Relativity of interfering and galloping waves: Amplitude and SWR.

(Ch. 2-5 of CMwBang-Unit 8 Ch. 6 of QTforCA Unit 2)

Unmatched amplitudes giving galloping waves
Standing Wave Ratio (SWR) and Standing Wave Quotient (SWQ)
Analogy with group and phase
Galloping waves
Analogy between wave galloping, Keplarian IHO orbits, and optical polarization
Galloping dynamics algebra
Waves that go back in time - The Feynman-Wheeler Switchback
The Ship-Barn-and-Butler saga of confused causality
1st Quantization: Quantizing phase variables ω and k
Understanding how quantum transitions require "mixed-up" states
Closed cavity vs ring cavity
Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
Magnetic B-field is relativistic sinh $\rho 1^{\text {st }}$ order-effect

Unmatched amplitudes giving galloping waves
Standing Wave Ratio (SWR) and Standing Wave Quotient (SWQ) Analogy with group and phase
Galloping waves
Analogy between wave galloping, Keplarian IHO orbits, and optical polarization Galloping dynamics algebra
Waves that go back in time - The Feynman-Wheeler Switchback

Unmatched amplitudes giving galloping waves

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that we now allow to be unmatched. $\quad\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates $\left(k_{\Sigma}, \omega_{\Sigma}\right)$ and half-difference group rates $\left(k_{\Delta}, \omega_{\Delta}\right)$.

$$
\begin{aligned}
& k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 \\
& \omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
& k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
& \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{aligned}
$$

Unmatched amplitudes giving galloping waves
Standing Wave Ratio (SWR) and Standing Wave Quotient (SWQ)
Analogy with group and phase
Galloping waves
Analogy between wave galloping, Keplarian IHO orbits, and optical polarization Galloping dynamics algebra
Waves that go back in time - The Feynman-Wheeler Switchback

Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that we now allow to be unmatched. $\quad\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates $\left(k_{\Sigma}, \omega_{\Sigma}\right)$ and half-difference group rates $\left(k_{\Delta}, \omega_{\Delta}\right)$.

$$
\begin{aligned}
& k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 \\
& \omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2
\end{aligned}
$$

$$
k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2
$$

$$
\omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
$$

Also important is amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and amplitude half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.

Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that we now allow to be unmatched. $\quad\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates $\left(k_{\Sigma}, \omega_{\Sigma}\right)$ and half-difference group rates ($k_{\Delta}, \omega_{\Delta}$).

$$
\begin{aligned}
& k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 \\
& \omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2
\end{aligned}
$$

$$
k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2
$$

$$
\omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
$$

Also important is amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and amplitude half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.
Detailed wave motion depends on standing-wave-ratio $S W R$ or the inverse standing-wave-quotient $S W Q$.

$$
S W R=\frac{\left(A_{\rightarrow}-A_{\leftarrow}\right)}{\left(A_{\rightarrow}+A_{\leftarrow}\right)}
$$

$$
S W Q=\frac{\left(A_{\rightarrow}+A_{\leftarrow}\right)}{\left(A_{\rightarrow}-A_{\leftarrow}\right)}=\frac{1}{S W R}
$$

Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that we now allow to be unmatched. $\quad\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates $\left(k_{\Sigma}, \omega_{\Sigma}\right)$ and half-difference group rates ($k_{\Delta}, \omega_{\Delta}$).

$$
\begin{array}{ll}
k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 & k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
\omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2 & \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{array}
$$

Also important is amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and amplitude half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.
Detailed wave motion depends on standing-wave-ratio $S W R$ or the inverse standing-wave-quotient $S W Q$.

Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that we now allow to be unmatched. $\quad\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates $\left(k_{\Sigma}, \omega_{\Sigma}\right)$ and half-difference group rates $\left(k_{\Delta}, \omega_{\Delta}\right)$.

$$
\begin{aligned}
& k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 \\
& \omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
& k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
& \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{aligned}
$$

Also important is amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and amplitude half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.
Detailed wave motion depends on standing-wave-ratio $S W R$ or the inverse standing-wave-quotient $S W Q$.
$\frac{\text { Envelope-Min. }}{\text { Envelope-Max. }}=S W R=\frac{\left(A_{\rightarrow}-A_{\leftarrow}\right)}{\left(A_{\rightarrow}+A_{\leftarrow}\right)}$

$$
S W Q=\frac{\left(A_{\rightarrow}+A_{\leftarrow}\right)}{\left(A_{\rightarrow}-A_{\leftarrow}\right)}=\frac{1}{S W R}
$$

These are analogous to frequency ratios for group velocity $V_{\text {group }}<c$ and its inverse that is phase velocity $V_{\text {phase }}>c$.

$$
V_{\text {group }}=\frac{\omega_{\Delta}}{k_{\Delta}}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}-k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)} \quad V_{\text {phase }}=\frac{\omega_{\Sigma}}{k_{\Sigma}}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}+k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}
$$

Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that we now allow to be unmatched. $\quad\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates $\left(k_{\Sigma}, \omega_{\Sigma}\right)$ and half-difference group rates $\left(k_{\Delta}, \omega_{\Delta}\right)$.

$$
\begin{array}{ll}
k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 & k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
\omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2 & \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{array}
$$

Also important is amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and amplitude half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.
Detailed wave motion depends on standing-wave-ratio $S W R$ or the inverse standing-wave-quotient $S W Q$.
$\frac{\text { Envelope-Min. }}{\text { Envelope-Max. }}=S W R=\frac{\left(A_{\rightarrow}-A_{\leftarrow}\right)}{\left(A_{\rightarrow}+A_{\leftarrow}\right)}$

$$
S W Q=\frac{\left(A_{\rightarrow}+A_{\leftarrow}\right)}{\left(A_{\rightarrow}-A_{\leftarrow}\right)}=\frac{1}{S W R}
$$

These are analogous to frequency ratios for group velocity $V_{\text {group }}<c$ and its inverse that is phase velocity $V_{\text {phase }}>c$.

$$
\begin{array}{ll}
V_{\text {group }}=\frac{\omega_{\Delta}}{k_{\Delta}}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}-k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)} & V_{\text {phase }}=\frac{\omega_{\Sigma}}{k_{\Sigma}}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}+k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)} \\
\frac{V_{\text {group }}}{c}=\frac{\omega_{\Delta}}{c k_{\Delta}}=\frac{\left(\omega_{\rightarrow-}-\omega_{\leftarrow}\right)}{c\left(k_{\rightarrow}-k_{\leftarrow}\right)}=\frac{\left(\omega_{\rightarrow-}-\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)} & \frac{V_{\text {phase }}}{c}=\frac{\omega_{\Sigma}}{c k_{\Sigma}}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{c\left(k_{\rightarrow}+k_{\leftarrow}\right)}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}=\frac{c}{V_{\text {group }}}
\end{array}
$$

Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that we now allow to be unmatched. $\quad\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates $\left(k_{\Sigma}, \omega_{\Sigma}\right)$ and half-difference group rates $\left(k_{\Delta}, \omega_{\Delta}\right)$.

$$
\begin{array}{ll}
k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 & k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
\omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2 & \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{array}
$$

Also important is amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and amplitude half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.
Detailed wave motion depends on standing-wave-ratio $S W R$ or the inverse standing-wave-quotient $S W Q$.
$\frac{\text { Envelope-Min. }}{\text { Envelope-Max. }}=S W R=\frac{\left(A_{\rightarrow}-A_{\leftarrow}\right)}{\left(A_{\rightarrow}+A_{\leftarrow}\right)}$

$$
S W Q=\frac{\left(A_{\rightarrow}+A_{\leftarrow}\right)}{\left(A_{\rightarrow}-A_{\leftarrow}\right)}=\frac{1}{S W R}
$$

These are analogous to frequency ratios for group velocity $V_{\text {group }}<c$ and its inverse that is phase velocity $V_{\text {phase }}>c$.

$$
\begin{array}{cc}
V_{\text {group }}=\frac{\omega_{\Delta}}{k_{\Delta}}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}-k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)} & V_{\text {phase }}=\frac{\omega_{\Sigma}}{k_{\Sigma}}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}+k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)} \\
\frac{V_{\text {group }}}{c}=\frac{\omega_{\Delta}}{k_{\Delta}}=\frac{\left(\omega_{\rightarrow-}-\omega_{\leftarrow}\right)}{c\left(k_{\rightarrow}-k_{\leftarrow}\right)}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)} & \frac{V_{\text {phase }}}{c}=\frac{\omega_{\Sigma}}{c k_{\Sigma}}=\frac{\left(\omega_{\rightarrow+}+\omega_{\leftarrow}\right)}{c\left(k_{\rightarrow}+k_{\leftarrow}\right)}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}= \\
\frac{V_{\text {group }}}{c}=\frac{c}{V_{\text {phase }}} & \text { is analogous to: } \quad S W R=\frac{1}{S W Q}
\end{array}
$$

Unmatched amplitudes giving galloping waves
Standing Wave Ratio (SWR) and Standing Wave Quotient (SWQ) Analogy with group and phase
Galloping waves
Analogy between wave galloping, Keplarian IHO orbits, and optical polarization Galloping dynamics algebra
Waves that go back in time - The Feynman-Wheeler Switchback

Unmatched amplitudes giving galloping waves
Standing Wave Ratio (SWR) and Standing Wave Quotient (SWQ) Analogy with group and phase
Galloping waves
Analogy between wave galloping, Keplarian IHO orbits, and optical polarization Galloping dynamics algebra
Waves that go back in time - The Feynman-Wheeler Switchback

Fig. 6.1 Monochromatic (1-frequency) 2-CW wave space-time patterns.

$$
\begin{aligned}
& \text { 2-freq } \\
& \text { cases }
\end{aligned}
$$

Fig. 6.2 Dichromatic (2-frequency) 2-CW wave space-time patterns.
polarization analogy
(a) $b / a=+1 / 1$

$$
\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}
$$

(i) Kepler anomaly relations
$\tan \phi(t)=S W R \tan \omega t$

Unmatched amplitudes giving galloping waves
Standing Wave Ratio (SWR) and Standing Wave Quotient (SWQ) Analogy with group and phase
Galloping waves
Analogy between wave galloping, Keplarian IHO orbits, and optical polarization
Galloping dynamics algebra
Waves that go back in time - The Feynman-Wheeler Switchback

Analogy between wave galloping, Keplarian IHO orbits, and optical polar
We'll show wave galloping is analogous to Keplarian orbital motion of angles $\omega \cdot t$ and ϕ of orbits.

$$
\tan \phi(t)=\frac{b}{a} \tan \omega \cdot t
$$

Kepler anomaly relations $\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}=S W R \cdot \tan \omega t$

Analogy between wave galloping, Keplarian IHO orbits, an
We'll show wave galloping is analogous to Keplarian orbital motion of angles ω

$$
\tan \phi(t)=\frac{b}{a} \tan \omega \cdot t
$$

The eccentric anomaly time derivative of ϕ (angular velocity) gallops between $\omega \cdot b / a$ and $\omega \cdot a / b$.

$$
\dot{\phi}=\frac{d \phi}{d t}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{\sec ^{2} \phi}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{1+\tan ^{2} \phi}=\frac{\omega \cdot b / a}{\cos ^{2} \omega t+(b / a)^{2} \cdot \sin ^{2} \omega t}=\left\{\begin{array}{l}
\omega \cdot b / a \text { for: } \omega t=0, \pi, 2 \pi \ldots \\
\omega \cdot a / b \quad \omega t=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
$$

Elliptic oscillator orbit
$S W R=b / a=1 / 5$
mean $\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}=S W R \cdot \tan \omega t$

Analogy between wave galloping,

We'll show wave galloping is analogous to Keplarian orbital motion of angles $\omega^{\prime} t$ and ϕ of orbits.

$$
\tan \phi(t)=\frac{b}{a} \tan \omega \cdot t
$$

The eccentric anomaly time derivative of ϕ (angular velocity) gallops between $\omega \cdot b / a$ and $\omega \cdot a / b$.

$$
\dot{\phi}=\frac{d \phi}{d t}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{\sec ^{2} \phi}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{1+\tan ^{2} \phi}=\frac{\omega \cdot b / a}{\cos ^{2} \omega t+(b / a)^{2} \cdot \sin ^{2} \omega t}=\left\{\begin{array}{l}
\omega \cdot b / a \text { for: } \omega t=0, \pi, 2 \pi \ldots \\
\omega \cdot a / b \quad \omega t=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
$$

The product of angular moment r^{2} and $\dot{\phi}$ is orbital momentum, a constant proportional to ellipse area.
anomaly relations

$$
r^{2} \frac{d \phi}{d t}=\text { constant }=\left(a^{2} \cos ^{2} \omega t+b^{2} \cdot \sin ^{2} \omega t\right) \frac{d \phi}{d t}=\omega \cdot a b
$$

$$
\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}=S W R \cdot \tan \omega t
$$

Analogy between wave galloping, Keplarian IHO orbits, and optical pola
We'll show wave galloping is analogous to Keplarian orbital motion of angles $\omega \cdot t$ and ϕ of orbits.

$$
\tan \phi(t)=\frac{b}{a} \tan \omega \cdot t
$$

The eccentric anomaly time derivative of ϕ (angular velocity) gallops between $\omega \cdot b / a$ and $\omega \cdot a / b$.

$$
\dot{\phi}=\frac{d \phi}{d t}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{\sec ^{2} \phi}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{1+\tan ^{2} \phi}=\frac{\omega \cdot b / a}{\cos ^{2} \omega t+(b / a)^{2} \cdot \sin ^{2} \omega t}=\left\{\begin{array}{l}
\omega \cdot b / a \text { for: } \omega t=0, \pi, 2 \pi \ldots \\
\omega \cdot a / b \omega t=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
$$

The product of angular moment r^{2} and $\dot{\phi}$ is orbital momentum, a constant proportional to ellipse area.

anomaly relations

$$
r^{2} \frac{d \phi}{d t}=\text { constant }=\left(a^{2} \cos ^{2} \omega t+b^{2} \cdot \sin ^{2} \omega t\right) \frac{d \phi}{d t}=\omega \cdot a b
$$

$$
\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}=S W R \cdot \tan \omega t
$$

Consider galloping wave zeros of a monochromatic wave having $S W R=1 / 5$.

$$
E_{\leftarrow}=0.4, \quad E_{\rightarrow}=0.6
$$

Analogy between wave galloping, Keplarian IHO orbits, and optical polarization

The eccentric anomaly time derivative of ϕ (angular velocity) gallops between $\omega \cdot b / a$ and $\omega \cdot a / b$.

$$
\dot{\phi}=\frac{d \phi}{d t}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{\sec ^{2} \phi}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{1+\tan ^{2} \phi}=\frac{\omega \cdot b / a}{\cos ^{2} \omega t+(b / a)^{2} \cdot \sin ^{2} \omega t}=\left\{\begin{array}{l}
\omega \cdot b / a \text { for: } \omega t=0, \pi, 2 \pi \ldots \\
\omega \cdot a / b \quad \omega t=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
$$

The product of angular moment r^{2} and $\dot{\phi}$ is orbital momentum, a constant proportional to ellipse area.

$$
r^{2} \frac{d \phi}{d t}=\text { constant }=\left(a^{2} \cos ^{2} \omega t+b^{2} \cdot \sin ^{2} \omega t\right) \frac{d \phi}{d t}=\omega \cdot a b
$$

$$
\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}=S W R \cdot \tan \omega t
$$

Consider galloping wave zeros of a monochromatic wave having $S W R=1 / 5$.

$$
E_{\leftarrow}=0.4, \quad E_{\rightarrow}=0.6
$$

Space $k_{0} x$ varies with time $\omega_{0} t$ in the same way that eccentric anomaly ϕ varies with $\omega \cdot t$.
$\tan k_{0} x=-S W R \cdot \cot \omega_{0} t=S W R \cdot \tan \omega_{0} \bar{t}$ where: $\omega_{0} \bar{t}=\omega_{0} t-\pi / 2$

Analogy between wave galloping, Keplarian IHO orbits, and optical polarization

We'll show wave galloping is analogous to Keplarian orbital motion of angles $\omega \cdot t$ and ϕ of orbits.

$$
\tan \phi(t)=\frac{b}{a} \tan \omega \cdot t
$$

The eccentric anomaly time derivative of ϕ (angular velocity) gallops between $\omega \cdot b / a$ and $\omega \cdot a / b$.

$$
\dot{\phi}=\frac{d \phi}{d t}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{\sec ^{2} \phi}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{1+\tan ^{2} \phi}=\frac{\omega \cdot b / a}{\cos ^{2} \omega t+(b / a)^{2} \cdot \sin ^{2} \omega t}=\left\{\begin{array}{l}
\omega \cdot b / a \text { for: } \omega t=0, \pi, 2 \pi \ldots \\
\omega \cdot a / b \quad \omega t=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
$$

The product of angular moment r^{2} and $\dot{\phi}$ is orbital momentum, a constant proportional to ellipse area.

$$
r^{2} \frac{d \phi}{d t}=\text { constant }=\left(a^{2} \cos ^{2} \omega t+b^{2} \cdot \sin ^{2} \omega t\right) \frac{d \phi}{d t}=\omega \cdot a b
$$

$$
\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}=S W R \cdot \tan \omega t
$$

Consider galloping wave zeros of a monochromatic wave having $S W R=1 / 5$. $\rightarrow S W R=+0.2$

$$
0=\operatorname{Re} \Psi(x, t)=\operatorname{Re}\left[A_{\rightarrow} e^{i\left(k_{0} x-\omega_{0} t\right)}+A_{\leftarrow} e^{i\left(-k_{0} x-\omega_{0} t\right)}\right] \text { where: } \omega_{\rightarrow}=\omega_{0}=\omega_{\leftarrow}=c k_{0}=-c k_{\leftarrow}
$$

$$
0=A_{\rightarrow}\left[\cos k_{0} x \cos \omega_{0} t+\sin k_{0} x \sin \omega_{0} t\right]+A_{\leftarrow}\left[\cos k_{0} x \cos \omega_{0} t-\sin k_{0} x \sin \omega_{0} t\right]
$$

$$
\left(A_{\rightarrow}+A_{\leftarrow}\right)\left[\cos k_{0} x \cos \omega_{0} t\right]=-\left(A_{\rightarrow}-A_{\leftarrow}\right)\left[\sin k_{0} x \sin \omega_{0} t\right]
$$

Space $k_{0} x$ varies with time $\omega_{0} t$ in the same way that eccentric anomaly ϕ varies with $\omega \cdot t$.

$$
\tan k_{0} x=-S W R \cdot \cot \omega_{0} t=S W R \cdot \tan \omega_{0} \bar{t} \text { where: } \omega_{0} \bar{t}=\omega_{0} t-\pi / 2
$$

Speed of galloping wave zeros is the time derivative of root location x in units of light velocity c.

$$
\frac{d x}{d t}=c \cdot S W R \frac{\sec ^{2} \omega_{0} \bar{t}}{\sec ^{2} k_{0} x}=\frac{c \cdot S W R}{\cos ^{2} \omega_{0} \bar{t}+S W R^{2} \cdot \sin ^{2} \omega_{0} \bar{t}}=\left\{\begin{array}{l}
c \cdot S W R \text { for: } \bar{t}=0, \pi, 2 \pi \ldots \\
c \cdot S W Q \quad \bar{t}=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
$$

Wave-Zero Speed-Limits

Wave zeros "galloping"
Wave zeros
$S W R=1 / 5{ }^{\text {"resting }}$ at $(1 / 5)$

Wave zeros
"galloping"
at 5 c

$$
\mathrm{E}=0.4, \mathrm{E}=0.6
$$

Speed of galloping wave zeros is the time derivative of root location x in units of light velocity c.

$$
\frac{d x}{d t}=c \cdot S W R \frac{\sec ^{2} \omega_{0} \bar{t}}{\sec ^{2} k_{0} x}=\frac{c \cdot S W R}{\cos ^{2} \omega_{0} \bar{t}+S W R^{2} \cdot \sin ^{2} \omega_{0} \bar{t}}=\left\{\begin{array}{l}
c \cdot S W R \text { for: } \bar{t}=0, \pi, 2 \pi \ldots \\
c \cdot S W Q \quad \bar{t}=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
$$

Wave-Zero Speed-Limits

Standing Wave Ratio SWR and Quotient SWQ $S W R=\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right) /\left(\mathrm{E}_{\rightarrow}+\mathrm{E}_{九}\right)=1 / S W Q$

Wave zeros
Wave zeros "galloping"
$S W R=1 / 5$

$S W R=0$

Wave zeros "galloping"

$$
E_{\leftarrow}=0.5, E_{\rightarrow}=0.5
$$

$S W R=+1$
$S W R=1$ is analogous to $(1, i)$ Right Circular Polarization

$S W R=0$
$S W R=1 / 5$ is analogous to (5-to-1) Right Elliptic Polarization
$S W R=0$ is analogous to (1,0)
x-Plane Linear Polarization
$S W R=-1$ is analogous to (1,-i) Left Circular Polarization

Staircase Galloping Speed of galloping SWR $=+1 / 2$ cancelled by group velocity $u_{G R O U P} / c=-1 / 2$.

Unmatched amplitudes giving galloping waves
Standing Wave Ratio (SWR) and Standing Wave Quotient (SWQ) Analogy with group and phase
Galloping waves
Analogy between wave galloping, Keplarian IHO orbits, and optical polarization Galloping dynamics algebra
Waves that go back in time - The Feynman-Wheeler Switchback
The Ship-Barn-and-Butler saga of confused causality

Fig. 2.B. 11 Ship plot of two Happenings

Waves that go back in time - The Feynman-Wheeler Switchback
Minkowski Zero-Grids are Spacetime Switchbacks for $-u_{\text {GROUP }}<S W R<0$

Group-zero speed

$\omega_{\rightarrow}=4 c$	$\omega_{\leftarrow}=1 c$
$k_{\rightarrow}=4$,	$k_{\leftarrow}=-1$
$u_{\text {GROUP }}=c 3 / 5$	$u_{\text {PHASE }}=c 5 / 3$

At High Speed 2-CW Modes Look More Like 1-CW Beams $\quad \psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}$
Various combinations of opposite-k 1-CW beams occur with open boundaries.
E -wave: $\mathrm{E}=\mathrm{E}_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+\mathrm{E}_{\leftarrow} \mathrm{e}^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}$ is related to Ψ-wave: $\Psi=\psi_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\lrcorner} t\right)}+\psi_{\leftarrow} \mathrm{e}^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}$
Standing Wave Ratio (or Quotient) $S W R=\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right) /\left(\mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}\right)=1 / S W Q$

Wave Group (or Phase) Velocity 1-frequency case : $\omega_{\rightarrow}=2 c, k_{\rightarrow}=2, \omega_{\leftarrow}=2 c, k_{\leftarrow}^{\leftarrow}=-2$ gives: $u_{\text {GROUP }}=0$ and $u_{\text {PHASE }}=\infty$

Staircase Galloping
2-frequency case : $\omega_{\rightarrow}=4 c, k_{\rightarrow}=4$, a

1st Quantization: Quantizing phase variables ω and k Understanding how quantum transitions require "mixed-up" states Closed cavity vs ring cavity

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only) Some
$n=2$

$$
n=3
$$

$$
n=4
$$

NOTE: We're using "false-color" here.

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only) Some

NOT OK numbers: $n=0.67$

$n=2$

$$
n=3
$$

$$
n=4
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left.\left|E_{1}>,\right| E_{2}\right\rangle,\left|E_{3}\right\rangle,\left|E_{4}\right\rangle, \ldots$

1st Quantization: Quantizing phase variables ω and k Understanding how quantum transitions require "mixed-up" states
 Closed cavity vs ring cavity

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only)
Some

NOT OK numbers: $n=0.67$

$$
n=1.7
$$

$n=2$
$n=3$
$n=4$

$n=2.59$
wrong color again!

$$
n=4
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left|E_{1}\right\rangle,\left|E_{2}\right\rangle,\left|E_{3}\right\rangle,\left|E_{4}\right\rangle, \ldots$ That's the only way you get any light in or out of the system to "see" it.

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only) Some
NOT OK numbers: $n=0.67$

$n=2$

$$
n=3
$$

$$
n=4
$$

$$
n=1.7
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left|E_{1}>,\left|E_{2}>,\left|E_{3}>,\right| E_{4}>, \ldots\right.\right.$ That's the only way you get any light in or out of the system to "see" it.

These eigenstates are the only ways the system can "play dead"... ... "sleep with the fishes"...

Consider two lowest E-states bv themselves

$\|\|\cdot\| \cdot\| \cdot\|\cdot\| \cdot\|\cdot N \cdot\|(1) \sqrt{n}\|\cdot\| \cdot\|\cdot\| \cdot \| \cdot$

By Harter- Off and University of Askansas Physics Eblegant ©dacational Toob ©/ince OOO/

Consider two lowest E-states bv themselves in time

$\|\|\cdot\| \cdot\| \cdot\|\cdot\| \cdot\|\cdot N \cdot\|(1) \sqrt{n}\|\cdot\| \cdot\|\cdot\| \cdot \| \cdot$

By Harter-Off and University of Askansas Physics Eblegant ©dacational Toob ©/ince OOO/

By Hatter-Off and University of Askansas Physics Eblegant ©idueational Sedo ©ince 2001

Consider two lowest E-states bv themselves in time

Now combine (add) them and let time roll! $\left(\mathrm{e}^{-i \omega_{1} t}\left|E_{1}\right\rangle+\mathrm{e}^{-i \omega_{2} t}\left|E_{2}\right\rangle\right) / \sqrt{ } 2$

5tt:

Consider two lowest E-states bv themselves in time

By Harter-off and University of Arkaness Physics ©ilegant Wdacational Toob ©fince 2001

Now combine (add) them and let time roll! $\left(\mathrm{e}^{-i \omega_{1} t}\left|E_{1}\right\rangle+\mathrm{e}^{-i \omega_{2} t}\left|E_{2}\right\rangle\right) / \sqrt{ } 2$

Consider two lowest E-states bv themselves in time

By Harter-Qfe and University of Arkaneas Physics Elegant Edacational Soab ©fince SOO/

Now combine (add) them and let time roll! $\left(\mathrm{e}^{-i \omega_{1} t}\left|E_{1}\right\rangle+\mathrm{e}^{-i \omega_{2} t}\left|E_{2}\right\rangle\right) / \sqrt{ } 2$

1st Quantization: Quantizing phase variables ω and k

Understanding how quantum transitions require "mixed-up" states Closed cavity vs ring cavity

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only) Some
NOT OK numbers: $n=0.67$

$n=1.7$

$$
n=3
$$

$$
n=4
$$

wrong color again!

NOTE: We're using "false-color" here.
Rings tolerate a zero (kinkless) quantum wave but require \pm integral wave number. OK ring quantum numbers: $m=0$

$$
m= \pm 1
$$

(\pm integral number of wavelengths)

Bohr's models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics built on Planck-Einstein (1900-1905) relation $E=h v$. DeBroglie relation $p=h \lambda$ comes around 1923.

2nd Quantization: Quantizing amplitudes ("photons", "vibrons", and "what-ever-ons") Introducing coherent states (What lasers use)

Analogy with (ω, k) wave packets
Wave coordinates need coherence

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

or "vacuum" levels
$m=2 \quad m=3$
$m=4$
Quantized Wavenumber ("kink" or momentum number)

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Boosted observers see distorted frequencies and lengths, but will agree on the numbers n and N of mode nodes and photons.

This is how light waves can "fake" some of the properties of classical "things" such as invariance or object permanence.

It takes at least $T W O C W$'s to achieve such invariance. One CW is not enough and cannot have non-zero invariant N. Invariance is an interference effect that needs at least two-to-tango!

Lecture 30 ended here

2nd Quantization: Quantizing amplitudes ("photons","vibrons", and "what-ever-ons")

\rightarrow InIntroducing coherent states (What lasers use)

Analogy with (ω, k) wave packets
Wave coordinates need coherence

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

We saw how adding CW's (Continuous Waves $m=1,2,3 \ldots$) can make $P W$ (Pulse Wave) or WP (Wave Packet) that is more like a classical "thing" with more localization in space x and time t.

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator Amplitude Packet) that is more like a classical wave oscillation with more localization in field amplitude.

Pure photon states have localized (certain) N but delocalized (uncertain) amplitude and phase. $O A P$ states have delocalized (uncertain) N but more localized (certain) amplitude and phase.

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

Pure photon number N-states would make useless spacetime coordinates

Coherent- α-states are defined by continuous amplitude-packet parameter α whose square is average photon number $\bar{N}=|\alpha|^{2}$. Coherent-states make better spacetime coordinates for larger $\bar{N}=|\alpha|^{2}$.

Quantum field coherent α-states

$\bar{N}=100$
$\Delta N=10$

$\bar{N}=10^{6}$
$\Delta N=10^{3}$

$$
\bar{N}=10^{10}
$$

$$
\Delta N=10^{5}
$$

Classical limit

Coherent-state uncertainty in photon number (and mass) varies with amplitude parameter $\Delta N \sim \alpha \sim \sqrt{ } N$ so a coherent state with $\bar{N}=|\alpha|^{2}=10^{6}$ only has a 1-in-1000 uncertainty $\Delta N \sim \alpha \sim \sqrt{ } N=1000$.

Relativistic effects on charge, current, and Maxwell Fields \rightarrow Current density changes by Lorentz asynchrony
 Magnetic B-field is relativistic sinh $\rho 1^{\text {st }}$ order-effect

Relativistic effects on charge, current, and Maxwell Fields

Observer velocity is zero relative to $(+)$ line of charge
wire appears
neutral
$(+)$ Charge fixed (-) Charge moving to right (Negative current density)
$(+)$ Charge density is Equal to the (-) Charge density

Relativistic effects on charge, current, and Maxwell Fields

Observer velocity is zero relative to $(+)$ line of charge
wire appears neutral
$(+)$ Charge fixed (-) Charge moving to right (Negative current density $\overrightarrow{\mathbf{j}}(x, t)$)
$(+)$ Charge density is Equal to the (-) Charge density
(Zero $\rho(x, t)=0)$

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony
Asynchrony dueto off-diagonal $\sinh \rho$ (a $1^{\text {st}}$-order effect)
in Lorentztranform: $:\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right) \sim\left(\begin{array}{cc}1 & (v / c) \\ v / c & 1\end{array}\right)$

$(+)$ Charge fixed (-) Charge moving to right (Negative current densi $\overrightarrow{\mathbf{j}}(x, t))>$
$(+)$ Charge density is Greater than (-) Charge density
(Positive $\rho(x, t)>0) \downarrow$
wire appears
postive (+)
(repulsive to observer $q_{[+]}$)

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
Asynchrony dueto off-diagonal $\sinh \rho$ (a $1^{\text {st}}$-order effect)
in Lorentztranform : $\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right) \sim\left(\begin{array}{cc}1 & v / c \\ v / c & 1\end{array}\right)$

$(+)$ Charge fixed (-) Charge moving to right (Negative $\bar{c} y r e n t$ dens $\hat{\mathbf{j}}(x, t)$)
$(+)$ Charge density is Greater than (-) Charge density * (Positive $\rho(x, t)>0$)

Relativistic effects on charge, current, and Maxwell Fields

Current density changes by Lorentz asynchrony Asynchronydueto off-diagonal sinh ρ (a $1^{\text {st }}$-order effect) in Lorentztranform : $\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right) \sim\left(\begin{array}{cc}1 & v / c \\ v / c & 1\end{array}\right)$
asynchrony

observer has $q_{[+]}$
"test-charge"
Observer velocity is $-v$ relativg to
$(+)$ line of/charge +

Relativistic effects on charge, current, and Maxwell Fields

Current density changes by Lorentz asynchrony Asynchronydueto off-diagonal sinh ρ (a $1^{\text {st }}$-order effect) inLorentztranform: $\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right) \sim\left(\begin{array}{cc}1 & v / c \\ v / c & 1\end{array}\right)$
observer has $q_{[+]}$
"test-charge"
Observer velocity is $-v$ relativg to
$(+)$ line of charge
wire appears negative (-)
(attractive to observer $q_{[+]}$)
$(+)$ Charge fixed (-) Charge moving to right (Negative current density $\overrightarrow{\mathbf{j}}(x, t)$)
$(+)$ Charge density is Less than ${ }^{-}$-) Charge density (Negative $\rho(x, t)<0$)

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony
\rightarrow Magnetic B-field is relativistic sinh $\rho 1^{\text {st }}$ order-effect

Magnetic B-field is relativistic $\sinh \rho 1^{\text {st }}$ order-effect
(-)Trajactory (+)Trajectory

$\frac{\rho(-)}{\rho(+)}=\frac{(+) \text { charge separation }}{(-) \text { charge separation }}=\frac{x(+)+x(-)}{x(-)}$

$$
\frac{\rho(-)}{\rho(+)}=\frac{x(+)}{x(-)}+1=\frac{u v}{c^{2}}+1
$$

$$
\rho(+)-\rho(-)=\rho(+)\left(1-\frac{\rho(-)}{\rho(+)}\right)=-\frac{u v}{c^{2}} \rho(+)
$$

Unit square: $(\mathrm{u} / \mathrm{c}) / 1=\mathrm{x}(+) / \mathrm{y}$

$$
(\mathrm{v} / \mathrm{c}) / 1=\mathrm{y} / \mathrm{x}(-)
$$

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$
\begin{array}{ll}
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \rho}{r}\right], \quad \text { where: } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{N \cdot m^{2}}{\text { Toul. }} & 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9} \\
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{r}\left(-\frac{u v}{c^{2}} \rho(+)\right)\right]=-\frac{2 q v \rho(+) u}{4 \pi \varepsilon_{0} c^{2} r}=-2 \times 10^{-7} \frac{I_{q} I_{\rho}}{r} & \begin{array}{l}
c^{2}=9 \cdot 10^{-16} \\
1 /\left(4 \pi \varepsilon_{0} c^{2}\right)=10^{-7}
\end{array}
\end{array}
$$

I see excess (+)
charge up there. Yuk!

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$
\begin{array}{ll}
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \rho}{r}\right], \quad \text { where: } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{Coul} .} & 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9} \\
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{r}\left(-\frac{u v}{c^{2}} \rho(+)\right)\right]=-\frac{2 q v \rho(+) u}{4 \pi \varepsilon_{0} c^{2} r}=-2 \times 10^{-7} \frac{I_{q} I_{\rho}}{r} & \begin{array}{l}
c^{2}=9 \cdot 10^{-16} \\
\end{array} \sqrt{1 /\left(4 \pi \varepsilon_{0} c^{2}\right)=10^{-7}}
\end{array}
$$

$$
\frac{\rho(-)}{\rho(+)}=\frac{(+) \text { charge separation }}{(-) \text { charge separation }}=\frac{x(+)+x(-)}{x(-)}
$$

Using 4-vectors to EL Transform (charge-current) $=(c \rho, \mathbf{j})$
Unit square: $(\mathrm{u} / \mathrm{c}) / 1=\mathrm{x}(+) / \mathrm{y}$ $(\mathrm{v} / \mathrm{c}) / 1=\mathrm{y} / \mathrm{x}(-)$

