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(1st Half)

Ways to geometrically visualize single-rotor quantum states and dynamics
(2nd Half)

Ways to begin visualizing compound-rotor quantum states and dynamics
(Next talk)

Ways to begin computing compound-rotor states...



Simple Rigid Rotor Hamiltonian...
T2 2 2., : : :
H=A4J +BJ M CJ” + ..and its multi-pole expansion...
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Some Approaches for Treating Rotor Hamiltonians
( Q) Quantum : Find H-matrix rep and diagonalize by computer
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(But, is there life after diagonalization?!?)
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(P) Classical RES Plot: Rotational Energy (RE) surfaces and/or H-phase paths
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(S) Semiclassical: Some of both



Some Approaches for Treating Rotor Hamiltonians (contd)

(P) Classical RE Plot: Rotational Energy (RE) surfaces and/or H-phase paths
<T(§0> b= e¥? = J(J+1)

(But, there IS life before AND after diagonalization!)
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Symmetric precessing

Top Asymmetric
A=B =05 B Jvector Top
C=3.0 A=0.5

otor

=15
C=3.0

energy

RE sur[‘ace
Energy plotted radially
VS.

direction of J-vector
|for fixed magnitude |J




(S) Semiclassical Analysis

Uses
J-Phase Paths (Intersection(s) of RE Surface and Energy Sphere )
and
Quantum angular momentum cones

Rotational Energy Surface

Energy Sphere
(Low
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(S) Semiclassical J-Phase Paths for
(J=3) Prolate Symmetric Rotor |




Asymmetric Top Eigensolutions
Related to RE Surface

and semi-classical J-phase paths
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Asymmetric Top quantum J phase paths deviate from (J,K)- cones at low J and K
(This indicates more K-mixing in eigenstes)

(More K-mixing) Still More K-mixing)




Semi Rigid Rotor Hamiltonian: Centrifugal and Coriolis terms...

H= A3, + B +CI2 +1, Iy +1, J25 +
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Compound Rotor Hamiltonian: Rigid rotor with body-fixed “gyro”...

Rotor R PLUS “Gyro” Spin EQUALS Compound Rotor J= R+S

H=ARx2 +BRy2+CR22+. . +(cgzipling€f constraint)+...+B¢S-S

(discussed in next talk)

Here constraint is rigid so body components (Sx,Sy,SZ) are fixed (“slippery gyro”)

ANALOGY: p2/2M becomes: (p-eA)2/2M in an em field
Let:R=J - S and consider non-constant terms (ignore gyro S terms that are constant)

H=A4 (Jx-S)yz+B(Jy-Sy)2+C(JZ-Sﬂ2+... +0 (for constrainy)+ ...+ (constant BS terms)
H:AJx2 +BJy2+CJZ2+...-ZAJxSx-2BJySy-2CJZSZ+... +(more constant terms)
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Coriolis effect” subtracts linear or Ist-order J, or T' terms for gyro-rotor H




RE Surface forlst-order J, or T' term is a sphere displaced in J-direction

Energy sphere intersections are concentric circular precession paths
All paths precess with the same sense around gyro S-vector

Fixed Points for J lie on “North” and
“South” poles of RE surface

precessing
J vector
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Prolate Rotor R MINUS “Gyro” x-Spin S,

Low energy along S High energy against S

: |R| is small if 2 |R| is large if

I.’I is constant M is constant
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Recall Hamiltonian for 2D vibration has a (quasi-)spin theory, too
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(contd) 2D vibration are related to 3D rotation of “quasi-spin”J

H=ol+ Q(a(z)a(ﬂ - a(i)a(_)) / 2 + ...+ (anharmonic aJav a}\TaK terms)

X 7

X
‘\) ° ° QLocazModeJ
) go—ordinate L

~ A Q
QO

H=wpl+Q J +...+BJ§+CJ2y +AJ§ wt O I+

x; coordinate —< Normal Mode (-)
2D U(2) World ()0
precessing

(+) normal mode ——— |

fvedpoint . J vector
for Jvector d

R
Normal Mode (+) ; C

O O Beat Mode R
@ ©O

P

3DR(3) World Mmzm




For higher J values, anharmonic terms grow to make stable local modes

(+) normal mode
fixed point
for Jvector
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Spin gyro S=(1,1,1) attached to
Asymmetric Top (A=5, B=10, C=1)5)

Time reversed
gyro -S=(-1,-1,-1) The two together

“Sherman” (The shark)
First appeared in a
1992 JCP article by
Hougan, Kleiner, and Ortigoso

R Crossing RE surfaces
analogous to
Crossing PE surfaces (Jahn-Teller)

NV



(Pre) Conclusion
Rotational Energy (RE) surfaces: Past & Future

Two or more RE’s beg for an interaction.
Here it’s the coupling we “turned off” into a constraint.
(Spin-up RE(B.y Coupling (B.y []
) 5 RE(RY) BY) ©
5 Coupling(B »V) Spin-down RE(B,V)E

Base RE surfaces are eigensolutions of this matrix.
Combination RES depends on eigenvector chosen.

This opens worlds of interesting mechanics. (Both OM and CM)

Two (or more) surfaces imply an infinity of surfaces “between” them.

Intermediate surfaces not unique for each energy
(“Tide” rises and falls, saddles open and close. Result: Chaotic trajectory)

(Recall that Born told Otto Stern that his spin
experiment wouldn’t show quantization.)



(Final) Conclusion
Rotational Energy (RE) surfaces help analyze rotor dynamics as do

Potential Energy (PE) surfaces for vibration.

PE surfaces based on vibrational coordinates.
RE surfaces based on rovibrational phase space.
Can approximate quantum levels and spectra
and also mixing and transitions.
RES have a variety of complementary surfaces:
Angular Velocity surfaces: (AVS) o I-w=2FE (Poinsot ellipsoid)

Angular Momentum surfaces: (AMS) JX-1-J=2E (Landau ellipsoid)

PE surfaces used since beginning of QM (Born 1926)
RE surfaces first used in 1976.
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