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2-CW dynamics has two 1-CW amplitudes            and             that we now allow to be unmatched.  
   

Waves have half-sum mean-phase rates                  and half-difference group rates                   .

           

Also important is amplitude mean                                       and half-difference                                             . 

Detailed wave motion depends on standing-wave-ratio SWR or the inverse standing-wave-quotient SWQ.

           

These are analogous to frequency ratios for group velocity Vgroup<c and its inverse that is phase velocity Vphase>c. 
           

Unmatched amplitudes giving galloping waves

A→ A← (A→ ≠ A←)

(kΣ ,ωΣ ) (kΔ ,ωΔ )

kΣ =  (k→ +  k← ) / 2
ωΣ = (ω→ +ω← ) / 2

kΔ =  (k→ −  k← ) / 2
ωΔ = (ω→ −ω← ) / 2

AΣ =  (A→ +  A←) / 2 AΔ =  (A→ −  A←) / 2

SWR =
(A→ −  A←)
(A→ +  A←)

SWQ =
(A→ +  A←)
(A→ −  A←)

Vgroup =
ωΔ
kΔ

= (ω→ −ω← )
(k→ −  k← )

= c (ω→ −ω← )
(ω→ +  ω← )

Vphase =
ωΣ
kΣ

= (ω→ +ω← )
(k→ +  k← )

= c (ω→ +ω← )
(ω→ −  ω← )

Vgroup
c

== c
Vphase

A→e
i(k→x−ω→t ) + A←e

i(k←x−ω←t ) = ei(kΣ x−ωΣ t )[A→e
i(kΔx−ωΔt ) + A←e

−i(kΔx−ωΔt ) ]
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from:Fig. 8.6.3
CMwBang!
Unit 8 Ch.6

from:Fig. 4.5.2
QTforCA
Unit 2 Ch.4

(not shown) 
SWR=1

SWR=+3/5

SWR=+1/5

SWR=0

SWR=-1/5

SWR=-3/5

SWR=1
Two extremes for Standing Wave Ratio
SWR=0

(not shown in (x,ct) plots) 
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www.uark.edu/ua/pirelli/php/amplitude_probability_2.php

from:Fig. 8.6.3
CMwBang!
Unit 8 Ch.6

from:Fig. 4.5.2
QTforCA
Unit 2 Ch.4

SWR=1
Two extremes for Standing Wave Ratio
SWR=0

...and
SWR=-1

(not shown) 
SWR=1

SWR=+3/5

SWR=+1/5

SWR=0

SWR=-1/5

SWR=-3/5

SWR=-1
(not shown)

Same SWR cases viewed
at u/c = 3/5
Same SWR cases viewed
at u/c = 3/5

(not shown) 
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x

φ(t)

x=a cos ω t

y=b sin ω t

ω.t

b

a

A

B P

O

ω

y

Highest speed v=5

at perigee r=b=1

Lowest speed v=1

at apogee r=a=5

eccentric

anomaly

mean

anomaly

(h) Elliptic oscillator orbit
SWR = b/a = 1/5

tanφ(t)=
y b sin ω t

x a cos ω t
=

(g) b/a =-1/1

xleft

circular

polarization

(f) b/a =-3/5

(a) b/a =+1/1

(b) b/a =+3/5

right

circular

polarization

x

y

x-plane polarization

(d) b/a =0

SWR=+1

SWR=-1

SWR=0

SWR=+3/5

SWR=+1/5

SWR=-1/5

(c) b/a =+1/5

r-elliptical

polarization

(e) b/a =-1/5

SWR=-3/5

left

moving

wave

left

galloping

waves

pure

standing

wave

right

galloping

waves

right

moving

wave

tanφ(t) = SWR tan ω t

(i) Kepler anomaly relations

Fig. 6.3 (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 6.1. (h-i) Kepler anomalies.

polarization analogy
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tanφ(t) = b
a
tanω⋅t

We’ll show wave galloping is analogous to Keplarian orbital motion of angles ω·t and φ of orbits.
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Lowest speed v=1

at apogee r=a=5

eccentric

anomaly

mean

anomaly

tanφ(t)=
y b sin ω t
x a cos ω t= = SWR·tan ω t

Kepler anomaly relations

Analogy between wave galloping, Keplarian IHO orbits, and optical polarization

from:Fig. 8.6.3
CMwBang!
Unit 8 Ch.6

from:Fig. 4.5.2
QTforCA
Unit 2 Ch.4
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The eccentric anomaly time derivative of φ (angular velocity) gallops between ω ·b/a and ω ·a/b. 

  

φ = dφ
dt

=ω ⋅ b
a

sec2ω t
sec2φ

=ω ⋅ b
a

sec2ω t
1+ tan2φ

= ω ⋅b / a
cos2ω t + b / a( )2 ⋅sin2ω t

=
ω ⋅b / a  for: ω t = 0,  π,  2π...
ω ⋅a / b   ω t = π / 2,  3π / 2,...

⎧
⎨
⎪

⎩⎪
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The eccentric anomaly time derivative of φ (angular velocity) gallops between ω ·b/a and ω ·a/b. 

 
The product of angular moment r2 and       is orbital momentum, a constant proportional to ellipse area. 
   

 
φ
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dt
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dt
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⎧
⎨
⎪

⎩⎪

Analogy between wave galloping, Keplarian IHO orbits, and optical polarization
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Consider galloping wave zeros of a monochromatic wave having SWR =1/5. 

  

The eccentric anomaly time derivative of φ (angular velocity) gallops between ω ·b/a and ω ·a/b. 

 
The product of angular moment r2 and       is orbital momentum, a constant proportional to ellipse area. 
   

0 = ReΨ x,t( ) = Re A→e
i k0x−ω0t( ) + A←e

i −k0x−ω0t( )⎡
⎣⎢

⎤
⎦⎥

  where: ω→ =ω0 =ω← = ck0 = −ck←
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a
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We’ll show wave galloping is analogous to Keplarian orbital motion of angles ω·t and φ of orbits.
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=ω ⋅ b
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⎧
⎨
⎪

⎩⎪

5 to 1

Analogy between wave galloping, Keplarian IHO orbits, and optical polarization

 
φ

r2 dφ
dt

= constant = (a2 cos2ω t + b2 ⋅sin2ω t) dφ
dt

=ω ⋅ab
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Consider galloping wave zeros of a monochromatic wave having SWR =1/5. 

Space k0x varies with time ω0t in the same way that eccentric anomaly φ varies with ω·t.
     

Speed of galloping wave zeros is the time derivative of root location x in units of light velocity c. 
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Analogy between wave galloping, Keplarian IHO orbits, and optical polarization

 
φ

r2 dφ
dt

= constant = (a2 cos2ω t + b2 ⋅sin2ω t) dφ
dt

=ω ⋅ab

Speed of galloping wave zeros is the time derivative of root location x in units of light velocity c.
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Wave-Zero Speed-Limits
Standing Wave Ratio SWR and Quotient SWQ
SWR=(E→−E←)/(E→+E←)=1/SWQ

E←=0.4, E→=0.6

SWR=1/5
SWR is

1 to 5
1

5

Wave zeros
“resting”
at (1/5)c

Wave zeros
“galloping”
at 5c

E←=0.5, E→=0.5

SWR=0

SWQ=∞

Wave zeros
“standing”
at 0-speed

Wave zeros
“galloping”
at ∞-speed

SWR=1 is analogous to (1,i)
Right Circular Polarization

SWR=0 is analogous to (1,0)
x-Plane Linear Polarization

SWR=-1 is analogous to (1,-i)
Left Circular Polarization

SWR=1/5 is analogous to (5-to-1)
Right Elliptic Polarization

“galloping” at 5c
“resting”
at
1/5c

“galloping” at 5c

“resting”
at

1/5c

ω→=2c ω←=2c

k→=2 k←=-2

uGROUP=0 , uPHASE=∞

SWR=+1

SWR=0

SWR=-1

www.uark.edu/ua/pirelli/php/amplitude_probability_3.php

dx
dt

= c ⋅SWR sec2ω0t
sec2 k0x

= c ⋅SWR
cos2ω0t + SWR

2 ⋅sin2ω0t
=

c ⋅SWR  for: t = 0,  π,  2π...
c ⋅SWQ   t = π / 2,  3π / 2,...

⎧
⎨
⎪

⎩⎪

Speed of galloping wave zeros is the time derivative of root location x in units of light velocity c.Speed of galloping wave zeros is the time derivative of root location x in units of light velocity c.
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Wave-Zero Speed-Limits
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Staircase Galloping
Speed of galloping 

SWR=+1/2 cancelled
by group velocity 
uGROUP/c = -1/2.
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Unmatched amplitudes giving galloping waves
Standing Wave Ratio (SWR) and Standing Wave Quotient (SWQ)

Analogy with group and phase
Galloping waves
Analogy between wave galloping, Keplarian IHO orbits, and optical polarization

Galloping dynamics algebra
Waves that go back in time - The Feynman-Wheeler Switchback

The Ship-Barn-and-Butler saga of confused causality
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Brief faster-than-
light travel

Happening 1

Happening 2
Before

x-axis

ct-axis

Fig. 2.B.10 Lighthouse plot of two Happenings
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Brief faster-than-
light travel

Happening 1

Happening 2
Before

x-axis

ct-axis

Happening 1

Happening 2
Before

x'-axis

ct'-axis

(annihilation)

(creation)

Brief  travel
back-in-time

Fig. 2.B.10 Lighthouse plot of two Happenings

Fig. 2.B.11 Ship plot of two Happenings
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SWR=-1/5

Group zero
speed limit
uGROUP+SWR
1+uGROUP·SWR
=5c/11 Phase

“anti-zero”
going
“back-in-time”
Phase zero
speed limit
uPHASE+SWR
1+uPHASE·SWR
=11c/5

E←=0.6, E→=0.4

SWR=0

E←=0.5, E→=0.5

ω→=4c ω←=1c

k→=4, k←=-1

uGROUP=c3/5 uPHASE=c5/3

Minkowski Zero-Grids are
Spacetime Switchbacks for
-uGROUP<SWR<0

Wave zero-anti-zero
annihilation and creation occur together at
the same spacetime point for SWR=0

Wave zero-anti-zero
annihilation and creation occur separately at
different spacetime points for -uGROUP<SWR<0

Group-zero speed
uGROUP=c3/5

Phase
zero
speed
uPHASE
=c5/3

c2

c2

3
5
+ −1
5

1+ 3
5
−1
5

=

2
5
22
25

= 5
11

5
3
+ −1
5

1+ 5
3
−1
5

=

22
15
10
25

= 11
5

Waves that go back in time - The Feynman-Wheeler Switchback
www.uark.edu/ua/pirelli/php/amplitude_probability_4.php
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SWR=+0.6 SWR=-0.6

E←=0.4, E→=1.0 E←=0.4, E→=0.6 E←=0.5, E→=0.5 E←=1.0, E→=0.4

SWR=-0.2SWR=0SWR=+0.2

E←=0.6, E→=0.4

At High Speed 2-CW Modes Look More Like 1-CW Beams ψ= E
Various combinations of opposite-k 1-CW beams occur with open boundaries.
E-wave:E=E→e

i(k→x-ω→t)+E←e
i(k←x-ω←t) is related to Ψ-wave:Ψ=ψ→e

i(k→x-ω→t)+ψ←e
i(k←x-ω←t)

Standing Wave Ratio (or Quotient) Wave Group (or Phase) Velocity
SWR=(E→−E←)/(E→+E←)=1/SWQ uGROUP/c=(ω→−ω←)/(ω→+ω←)=c/uPHASE
1-frequency case : ω→=2c, k→=2, ω←=2c, k←=-2 gives: uGROUP=0 and uPHASE=∞

2-frequency case : ω→=4c, k→=4, ω←=1c, k←=-1 gives: uGROUP/c=3/5 and uPHASE/c=5/3

SWR=+0.6 SWR=-0.6

E←=0.4, E→=1.0 E←=0.4, E→=0.6 E←=0.5, E→=0.5 E←=1.0, E→=0.4

SWR=-0.2SWR=0SWR=+0.2

E←=0.6 , E→=0.4

key
numbers

ε0
hhυ

www.uark.edu/ua/pirelli/php/amplitude_probability_2.php

Staircase Galloping
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1st Quantization: Quantizing phase variables ω and k 
Understanding how quantum transitions require “mixed-up” states

Closed cavity vs ring cavity
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Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers n are called quantum numbers.
OK box quantum numbers: n=1 n=2 n=3 n=4

(+ integers only)

NOT OK numbers: n=0.67 n=1.7 n=2.59 n=4

:-(

:-) :-) :-) :-)

:-( :-(

too fat! too thin!

:-(

wrong color again!

misfits... ...not tolerated !

Rings tolerate a zero (kinkless) quantum wave but require ±integral wave number.
OK ring quantum numbers: m=0 m=±1 m=±2 m=3

(± integral number

of wavelengths)

Bohr’s models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics
built on Planck-Einstein (1900-1905) relation E=hυ. DeBroglie relation p=h/λ comes around 1923.

NOTE: We’re using “false-color” here.

Some

This doesn’t mean a system’s energy can’t vary continuously between “OK” values E1, E2, E3, E4,…
 

www.uark.edu/ua/pirelli/php/quantized_0.php
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Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers n are called quantum numbers.
OK box quantum numbers: n=1 n=2 n=3 n=4
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:-( :-(

too fat! too thin!
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wrong color again!

misfits... ...not tolerated !

Rings tolerate a zero (kinkless) quantum wave but require ±integral wave number.
OK ring quantum numbers: m=0 m=±1 m=±2 m=3

(± integral number

of wavelengths)

Bohr’s models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics
built on Planck-Einstein (1900-1905) relation E=hυ. DeBroglie relation p=h/λ comes around 1923.

NOTE: We’re using “false-color” here.

Some

This doesn’t mean a system’s energy can’t vary continuously between “OK” values E1, E2, E3, E4,…
 In fact its state can be a linear combination of any of the “OK” waves |E1>, |E2>, |E3>, |E4>,…

www.uark.edu/ua/pirelli/php/quantized_0.php
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1st Quantization: Quantizing phase variables ω and k 
Understanding how quantum transitions require “mixed-up” states

Closed cavity vs ring cavity
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Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers n are called quantum numbers.
OK box quantum numbers: n=1 n=2 n=3 n=4

(+ integers only)

NOT OK numbers: n=0.67 n=1.7 n=2.59 n=4

:-(

:-) :-) :-) :-)

:-( :-(

too fat! too thin!

:-(

wrong color again!

misfits... ...not tolerated !

Rings tolerate a zero (kinkless) quantum wave but require ±integral wave number.
OK ring quantum numbers: m=0 m=±1 m=±2 m=3

(± integral number

of wavelengths)

Bohr’s models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics
built on Planck-Einstein (1900-1905) relation E=hυ. DeBroglie relation p=h/λ comes around 1923.

NOTE: We’re using “false-color” here.

Some

This doesn’t mean a system’s energy can’t vary continuously between “OK” values E1, E2, E3, E4,…
 In fact its state can be a linear combination of any of the “OK” waves |E1>, |E2>, |E3>, |E4>,…
That’s the only way you get any light in or out of the system to “see” it.

|E1>
|E2>

|E3>
|E4>

frequency ω21= E2-E1

frequency ω32= E3-E2
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Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers n are called quantum numbers.
OK box quantum numbers: n=1 n=2 n=3 n=4

(+ integers only)

NOT OK numbers: n=0.67 n=1.7 n=2.59 n=4

:-(

:-) :-) :-) :-)

:-( :-(

too fat! too thin!

:-(

wrong color again!

misfits... ...not tolerated !

Rings tolerate a zero (kinkless) quantum wave but require ±integral wave number.
OK ring quantum numbers: m=0 m=±1 m=±2 m=3

(± integral number

of wavelengths)

Bohr’s models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics
built on Planck-Einstein (1900-1905) relation E=hυ. DeBroglie relation p=h/λ comes around 1923.

NOTE: We’re using “false-color” here.

Some

This doesn’t mean a system’s energy can’t vary continuously between “OK” values E1, E2, E3, E4,…
 In fact its state can be a linear combination of any of the “OK” waves |E1>, |E2>, |E3>, |E4>,…
That’s the only way you get any light in or out of the system to “see” it.

|E1>
|E2>

|E3>
|E4>

frequency ω21 = (E2-E1)/

frequency ω32 = (E3-E2)/

These eigenstates are the only
ways the system can “play dead”…
… “ sleep with the fishes”...

www.uark.edu/ua/pirelli/php/quantized_0.php
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Consider two lowest E-states by themselves

|E1〉

|E2〉
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Consider two lowest E-states by themselves in time

e-iω1t|E1〉

e-iω2t|E2〉
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Consider two lowest E-states by themselves in time Now combine (add) them

e-iω1t|E1〉

e-iω2t|E2〉

(|E1〉+|E2〉)/√2
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Consider two lowest E-states by themselves in time Now combine (add) them and let time roll!

e-iω1t|E1〉

e-iω2t|E2〉 (e-iω1t|E1〉 +e-iω2t|E2〉)/√2

]/√2

(|E1〉+|E2〉)/√2
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Consider two lowest E-states by themselves in time Now combine (add) them and let time roll!

e-iω1t|E1〉

e-iω2t|E2〉 (e-iω1t|E1〉 +e-iω2t|E2〉)/√2

]/√2

(|E1〉+|E2〉)/√2

46Thursday, March 6, 2014



1st Quantization: Quantizing phase variables ω and k 
Understanding how quantum transitions require “mixed-up” states

Closed cavity vs ring cavity
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Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers n are called quantum numbers.
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Bohr’s models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics
built on Planck-Einstein (1900-1905) relation E=hυ. DeBroglie relation p=h/λ comes around 1923.

NOTE: We’re using “false-color” here.

Some

www.uark.edu/ua/pirelli/php/quantized_0.php
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2nd Quantization: Quantizing amplitudes (“photons”,“vibrons”, and “what-ever-ons”)
Introducing coherent states (What lasers use)

Analogy with (ω,k) wave packets
Wave coordinates need coherence
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N
1
=2

red photons

Quantized Amplitude Counting “photon” number
Planck’s relation E=Nhυ began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study it.

m=1 m=2 m=3 m=4

A current view is that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.

N
1
=0

N
1
=1

red photon

N
1
=3

red photons

N
1
=4

red photons

N
2
=0

N
2
=1

green photon

N
2
=2

green photons

N
3
=0

N
3
=1

blue photon

N
4
=0

N
4
=1

violet photon

QQuu
aann

ttiizz
eedd

AAmm
ppllii

ttuu
ddee

((““
pphh

oott
oonn

””nn
uumm

bbee
rr))

QQuuaannttiizzeedd WWaavveennuummbbeerr ((““kkiinnkk”” oorr mmoommeennttuumm nnuummbbeerr))

Quantum field definitions have been called
“2nd quantization” or “wave-waves”

NOTE: We’re using “false-color” here.

These are the fundamental “zero-point” or “vacuum” levels

www.uark.edu/ua/pirelli/php/quantized_1.php
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Quantized Amplitude Counting “photon” number
Planck’s relation E=Nhυ began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study it.

m=1 m=2 m=3 m=4

A current view is that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.
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Quantized Amplitude Counting “photon” number
Planck’s relation E=Nhυ began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study it.
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picture this below as N-photon wave states for each box-mode of m wave kinks.
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Quantum field definitions have been called
“2nd quantization” or “wave-waves”

NOTE: We’re using “false-color” here.
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Quantum numbers N of field or n, m,.. of modes are invariants and not changed by boosting velocity.

Each mode fundamental frequency υ
n
=nυ

1
and its N-photon multiples belong to invariant hyperbolas.

Boosted observers see distorted frequencies and lengths, but

will agree on the numbers n and N of mode nodes and photons.

This is how light waves can “fake” some of the properties of

classical “things” such as invariance or object permanence.

It takes at least TWO CW’s to achieve such invariance. One CW

is not enough and cannot have non-zero invariant N . Invariance

is an interference effect that needs at least two-to-tango!

www.uark.edu/ua/pirelli/php/quantized_2.php
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2nd Quantization: Quantizing amplitudes (“photons”,“vibrons”, and “what-ever-ons”)
Introducing coherent states (What lasers use)

Analogy with (ω,k) wave packets
Wave coordinates need coherence

Lecture 30 ended hereLecture 30 ended here
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We saw how adding CW’s (Continuous Waves m=1,2,3...) can make PW (Pulse Wave) or WP (Wave Packet)
that is more like a classical “thing” with more localization in space x and time t.

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

|m=1〉 PLUS |m=2〉 PLUS |m=3〉 etc. EQUALS |PW〉

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator
Amplitude Packet) that is more like a classical wave oscillation with more localization in field amplitude.

|N=0〉 PLUS |N=1〉 PLUS |N=2〉 etc. EQUALS |OAP〉

Time t

Field Amplitude E

Space x

Time t

Zero-photon state

(Vacuum state)

1-photon state

(Fundamental)

2-photon state

(1st overtone)

Oscillating Amplitude Packet

Zero-point uncertainty

Pure photon states have localized (certain) N but delocalized (uncertain) amplitude and phase.
OAP states have delocalized (uncertain) N but more localized (certain) amplitude and phase.

N

uncertaintyN=2

N=1

N=0

1-point uncertainty

2-point uncertainty

Analogy:

www.uark.edu/ua/pirelli/php/coherent_vs_photon_1.php

www.uark.edu/ua/pirelli/php/coherent_vs_photon_1.php
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Pure photon number N-states would make useless spacetime coordinates

|α=105〉|α=103〉|α=101〉

|N=1010〉
Photon number N-state

Quantum field coherentα-states

Coherent-α-states are defined by continuous amplitude-packet parameter α whose square is average
photon number N=|α|2. Coherent-states make better spacetime coordinates for larger N=|α|2.

Total uncertainty of amplitude and phase makes the count pattern a wash.
To see grids some N-uncertainty is necessary!

Classical limit

Coherent-state uncertainty in photon number (and mass) varies with amplitude parameter ΔN~α~√N so
a coherent state with N=|α|2 =106 only has a 1-in-1000 uncertainty ΔN~α~√N=1000.

Time t

Space x

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

N=100
ΔN=10

N=106
ΔN=103

N=1010
ΔN=105

www.uark.edu/ua/pirelli/php/coherent_vs_photon_2.php
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Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony

Magnetic B-field is relativistic sinhρ 1st order-effect
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Relativistic effects on charge, current, and Maxwell Fields

(+) Charge fixed (-) Charge moving to right (Negative current density)
(+) Charge density is Equal to the (-) Charge density  

Observer velocity 
is zero relative to 
(+) line of charge

wire appears 
neutral
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(+) Charge fixed (-) Charge moving to right (Negative current density         )
(+) Charge density is Equal to the (-) Charge density          (Zero  ρ(x,t)=0)

Observer velocity 
is zero relative to 
(+) line of charge

wire appears 
neutral

Relativistic effects on charge, current, and Maxwell Fields

 

j(x,t)
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(+) Charge fixed (-) Charge moving to right (Negative current density         )
(+) Charge density is Greater than (-) Charge density          (Positive  ρ(x,t)>0)  

Observer velocity 
is +v relative to 
(+) line of charge

wire appears 
postive (+)
(repulsive to 
observer q[+])

observer has
q[+] 

 “test-charge”

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony

 

j(x,t)

Asynchronyduetooff-diagonal sinhρ   (a 1st-order effect)

in Lorentz tranform :
coshρ sinhρ
sinhρ coshρ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

~
1 v/c
v/c 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

asynchrony 
       in PAST

asynchrony
 in FUTURE
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Observer velocity 
is +v relative to 
(+) line of charge

wire appears 
postive (+)
(repulsive to 
observer q[+])

observer has
q[+] 

 “test-charge”

(+) Charge fixed (-) Charge moving to right (Negative current density         )
(+) Charge density is Greater than (-) Charge density          (Positive  ρ(x,t)>0)  

 

j(x,t)

asynchrony 
       in PAST

asynchrony
 in FUTURE

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
Asynchronyduetooff-diagonal sinhρ   (a 1st-order effect)

in Lorentz tranform :
coshρ sinhρ
sinhρ coshρ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

~
1 v/c
v/c 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
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observer has
q[+] 

 “test-charge”

Observer velocity 
is -v relative to 
(+) line of charge

wire appears 
negative (-)
(attractive to 
observer q[+])

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
Asynchronyduetooff-diagonal sinhρ   (a 1st-order effect)

in Lorentz tranform :
coshρ sinhρ
sinhρ coshρ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

~
1 v/c
v/c 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

asynchrony 
       in PAST

asynchrony
 in FUTURE

(+) Charge fixed (-) Charge moving to right (Negative current density         )
(+) Charge density is Less than (-) Charge density               (Negative  ρ(x,t)<0)  

 

j(x,t)
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observer has
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Observer velocity 
is -v relative to 
(+) line of charge

wire appears 
negative (-)
(attractive to 
observer q[+])

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
Asynchronyduetooff-diagonal sinhρ   (a 1st-order effect)

in Lorentz tranform :
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sinhρ coshρ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

~
1 v/c
v/c 1

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

asynchrony 
       in PAST

asynchrony
 in FUTURE

(+) Charge fixed (-) Charge moving to right (Negative current density         )
(+) Charge density is Less than (-) Charge density               (Negative  ρ(x,t)<0)  

 

j(x,t)
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Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony

Magnetic B-field is relativistic sinhρ 1st order-effect
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(-)Trajectory

(+)

(+)

(+)

(-)

(-)

(-)

(-)

(-)

(+)Trajectory

u/c

x(-)

y=x(-) v/c
v/c

x(+)=y u/c
=x(-) uv/c2

(-)

(+)

x(+)

(+) charge
separation

(-) charge
separation

Unit square: (u/c) /1 = x(+)/y
                     (v/c) /1 = y/x(-)

  

ρ(−)
ρ(+)

= (+) charge separation
(−) charge separation

= x(+)+ x(−)
x(−)

  

ρ(−)
ρ(+)

= x(+)
x(−)

+1= uv
c2 +1

  
ρ(+)− ρ(−) = ρ(+) 1− ρ(−)

ρ(+)
⎛
⎝⎜

⎞
⎠⎟
= − uv

c2 ρ(+)

Magnetic B-field is relativistic sinhρ 1st order-effect
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Iρ<0 F

F (repels)
Iq>0

+

Iρ<0 F

F (attracts)

Iq<0
+

  
F = qE = q 1

4πε0

2ρ
r

⎡

⎣
⎢

⎤

⎦
⎥ , where: 1

4πε0
= 9×109 N ⋅m2

Coul.

The electric force field E of a charged line varies inversely with radius.  The Gauss formula for force in mks units :

  
F = qE = q 1

4πε0

2
r

− uv
c2 ρ(+)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = − 2 qv ρ(+)u

4πε0c2 r
= −2×10−7 Iq Iρ

r

I see excess (+)
charge up there. Yuk!

+

I see excess (-)
charge up there. Yum!

+

1/4πε0 =9·109

c2=9·10-16

1/(4πε0 c2)=10-7

+ + + + + + + + +
- - - - - - - - -

+ + + + + + + + +
- - - - - - - - -

Magnetic B-field is relativistic sinhρ 1st order-effect

68Thursday, March 6, 2014



Iρ<0 F

F (repels)
Iq>0

+

Iρ<0 F

F (attracts)

Iq<0
+

  
F = qE = q 1

4πε0

2ρ
r

⎡

⎣
⎢

⎤

⎦
⎥ , where: 1

4πε0
= 9×109 N ⋅m2

Coul.

The electric force field E of a charged line varies inversely with radius.  The Gauss formula for force in mks units :

  
F = qE = q 1

4πε0

2
r

− uv
c2 ρ(+)

⎛
⎝⎜

⎞
⎠⎟

⎡

⎣
⎢

⎤

⎦
⎥ = − 2 qv ρ(+)u

4πε0c2 r
= −2×10−7 Iq Iρ

r

I see excess (+)
charge up there. Yuk!

+

I see excess (-)
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+ + + + + + + + +
- - - - - - - - -

+++++++++
- - - - - - - - -

+ + + + + + + + +
- - - - - - - - -

(Suppose (+) carriers)

(Suppose (+) carriers)

Magnetic B-field is relativistic sinhρ 1st order-effect
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Using 4-vectors to EL Transform (charge-current)=(cρ, j)

c ′ρ
j ′x

j ′y

j ′z

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=

coshρ sinhρ ⋅ ⋅
sinhρ coshρ ⋅ ⋅

⋅ ⋅ 1 ⋅
⋅ ⋅ ⋅ 1

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

cρ
jx
jy
jz

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
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