ v e l o c i t y: ~}^{n}$

$$
\begin{aligned}
& V_{n}=\frac{d \omega_{n}}{d k}=\frac{1}{\hbar} \frac{d \varepsilon_{n}}{d k} \\
& =\frac{1}{\hbar} \frac{\hbar^{2}}{2 M} \frac{d k^{2}}{d k} \\
& =\frac{\hbar 2 k_{n}}{2 M}=\frac{\hbar n \pi}{M W}=\frac{h n}{2 M W}
\end{aligned}
$$

$\mathrm{t}=0.0012 \tau_{1}$
En-level classical round trip time $\operatorname{Tn}(2 W)$ $T_{n}(2 W)=\frac{2 W}{V_{n}}=2 W \frac{2 M W}{h n}=\frac{4 M W^{2}}{h n}$
$\mathrm{t}=0.0016 \tau_{1}$

$$
=\frac{1}{2 n} \frac{8 M W^{2}}{h}=\frac{\tau_{1}}{2 n}
$$

Wavepacket explodes!

Time given in units of period τ_{1} (slowest phasor of ground level). fundamental zero-point period $\tau_{1}=1 / v_{1}$ is

$$
\begin{aligned}
& \tau_{1}=\frac{2 \pi}{\omega_{1}}=\frac{2 \pi \hbar}{\varepsilon_{1}} \\
& =\frac{h}{h^{2} / 8 M W^{2}}=\frac{8 M W^{2}}{h}
\end{aligned}
$$

$\varepsilon_{n-l e v e l ~ c l a s s i c a l ~ v e l o c i t y: ~}^{n}$

$$
\begin{aligned}
& V_{n}=\frac{d \omega_{n}}{d k}=\frac{1}{\hbar} \frac{d \varepsilon_{n}}{d k} \\
& =\frac{1}{\hbar} \frac{\hbar^{2}}{2 M} \frac{d k^{2}}{d k} \\
& =\frac{\hbar 2 k_{n}}{2 M}=\frac{\hbar n \pi}{M W}=\frac{h n}{2 M W}
\end{aligned}
$$

$\mathrm{t}=0.0012 \tau_{1}$

ε_{n}-level classical round trip time $\operatorname{Tn}(2 W)$ $T_{n}(2 W)=\frac{2 W}{V_{n}}=2 W \frac{2 M W}{h n}=\frac{4 M W^{2}}{h n}$ $=\frac{1}{2 n} \frac{8 M W^{2}}{h}=\frac{\tau_{1}}{2 n}$

عn-level 1-way time $\operatorname{Tn}(W)$

$$
\begin{aligned}
& T_{n}(W)=T_{n}(2 W) / 2=\frac{\tau_{1}}{4 n} \\
& \left(=0.0025 \tau_{1} \text { for: } n=100\right)
\end{aligned}
$$

Wavepacket explodes!

Time given in units of period τ_{1} (slowest phasor of ground level). fundamental zero-point period $\tau_{1}=1 / v_{1}$ is

$$
\begin{aligned}
& \tau_{1}=\frac{2 \pi}{\omega_{1}}=\frac{2 \pi \hbar}{\varepsilon_{1}} \\
& =\frac{h}{h^{2} / 8 M W^{2}}=\frac{8 M W^{2}}{h}
\end{aligned}
$$

$\varepsilon_{n-l e v e l ~ c l a s s i c a l ~ v e l o c i t y: ~}^{n}$

$$
\begin{aligned}
& V_{n}=\frac{d \omega_{n}}{d k}=\frac{1}{\hbar} \frac{d \varepsilon_{n}}{d k} \\
& =\frac{1}{\hbar} \frac{\hbar^{2}}{2 M} \frac{d k^{2}}{d k} \\
& =\frac{\hbar 2 k_{n}}{2 M}=\frac{\hbar n \pi}{M W}=\frac{h n}{2 M W}
\end{aligned}
$$

$\mathrm{t}=0.0012 \tau_{1}$

En-level classical round trip time $\operatorname{Tn}(2 W)$ $T_{n}(2 W)=\frac{2 W}{V_{n}}=2 W \frac{2 M W}{h n}=\frac{4 M W^{2}}{h n}$ $=\frac{1}{2 n} \frac{8 M W^{2}}{h}=\frac{\tau_{1}}{2 n}$

عn-level 1-way time $\operatorname{Tn}(W)$
$\mathrm{t}=0.0020 \tau_{1}$
$T_{n}(W)=T_{n}(2 W) / 2=\frac{\tau_{1}}{4 n}$
$\left(=0.0025 \tau_{1}\right.$ for: $\left.n=100\right)$

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of $16 \mu m$ spectra of CF_{4}
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state U(2)-spin tunneling models
3D R(3)-rotor and D-function lab-body wave models
2D harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots) Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of oo-Square well and Bohr rotor: What makes that "dipole"spectra? Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strgngly localized ∞-well or rotor waves: A lesson in quantum interference Wavepacket exprou? (Then revives)
Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees

Wavepacket explodes! (Then revives)

Zero-point period τ_{1} is just enough time for "particle" in ε_{n}-level to make $2 n$ round trips.

$$
\tau_{1}=2 n T_{n}(2 W)=\frac{8 M L^{2}}{h}
$$

In time τ_{1} ground ε_{1}-level particle does 2 round trips,
ε_{2}-level particle makes 4 round trips,
ε_{3}-level particle makes 6 round trips,...,
At time τ_{1}, M undergoes a full revival and "unexplodes" into his original spike at $x=0.2 \mathrm{~W}$,

Wavepacket explodes! (Then revives)

Zero-point period τ_{1} is just enough time for "particle" in ε_{n}-level to make $2 n$ round trips.

$$
\tau_{1}=2 n T_{n}(2 W)=\frac{8 M L^{2}}{h}
$$

In time τ_{1} ground ε_{1}-level particle does 2 round trips,
ε_{2}-level particle makes 4 round trips,
ε_{3}-level particle makes 6 round trips,...,
At time τ_{1}, M undergoes a full revival and "unexplodes" into his original spike at $x=0.2 \mathrm{~W}$,

But, after only 50 round-trips M 's wave does a partial revival as it makes an upside down-delta function around $x=0.8 \mathrm{~W}$.

$\mathrm{t}=1.0000 \tau_{1}$
$=3.0 \tau_{\text {beat }}$

Fig. 12.2.5 The "Dance of the deltas." Mini-Revivals for prisoner M's wavepacket envelope function.

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of16um spectra of CF 4
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state U(2)-spin tunneling models
3D $R(3)$-rotor and D-function lab-body wave models
2D harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots) Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of ∞-Square well and Bohr rotor: What makes that "dipole"spectra? Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strongly localized oo-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)
Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory Farey-Sums and Ford-products
Ford Circles and Farey-Trees

Quantum "revivals" of gently*localized rotor waves

 A lesson in quantum number theory*gently means gently-truncated Gaussian distributions

Time t (units of fundamental period τ_{\perp})

(Imagine "wrap-around" ϕ-coordinate)

[Harter, J. Mol. Spec. 210, 166-182 (2001)]

N -level-rotor pulse wave and revival-beat wave dynamics

(9 or10-levels $(0, \pm 1, \pm 2, \pm 3, \pm 4 \ldots \ldots, \pm 9, \pm 10, \pm 11 .$.$)) excited)$

Zeros (clearly) and "particle-packets" (fainty) have paths labeled by fraction sequences like: $\frac{0}{7}, \frac{1}{7}, \frac{2}{7}, \frac{3}{7}, \frac{4}{7}, \frac{5}{7}, \frac{6}{7}, \frac{1}{1}$

0/1

$$
\begin{array}{r}
1 / 1 \\
\frac{6}{7} \\
\frac{5}{7} \\
\frac{4}{7} \\
t \\
\text { of } \tau_{1}
\end{array}
$$

Coordinate ϕ
(units of 2π)

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of16um spectra of CF 4
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state $U(2)$-spin tunneling models
3D R(3)-rotor and D-function lab-body wave models
2D harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots)
Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of ∞-Square well and Bohr rotor: What makes that "dipole"spectra?
Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strongly localized ∞-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory \longrightarrow Farey-Sums and Ford-products Ford Circles and Farey-Trees

Farey Sum algebra of revival-beat wave dynamics

 Label by numerators N and denominators D of rational fractions N / D

Farey Sum algebra of revival-beat wave dynamics

 Label by numerators N and denominators D of rational fractions N / D
Time t

$1 / 1 \square 14 / d_{1}$
(units of τ_{1})

(Ford-Cross)
$\left(n_{1}+1\right) / d_{1}$ $\left(n_{2}-1\right) / d_{2}$

0/1

$$
\begin{array}{llllll}
-1 / 2 & -1 / 4 & 0 & 1 / 4 & 1 / 2 & \text { (units of } 2 \pi)
\end{array}
$$

[Lester. R. Ford, Am. Math. Monthly 45,586(1938)]
n_{2} / d_{2} path slope is $1 / d_{2}$ $\frac{n_{2} / d_{2}-t_{x}}{1 / 2-\phi_{x}}=1 / d_{2}$

$$
\frac{n_{1} / d_{1}-t_{\otimes}}{1 / 2-\phi_{\otimes}}=-1 / d_{1}
$$

n_{1} / d_{1} path slope is $-1 / d_{1}$
n_{1} / d_{1} and n_{2} / d_{2} path intersection time

$$
t_{\otimes}=\frac{n_{1}+n_{2}}{d_{1}+d_{2}}
$$

(Farey-Sum)
Coordinate ϕ

A sketch of modern molecular spectroscopy
The frequency hierarchy Example of16um spectra of CF 4
Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules
Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models
More advanced molecular-spectra models (Using symmetry-group theory)
2-state U(2)-spin tunneling models
3D $R(3)$-rotor and D-function lab-body wave models
2D harmonic oscillator and $U(2) 2^{\text {nd }}$ quantization
Bohr Mass-On-a-Ring (model of rotation) and related ∞-Square Well (model of quantum dots) Quantum levels of ∞-Square well and Bohr rotor
Example of CO_{2} rotational $(v=0) \Leftrightarrow(v=1)$ bands
Quantum dynamics of oo-Square well and Bohr rotor: What makes that "dipole"spectra? Quantum dynamics of Double-well tunneling: Cheap models of NH_{3} inversion doublet
Quantum "blasts" of strongly localized oo-well or rotor waves: A lesson in quantum interference Wavepacket explodes! (Then revives)

Quantum "revivals" of gently localized rotor waves: A lesson in quantum number theory Farey-Sums and Ford-products
\rightarrow Ford Circles and Farey-Trees

Farey Sum related to vector sum and Ford Circles 1/1-circle has diameter 1

Farey Sum related to

 vector sum andFord Circles

1/2-circle has diameter $1 / 2^{2}=1 / 4$
$1 / 3$-circles have diameter $1 / 3^{2}=1 / 9$
n / d-circles have diameter $1 / d^{2}$

Farey Tree up to $D=8$ spectral half-width

$$
\begin{aligned}
& D \leq 1 \quad \frac{\mathbf{0}}{\mathbf{1}} \\
& D \leq 2 \frac{0}{1} \quad \frac{\mathbf{1}}{2} \\
& D \leq 3 \quad \frac{0}{1} \\
& D \leq 4 \quad \frac{0}{1} \\
& D \leq 5 \quad \frac{0}{1} \quad \frac{\mathbf{1}}{\mathbf{5}} \quad \frac{1}{4} \quad \frac{1}{3} \\
& \frac{1}{3} \\
& \frac{1}{4} \quad \frac{1}{3} \\
& D \leq 6 \quad \frac{0}{1} \quad \frac{1}{6} \quad \frac{1}{5} \quad \frac{1}{4} \quad \begin{array}{llllll}
3 & \frac{1}{5} & \frac{1}{2}
\end{array} \\
& D \leq 7 \quad \frac{0}{1} \quad \begin{array}{lllllll}
\mathbf{7} & \frac{\mathbf{1}}{6} & \frac{1}{5} & \frac{1}{4} & \frac{\mathbf{2}}{\mathbf{7}} & \frac{1}{3}
\end{array} \\
& \begin{array}{lllll}
\frac{2}{5} & \frac{3}{7} & \frac{1}{2} & \frac{4}{7} & \frac{3}{5}
\end{array} \\
& D \leq 8 \quad \frac{0}{1} \quad \frac{\mathbf{1}}{\mathbf{8}} \quad \frac{1}{7} \quad \frac{1}{6} \quad \frac{1}{5} \quad \frac{1}{4} \quad \frac{2}{7} \quad \frac{1}{3} \quad \frac{\mathbf{3}}{\mathbf{8}} \quad \frac{2}{5} \quad \frac{3}{7} \quad \frac{1}{2} \quad \frac{4}{7} \quad \frac{3}{5}
\end{aligned}
$$

Quantum "blasts" of strongly localized ∞-well or rotor waves

 A lesson in quantum uncertainty$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

Initial wavepacket combination of 100 energy states.
$a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)$
$\Psi(x)=\frac{2}{W} \sum_{n}^{N_{\max }} \sin k_{n} a \sin k_{n} x$
$\rightarrow \frac{2}{W} \int_{0}^{K_{\max }} d k \frac{\Delta n}{\Delta k} \sin k a \sin k x$
$=\frac{2}{W} \frac{W}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x$

$$
\Psi(x) \cong \frac{\sin K_{\max }(x-a)}{\pi(x-a)} \text { for: } x \approx a
$$

"Last-in-first-out" effect. Last Kmax-value dominates and "inside" K get "smothered" by interference with neighbors.

Quantum "blasts" of strongly localized ∞-well or rotor waves

 A lesson in quantum uncertainty$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

$a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)$

$$
\begin{aligned}
\Psi(x) & =\frac{2}{W} \sum_{n}^{N_{\max }} \sin k_{n} a \sin k_{n} x \\
& \rightarrow \frac{2}{W} \int_{0}^{K_{\max }} d k \frac{\Delta n}{\Delta k} \sin k a \sin k x \\
& =\frac{2}{W} \frac{W}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x
\end{aligned}
$$

$$
\Psi(x) \cong \frac{\sin K_{\max }(x-a)}{\pi(x-a)} \text { for: } x \approx a
$$

$\Psi(x)$ peaks at $(x=a)$ and goes to zero on either side at $(x=a \pm \Delta x)$ with half-width Δx
"Last-in-first-out" effect. Last Kmax-value dominates and "inside" K get "smothered" by interference with neighbors.

Quantum "blasts" of strongly localized ∞-well or rotor waves

 A lesson in quantum uncertainty$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

Fig. 12.2.2 Ultra-thin prisoner M.
Initial wavepacket combination of 100 energy states.
$a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)$
$\Psi(x)=\frac{2}{W} \sum_{n}^{N_{\max }} \sin k_{n} a \sin k_{n} x$
$\rightarrow \frac{2}{W} \int_{0}^{K_{\max }} d k \frac{\Delta n}{\Delta k} \sin k a \sin k x$
$=\frac{2}{W} \frac{W}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x$
$\Psi(x) \cong \frac{\sin K_{\max }(x-a)}{\pi(x-a)}$ for: $x \approx a$
$\Psi(x)$ peaks at $(x=a)$ and goes to zero on either side at $(x=a \pm \Delta x)$ with half-width Δx
$\sin K_{\text {max }}(\Delta \mathrm{x})=0$, which implies: $(\Delta \mathrm{x}) K_{\text {max }}= \pm \pi$
"Last-in-first-out" effect. Last Kmax-value dominates and "inside" K get "smothered" by interference with neighbors.

Quantum "blasts" of strongly localized ∞-well or rotor waves

 A lesson in quantum uncertainty$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

Fig. 12.2.2 Ultra-thin prisoner M.
Initial wavepacket combination of 100 energy states.
$a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)$
$\Psi(x)=\frac{2}{W} \sum_{n}^{N_{\max }} \sin k_{n} a \sin k_{n} x$
$\rightarrow \frac{2}{W} \int_{0}^{K_{\max }} d k \frac{\Delta n}{\Delta k} \sin k a \sin k x$
$=\frac{2}{W} \frac{W}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x$
$\Psi(x) \cong \frac{\sin K_{\max }(x-a)}{\pi(x-a)}$ for: $x \approx a$
$\Psi(x)$ peaks at $(x=a)$ and goes to zero on either side at ($x=a \pm \Delta x$) with half-width Δx
$\sin K_{\max }(\Delta \mathrm{x})=0$, which implies: $(\Delta \mathrm{x}) K_{\max }= \pm \pi, \quad$ or: $\Delta \mathrm{x}= \pm \pi / K_{\max }$
"Last-in-first-out" effect. Last Kmax-value dominates and "inside" K get "smothered" by interference with neighbors.

Quantum "blasts" of strongly localized ∞-well or rotor waves

 A lesson in quantum uncertainty$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

Fig. 12.2.2 Ultra-thin prisoner M.
Initial wavepacket combination of 100 energy states.
$a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)$
$\Psi(x)=\frac{2}{W} \sum_{n}^{N_{\max }} \sin k_{n} a \sin k_{n} x$
$\rightarrow \frac{2}{W} \int_{0}^{K_{\max }} d k \frac{\Delta n}{\Delta k} \sin k a \sin k x$
$=\frac{2}{W} \frac{W}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x$
$\Psi(x) \cong \frac{\sin K_{\max }(x-a)}{\pi(x-a)}$ for: $x \approx a$
$\Psi(x)$ peaks at $(x=a)$ and goes to zero on either side at $(x=a \pm \Delta x)$ with half-width Δx
$\sin K_{\max }(\Delta \mathrm{x})=0$, which implies: $(\Delta \mathrm{x}) K_{\max }= \pm \pi, \quad$ or: $\Delta \mathrm{x}= \pm \pi / K_{\max }$

$$
\Delta x \cdot\left|K_{\max }\right|=\Delta x \cdot \Delta k=\pi
$$

"Last-in-first-out" effect. Last Kmax-value dominates and "inside" K get "smothered" by interference with neighbors.

Quantum "blasts" of strongly localized ∞-well or rotor waves

 A lesson in quantum uncertainty$$
\delta(x-a)=\langle x \mid a\rangle=\sum_{n=1}^{\infty}\left\langle x \mid \varepsilon_{n}\right\rangle\left\langle\varepsilon_{n} \mid a\right\rangle=\sum_{n=1}^{\infty} a_{n} \sin k_{n} x
$$

Initial wavepacket combination of 100 energy states.

$$
a_{n}=\left\langle\varepsilon_{n} \mid a\right\rangle=(2 / W) \sin k_{n} a \quad\left(k_{n}=n \pi / W\right)
$$

$$
\Psi(x)=\frac{2}{W} \sum_{n}^{N_{\max }} \sin k_{n} a \sin k_{n} x
$$

$$
\rightarrow \frac{2}{W} \int_{0}^{K_{\max }} d k \frac{\Delta n}{\Delta k} \sin k a \sin k x
$$

$$
=\frac{2}{W} \frac{W}{\pi} \int_{0}^{K_{\max }} d k \sin k a \sin k x
$$

$$
\Psi(x) \cong \frac{\sin K_{\max }(x-a)}{\pi(x-a)} \text { for: } x \approx a
$$

$\Psi(x)$ peaks at $(x=a)$ and goes to zero on either side at $(x=a \pm \Delta x)$ with half-width Δx
$\sin K_{\max }(\Delta \mathrm{x})=0$, which implies: $(\Delta \mathrm{x}) K_{\max }= \pm \pi, \quad$ or: $\Delta \mathrm{x}= \pm \pi / K_{\max }$

$$
\Delta x \cdot|K \max |=\Delta x \cdot \Delta k=\pi \quad \text { or: } \quad \Delta x \cdot \Delta p=\pi \hbar=h / 2 \quad \infty \text {-Well uncertainty relation }
$$

"Last-in-first-out" effect. Last Kmax-value dominates and "inside" K get "smothered" by interference with neighbors.

```
Polygonal geometry of U(2)\supsetCN character spectral function
Algebra
Geometry
Introduction to wave dynamics of phase, mean phase, and group velocity
Expo-Cosine identity
Relating space-time and per-space-time
    Wave coordinates
    Pulse-waves (PW) vs Continuous-waves (CW)
```

Introduction to C_{N} beat dynamics and "Revivals" due to Bohr-dispersion ∞-Square well PE versus Bohr rotor
SinNx/x wavepackets bandwidth and uncertainty
SinNx/x explosion and revivals
Bohr-rotor dynamics
Gaussian wave-packet bandwidth and uncertainty
Farey-Sums and Ford-products
Phase dynamics

Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum- m plane waves:
$\Psi(\phi, t=0)=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}} e^{i m \phi}$

Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum- m plane waves:

$$
\Psi(\phi, t=0)=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}} e^{i m \phi}
$$

Complete the square in exponent to simplify ϕ-angle wavefunction.

Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum- m plane waves:

$$
\begin{aligned}
\Psi(\phi, t=0) & =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}} e^{i m \phi} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}+i m \phi+\left(\frac{\Delta_{m}}{2} \phi\right)^{2}-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}}
\end{aligned}
$$

Complete the square in exponent to simplify ϕ-angle wavefunction.

Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum- m plane waves:

$$
\begin{aligned}
\Psi(\phi, t=0) & =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}} e^{i m \phi} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}+i m \phi+\left(\frac{\Delta_{m}}{2} \phi\right)^{2}-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}}
\end{aligned}
$$

Complete the square in exponent to simplify ϕ-angle wavefunction.

Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum- m plane waves:

$$
\begin{aligned}
& \Psi(\phi, t=0)=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}} e^{i m \phi} \\
&=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}+i m \phi+\left(\frac{\Delta_{m}}{2} \phi\right)^{2}-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
&=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
&=\frac{A\left(\Delta_{m}, \phi\right)}{2 \pi} \\
& A\left(\Delta_{m}, \phi\right)=\sum_{m=-\infty}^{\infty} e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
&\left.e_{m}-i \frac{\Delta_{m}}{2}\right)^{2}
\end{aligned}
$$

Complete the square in exponent to simplify ϕ-angle wavefunction.

Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum- m plane waves:

$$
\begin{aligned}
\Psi(\phi, t=0) & =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}} e^{i m \phi} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}+i m \phi+\left(\frac{\Delta_{m}}{2} \phi\right)^{2}-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& =e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
A\left(\Delta_{m}, \phi\right)= & \sum_{m=-\infty}^{\infty} e^{\left.-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}, \phi\right)} \xrightarrow[\Delta_{m} \gg 1]{\int_{-\infty}^{\infty} d k e^{-\left(\frac{k}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}}}
\end{aligned}
$$

Complete the square in exponent to simplify ϕ-angle wavefunction.
$m=0, \pm 1, \pm 2, \pm 3, \ldots$ are momentum quanta in wavevector formula: $k_{m}=2 \pi m / L \quad\left(k_{m}=m \quad\right.$ if: $\left.L=2 \pi\right)$

Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum- m plane waves:

$$
m=0, \pm 1, \pm 2, \pm 3, \ldots \text { are momentum quanta in wavevector formula: } k_{m}=2 \pi m / L \quad\left(k_{m}=m \quad \text { if: } L=2 \pi\right)
$$

$$
\begin{aligned}
& \Psi(\phi, t=0)=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}} e^{i m \phi} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}+i m \phi+\left(\frac{\Delta_{m}}{2} \phi\right)^{2}-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& =\frac{A\left(\Delta_{m}, \phi\right)}{2 \pi} \quad e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& A\left(\Delta_{m}, \phi\right)=\sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} \xrightarrow[\Delta_{m} \gg 1]{ } \int_{-\infty}^{\infty} d k e^{-\left(\frac{k}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& {\left[\text { let: } K=\frac{k}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi \text { so: } d k=\Delta_{m} d K\right]}
\end{aligned}
$$

Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum- m plane waves:

$$
m=0, \pm 1, \pm 2, \pm 3, \ldots \text { are momentum quanta in wavevector formula: } k_{m}=2 \pi m / L \quad\left(k_{m}=m \quad \text { if: } L=2 \pi\right)
$$

$$
\begin{aligned}
& \Psi(\phi, t=0)=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}} e^{i m \phi} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}+i m \phi+\left(\frac{\Delta_{m}}{2} \phi\right)^{2}-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2}\right)^{2}} e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& =\frac{A\left(\Delta_{m}, \phi\right)}{2 \pi} \quad e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& A\left(\Delta_{m}, \phi\right)=\sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} \xrightarrow[\Delta_{m} \gg 1]{ } \underbrace{\infty}_{-\infty} d k e^{-\left(\frac{k}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& {\left[\text { let: } K=\frac{k}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi \text { so: } d k=\Delta_{m} d K\right] \text { then: } A\left(\Delta_{m}, \phi\right) \simeq \Delta_{m} \int_{-\infty}^{\infty} d K e^{-(K)^{2}}=\Delta_{m} \sqrt{\pi}}
\end{aligned}
$$

Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum- m plane waves:

$$
\begin{aligned}
& \Psi(\phi, t=0)=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}} e^{i m \phi} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}+i m \phi+\left(\frac{\Delta_{m}}{2}\right)^{2}-\left(\frac{\Delta_{m}}{2}\right)^{2}} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2}\right)^{2}} \\
& =\frac{A\left(\Delta_{m}, \phi\right)}{2 \pi}>e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& A\left(\Delta_{m}, \phi\right)=\sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} \xrightarrow[\Delta_{m} \gg 1]{ } \int_{-\infty}^{\infty} d k e^{-\left(\frac{k}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& {\left[\text { let: } K=\frac{k}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi \text { so: } d k=\Delta_{m} d K\right] \text { then: } A\left(\Delta_{m}, \phi\right) \simeq \Delta_{m} \int_{-\infty}^{\infty} d K e^{-(K)^{2}}=\Delta_{m} \sqrt{\pi}}
\end{aligned}
$$

$m=0, \pm 1, \pm 2, \pm 3, \ldots$ are momentum quanta in wavevector formula: $k_{m}=2 \pi m / L \quad\left(k_{m}=m \quad i f: L=2 \pi\right)$

Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum- m plane waves:

$$
\begin{aligned}
& \Psi(\phi, t=0)=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}} e^{i m \phi} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}+i m \phi+\left(\frac{\Delta_{m}}{2} \phi\right)^{2}-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& \Psi(\phi, t=0)=\frac{\Delta_{m}}{2 \sqrt{\pi}} e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& =\frac{A\left(\Delta_{m}, \phi\right)}{2 \pi}<e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& A\left(\Delta_{m}, \phi\right)=\sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} \xrightarrow[\Delta_{m} \gg 1]{ } \int_{-\infty}^{\infty} d k e^{-\left(\frac{k}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& {\left[\text { let: } K=\frac{k}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi \text { so: } d k=\Delta_{m} d K\right] \text { then: } A\left(\Delta_{m}, \phi\right) \simeq \Delta_{m} \int_{-\infty}^{\infty} d K e^{-(K)^{2}}=\Delta_{m} \sqrt{\pi}}
\end{aligned}
$$

$m=0, \pm 1, \pm 2, \pm 3, \ldots$ are momentum quanta in wavevector formula: $k_{m}=2 \pi m / L \quad\left(k_{m}=m \quad i f: L=2 \pi\right)$

Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum- m plane waves:

$$
\begin{aligned}
& \Psi(\phi, t=0)=\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}} e^{i m \phi} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}\right)^{2}+i m \phi+\left(\frac{\Delta_{m}}{2} \phi\right)^{2}-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& \Psi(\phi, t=0)=\frac{\Delta_{m}}{2 \sqrt{\pi}} e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& =\frac{1}{2 \pi} \sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& =\frac{A\left(\Delta_{m}, \phi\right)}{2 \pi} e^{-\left(\frac{\Delta_{m}}{2} \phi\right)^{2}} \\
& \left.A\left(\Delta_{m}, \phi\right)=\sum_{m=-\infty}^{\infty} e^{-\left(\frac{m}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right.}\right)_{\Delta_{m} \gg 1} \underbrace{\int_{-\infty}^{\infty} d k e^{-\left(\frac{k}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi\right)^{2}}} \\
& \text { Complete the square in exponent } \\
& \text { to simplify } \phi \text {-angle wavefunction. } \\
& \text { It is a Gaussian distribution, too } \\
& \Psi(\phi, t=0) \simeq \frac{\Delta_{m}}{2 \sqrt{\pi}} e^{-\left(\frac{\phi}{\Delta_{\phi}}\right)^{2}} \\
& \text { where: } \Delta_{\phi}=\frac{2}{\Delta_{m}} \text { or: } \Delta_{\phi} \Delta_{m}=2 \\
& \text { Gaussian uncertainty relation } \\
& \text { (Compare to } \Delta x \cdot \Delta k=\pi \text { for } \infty \text {-Well) } \\
& {\left[\text { let: } K=\frac{k}{\Delta_{m}}-i \frac{\Delta_{m}}{2} \phi \text { so: } d k=\Delta_{m} d K\right] \text { then: } A\left(\Delta_{m}, \phi\right) \simeq \Delta_{m} \int_{-\infty}^{\infty} d K e^{-(K)^{2}}=\Delta_{m} \sqrt{\pi}}
\end{aligned}
$$

$m=0, \pm 1, \pm 2, \pm 3, \ldots$ are momentum quanta in wavevector formula: $k_{m}=2 \pi m / L \quad\left(k_{m}=m \quad i f: L=2 \pi\right)$

$$
E_{m}=\left(\hbar k_{m}\right)^{2} / 2 M=m^{2}\left[h^{2} / 2 M L^{2}\right]=m^{2} h v_{1}=m^{2} \hbar \omega_{1}
$$

fundamental Bohr \angle-frequency $\omega_{1}=2 \pi v_{l}$ and lowest transition (beat) frequency $v_{l}=\left(E_{1}-E_{0}\right) / h$

Kershaw's prediction that the year ad 2000 would see the dramatic intervention of God in the world of human affairs was by no means new. Indeed, Kershaw himself refers to the tradition found in both Jewish and Christian circles that 'at the end of 6000 years the Messiah shall come, and the world shall be renewed'. ${ }^{53}$ In this context, for example, the work of William Whiston, discussed in chapter 3 above, might be further noted. Whiston in his Essay on the Revelation of Saint John similarly predicted that the end of all things would come in AD 2000 . The reasoning behind this thinking is reasonably plain: the world was created in six days followed by a day of rest; scripture says that 'one day is with the Lord as a thousand years, and a thousand years as one day' (2 Pet. 3.8); therefore there will be 6,000 years of toil followed by a Sabbath-millennium. Kershaw himself appeals to such reasoning. ${ }^{54}$
${ }^{53}$ Kershaw is quoting Thomas Newton at this point. See Thomas Newton, Dissertation on the Prophecies, 18 th edn, (1834), p. 696 . The work was originally published in 1754 -
${ }^{54}$ For a discussion of belief in the Sabbath-millennium, see further John Jarick, 'The Fall of the House (of Cards) of Ussher: Why the World as We Know it Did not End at Sunset on 22nd October 1997 (and Will not End at Midnight on 31st December 1999/1st January 2000)', in Stanley E. Porter, Michael A. Hayes and David Tombs (eds.), Faith in the Millonium (Rochampton Institute London Papers, 7 ; Sheffield Academic Press, forthcoming, 2000).

