GROUP PARAMETRIZED TUNNELING AND

 LOCAL SYMMETRY CONDITIONS (or: Powerful symmetry eigensolutions on the Cheap)William G. Harter and Justin C. Mitchell Department of Physics, University of Arkansas

Fayetteville, AR 72701

Matrix Diagonalization by computer:

The BLACK BOX of

Shiccm lorain knows all...
..but what's left for the

Eigenvalues (Quantum levels)
\square

Eigenvectors (Quantum states)

Hougen suggested tunneling matrix approach to spectral analysis (Columbus 2009 RJ01)

6 Benzene out-of-plane π orbitals

$$
H=\left[\begin{array}{cccccc}
E & W & 0 & 0 & 0 & W \\
W & E & W & 0 & 0 & 0 \\
0 & W & E & W & 0 & 0 \\
0 & 0 & W & E & W & 0 \\
0 & 0 & 0 & W & E & W \\
W & 0 & 0 & 0 & W & E
\end{array}\right] \begin{aligned}
& \left|1 ; p_{z}\right\rangle \\
& \left|2 ; p_{z}\right\rangle \\
& \left|3 ; p_{z}\right\rangle \\
& \left|4 ; p_{z}\right\rangle \\
& \left|5 ; p_{z}\right\rangle \\
& \left|6 ; p_{z}\right\rangle
\end{aligned}
$$

Tunneling matrix has three kinds of elements: non-tunneling E , tunneling splitting W , and 0

Hougen suggested tunneling matrix approach to spectral analysis (Columbus 2009 RJ01)

6 Benzene out-of-plane π orbitals
\(H=\left[\begin{array}{cccccc}E \& W \& 0 \& 0 \& 0 \& W

W \& E \& W \& 0 \& 0 \& 0

0 \& W \& E \& W \& 0 \& 0

0 \& 0 \& W \& E \& W \& 0

0 \& 0 \& 0 \& W \& E \& W

W \& 0 \& 0 \& 0 \& W \& E\end{array}\right]\)| $\left\|2 ; p_{z}\right\rangle$ |
| :--- |
| $\left\|3 ; p_{z}\right\rangle$ |
| $\left\|4 ; p_{z}\right\rangle$ |
| $\left\|5 ; p_{z}\right\rangle$ |
| $\left\|6 ; p_{z}\right\rangle$ |

Tunneling matrix has three kinds of elements: non-tunneling E , tunneling splitting W , and 0 Another ad hoc tunneling
hin

Q: Are there "tunneling matrix" schemes that are less ad hoc?

Hougen suggested tunneling matrix approach to spectral analysis (Columbus 2009 RJ01)

6 Benzene out-of-plane π orbitals

Tunnering matrix has three kinds of elements: nop-tunneling E , tunneling splitting W , and 0 Another ad hoc tunneling matrix approach:

©: Are there "tunneling matrix" schemes that are less ad hoc?
A: Yes. Examples in this talk (RJ14) and following talk (RJ15)...
Group Parametrization examples:
(1) C_{6} band theory (2) D_{3} group theory

Hougen suggested tunneling matrix approach to spectral analysis (Columbus 2009 RJ01)

6 Benzene out-of-plane π orbitals

Tunneling matrix has three kinds of elements: non-tunneling E, tunneling splitting W, and 0
matrix approach:

Jvector $\mathbb{Z}=8$

Q: Are there "tunneling matrix" schemes that are less ad hoc? A: Yes. Examples in this talk (RJ14) and following talk (RJ15)... Group Parametrization examples:
(1) C_{6} band theory
(2) D_{3} group theory
(abelian)

(3) O_{h} "cluster bands"
$S F_{6}$ rank-4 tensor
monondromy

Hougen suggested tunneling matrix approach to spectral analysis (Columbus 2009 RJ01)

6 Benzene out-of-plane π orbitals

$$
H=\left[\begin{array}{cccccc}
E & W & 0 & 0 & 0 & W \\
W & E & W & 0 & 0 & 0 \\
0 & W & E & W & 0 & 0 \\
0 & 0 & W & E & W & 0 \\
0 & 0 & 0 & W & E & W \\
W & 0 & 0 & 0 & W & E
\end{array}\right] \begin{aligned}
& \left|1 ; p_{z}\right\rangle \\
& \left.12 ; p_{z}\right\rangle \\
& \left.13 ; p_{z}\right\rangle \\
& \left.14 ; p_{z}\right\rangle \\
& \left.15 ; p_{z}\right\rangle \\
& \left|6 ; p_{z}\right\rangle
\end{aligned}
$$

Tunneling matrix has three kinds of elements: non-tunneling E , tunneling splitting W , and 0
 Q: Are there "tunneling matrix" schemes that are less ad hoc? A: Yes. Examples in this talk (RJ14) and following talk (RJ15)... Group Parametrization examples:

$1^{\text {st }}$ Step Beyond ad hoc-ery Expand C_{6} symmetric $\mathbf{H}=$
using C_{6} group table (form git $\left.^{g g^{\dagger}}\right)$
$\mathbf{H}=r_{0} \mathbf{r}^{0}+r_{l} \mathbf{r}^{1}+r_{2} \mathbf{r}^{2}+\ldots+r_{n-1} \mathbf{r}^{n-l}=\Sigma r_{q} \mathbf{r}^{k}$

C_{6}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}
$\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}
\mathbf{r}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}
\mathbf{g}^{2}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}
\mathbf{r}^{3}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}
\mathbf{r}^{4}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}
\mathbf{r}^{5}	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$

C_{6} group table gives r-matrices,...
$1^{\text {st }}$ Step Beyond ad hoc-ery Expand C_{6} symmetric $\mathrm{H}=$
using C_{6} group table (form ${ }^{\text {git }}$)

C_{6}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}
$\mathbf{1}$	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}
\mathbf{r}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}
\mathbf{g}^{2}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}
\mathbf{r}^{3}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}	\mathbf{r}^{4}
\mathbf{r}^{4}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{5}
	\mathbf{r}^{5}	\mathbf{r}^{5}	\mathbf{r}^{4}	\mathbf{r}^{3}	\mathbf{r}^{2}	\mathbf{r}
\mathbf{l}	$\mathbf{1}$					

C_{6} group table gives r-matrices,... C_{6} allowed \mathbf{H}-matrices...
$\left.\left.\mid \mathrm{r}^{5}\right)=\mathrm{r}^{5} \mid \mathrm{r}^{0}\right)$
$2^{\text {nd }}$ Step Beyond ad hoc-ery
H diagonalized by spectral resolution of $r, r^{2}, \ldots, r^{6}=1 \quad \substack{(1) \\=1 \mid r(r)}$ All $x=r^{p}$ satisfy $x^{h}=1$ and use $6^{\text {th }}$-roots-of- 1 for eigenvalues

$$
\begin{aligned}
& \left.\mid \mathbf{r}^{5}\right) \\
& =\mathbf{r}^{5} \mid
\end{aligned}
$$

$$
\begin{aligned}
& \psi_{I}^{0}=1 \\
& \psi_{I}^{I}=e^{2} \\
& \psi_{l}{ }^{2}=\psi_{2}^{I}=e^{4} \\
& \psi_{I}^{3}=\psi_{3}^{I}=-1 \\
& \psi_{I}{ }^{4}=\psi_{4}^{I}=\psi_{I}^{-2}=e^{-4} \\
& \psi_{I}^{5}=\psi_{5}^{I}=\psi_{I}^{-I}=e^{-2}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
D^{m}(\boldsymbol{r})=e^{-2 \pi i m / 6}=\chi_{l}^{m}=\psi_{l}^{m *} \\
D^{m}\left(\boldsymbol{r}^{p}\right)=e^{-2 \pi i m \cdot p / 6}=\chi_{p}^{m}=\psi_{p}^{m^{*}} \\
p=\text { power (exponent) }
\end{array} \\
& \begin{array}{l}
\text { or position point } \\
\text { momentum }
\end{array} \\
& \text { or wave-number }
\end{aligned}
$$

Groups "know" their roots and will

$$
6^{\text {th }} \text { roots of } 1
$$ tell you them if you ask nicely!

You efficiently get:

- invariant projectors
- irreducible projectors
-irreducible representations (irreps)
- H eigenvalues
- H eigenvectors
-T matrices
-dispersion functions

$2^{\text {nd }}$ Step Beyond ad hoc-ery

H diagonalized by spectral resolution of $r, r^{2}, \ldots, r^{6}=1 \quad \substack{\text { top-row flip } \\ \text { not needed... }}$
All $x=r^{p}$ satisfy $x^{5}=1$ and use $\sigma^{\text {th }}$-roots-of- 1 for eigenvalues

$$
\begin{aligned}
& \psi_{1}^{0}=1 \\
& \psi_{l}=e^{2 \pi i \sigma} \\
& \psi_{1}^{2}=\psi_{2}^{l}=e^{-4 \pi i \sigma} \\
& \psi_{1}^{3}=\psi_{3}^{l}=-1 \\
& \psi_{1}{ }^{3}=\psi_{4}{ }^{l}=\psi_{1}^{-2}=e^{-\pi \pi i \sigma} \\
& \psi_{1}^{5}=\psi_{5}^{l}=\psi_{I}^{-l}=e^{-2 \pi i \sigma}
\end{aligned}
$$

$$
\begin{aligned}
& D^{m}(\boldsymbol{r})=e^{-2 \pi i m / 6}=\chi_{l}^{m}=\psi_{l}^{m^{*}} \\
& D^{m}\left(\boldsymbol{r}^{p}\right)=e^{-2 \pi i m \cdot p / 6}=\chi_{p}^{m}=\psi_{p}^{m^{*}} \\
& p=\text { power (exponent) } \\
& \quad \begin{array}{l}
\text { or position point }
\end{array} \\
& \begin{array}{l}
\text { momentum } \\
\text { or wave-number }
\end{array} \\
& \psi_{l}{ }^{3}
\end{aligned}
$$

$\mathbf{r}^{p}=\chi_{p}^{0} \mathbf{P}^{(0)}$
$+\chi_{p}{ }^{1} \mathbf{P}^{(1)}$
$+\chi_{p}^{2} \mathbf{P}^{(2)}$
$+\chi_{p}^{3} \mathbf{P}^{(3)}$
$+\chi_{p}{ }^{4} \mathbf{P}^{(4)}$
$P^{(5)}$

$$
\left(\begin{array}{ccccc}
\chi_{p}^{0} & & & & \\
x_{p}^{1} & & & \\
& & \chi_{p}^{2} & & \\
& & x_{p}^{3} & & \\
& & & \chi_{p}^{4} \\
& & & \chi_{p}^{5}
\end{array}\right)=\chi_{p}^{0}\left(\begin{array}{ll}
1 & \cdots \\
& \cdots
\end{array}\right.
$$

$2^{\text {nd }}$ Step Beyond ad hoc-ery

H diagonalized by spectral resolution of $r, r^{2}, \ldots, r^{6}=1$

top-row flip not needed...

All $x=r^{p}$ satisfy $x^{6}=1$ and use $6^{\text {th }}$-roots-of- 1 for eigenvalues

$$
\begin{aligned}
& \psi_{l}^{0}=l \\
& \psi_{l}^{l}=e^{2 \pi i / 6} \\
& \psi_{l}^{2}=\psi_{2}^{l}=e^{4 \pi i 6} \\
& \psi_{l}^{3}=\psi_{3}^{l}=-1 \\
& \psi_{l}^{4}=\psi_{4}^{l}=\psi_{l}^{-2}=e^{-4 \pi i 6} \\
& \psi_{l}^{5}=\psi_{5}^{l}=\psi_{l}^{-l}=e^{-2 \pi i 6}
\end{aligned}
$$

$$
D^{m}(\boldsymbol{r})=e^{-2 \pi i m / 6} \quad=\chi_{1}^{m}=\psi_{1}^{m *}
$$

$$
D^{m}\left(\boldsymbol{p}^{p}\right)=e^{-2 \pi i m \cdot p / 6}=\chi_{p}^{m}=\psi_{p}^{m *}
$$

$$
p=\text { power (exponent) }
$$

or position point

$$
m=\text { momentum }
$$

or wave-number

$$
\mathbb{r}^{p}=\chi_{p}^{0} \mathbf{P}^{(0)}
$$

$$
+\chi_{p}^{1} \mathbf{P}^{(\mathrm{l})}
$$

$$
+\chi_{p}^{2} \mathbf{P}^{(2)}
$$

$$
+\chi_{p}^{3} \mathbf{P}^{(3)}
$$

$$
+\chi_{p}^{4} \mathbf{P}^{(4)}+\chi_{p}^{5} \mathbf{P}^{(5)}
$$

$$
\left(\begin{array}{ll}
\chi_{p}^{0} & \\
& \chi_{p}^{1} \\
& \chi_{p}^{2}
\end{array}\right.
$$

$$
=\chi_{p}^{0} .
$$

Inverse C_{6} spectral resolution m-wave $\psi_{p}{ }^{m}=D^{n^{n}}\left(p^{(}\right)=e^{+2 \pi i m p} 6$:

$$
\mathbf{P}^{(m)}=\psi_{0}^{m} \mathbf{r}^{0}+\psi_{1}^{m} \mathbf{r}^{l} \quad+\psi_{2}^{m} \mathbf{r}^{2} \quad+\psi_{3}^{m} \mathbf{r}^{3} \quad+\psi_{4}^{m} \mathbf{r}^{4} \quad+\psi_{5}^{m} \mathbf{r}^{5}
$$

$$
\text { position } p \text { (or power of } \mathbf{r}^{p} \text {) }
$$

C

$3^{\text {rd }}$ Step Beyond ad hoc-ery

Display all eigensolutions for all possible C_{6} symmetric real H

$3^{\text {rd }}$ Step Beyond ad hoc-ery

...eigensolutions for all possible C_{6} symmetric complex H

Abelian (Commutative) $C_{2}, C_{2}, \ldots, C_{6} \ldots$
H diagonalized by r^{p} symmetry operators that COMMUTE with H

$$
\left(r^{p} H=H r^{p}\right),
$$

and with each other ($\left.r^{p} r^{q}=r^{p+q}=r^{q} r^{p}\right)$.

Versus...

Non-Abelian (do not commute) D_{3}, O_{h}, \ldots While all H symmetry operations COMMUTE with $H \quad(\mathbf{U} H=H \mathbf{U})$
most do not with each other ($\mathbf{U} \mathbf{V} \neq \mathbf{V} \mathbf{~)}$.
Q: So how do we write \boldsymbol{H} in terms of non-commutative \mathbf{U} ?
Time to examine how we..

```
                        classify symmetry
```

apply it
...from PURE group theory... A revolutionary simplification to classify all groups and their algebras
The
SyMMETRIES

of
 Things

A "kaleidoscopic approach that uses an "intrinsic" group

Jobn H. Conway • Heidi Burgiel • Chaim Goodman-Strauss (2008) A.K. Peters Ltd. Wellesley, MA 02482
...from APPLIED (to string theory)... $^{\text {. }}$ A new/old approach to Clebsch-Gordon-Racah-Yutsis invariants

(2008) Princeton. Oxford 0X20 1TW
...from PURE group theory... A revolutionary simplification to classify all groups and their algebras

The

Symmetries

Main ideas:
 ...intrinsic group relativity...

 and:
...all groups are lattices...

...a generalization of the space-group approach to floppy molecules.
(P. Gronier and S. Altman)
kaleidoscopic" approach that uses an "intrinsic" group

(2008) A.K. Peters Ltd. Wellesley, MA 02482
...from APPLIED (to supersymmerty) ... $^{\text {. }}$ A new/old approach to Clebsch-Gordon-Racah-Yutsis invariants

Predrag Cvitanović

GROUP THEORY

A main message:

...use invariant projectors...

lower-dimensional reps. Most of computations to follow implement ne spectran decomposition

$$
\mathbf{M}=\lambda_{1} \mathbf{P}_{1}+\lambda_{2} \mathbf{P}_{2}+\cdots+\lambda_{r} \mathbf{P}_{r}
$$

which associates with each distinct root λ_{i} of invariant matrix M a projection operator (3.48):
Ch. 3
excerpt

$$
\mathrm{P}_{i}=\prod_{j \neq i} \frac{\mathrm{M}-\lambda_{j} 1}{\lambda_{i}-\lambda_{j}} .
$$

The exposition given here in sections. 3.5-3.6 is taken from refs. [73, 74]. Who wrote this down first I do not know, but I like Harter's exposition [155, 156, 157] best.

(2008) Princeton. Oxford 0X20 1TW

Ideas of duality/relativity go way back (...vanvlceck, Casimit.... Mach, Newton, Archinedes..)

Lab-fixed (Extrinsic-Global)R vs. Body-fixed (Intrinsic-Local) $\overline{\mathbf{R}}$

Body Based Operations

...But how do you actually make the R and $\overline{\mathrm{R}}$ operations?

Example of GLOBAL vs LOCAL projector algebra for $D_{3} \sim C 3 v$

Example of GLOBAL vs LOCAL projector algebra for $D 3 \sim C 3 v$

D_{3}-defined local-wave bases

Lab-fixed (Extrinsic-Global) operations and rotation axes

Example of RELATIVITY-DUALITY for $D_{3} \sim_{3}$

To represent external $\left\{. . \mathrm{T}, \mathrm{U}, \mathrm{V}, \ldots\right.$ \} switch $\mathrm{g} \mathrm{g}^{\boldsymbol{\sim}}{ }^{\dagger}$ on top of group table

$$
\begin{align*}
& R^{G}(1)= \\
& R^{G}(\mathbf{r})= \\
& R^{G}\left(\mathbf{r}^{2}\right)= \\
& R^{G}\left(\mathbf{i}_{l}\right)=\quad R^{G}\left(\mathbf{i}_{2}\right)= \\
& R^{G}\left(\mathbf{i}_{3}\right)= \\
& \left(\begin{array}{cccccc}
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1
\end{array}\right), \tag{1}\\
& \left(\begin{array}{cccccc}
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot
\end{array}\right), \\
& \left(\begin{array}{cccccc}
\cdot & 1 & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & 1 & \cdot
\end{array}\right),\left(\begin{array}{llll}
\cdot & \cdot & \cdot & 1 \\
\cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot \\
1 & \cdot & \cdot & \cdot \\
\cdot & 1 & \cdot & \cdot \\
\cdot & \cdot & 1 & \cdot
\end{array}\right. \\
& \left.\begin{array}{ccc}
1 & . & . \\
\cdot & 1 & . \\
\cdot & . & 1 \\
\cdot & \cdot & . \\
\cdot & \cdot & . \\
. & . & .
\end{array}\right) \text {, } \\
& \begin{array}{l}
\begin{array}{cccccc}
\cdot & \cdot & - & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & - \\
- & - & \cdot & \cdot & \cdot & \cdot \\
- & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & - & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & - & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & - \\
\cdot & \cdot & \cdot & \cdot & - & \cdot \\
\hline & \cdot & - & \cdot & \cdot &
\end{array} \\
\hline
\end{array}
\end{align*}
$$

D_{3} global gg ${ }^{\dagger}$-table

Example of RELATIVITY-DUALITY for $D_{3} \sim_{3}$

To represent external $\left\{. . \mathrm{T}, \mathrm{U}, \mathrm{V}, \ldots\right.$ \} switch $\mathrm{g} \underset{\sim}{\leftrightarrows} \mathrm{g}^{\dagger}$ on top of group table
RESULT:
Any $R(\mathrm{~T})$
commute (Even if T and U do not...)
with any $R(\overline{\mathrm{U}})$...

$$
\ldots \text { and } \mathrm{T} \cdot \mathrm{U}=\mathrm{V} \text { if \& only if } \overline{\mathrm{T}} \cdot \overline{\mathrm{U}}=\overline{\mathrm{V}} .
$$

To represent internal $\left\{. . \bar{T}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\right.$, \} switch g 合 g^{\dagger} on side of group table

Example of RELATIVITY-DUALITY for $D_{3} \sim C_{3 v}$

To represent external $\left\{. . \mathrm{T}, \mathbf{U}, \mathrm{V}, \ldots\right.$ \}switch $\mathrm{g} \underset{\sim}{\leftrightarrows} \mathrm{g}^{\dagger}$

Local $\overline{10}$ matrix parametrized by $\overline{\mathrm{g}}$'s

RESULT: Any $R(\mathrm{~T})$ commute with any $R(\overline{\mathrm{U}})$..

So an 1B1-matrix having Global symmetryD ${ }_{3}$
$H=\langle 1| 18] 1\rangle=H^{*}$
$r_{l}=\langle\mathrm{r}| \operatorname{Bi}|1\rangle=r_{2}{ }^{*}$
$r_{2}=\left\langle\mathrm{r}^{2}\right|\left[\mathcal{B}|1\rangle=r_{1}{ }^{*}\right.$
$i_{l}=\left\langle\mathrm{i}_{1} \mid \mathbb{1 8} 01\right\rangle=i, *$
$i_{2}=\left\langle i_{2}\right|$ Ia 1$\rangle=i_{2}$ *
$i_{3}=\left\langle\mathrm{i}_{3}\right|$ IR 1$\rangle=i_{3}{ }^{*}$
All these global g commute
with general local IB matrix.

To represent internal $\left\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\right.$ \} switch $\mathbf{g} \underset{\sim}{\boldsymbol{\sim}} \mathbf{g}^{\dagger}$

local D_{3} defined
Hamiltonian matrix

Example of RELATIVITY-DUALITI
To represent external $\{. . \mathrm{T}, \mathbf{U}, \mathbf{V}, \ldots$ \}

$R^{G}(1)=$	$R^{G}(\mathrm{r})=$	$R^{G}\left(1^{2}\right)$
1	- . 1	(1
. $1 .$.	1 .	- . 1
. 1.		
1		

$\frac{\text { RESULT: }}{\text { Any } R(T)} \uparrow$
$\begin{aligned} & \text { commute } \\ & \text { th any } R(\overline{\mathbf{U}}) \ldots\end{aligned} \quad \mathbb{B}=H \mathbf{I}^{0}+r_{1} \overline{\mathbf{r}}^{I}+r_{2} \overline{\mathbf{r}}^{2}+i_{1} \overline{\mathbf{i}}_{l}+i i_{\mathbf{i}} \overline{\mathbf{i}}_{2}+i_{3} \overline{\mathbf{i}}_{3}$ is made from Local symmetry matrices

To represent internal $\{. . \overline{\mathbf{T}}, \overline{\mathbf{U}}, \overline{\mathbf{V}}, \ldots\}$ si

$R^{G}(\overline{1})=$	$R^{G}(\overline{\mathbf{r}})=$	$R^{G}\left(\overline{\mathbf{r}}^{2}\right)=$
(1....) (1 .		
1		
- 1 .	.	1.
. 1	.	

Q: How do you reduce/diagonalize all these matrices?

A:(1) Divide \& Conquer (Use subgroup chains and sub-classes)
(2) Find commuting invariants (Using character projection algebra)
(3) Assemble
local-D ${ }_{3}$-defined Hsamiltonison matrix

Q: How do you reduce/diagonalize all these matrices?

A:(1) Divide \& Conquer (Use subgroup chains and sub-classes)

local-D ${ }_{3}$-defined	
	Hemuiltonisn matrix
	$\begin{array}{llllll}H & n & i_{2} & i_{3} & i_{1}\end{array}$
	$\begin{array}{lllllll} \\ l^{2} & n & r_{2} & H & i_{3} & i_{1} & i_{2}\end{array}$
	$i_{l} i_{2} i_{3} H_{l} r_{1} r_{2}$
	$l_{2} i_{2} i_{3} i_{3} i_{2} r_{2} H^{\prime} r_{1}$

Important invariant numbers or "characters"

$\ell^{\alpha}=$ Irreducible representation (irrep) dimension or level degeneracy

$D_{3} \mathrm{k}=1$	$\mathbf{r}^{1}+\mathbf{r}$	$\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$
$\mathbf{P}^{4} /=1$		$1 / 6$
$\mathbf{P}^{1 / 2}=1$	1	-1/6
$\mathbf{P}^{E}=2$	-1	0

Centrum: $\kappa(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{0}=$ Number of classes, invariants, irrep types, all-commuting ops
Rank: $\quad \rho(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{l}=$ Number of irrep idempotents $\mathbf{P}_{n, n}^{(\alpha)}$, mutually-commuting ops
Order: $\quad{ }^{\circ}(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{2}=$ Total number of irrep projectors $\mathbf{P}_{m, n}^{(\alpha)}$ or symmetry ops

Q: How do you reduce/diagonalize all these matrices?

A:(1) Divide \& Conquer (Use subgroup chains and sub-classes)
(2) Find commuting invariants (Using character projection algebra)
(3) Assemble

local-D 3 -defined
$\left(1 \left\lvert\, \begin{array}{llllll} \\ (1) & r_{1} & r_{2} & i_{l} & i_{2} & i_{3} \\ (1) & \end{array}\right.\right.$
$\left(\begin{array}{lllllll\|}\hline r_{2} & H & n & i_{2} & i_{3} & i_{l}\end{array}\right.$
$\left(\mathrm{r}^{2} \left\lvert\, \begin{array}{lllllll}1 & r_{2} & H & i_{3} & i_{l} & i_{2}\end{array}\right.\right.$
$\left(\mathrm{i}_{1} \left\lvert\, \begin{array}{lllllll}i_{I} & i_{2} & i_{3} & H & r_{I} & r_{2}\end{array}\right.\right.$
$\left(\mathrm{i}_{2} \left\lvert\, \begin{array}{lllllll}i_{2} & i_{3} & i_{2} & r_{2} & H & r_{I} \\ & i_{2} & i_{2} & \end{array}\right.\right.$
${ }_{\left(i_{3}\right.}\left\|i_{3}\right\| \begin{array}{llllll}i_{l} & i_{2} & r_{I} & r_{2} & H\end{array}$

Important invariant numbers or "characters"

$\ell^{\alpha}=$ Irreducible representation (irrep) dimension or level degeneracy For symmetry group or algebra G
Centrum: $\kappa(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{0}=$ Number of classes, invariants, irrep types, all-ctommuting ops
Rank: $\quad \rho(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{l}=$ Number of irrep idempotents $\mathbf{P}_{n, n}^{(\alpha)}$, mutually-commuting ops
Order: $\quad{ }^{\circ}(G)=\Sigma_{\text {irrep }(\alpha)}\left(\ell^{\alpha}\right)^{2}=$ Total number of irrep projectors $\mathbf{P}_{m, n}^{(\alpha)}$ or symmetry ops

Example: $G=\boldsymbol{D}_{3} \quad$ Rank: $\quad \rho\left(\boldsymbol{D}_{3}\right)=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{l}=1^{l}+1^{l}+2^{l}=4 \quad \begin{array}{ll}A_{2}=1 \\ \ell^{E}=2\end{array}$
Order: $\quad{ }^{\circ}\left(D_{3}\right)=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{0}=1^{2}+1^{2}+2^{2}=6$

Spectral analysis of non-commutative "Group-table Hamiltonian" D_{3} Example 1st Step: Spectral resolution of Center (Class algebra of D_{3})

1	$\mathrm{r}^{1} \mathrm{r}^{2}$	$\begin{array}{lll}\mathbf{i}_{1} & \mathbf{i}_{2} & \mathbf{i}_{3}\end{array}$
r^{2}	$1 \mathrm{r}^{1}$	$\begin{array}{lll}\mathbf{i}_{2} & \mathbf{i}_{3} & \mathbf{i}_{1}\end{array}$
r^{1}	$\mathrm{r}^{2} 1$	$\mathrm{i}_{3} \quad \mathbf{i}_{1} \quad \mathbf{i}_{2}$
i_{1}	$\mathrm{i}_{2} \quad \mathrm{i}_{3}$	$1 \begin{array}{lll}1 & \mathrm{r}^{1} & \mathrm{r}^{2}\end{array}$
i_{2}	$\mathrm{i}_{3} \quad \mathbf{i}_{1}$	$\begin{array}{lll}\mathrm{r}^{2} & 1 & \mathrm{r}^{1}\end{array}$
i_{3}	$\mathbf{i}_{1} \quad \mathbf{i}_{2}$	$\begin{array}{lll}\mathrm{r}^{1} & \mathrm{r}^{2} & 1\end{array}$

Each class-sum \underline{K}_{k} commues with all of $D_{\mathcal{3}}$.

\rightarrow| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| | κ_{2} | $2 \kappa_{1}+\kappa_{2}$ |
| | κ_{3} | $2 \kappa_{3}$ |

Class products give spectral polynomial and all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathrm{P}^{A_{2}}$, and \mathbf{P}^{E} $0=\kappa_{3}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)$

Algebra Center like cell nucleus; everything's made here.
 -characters
 - H eigenvalues (depend on local sym.)
 -H eigenvectors (depend on local sym.)

Spectral analysis of non-commutative "Group-table Hamiltonian" D_{3} Example 1st Step: Spectral resolution of Center (Class algebra of D_{3})

$\mathbf{1}$	r^{1}	r^{2}	i_{1}	i_{2}	\mathbf{i}_{3}
r^{2}	1	r^{1}	i_{2}	i_{3}	i_{1}
r^{1}	r^{2}	1	i_{3}	i_{1}	i_{2}
i_{1}	i_{2}	i_{3}	1	r^{1}	r^{2}
i_{2}	i_{3}	i_{1}	r^{2}	1	r^{1}
i_{3}	i_{1}	i_{2}	r^{1}	r^{2}	1

$\kappa_{1}=\mathbf{1}$	$\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$	$\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$
κ_{2}	$2 \kappa_{1}+\kappa_{2}$	$2 \kappa_{3}$
κ_{3}	$2 \kappa_{3}$	$3 \kappa_{1}+3 \kappa_{2}$

Class products give spectral polynomial and
all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathrm{P}^{A_{2}}$, and \mathbf{P}^{E}

$$
0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)
$$

$$
\begin{array}{l|l}
0=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}} \\
\kappa_{\mathbf{3}} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}} & 0=\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{2}} \\
\kappa_{\mathbf{3}} \mathbf{P}^{A_{2}}=-3 \cdot \mathbf{P}^{A_{2}}
\end{array}
$$

$$
\begin{aligned}
& 0=\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \kappa_{\mathbf{3}} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

Class resolution into sum of eigenvalue \cdot Projector

$$
\begin{aligned}
& \kappa_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E} \\
& \kappa_{2}=2 \cdot \mathbf{P}^{A_{1}}-2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \\
& \kappa_{3}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}=}=\frac{\left(\kappa_{3}+3 \cdot 1\right)\left(\kappa_{3}-0 \cdot 1\right)}{(+3+3)(+3-0)} \\
& \mathbf{P}^{A_{2}}=\frac{\left(\kappa_{3}-3 \cdot 1\right)\left(\kappa_{3}-0 \cdot 1\right)}{(-3-3)(-3-0)} \\
& \mathbf{P}^{E}=\frac{\left(\kappa_{3}-3 \cdot \mathbf{1}\right)\left(\kappa_{3}+3 \cdot 1\right)}{(+0-3)(+0+3)}
\end{aligned}
$$

Spectral analysis of non-commutative "Group-table Hamiltonian" D_{3} Example 1st Step: Spectral resolution of Center (Class algebra of D_{3})

$\mathbf{1}$	r^{1}	r^{2}	i_{1}	i_{2}	i_{3}
r^{2}	1	r^{1}	i_{2}	i_{3}	i_{1}
r^{1}	r^{2}	1	i_{3}	i_{1}	i_{2}
i_{1}	i_{2}	i_{3}	1	r^{1}	r^{2}
i_{2}	i_{3}	i_{1}	r^{2}	$\mathbf{1}$	r^{1}
i_{3}	i_{1}	i_{2}	r^{1}	r^{2}	$\mathbf{1}$

\rightarrow| $\kappa_{1}=\mathbf{1}$ | $\kappa_{2}=\mathbf{r}^{1}+\mathbf{r}^{2}$ | $\kappa_{3}=\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$ |
| :---: | :---: | :---: |
| κ_{2} | $2 \kappa_{1}+\kappa_{2}$ | $2 \kappa_{3}$ |
| | κ_{3} | $2 \kappa_{3}$ |

Class products give spectral polynomial and
all-commuting projectors $\mathbf{P}^{(\alpha)}=\mathbf{P}^{A_{1}}, \mathrm{P}^{A_{2}}$, and P^{E}

$$
0=\kappa_{\mathbf{3}}^{3}-9 \kappa_{\mathbf{3}}=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right)\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right)
$$

$$
\begin{array}{l|l}
0=\left(\kappa_{\mathbf{3}}-3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{1}} \\
\kappa_{\mathbf{3}} \mathbf{P}^{A_{1}}=+3 \cdot \mathbf{P}^{A_{1}}
\end{array} \quad \begin{aligned}
& 0=\left(\kappa_{\mathbf{3}}+3 \cdot \mathbf{1}\right) \mathbf{P}^{A_{2}} \\
& \kappa_{\mathbf{3}} \mathbf{P}^{A_{2}}=-3 \cdot \mathbf{P}^{A_{2}}
\end{aligned}
$$

$$
\begin{aligned}
& 0=\left(\kappa_{\mathbf{3}}-0 \cdot \mathbf{1}\right) \mathbf{P}^{E} \\
& \kappa_{\mathbf{3}} \mathbf{P}^{E}=+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

Class resolution into sum of eigenvalue \cdot Projector

$$
\begin{aligned}
& \kappa_{1}=1 \cdot \mathbf{P}^{A_{1}}+1 \cdot \mathbf{P}^{A_{2}}+1 \cdot \mathbf{P}^{E} \\
& \kappa_{2}=2 \cdot \mathbf{P}^{A_{1}}-2 \cdot \mathbf{P}^{A_{2}}-1 \cdot \mathbf{P}^{E} \\
& \kappa_{3}=3 \cdot \mathbf{P}^{A_{1}}-3 \cdot \mathbf{P}^{A_{2}}+0 \cdot \mathbf{P}^{E}
\end{aligned}
$$

$$
\text { Inverse resolution gives } D_{3} \text { Character Table }
$$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}=}=\frac{\left(\kappa_{3}+3 \cdot 1\right)\left(\kappa_{3}-0 \cdot 1\right)}{(+3+3)(+3-0)} \\
& \mathbf{P}^{A_{2}}=\frac{\left(\kappa_{3}-3 \cdot 1\right)\left(\kappa_{3}-0 \cdot 1\right)}{(-3-3)(-3-0)} \\
& \mathbf{P}^{E}=\frac{\left(\kappa_{3}-3 \cdot \mathbf{1}\right)\left(\kappa_{3}+3 \cdot 1\right)}{(+0-3)(+0+3)}
\end{aligned}
$$

$$
\begin{aligned}
& \mathbf{P}^{A_{1}}=\left(\kappa_{1}+\kappa_{2}+\kappa_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}^{A_{2}}=\left(\kappa_{1}+\kappa_{2}-\kappa_{3}\right) / 6=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}^{E}=\left(2 \kappa_{1}-\kappa_{2}\right) / 3 \quad=\left(2 \mathbf{1}-\mathbf{r}^{1}-\mathbf{r}^{2}\right) / 3
\end{aligned}
$$

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i})$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)
$D_{3} \kappa=1 \quad \mathbf{r}^{1}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$

$\boldsymbol{C}_{\mathbf{2}} \mathrm{K}=\mathbf{1} \quad \mathbf{i}_{3}$
$\boldsymbol{p}^{0_{2}}=1 \begin{array}{ll}1 & 1\end{array}{ }^{2}$
$\boldsymbol{p}^{l_{2}}=1$
1

level un-splitting or clustering
level splitting
$C_{3} \mathrm{~K}=\mathbf{1} \quad \mathbf{r}^{l} \quad \mathbf{r}^{2}$ $\boldsymbol{p}^{0_{3}}=$
$\boldsymbol{p}^{1_{3}=}$
$\boldsymbol{p}^{2_{3}=}$ $\mathbf{c c c}_{1}$
$\mathrm{A}_{1}-0_{3}$
$\mathrm{~A}_{2}-\frac{0_{3}}{1_{3}}$
$E=-\frac{1}{2}$
$\underline{2}$ $\boldsymbol{D}_{3} \supset \boldsymbol{C}_{2} 0_{3} 1_{3} 2_{3}$
$n^{A_{l}}=$
$n^{A_{2}}=$

$n^{E}=$| 1 | \cdot | \cdot |
| :---: | :---: | :---: |
| 1 | \cdot | \cdot |
| \cdot | 1 | 1 |
| $\overline{\mathrm{~A}}_{2}$ | $\underline{\underline{E}}$ | $\underline{\underline{E}}$ |

Spectral reduction of non-commutative "Group-table Hamiltonian"

D_{3} Example
2nd Step: Spectral resolution of Class Projector(s) of D_{3}
Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i}\} \quad$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

$$
\begin{aligned}
& D_{3} \kappa=1 \quad \mathbf{r}^{\prime}+\mathbf{r}^{2} \mid \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3} \\
& C_{2}{ }^{\mathrm{K}=1} \quad \mathrm{i}_{3}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\boldsymbol{p}^{0_{2}}=\begin{array}{ll}
1 & 1
\end{array}{ }^{2} 2 \\
\boldsymbol{p}^{l_{2}}=1 \\
1
\end{array} \\
& \boldsymbol{D}_{\mathbf{3}} \supset \boldsymbol{C}_{\mathbf{2}} \mathrm{O}_{2} \quad 1_{2} \\
& \begin{array}{l}
\left.\left.n^{A_{l}}=\begin{array}{ll}
1 & \cdot \\
n^{A_{2}}= \\
n^{E}= & 1 \\
\cdot & 1 \\
1 & 1
\end{array}\right] . \begin{array}{ll}
\\
\end{array}\right]
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& C_{3} \mathrm{~K}=\mathbf{1} \quad \mathbf{r}^{l} \quad \mathbf{r}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \boldsymbol{D}_{\mathbf{3}} \supset \boldsymbol{C}_{\mathbf{2}} \mathrm{O}_{3} 1_{3} 2_{3}
\end{aligned}
$$

Correlation shows products of $\mathbf{P}^{(\alpha)}$ by the C_{2}-unit or by the C_{3}-unit make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

Spectral reduction of non-commutative "Group-table Hamiltonian"

 D_{3} Example2nd Step: Spectral resolution of Class Projector(s) of D_{3} Correlate D_{3} characters with its subgoup(s) $C_{2}(\mathbf{i}\}$ or ELSE $C_{3}(\mathbf{r}) \quad\left(C_{2}\right.$ and C_{3} don't commute)

	$\begin{aligned} & \boldsymbol{C}_{\mathbf{2}} \boldsymbol{\kappa}=\mathbf{1} \quad \mathbf{i}_{3} \\ & \boldsymbol{p}^{0_{2}}=1 \quad 1 \\ & \boldsymbol{p}^{1_{2}}=1 \\ & =1 \end{aligned}$
	$\boldsymbol{D}_{\mathbf{3}} \supset \boldsymbol{C}_{\mathbf{2}} \mathrm{O}_{2} \quad 1 \mathrm{l}_{2}$
	$n^{4 l}=1$
	$n^{A_{2}=} \cdot 1$
	$n^{E}=111$

$$
\begin{aligned}
& \boldsymbol{D}_{\mathbf{3}} \supset \boldsymbol{C}_{\mathbf{2}} \mathrm{O}_{3} 1_{3} 2_{3}
\end{aligned}
$$

Correlation shows products of $\mathbf{P}^{(\alpha)}$ by the C_{2}-unit or by the C_{3}-unit make IRREDUCIBLE $\mathbf{P}_{n, n}^{(\alpha)}$

$\boldsymbol{l}=\boldsymbol{p}^{0_{2}}+\boldsymbol{p}^{1_{2}}$			$\boldsymbol{l}=\boldsymbol{p}^{0_{3}}+\boldsymbol{p}^{1_{3}}+\boldsymbol{p}^{2_{3}}$		
$\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4$			4 differe		
idempotent $\mathbf{p}^{(\alpha)}$	$\mathbb{P}^{1_{2}=}$		idempotent		P_{0}^{3}
$\downarrow \mathbf{P}_{n_{2} n_{2}}^{(\alpha)}$	$\mathbf{P}^{E}=$	${ }_{0_{2}{ }_{2}{ }_{2} \mathbf{P}_{1}}^{E}$	$\downarrow^{\mathbf{P}_{n_{3} n_{3}}^{(\alpha)}}$	$\mathbf{P}^{E}=$	$\cdot{ }^{{ }^{3}{ }^{3} \mathbf{P}_{13}{ }_{3} 1_{3}} \mathbf{P}_{2}{ }_{3}{ }^{2}$
$\mathbf{P}_{0_{2} 0_{2}}^{4 d}=\mathbf{P}^{4 /} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{4}{ }^{4}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$			$\mathbf{P}_{0,0}^{4 L_{3}}=\mathbf{P}^{4 l} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{4 /}\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6$		
$\mathbb{P}_{1_{2}}^{42}=\mathbb{P}^{4} \boldsymbol{p}^{4} \boldsymbol{p}^{/ 2}=\mathbb{P}^{4}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}-\mathbf{i}_{l}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6$			$\mathrm{P}_{0_{3} \chi_{3}{ }_{3}=\mathbb{P}^{4} 2 \boldsymbol{p}^{0_{3}}=\mathbb{P}^{42}\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}-\mathbf{i}_{l}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6}$		
$\mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{O_{2}}=\mathbf{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{l}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6$			$\mathbf{P}_{3}^{1_{13}}=\mathbf{P}^{E} \boldsymbol{p}^{l_{3}}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{l}+\varepsilon \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon \mathbf{r}^{l}+\varepsilon^{*} \mathbf{r}^{2}\right) / 6$		
$\mathbf{P}_{2}^{E} L_{2}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}^{2}-2 \mathbf{i}_{3}\right) / 6$			$\mathbf{P}_{2,2}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{23}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{\prime}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{\prime}+\varepsilon \mathbf{r}^{2}\right) / 6$		

2nd Step: (contd.)While some class projectors $\mathbf{P}^{(\alpha)}$ split in two,
$D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}$

$$
\begin{aligned}
& 4 \text { different } \\
& \text { idempotent } \\
& \downarrow \mathbf{P}_{n, n}^{(\alpha)} \\
& \mathbf{P}_{0_{3} 0_{3}}^{A_{l}}=\mathbf{P}^{4_{l}} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{4_{l}}\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\widetilde{\left.\mathbf{r}_{l} / \mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6}\right. \\
& \mathrm{P}_{0_{3} J_{3}}^{d_{3}}=\mathbb{P}^{12} \boldsymbol{p}^{0_{3}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}\right) / 3=\left(1+\sqrt{\mathbf{r}}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{1_{3} 1}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{l_{3}}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{\prime}+\varepsilon \mathbf{r}^{2}\right)_{/ 3}=\left(\mathbf{1}+\mathbf{r}^{1 /}+\varepsilon^{*} \mathbf{r}^{2}\right) / 6 \\
& \left.\mathbf{P}_{2_{3}^{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{2_{3}}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{1}+\varepsilon^{2}\right)^{2}\right) / 6 \\
& \mathbf{P}^{E} \text { splits into } \mathbf{P}^{E}=\mathrm{P}_{1_{3} 1_{3}}^{E_{2}}+\mathbf{P}_{2_{3}}^{E} \text {, } \\
& \text { class } \kappa_{\mathbf{r}} \text { splits into } \kappa_{\mathrm{r}^{2}} \text { and } \mathrm{K}_{\mathbf{r} 2}
\end{aligned}
$$

2nd Step: (contd.)While some class projectors $\mathbf{P}^{(\alpha)}$ split in two,

$$
D_{3} \kappa=\mathbf{1} \quad \mathbf{r}^{l}+\mathbf{r}^{2} \mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}
$$ so ALSO DO some classes κ_{k}

$$
\begin{aligned}
& \operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4 \\
& \text { idempotents } \\
& \boldsymbol{L P}^{(\alpha)} \\
& \mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{A_{l}} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{4_{l}}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\dot{\mathbf{i}}_{3}\right) / 6 \\
& \mathbb{P}_{1_{2}}^{A_{2}}=\mathbb{P}^{4_{2}} \boldsymbol{p}^{l_{2}}=\mathbb{P}^{4_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{\theta_{2}}=\mathbf{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(21-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{1_{2}^{1 / 2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbf{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{3}-2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}^{E} \text { splits into } \mathbf{P}^{E}=\mathbf{P}_{0,0}^{E}+\mathbf{P}_{1, \mathbf{P}^{E}}
\end{aligned}
$$

idempotents $\mathbf{P}^{(\alpha)}$
$\left.\begin{array}{rl}\mathbf{P}^{4 /} & =1 \\ \mathbf{P}^{4}= & 1 \\ 1 & 1 \\ 1 & -1 / 6 \\ \mathbf{P}^{E} & =2 \\ 2 & -1 \\ 0\end{array}\right]$

$$
\mathbf{P}_{0_{3} 0_{3}}^{A_{l}}=\mathbf{P}^{A_{l}} \boldsymbol{p}^{0_{3}}=\mathbf{P}^{A_{l}}\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{l}+\mathbf{i}_{2}+\mathbf{i}_{3}\right) / 6
$$

$$
\mathbf{P}_{1_{3} 1_{3}}^{E_{1}} \mathbf{P}^{E} \boldsymbol{p}^{l_{3}}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{\prime}+\varepsilon^{2}\right)_{3}=\left(\mathbf{1}+\mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right)^{\prime} / 6
$$

$$
\mathbf{P}_{22_{3}^{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{2_{3}}=\mathbf{P}^{E}\left(\mathbf{1}+\varepsilon \mathbf{r}^{1}+\varepsilon^{*} \mathbf{r}^{2}\right) / 3=\left(\mathbf{1}+\varepsilon^{*} \mathbf{r}^{\prime}+\mathbf{r}^{2}\right)^{2} / 6
$$

$$
\mathbf{P}^{E} \text { splits into } \mathbf{P}^{E}=\mathbf{P}_{1_{3} 1_{3}}^{E}+\mathbf{P}_{2_{3}}^{E} \text {, }
$$ class $\kappa_{\mathbf{r}}$ splits into $\kappa_{\mathbf{r}^{\prime}}$ and $\kappa_{\mathbf{r} 2}$

$r=r_{2}$	$i=i_{2}$
must	must
equal	equal
r_{1}	i_{1}
For	Local
$D_{3} \supset C_{2}\left(\mathbf{i}_{3}\right)$	
symmetry	
i_{3} is free parameter	

class ${ }_{K_{i}}^{0_{2} 0_{2}}$ splits into $\kappa_{\mathbf{i}_{12}}$ and $\kappa_{\mathbf{i}_{3}}$

$$
i=i_{1}=i_{2}=i_{3}
$$

For Local
$D_{3} \supset C_{3}\left(\mathbf{r}^{p}\right)$ symmetry
r_{1} and r_{2} are free

Centrum $\kappa\left(\boldsymbol{D}_{\mathbf{3}}\right)=3$
idempotents
$\mathbf{P}^{(\alpha)}$

$$
\begin{aligned}
& \left.\mathbf{P}_{x, x}^{A_{l}}=\mathbf{P}_{0_{2} 0_{2}}^{A_{l}}=\mathbf{P}^{4_{l}} \boldsymbol{p}^{\theta_{2}}=\mathbf{P}^{\begin{array}{c}
\operatorname{Rank} \rho\left(\boldsymbol{D}_{\mathbf{3}}\right)=4 \\
\text { idempotents } \\
\mathbf{P}_{1}(\mathbf{\alpha})
\end{array}} \begin{array}{l}
\left.\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{l}+\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}+\mathbf{i}_{3}\right.
\end{array}\right) / 6 \\
& \mathbb{P}_{y, y}^{A_{2}}=\mathbb{P}_{1_{2}}^{A_{2}}=\mathbb{P}^{A_{2}} \boldsymbol{p}^{L_{2}}=\mathbb{P}^{A_{2}}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(\mathbf{1}+\mathbf{r}^{1}+\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}-\mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{x, x}^{E}=\mathbf{P}_{0_{2} 0_{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{0_{2}}=\mathbf{P}^{E}\left(\mathbf{1}+\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}-\mathbf{i}_{1}-\mathbf{i}_{2}+2 \mathbf{i}_{3}\right) / 6 \\
& \mathbf{P}_{y, y}^{E}=\mathbf{P}_{2_{2} 1_{2}}^{E}=\mathbf{P}^{E} \boldsymbol{p}^{l_{2}}=\mathbf{P}^{E}\left(\mathbf{1}-\mathbf{i}_{3}\right) / 2=\left(2 \mathbf{1}-\mathbf{r}^{l}-\mathbf{r}^{2}+\mathbf{i}_{1}+\mathbf{i}_{2}-2 \mathbf{i}_{3}\right) / 6 \\
& \text { P }
\end{aligned}
$$

3rd and Final Step:

Spectral resolution of ALL 6 of D3 :

$$
\mathbf{g}=\Sigma_{m} \Sigma_{e} \Sigma_{b} D_{e b}^{(m} \chi_{g)} \mathbf{P}_{e b}^{(m)}
$$

$$
\left.\begin{array}{rl}
\mathbf{g}=\mathbf{1} \cdot \mathbf{g} \cdot \mathbf{1}=\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \cdot \mathbf{g} \cdot\left(\mathbf{P}_{x, x}^{A_{1}}+\mathbf{P}_{y, y}^{A_{2}}+\mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E}\right) \\
\mathbf{g}=\mathbf{P}^{A_{1}} \cdot \mathbf{g} \cdot \mathbf{P}^{A_{1}}+\mathbf{P}^{A_{2}} \cdot \mathbf{g} \cdot \mathbf{P}^{A_{2}} & +\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{x, x}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E} \\
& +\mathbf{P}_{y, y}^{E} \cdot \mathbf{g} \cdot \mathbf{P}_{x, x}^{E}+\mathbf{P}_{y, y}^{E,} \cdot \mathbf{g} \cdot \mathbf{P}_{y, y}^{E}
\end{array} \begin{array}{|c}
\text { Order }^{\mathrm{o}}\left(D_{3}\right)=6 \\
\text { projectors } \\
\mathbf{P}_{m, n}^{(\alpha)}
\end{array}\right) .
$$

Six D_{3} projectors: 4 idempotents +2 nilpotents (off-diag.)

 symmety label-e symmety label-b GLOBAL LOCAL

Global (LAB) symmetry $\quad D_{3}>C_{2} \mathbf{i}_{3}$ projector states Local (BOD) symmetry

$$
\mathbf{P}_{m n}^{(\alpha)}=\frac{\ell^{(\alpha)}}{{ }^{\circ} G} \Sigma_{\mathbf{g}} D_{m n}^{(\alpha)}\left(\frac{*}{(g)} \mathbf{g}\right.
$$

Spectral Efficiency: Same D(a)mn projectors give a lot!

- Eigenstates (previous slide)
-Complete Hamiltonian

-Local symmetery eigenvalue formulae (L.S. => off-diagonal zero.)

$$
\begin{aligned}
r_{1}=r_{2}=-r_{1}^{*}= & r, \quad i_{1}=i_{2}=-i_{1} *=i \\
& A_{-} \text {-level: } H+2 r+2 i+\dot{3}_{3} \\
\text { gives: } & A_{-} \text {-level: } H+2 r-2 i-\dot{h}_{3} \\
& E_{-} \text {-level: } H-r-i+\dot{\zeta}_{3} \\
& E_{y} \text {-level: } H-r+i-i_{3}
\end{aligned}
$$

When there is no there, there...

Example of GLOBAL vs LOCAL projector algebra

$$
\begin{array}{llll}
\ell^{A_{2}}=1 & \text { Cubic-Octahedral } & \text { Rank: } & \rho(O)=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{l}=1^{l}+1^{l}+2^{l}+3^{l}+3^{l}=10 \\
\ell^{E}=2 & \text { Group O } & (0)
\end{array}
$$

$$
\text { Order: } \quad{ }^{\circ}(O)=\Sigma_{(\alpha)}\left(\ell^{\alpha}\right)^{0}=1^{2}+1^{2}+2^{2}+3^{2}+3^{2}=24
$$

$$
\ell^{T_{2}=3}
$$

O group	$g=1$	r_{1-4}	$\rho_{x y z}$	$R_{x y z}$	i_{1-6}
$\chi_{\kappa_{g}}^{\alpha}$	g	\tilde{r}_{1-4}	$\tilde{R}_{x y z}$	i_{1-6}	
$\alpha=A_{1}$	1	1	1	1	1
A_{2}	1	1	1	-1	-1
E	2	-1	2	0	0
T_{1}	3	0	-1	1	-1
T_{2}	3	0	-1	-1	1

$O \supset C_{4}$
$O \supset C_{3}$
$\left.{ }_{(0)}^{4}{ }^{(1)} 4_{4}(2)_{4}(3)\right)_{4}=(-1)_{4}$

O_{h} operator slide rule and subgroup / coset-space structure

largest local symmetry $C_{4} \Rightarrow$ smallest level-clusters (6-levels)
C_{4} subgroup correlation to O

$$
\boldsymbol{O} \supset \boldsymbol{C}_{4}{ }^{(0)_{4}}{ }_{(1)_{4}(2)_{4}(3)_{4}=(-1)_{4}}
$$

C_{4} Projectors to split octahedral P^{α}

$$
\mathbf{p}_{m_{4}}=\sum_{p=0}^{3} \frac{e^{2 \pi i m \cdot p / 4}}{4} \mathbf{R}_{z}^{p}=\left\{\begin{array}{c}
\mathbf{p}_{0_{4}}=\left(\mathbf{1}+\mathbf{R}_{z}+\rho_{z}+\tilde{\mathbf{R}}_{z}\right) / 4 \\
\mathbf{p}_{1_{4}}=\left(\mathbf{1}+i \mathbf{R}_{z}-\rho_{z}-i \tilde{\mathbf{R}}_{z}\right) / 4 \\
\mathbf{p}_{2_{4}}=\left(\mathbf{1}-\mathbf{R}_{z}+\rho_{z}-\tilde{\mathbf{R}}_{z}\right) / 4 \\
\mathbf{p}_{3_{4}}=\left(\mathbf{1}-i \mathbf{R}_{z}-\rho_{z}+i \tilde{\mathbf{R}}_{z}\right) / 4
\end{array}\right.
$$

$1 \cdot \mathbf{P}^{\alpha}=$	$\left(\mathbf{p}_{0_{4}}\right.$	$+\mathbf{p}_{1_{4}}$	$+\mathbf{p}_{2_{4}}$	$\left.+\mathbf{p}_{3_{4}}\right) \cdot \mathbf{P}^{\alpha}$
$1 \cdot \mathbf{P}^{A_{1}}=$	$\mathbf{P}_{0_{4} 0_{4}}^{A_{1}}$	+0	+0	+0

$1 \cdot \mathbf{P}^{A_{2}}=$	0	+0	$+\mathrm{P}_{2}^{A_{2}}$	+0
$1 \cdot \mathrm{P}^{E}=$	$\mathrm{P}_{040_{4}}^{E}$	+0	$+\mathrm{P}_{2424}^{E}$	+0
$1 \cdot \mathbf{P}^{T_{1}}=$	$\mathrm{P}_{0_{4} 0_{4}}^{T_{1}}$	$+\mathbf{P}_{1_{4}{ }_{14}}^{T_{1}}$	+0	$+\mathbf{P}_{3_{4} 3_{4}}^{T_{1}}$
$\mathbf{1} \cdot \mathbf{P}^{T_{2}}=$	0	$+\mathbf{P}_{14}^{T_{2}{ }_{4}}$	$+\mathbf{P}_{24}^{T_{2} 2_{4}}$	$+\mathbf{P}_{3_{4} 3_{4}}^{T_{2}}$

10 split $O \supset C_{4}$ octahedral P^{α} related to 10 split sub-classes

$\mathbf{P}_{n_{4} n_{4}}^{(\alpha)}\left(O \supset C_{4}\right)$	$\mathbf{1}$	$r_{1} r_{2} \tilde{r}_{3} \tilde{r}_{4}$	$\tilde{r}_{1} \tilde{r}_{2} r_{3} r_{4}$	$\rho_{x} \rho_{y}$	ρ_{z}	$R_{x} \tilde{R}_{x} R_{y} \tilde{R}_{y}$	R_{z}	\tilde{R}_{z}	$i_{1} i_{2} i_{5} i_{6}$	$i_{3} i_{4}$
$24 \cdot \mathbf{P}_{0_{4} 0_{4}}^{A_{1}}$	1	1	1	1	1	1	1	1	1	1
$24 \cdot \mathbf{P}_{24}^{A_{2} 2_{4}}$	1	1	1	1	1	-1	-1	-1	-1	-1
$12 \cdot \mathbf{P}_{0_{4} 0_{4}}^{E}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1	1	$-\frac{1}{2}$	1
$12 \cdot \mathbf{P}_{2_{4} 4_{4}}^{E}$	1	$-\frac{1}{2}$	$-\frac{1}{2}$	1	1	$+\frac{1}{2}$	-1	-1	$+\frac{1}{2}$	-1
$8 \cdot \mathbf{P}_{14}^{T_{1}}$	1	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$+\frac{1}{2}$	$-i$	$+i$	$-\frac{1}{2}$	0
$8 \cdot \mathbf{P}_{3_{4} 3_{4}}^{T_{1}}$	1	$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$+\frac{1}{2}$	$+i$	$-i$	$-\frac{1}{2}$	0
$8 \cdot \mathbf{P}_{0_{4} 0_{4}}^{T_{1}}$	1	0	0	-1	1	0	1	1	0	-1
$8 \cdot \mathbf{P}_{1_{4} 1_{4}}^{T_{2}}$	1	$+\frac{i}{2}$	$-\frac{i}{2}$	0	-1	$-\frac{1}{2}$	$-i$	$+i$	$+\frac{1}{2}$	0
$8 \cdot \mathbf{P}_{34}^{T_{2} 3_{4}}$	1	$-\frac{i}{2}$	$+\frac{i}{2}$	0	-1	$-\frac{1}{2}$	$+i$	$-i$	$+\frac{1}{2}$	0
$8 \cdot \mathbf{P}_{2_{4} 2_{4}}^{T_{2}}$	1	0	0	-1	1	0	-1	-1	0	1

$\mathrm{A}_{1} 10$ spitit $O_{\supset C_{4}}$ octahedrale-vals ε^{α} versus 10 sub-class parameters

Sequence if $i_{1}=i_{1256}$ only non-zeroparameter: $\mathrm{A}_{1} \mathrm{~T}_{1} \mathrm{E} \mathrm{T}_{2} \mathrm{~T}_{1} \mathrm{ET}_{2} \mathrm{~A}_{2} \mathrm{~T}_{2} \mathrm{~T}_{1}$,

$O \supset C_{4}$	0°	$r_{n} 120^{\circ}$	$\rho_{n} 180^{\circ}$	$R_{n} 90^{\circ}$	$i_{n} 180^{\circ}$	
0_{4}		$\begin{aligned} & r_{\mathrm{I}}=\operatorname{Re} r_{1234} \\ & m_{\mathrm{I}}=\operatorname{Im} r_{1234} \end{aligned}$		$\begin{aligned} & R_{z}=\operatorname{Re} R_{z} \\ & I_{z}=\operatorname{Im} R_{z} \end{aligned}$	$\begin{aligned} & i_{1}=i_{1256} \\ & i_{\text {III }}=i_{34} \end{aligned}$	
$\begin{gathered} \varepsilon_{0_{4}}^{A_{1}}= \\ \varepsilon_{0_{0}}^{T_{1}} \\ \varepsilon_{0_{0_{4}}} \end{gathered}$	$\begin{aligned} & g_{0} \\ & g_{0} \\ & g_{0} \end{aligned}$	$\begin{array}{r} +4 r_{\mathrm{I}} \\ 0 \\ -2 r_{\mathrm{I}} \end{array}$	$\begin{aligned} & +2 \rho_{x y}+\rho_{z} \\ & -2 \rho_{x y}+\rho_{z} \\ & +2 \rho_{x y}+\rho_{z} \end{aligned}$	$\begin{array}{r} +4 R_{x y}+2 R_{z} \\ +2 R_{z} \\ -2 R_{x y}-R_{z} \end{array}$	$\left[\begin{array}{r\|l}+4 i_{\mathrm{I}} & +2 i_{\mathrm{II}} \\ \\ -2 i_{\mathrm{II}} \\ -2 i_{\mathrm{I}} \\ +2 i_{\mathrm{II}}\end{array}\right.$	
14						
$\begin{aligned} & \varepsilon_{14}^{T_{2}} \\ & \varepsilon_{1}^{T_{1}} \end{aligned}$	g_{0} g_{0}	$\begin{aligned} & +2 m_{\mathrm{I}} \\ & -2 m_{\mathrm{I}} \end{aligned}$	$\begin{aligned} & -\rho_{z} \\ & -\rho_{z} \\ & \hline \end{aligned}$	$\begin{aligned} & -R_{x y}-2 I_{z} \\ & +R_{x y}-2 I_{z} \end{aligned}$	$\begin{aligned} & +2 i_{I} \\ & -2 i_{I} \end{aligned}$	
24				.		
$\begin{aligned} & \varepsilon_{2_{4}}^{E} \\ & \varepsilon_{24}^{T_{2}^{2}} \\ & \varepsilon_{2_{4}}^{A_{4}} \end{aligned}$	$\begin{aligned} & g_{0} \\ & g_{0} \\ & g_{0} \end{aligned}$	$\begin{array}{r} -2 r_{\mathrm{I}} \\ 0 \\ +4 r_{\mathrm{I}} \end{array}$	$\begin{aligned} & +2 \rho_{x y}+\rho_{z} \\ & -2 \rho_{x y}+\rho_{z} \\ & +2 \rho_{x y}+\rho_{z} \\ & \hline \end{aligned}$	$\begin{array}{r} +2 R_{x y}-R_{z} \\ -2 R_{z} \\ -4 R_{x y}-2 R_{z} \end{array}$	$+2 i_{\mathrm{I}}$ $-2 i_{\mathrm{II}}$ $+4 i_{\mathrm{I}}$ $+2 i_{\mathrm{II}}$ $-2 i_{\mathrm{II}}$	
3_{4}		.		-		
$\begin{aligned} & \varepsilon_{33}^{T_{2}} \\ & \varepsilon_{3_{4}}^{T_{4}} \end{aligned}$	g_{0} g_{0}	$\begin{aligned} & -2 m_{\mathrm{I}} \\ & +2 m_{\mathrm{I}} \\ & \hline \end{aligned}$	$\begin{aligned} & -\rho_{z} \\ & -\rho_{z} \end{aligned}$	$\begin{aligned} & -R_{x y}+2 I_{z} \\ & +R_{x y}+2 I_{z} \end{aligned}$	$\begin{aligned} & +2 i_{I} \\ & -2 i_{I} \end{aligned}$	

(a) $\mathrm{SF}_{6} \nu_{4}$ Rotational Structure

P(80)

FT IR and Laser Diode Spectra K.C. Kim, W. B. Person, D. Seitz, and B.J. Krohn J.Mol. Spectrosc. 76, 322 (1979).

Primary AET species mixing "increases with distance from
(b) $\mathrm{P}(88$) Fine Structure (Rotational anisotropy effects

$$
S F 6 v_{3} P(88) \sim 16 m
$$

Observed repeating sequence(s).. $\mathrm{A}_{1} \mathrm{~T}_{1} \mathrm{E} \quad \mathrm{T}_{2} \mathrm{~T}_{1} \mathrm{ET}_{2} \mathrm{~A}_{2} \mathrm{~T}_{2} \mathrm{~T}_{1} \quad \mathrm{~A}_{1} \mathrm{~T}_{1} \mathrm{E} \quad \mathrm{T}_{2} \mathrm{~T}_{1} \mathrm{ET}_{2} \mathrm{~A}_{2} \mathrm{~T}_{2} \mathrm{~T}_{1}$. (e) Superhyperfine Structure (Spin frame correlation effects) 브N

Effects of broken or transition local symmetry for i-class

$$
\begin{aligned}
& D_{0_{4} 0_{4}}^{A_{1}}\left(i_{k} \mathbf{i}_{\mathbf{k}}\right)=i_{1}+i_{2}+i_{3}+i_{4}+i_{5}+i_{6} \\
& D_{2_{4} 2_{4}}^{A_{2}}\left(i_{k} \mathbf{i}_{\mathrm{k}}\right)=-\left(i_{1}+i_{2}+i_{3}+i_{4}+i_{5}+i_{6}\right) \\
& \\
& \begin{array}{c|ccc|}
D^{T_{1}^{*}}\left(i_{k} \mathbf{i}_{\mathrm{k}}\right) & 1_{4} & 3_{4} & 0_{4} \\
\hline 1_{4} & -\frac{1}{2}\left(i_{1}+i_{2}+i_{5}+i_{6}\right) & -\frac{1}{2}\left(i_{1}+i_{2}-i_{5}-i_{6}\right)-i\left(i_{3}-i_{4}\right) & -\frac{1}{\sqrt{2}}\left(i_{1}-i_{2}\right)+\frac{i}{\sqrt{2}}\left(i_{5}-i_{6}\right) \\
3_{4} & \text { h.c. } & -\frac{1}{2}\left(i_{1}+i_{2}+i_{5}+i_{6}\right) & +\frac{1}{\sqrt{2}}\left(i_{1}-i_{2}\right)+\frac{i}{\sqrt{2}}\left(i_{5}-i_{6}\right) \\
0_{4} & \text { h.c. } & \text { h.c. } & -\left(i_{3}+i_{4}\right)
\end{array} \\
& \begin{array}{c|ccc|}
D^{T_{2}^{*}}\left(i_{k} \mathbf{i}_{\mathrm{k}}\right) & 1_{4} & 3_{4} & 2_{4} \\
\hline 1_{4} & +\frac{1}{2}\left(i_{1}+i_{2}+i_{5}+i_{6}\right) & +\frac{1}{2}\left(i_{1}+i_{2}-i_{5}-i_{6}\right)-i\left(i_{3}-i_{4}\right) & +\frac{1}{\sqrt{2}}\left(i_{1}-i_{2}\right)+\frac{i}{\sqrt{2}}\left(i_{5}-i_{6}\right) \\
3_{4} & \text { h.c. } & +\frac{1}{2}\left(i_{1}+i_{2}+i_{5}+i_{6}\right) & -\frac{1}{\sqrt{2}}\left(i_{1}-i_{2}\right)+\frac{i}{\sqrt{2}}\left(i_{5}-i_{6}\right) \\
0_{4} & \text { h.c. } & \text { h.c. } & +\left(i_{3}+i_{4}\right)
\end{array}
\end{aligned}
$$

Conclusion: H-matrix Ad-hoc-ery greatly reduced

Group space tunneling matrix defined nicely by group table.
Each tunneling path matched to group element (complete set of Feynman paths!)

Spectral algebra yields closed-form eigenvalues and eigenvectors (in same table!) when local symmetry conditions apply.

Expressions easily deconvoluted (essentially same table , again!).
Transitions to and from various local symmetries are shown.
Hougen could have done a D_{7} example

Seven-Deadly-Sin Tunneling Theory $\mathrm{D}_{7} \supset \mathrm{C}_{7} \sin$ calculator...(not recommended)

$A=$ Lust
$\overline{A B}=$ Edible Undies $\overline{C F}=$ Advertising
$\overline{A C}=$ Prostitution $\overline{C G}=$ Status Symbols
$\overline{A D}=$ Quickie $\quad \overline{D E}=$ Passive Aggression
$\overline{A E}=$ Domestic Abuse $\overline{D F}=$ Welfare
$\overline{A F}=$ Adultery $\quad \overline{D G}=$ Slackers
$\overline{A G}=$ Trophy Wife $\overline{E F}=$ Cattiness
$\overline{B C}=$ Last Donut
$\overline{E G}=$ Boxing
$B=$ Gluttony
$\overline{B D}=$ Saturday
$\overline{G F}=2^{\text {nd }}$ Place
$C=$ Greed
$\overline{B E}=$ Bulimia
$D=$ Sloth
$\overline{B F}=$ High Metabolism
$E=$ Wrath
$\overline{B G}=$ Fat men in Speedos
$F=$ Envy
$\overline{C D}=$ Get Rich Quick Scams
$G=$ Pride
$\overline{C E}=$ Muggings

D_{3} global						
group	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{r}	\mathbf{i}_{l}	\mathbf{i}_{2}	$\mathbf{i}_{3} 3$
product	\mathbf{r}	$\mathbf{1}$	\mathbf{r}^{2}	\mathbf{i}_{3}	\mathbf{i}_{1}	\mathbf{i}_{2}
table	\mathbf{r}^{2}	\mathbf{r}	$\mathbf{1}$	\mathbf{i}_{2}	\mathbf{i}_{3}	\mathbf{i}_{l}
\mathbf{i}_{l}	\mathbf{i}_{13}	\mathbf{i}_{2}	$\mathbf{1}$	\mathbf{r}	\mathbf{r}^{2}	
	\mathbf{i}_{2}	\mathbf{i}_{l}	\mathbf{i}_{3}	\mathbf{r}^{2}	$\mathbf{1}$	\mathbf{r}
\mathbf{i}_{3}	\mathbf{i}_{2}	\mathbf{i}_{l}	\mathbf{r}	\mathbf{r}^{2}	$\mathbf{1}$	

D_{3} global
projector
product
table

D_{3}	$\mathbf{P}^{\text {d }}$		$\mathbf{P}_{x x}^{E} \mathbf{P}_{x y}^{E}$	$\mathbf{P}_{y x}^{E} \mathbf{P}_{y y}^{E}$
$\mathbf{P}_{x x}^{4_{1}}$	$\mathbf{P}_{x x}^{4_{1}}$			
$\mathbf{P}_{V V}^{4}$		$\mathbb{P}_{v j}^{4}$		
$\mathbf{P}_{\mathbf{x}_{x}^{E}}^{E}$			$\mathbf{P}_{x x}^{E} \mathbf{P}_{x y}^{E}$	
$\mathbf{P}_{y x}^{E}$			$\mathbf{P}_{y x}^{E} \mathbf{P}_{y y}^{E}$	
$\overline{\mathbf{R}^{E} y}$				$\mathbf{P}_{x x}^{E} \mathbf{P}_{x y}^{E}$
\mathbf{P}_{y}^{E}				$\mathbf{P}_{y}^{E} \mathbf{P}_{y}^{E}$

Change Global to Local by switching
$\mathbf{P}_{a b}^{(m)} \underset{c d}{(n)}=\delta^{n n} \delta_{b c} \mathbf{P}_{a d}^{(m)}$...column-g with column-g ${ }^{\dagger}$and row-g with row-g ${ }^{\dagger}$

Matrix "Placeholders" $\mathbf{P}_{a b}^{(m)}$ for GLOBAL \mathbf{g} operators in D_{3}

$\overline{\mathbf{P}}_{a b}^{(m)} \ldots .$. for LOCAL $\overline{\mathbf{g}}$ operators in $\overline{D_{3}}$

Lab-fixed (Extrinsic-Global) operations and rotation axes

Example of RELATIVITY-DUALITY for $D_{\underline{3}} \underline{\sim} \underline{C_{3 v}}$

Lab-fixed (Extrinsic-Global) operations and rotation axes

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

Example of RELATIVITY-DUALITY for $D_{\underline{3}} \underline{\sim} \underline{C_{3 v}}$ D_{3}-defined local-wave bases

1	$\mathrm{r}^{2} \mathrm{r}$	$\mathrm{i}_{1}\left(\mathrm{i}_{2} \mathrm{i}_{3}\right.$
r ${ }^{2}$	$\begin{array}{ll} 1 & r^{2} \\ r & 1 \end{array}$	$\begin{array}{lll} \mathbf{i}_{3} & \mathbf{i}_{l} & \mathbf{i}_{2} \\ \mathbf{i}_{2} & \mathbf{i}_{3} & \mathbf{i}_{l} \end{array}$
$\begin{aligned} & \mathrm{i}_{1} \\ & \mathrm{i}_{2} \\ & \mathrm{i}_{3} \end{aligned}$	$\begin{array}{ll} \mathbf{i}_{3} \mathbf{i}_{2} \\ \mathbf{i}_{1} & \mathbf{i}_{3} \\ \mathbf{i}_{2} & \mathbf{i}_{1} \end{array}$	$\begin{array}{lll} \hline 1 & r & r^{2} \\ r^{2} & 1 & r \\ r & r^{2} & 1 \end{array}$

Lab-fixed (Extrinsic-Global) operations and rotation axes

Body-fixed (Intrinsic-Local) operations appear to move their rotation axes (relative to lab)

$$
\bar{i}_{2}|\mathbf{1}\rangle=\left|\mathbf{i}_{2}\right\rangle_{\bar{i}}
$$

$$
\mathbf{i}_{1} \mathbf{i}_{2}=\mathbf{r}
$$

...but, THEY OBEY THE
implies:

$$
\overline{\mathrm{T}}_{1} \mathrm{~T}_{2}=\overline{\mathrm{r}}
$$ SAME GROUP TABLE ${ }_{2}$

$$
\bar{i}_{1} \bar{i}_{2}^{2}|\mathbf{1}\rangle=\bar{i}_{1}\left|\mathbf{i}_{2}\right\rangle=\overline{\mathrm{r}}|\mathbf{1}\rangle=\mathbf{r}^{2}|\mathbf{1}\rangle
$$

