Relativity of interfering and galloping waves: Amplitude and SWR.
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Unmatched amplitudes giving galloping waves

2-CW dynamics has two 1-CW amplitudes A_; and A_ that we now allow to be unmatched. (A_, #A_)

Aﬁei(k_gc—a)_)t) -I-Aeei(k“x_w“t) _ ei(kzx—a)zt)[A%ei(kAx—a)At) _l_Aee—i(kAx—a)At)]

Waves have half-sum mean-phase rates (kx.@s) and half-difference group rates (ka.@5) .

ks = (ky+ k. )/2 kp= (k= ke )/2
ws =(0_,+0_)/2 w,=(0w_,—w,_)/2
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Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_; and A_ that we now allow to be unmatched. (A_, #A_)

Aﬁei(k_gc—a)_)t) -I-Aeei(k*x_w“t) _ ei(kzx—a)zt)[A%ei(kAx—a)At) _l_Aee—i(kAx—a)At)]

Waves have half-sum mean-phase rates (kx.@s) and half-difference group rates (ka.@5) .

ks = (ky+ k. )/2 kp= (k= ke )/2
ws =(0_,+0_)/2 w,=(0w_,—w,_)/2

Also important is amplitude mean Ay = (A, + A_)/2 and amplitude half-difference Ay = (A, — A_)/2.
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Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_; and A_ that we now allow to be unmatched. (A_, #A_)
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Waves have half-sum mean-phase rates (kx.@s) and half-difference group rates (ka.@5) .

ks = (ky+ k. )/2 kp= (k= ke )/2
ws =(0_,+0_)/2 w,=(0w_,—w,_)/2

Also important is amplitude mean Ay = (A, + A_)/2 and amplitude half-difference Ay = (A, — A_)/2.
Detailed wave motion depends on standing-wave-ratio SIWR or the inverse standing-wave-quotient SWO.

AL+ A 1
(A—>_ e) SWR

SWR = (Ae — Ae)

(AL + AL) SWO
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Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_; and A_ that we now allow to be unmatched. (A_, #A_)
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ws =(0_,+0_)/2 w,=(0w_,—w,_)/2

Also important is amplitude mean Ay = (A, + A_)/2 and amplitude half-difference Ay = (A, — A_)/2.
Detailed wave motion depends on standing-wave-ratio SIWR or the inverse standing-wave-quotient SWO.

Envelope—Min.

(A,+A_.) 1

= SWR = (A, = 4)

Envelope—Max. (AL + AL) (A,—-—A_) SWR

[Envelope Maximunj SWQ =

Envelope Minimum >,
N2ay=A,-A0) )7
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Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_; and A_ that we now allow to be unmatched. (A_, #A_)
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ks = (ky+ k. )/2 kp= (k= ke )/2
ws =(0_,+0_)/2 w,=(0w_,—w,_)/2

Also important is amplitude mean Ay = (A, + A_)/2 and amplitude half-difference Ay = (A, — A_)/2.

Detailed wave motion depends on standing-wave-ratio SIWR or the inverse standing-wave-quotient SWO.

Envelope—Max. - (A + A ) (A, — AL) ~ SWR

Envelope—Min.: SWR = (A, — AL) XM\/AI/\\}M o Swo = (A,+A_.) 1

These are analogous to frequency ratios for group velocity Veoup <c and its inverse that is phase velocity Vynase >c.

L0y (0,-o.) (0,-0, ) oy (o,+to.) (w,+w.)
group — - =C Vphase - - =C
ky (ko — k) (0_, + o) ks (k_+ k_) (w_,— o, )
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Galloping waves due to unmatched amplitudes
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ws =(0_,+0_)/2 w,=(0w_,—w,_)/2

Also important is amplitude mean Ay = (A, + A_)/2 and amplitude half-difference Ay = (A, — A_)/2.

Detailed wave motion depends on standing-wave-ratio SIWR or the inverse standing-wave-quotient SWO.

Envelope—Max._ - (A + A ) (A, — AL) ~ SWR

Envelope—Min. SWR = (A, — AL) XM\/AI/\\&M o Swo = (A,+A_.) 1

These are analogous to frequency ratios for group velocity Veoup <c and its inverse that is phase velocity Vynase >c.

O (wﬁ—we)zc(wé—we) a)zz(a)ﬁﬂoe)zc((oﬁﬂoe)

Vv

group ka B (k_, — k) (0_,+ o_) phase = ks (ko + ko) (0, - o)
Vgroup _ (UA _ (0)_)—(09) _ ((0%—0)%) Vphase — Oy _ (60_)+0)e) — (w%—*_we) — ¢
c cky ok, — ko) (0 + 0.) C cky kst ko) (0= 0OL) Vi,
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Galloping waves due to unmatched amplitudes
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Envelope—Max._ - (A + A ) (A, — AL) ~ SWR
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These are analogous to frequency ratios for group velocity Veoup <c and its inverse that is phase velocity Vynase >c.

O (wﬁ—we)zc(wé—we) a)zz(a)ﬁﬂoe)zc((oﬁﬂoe)

Vv

group ka B (k_,— k) (0_,+ o_) phase = ky (ko + k) (0, - o)
Vgroup _ WA _ (0)_)—(09) _ ((U%—(U(_) Vphase — Wy _ (60_)+0)e) — (w%—*_we) — ¢
¢ ky clk,— ko) (0, + o ) ¢ cky kst ko) (05— 0O) Voo
1
Veroup __ ¢ is analogous to: SWR =——
c |4 SWO

phase
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Analogy between wave galloping, Keplarian IHO orbits, and optical polarizatio/n//y'\ 4 mean
yd x;z_%_s_(o anomaly

\

I .
We’ll show wave galloping is analogous to Keplarian orbital motion of angles w*f and ¢ of orbits. @%e ee_\
b
Ean(/)(t)= —tanwa a
a ~
owest spee
%gpt gee r=a
eccentric
\\\/// anomaly
Kepler anomaly relations

y b sin ot
an®()= 5= Teos ot — SWRtan ot

from:Fig. 452 from:Fig.8.6.3
QTforCA CMwBang!
Unit 2 Ch 4 Unit 8 Ch.6
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Analogy between wave galloping, Keplarian IHO orbits, and optical palariZW

mean

anomaly
()t

. . . . I . ighest speed v=)
We’ll show wave galloping is analogous to Keplarian orbital motion of angles w*7 and ¢ of orbits. /) vriabe r=p=]

Ean(p(t) = étanooa
a

— \b

owest speed V=1
apogee r=a=5

eccentric
anomaly

Kepler anomaly relations

oL : : b si
Elliptic oszz/llator/orbzt y ) ()= L -
SWR =b/a = 1/5 | I
S cds F : anomaly
i ot
tghest Speed V=) i
at perigee r<b<=1 | B ,
-~ et o)
a O y:— Sin \ / \A
— Ny X
owest speed V=
apogee r=a=5
eccentric
anomaly
Kepler anomaly relations y b sin ot fromifi. 432 from:Fig. 663
_ . o — Tfor MwBang!
tan®(t) = SWR-tan ot 1an®(1)= %= gcos ot Unit2 Chd  Unit 8 Ch6
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Analogy between wave galloping, Keplarian IHO orbits, and optical polarizW A

|
We’ll show wave galloping is analogous to Keplarian orbital motion of angles w*f and ¢ of orbits.

Ean(p(t) = étanooa
a

The eccentric anomaly time derivative of ¢ (angular velocity) gallops between ® -b/a and  -a/b.

. do bsecza)t_ b sec’ i

w-bla

mean

4(__.__

= G0s W anomaly
— ()t —

= 0]
¢ dt a secqu

Elliptic oscillator orbit Y

al+tan® ¢ cosza)t+(b/a)2 sin® w1

w-b/a for: wt=0, T, 27...
w-alb wt=m/2, 3n/2,...

ighest speed v=)
at perigee r<b<=1
: a / O~

= bla =1/ - e
SWR =b/a =175 17 cds o anomaly
Ot

tghest Speed v=3

at perigee r<b<=1
/’/
d O

owest speed V=
apogee r=a=5

Kepler anomaly relations
tand(t) = SWR-tan wt

eccentric

anomaly
y b sin 0t

tan®(t)= %= g cos ot

\\\ \b
owest speed V=1
apogee r=a=5

eccentric
anomaly
Kepler anomaly relations

y b sin ot
an®()= 5= Teos ot — SWRtan ot

from:Fig.4.5.2 from:Fig.8.6.3
QTforCA CMwBang!
Unit 2 Ch 4 Unit 8 Ch.6
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Analogy between wave galloping, Keplarian IHO orbits, and optical polarizW

mean

anomaly
Wie—

/

ighest speed v=)

I
We’ll show wave galloping is analogous to Keplarian orbital motion of angles wl-t and ¢ of orbits. /s perigee r=p=1
: a / O

Ean(p(t) = étanooa
a ~—— w

The eccentric anomaly time derivative of ¢ (angular velocity) gallops between ® -b/a and ® -a/b. owest speed V=51
apogee r=a#=
2 w-bl/a for: wt=0, 1w, 2m...

qs_ﬁ_w_ésecza)t_w.é sec@r w-bla B
dt " a sec’¢ al+tan’ cos’wr+(b/a) sinfwr | ®-alb wr=m/2,3m/2,..

d . d
r? 9 = constant = (a2 cos wt+b? -sin® a)t)d—(z) =w-ab
t

dt

The product of angular moment »* and (/’) is orbital momentum, a constant proportional to ellipse area. anomaly relations
y b sin ot

tan(t)= %= g cos ot

eccentric
anomaly

= SWR-tan ot

23
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Analogy between wave galloping, Keplarian IHO orbits, and optical polarizatiop—"1—7~4 mean
yd xXEa 7%6s 0 anomaly
. . . . . ! . 1est 6\6\
We’ll show wave galloping is analogous to Keplarian orbital motion of angles w*f and ¢ of orbits. ¢ pbriage P

a

Eanq)(t) = étancoa
a

™
The eccentric anomaly time derivative of ¢ (angular velocity) gallops between ® -b/a and ® -a/b. %Wﬂt ieg‘
apogee r=a
. do bseclwt b sec’mit w-bla ®-b/a for: wt=0, m, 27...
p=—"=0-——5—=0-— —=— = 3 eccentric
dt a sec” ¢ al+tan”¢ cos“wt+(b/a)” -sin“ w1t w-alb wr=m/2,3n/2,.. \\ // ]
- . . . ] anomaly
The product of angular moment 7? and ¢ is orbital momentum, a constant proportional to ellipse area. anomaly relations
2 d) 29 2 .2 .dop y t——y—bsmwt=SWR-tanmt
r E = constant =(a” cos” Wt +b” -sin a)t)z =w-ab an®(t)= %= g cos ot

Consider galloping wave zeros of a monochromatic wave having SWR =1/5.

kox—a)ot)
e

0=Re¥(x,r)= Re[A%el( +A e’("‘ox“"o’)} where: 0_, = 0, = o,_ =ck

0= A_> [cos kOx COS W + sin kox sin wot] + A<_ [cos kox COS Wt — sin kox sin wot}

(A% + Ae)[cos kox cosa)ot] = —(A% — Ae)[sin kox sina)ot]
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A mean

Analogy between wave galloping, Keplarian IHO orbits, and optical polarizW(__
XFa cos ! anomaly

-

ighest speed v=)

I
We’ll show wave galloping is analogous to Keplarian orbital motion of angles wl-t and ¢ of orbits. /s perigee r=p=1
: a / O

Ean(p(t) = étanooa
a ~—— Q

apogee r=a=5

The eccentric anomaly time derivative of ¢ (angular velocity) gallops between ® -b/a and ® -a/b. owest speed v71

dt

Consider galloping wave zeros of a monochromatic wave having SWR =1/5.

k x—.t I(—k x—w,t
0 °)+A e(o 0)} where:a)_>=a)0=a)e—

0=Re¥(x,r)= Re[A_)ei( .
0=A_ [cos kyX cos@yt +sinkqx sin a)ot]+ A_ [cos kyx cos@,t—sinkqx sina)ot}
(A% + Ae)[cos kox cosa)ot] = —(A% — Ae)[sin kox sinwot]

Space kox varies with time mof in the same way that eccentric anomaly ¢ varies with w-7 .

([)—@—a) ésecza)t_w ésecza)t B w-bla _ | w-b/a for:wt=0, m, 2m... .
dt a sec’¢ al+tan” ¢ Cosza)t+(b/a)2-sin2a)t w-alb wt=n/2,3n/2,... /eccent’”llc
- : , _ anomaly
The product of angular moment 7? and ¢ is orbital momentum, a constant proportional to ellipse area. anomaly relations
2 d9 2 2 2 .o . dp y b sinwt
r°—=constant =(a” cos” @t +b” -sin a)t)d— =w-ab 1and()= %= Teos ot — S WRtan ot
4 -

[tan kox =—=SWR-cotwyt = SWR- tanwot_] where: gt =gt —71m/2

25

Thursday, March 6, 2014



XEa Gos o) anomaly
Wte—

Analogy between wave galloping, Keplarian IHO orbits, and optical polarizW(__ Y mean

/ / | AN

. . . . I . ighest speed v=)
We’ll show wave galloping is analogous to Keplarian orbital motion of angles w*7 and ¢ of orbits. /) vriabe r=p=]
: a / O

Ean(p(t) = étana)a
a

The eccentric anomaly time derivative of ¢ (angular velocity) gallops between ® -b/a and  -a/b.

\\ \b
owest speed V=1
apogee r=a=5

qs_ﬁ_w.ésecza)t_ b sec’wt _ w-bla | @-b/a for: @t=0,m, 2m... |
dt a sec’ al+tan’¢ cos’wi+(b/a) -sin’wi w-alb owt=m/2,3n/2,.. eccentrllc
. : , , anomaly
The product of angular moment »° and ¢ is orbital momentum, a constant proportional to ellipse area. anoma Iy relations
2 d 2 2 2 .2 do _ f t:Z—b—Sln(M = SWR-tan 0t
r E—consmnt—(a cos” Wt +b” -sin a)t)z—a)-ab an®d(t)= %= g cos ot

Consider galloping wave zeros of a monochromatic wave having SWR =1/5.

O = Re‘P(x’l') — Re[A%el(kox—wot) + A(_el(_kox—wol‘):| where: CO_) _ (1)0 _ (De _

—_—
= e —_

0= A_) [cos kox COS W + sin kox sin wot] + A(_ [cos kox COS Wt — sin kOx sin wot}

(A% + Ae)[cos kox cosa)ot} = —(A% — Ae)[sin kox sina)ot]

Space kox varies with time mof in the same way that eccentric anomaly ¢ varies with w-z.

[tan kox =—=SWR-cotwyt = SWR- tanwotj where: gt =gt —71m/2

Speed of galloping wave zeros is the time derivative of root location x in units of light velocity c. E - 0 4 E — 0 6
= —

—=c-SWR = — = _
2 c-SWQ t=mn/2,3n/2,..

dx sec” ol c-SWR c-SWR for: t =0, m, 2m...
dt sec” kox  cos” @yf + SWR? -sin” w7
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www.uark.edu/ua/pirelli/php/amplitude_probability 3.ph

Wave zeros .

Wave-Zero Speed-Limits . Astamdine” || 2
— g || s

Standing Wave Ratio SWR and Quotient SWQ SWR=0 at 0-speed | | |z i
__ _ Wave zer _
SWR=E_~E )(E +E)=/swQ [ o
Wave zeros at co-spee a S/ \ =
_ “resting” G
SWR=1/5 ' Sl W |

SWR is i R '

/ =al=nl k%_Z ke__Z ' . ' i~
@ | EOED | %crour=0 0 UprasE® |

8

- -

. E«=0.5 E—>=0.5

\
;n-

- A
- s 1 Wi
= ks b=

E —04E =06

Speed of galloping wave zeros is the time derivative of root location x in units of light velocity c.

c-SWR for:t =0, &, 27...
c-SWQ t=m/2, 3n/2,..

@=C-SWRS€’CZO)O?— c-SWR _{

dt sec” kox  cos” wyf + SWR? -sin” @,
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Wave zeros .

Wave-.Zero Speed-L1m1ts | SWR=() ‘standils”| -
Standing Wave Ratio SWR and Quotient SWQ at 0-speed || |25 =0
_ _ _ Wave zeros =] )|
SWR-E -EVE HE-ISHO e
Wave zeros at co-speed { Ealcnl
SWR=1/5 E/L'QQ/ -]
SWRis at (15)c ®_=2c O, =2 : ; :j
7N 51 (IR M i |
'\ / / o | |EHE i Uerour~ > Uprasg™™ | l
i/ 4 . j SWR=1 is analogous to (1,i) = \\\\V///‘

E

SWR=1/5 is analogous to (5-to-1)
Right Elliptic Polarization
Jlopzng at Sc
t ” ~vvv
artes* ing Stlng

1/5¢ 1/5c

=0.6

=04, E

“galloping” at 5c

x-Plane Linear Polarization

»7/’

Right Circular Polarization

SWR=0 is analogous to (1,0)

A\

»’V

SWR=-1 is analogous to (1,-i)
Left Circular Polarization
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Unmatched amplitudes giving galloping waves

Standing Wave Ratio (SWR) and Standing Wave Quotient (SWQ)
Analogy with group and phase

Galloping waves

Analogy between wave galloping, Keplarian IHO orbits, and optical polarization
Galloping dynamics algebra

Waves that go back in time - The Feynman-Wheeler Switchback
The Ship-Barn-and-Butler saga of confused causality

Thursday, March 6, 2014
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Happening 1
Before
Happening 2

Fig. 2.B.10 Lighthouse plot of two Happenings

ity Ct-ax1S Brief fuster-than-
light travel
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Happening 1
Before
Happening 2

Fig. 2.B.10 Lighthouse plot of two Happenings

Brief travel
back-in-time

Happening 2
Before
Happening 1

Fig. 2.B.11 Ship plot of two Happenings
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www.uark.edu/ua/pirelli/php/amplitude_probability 4.php

Waves that go back in time - The Feynman-Wheeler Switchback

Minkowski Zero-Grids are

- : (Group zero | 3+ ?
Spacetime Switchbacks for 0_j=dc o, =l e a‘? e | ?55155_?%
Ugroup <O WR<0 k=4 k=1 o SR
Ugroup~ €33 Uppsp=C/3 It Group™d WZ/R
Group-zero speed =5¢/ll, <) Phase
Usroup— €3/ / “anti-zero”’
/ / R " going
S WR :0 Fulcri S WR — - 1 / 5 EE ; “back-in-time”
L RlE L { Phase zero )
T8l V| speed limit
i | I | | Edl ~Uppsp TSR
| | | | A THEOE I4ttpy15 SR
| / | Eﬁ_lzy =15 ¢
e 5.1 2
3 5 _15_1
Ep 31107
E 35 25
» i
E_#0.3, EL=05, |
Wave ze/r o-anti-zerg\ / \ WaV zero-anti- zer&
annihilation and creation occur together at annihilation and creation occur separately at
the same spacetime point for SWR=0 different spacetime points for “Uepoyp<SWR<0
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www.uark.edu/ua/pirelli/php/amplitude_probability 2.ph

At High Speed 2-CW Modes Look More Like 1-CW Beams y=E \/%
Various combinations of opposite-k 1-CW beams occur with open boundaries.

E-wave: E=E%ei(k_gc-(o_J)_FE(_ei(kex-(a)et) is related to ‘P—Wave:‘lj=\|1_>ei(k—>x'm—>t) -hyeei(k*x'w*t)
Standing Wave Ratio (or Quotient) Wave Group (or Phase) Velocity

key

SWR=E_-E_Y(E_+E )=1/SWQ |mmbers |u_, Jc=(0_~0 (O _+®_)=c/u,, .

]frequency case . (1)%—20 k —A2 0,_=2c, k.=-2 gzves Ugroup—0 and

'gy'_+ A ‘:F ;. SWR=-0.2
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Ist Quantization: Quantizing phase variables w and k
Understanding how quantum transitions require “mixed-up "’ states

Closed cavity vs ring cavity
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www.uark.edu/ua/pirelli/php/quantized 0.php

Quantlzed ® and & Counting wave kink numbers

If everything 1s made of waves then we expect quantization of everything because
waves only thrive if infegral numbers n of their “kinks™ fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers » are called quantum numbers.

OK box quantum numbers: n=1 n=2 n=3 n=4
(+ integers only) e N TN N\ N\
S — AN = VARV,
ome
NOT OK numbers: n=0.67 n=4
too fat! -
/l\.\ / ~ '
— ...not tolerated !

NOTE: We’re using “false-color” here.

This doesn 't mean a system s energy can t vary continuously between “OK” values E;, E>, E3, Eq4, ...
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www.uark.edu/ua/pirelli/php/quantized 0.php

Quantlzed ® and & Counting wave kink numbers

If everything 1s made of waves then we expect quantization of everything because
waves only thrive if infegral numbers n of their “kinks™ fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers » are called quantum numbers.

OK box quantum numbers: n=1 n=2 n=3 n=4
(+ integers only) e N TN N\ N\
S — — X =\ VARV
ome

NOT OK numbers: n=0.67 n=1.7 n=4

too fat! too thin! B

PR 5\ / —~
i 4
| N ...not tolerated !

NOTE: We’re using “false-color” here.

This doesn 't mean a system s energy can t vary continuously between “OK” values E;, E>, E3, Eq4, ...
In fact its state can be a linear combination of any of the “OK” waves |E1>, |E>>, |E3>, |E4>, ...
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Ist Quantization: Quantizing phase variables w and k
* Understanding how quantum transitions require “mixed-up "’ states

Closed cavity vs ring cavity
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Quantlzed ® and & Counting wave kink numbers

If everything 1s made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers » are called quantum numbers.

OK box quantum numbers: n=1 n=2 n=3 n=4
(+ integers only) ECOAN x A N\
"~ — = VARV,

Some
NOT OK numbers: n=0.67 n=1.7 n=4

too fat! too thin! B

PR RN / ~
I )/
| N ...not tolerated !

NOTE: We’re using “false-color” here.

This doesn 't mean a system s energy can t vary continuously between “OK” values E;, E>, E3, Eq4, ...
In fact its state can be a linear combination of any of the “OK” waves |E1>, |E>>, |E3>, |E4>, ...

That s the only way you get any light in or out of the system to “see’ it.
Es>

E3>

frequency hwss= EsE>»
E>>
W\

frequency hwai= E»E; EA NN
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www.uark.edu/ua/pirelli/php/quantized 0.php

Quantlzed ® and & Counting wave kink numbers

If everything 1s made of waves then we expect quantization of everything because
waves only thrive if integral numbers n of their “kinks” fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers » are called quantum numbers.

OK box quantum numbers: n=1 n=2 n=3 n=4
(+ integers only) ECOAN x A N\
"~ — = VARV,

Some
NOT OK numbers: n=0.67 n=1.7 n=4

too fat! too thin! B

PR RN / ~
I )/
| N ...not tolerated !

NOTE: We’re using “false-color” here.

This doesn t mean a system s energy can t vary continuously between “OK” values E;, E>, E3, Eq4, ...
In fact its state can be a linear combination of any of the “OK” waves |E1>, |E>>, |E3>, |E4>, ...

That s the only way you get any light in or out of the system to “see’ it.
Es>

These eigenstates are the only

E3>A ways the system can “play dead” ...
frequency wse= (Es-E»)/h Er> V\/\/\/\ ... "“sleep with the fishes”...
frequency wa; = (Eo>-E1)/h 75
]> W
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Consider two lowest E-states by themselves
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Consider two lowest E-states by themselves in time
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Ist Quantization: Quantizing phase variables w and k
Understanding how quantum transitions require “mixed-up "’ states

Closed cavity vs ring cavity
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www.uark.edu/ua/pirelli/php/quantized 0.php

Quantlzed ® and & Counting wave kink numbers

If everything 1s made of waves then we expect quantization of everything because
waves only thrive if infegral numbers n of their “kinks™ fit into whatever structure
(box, ring, etc.) they’re supposed to live. The numbers » are called quantum numbers.

OK box quantum numbers: n=1 n=2 n=3 n=4
(+ integers only) ECRN BN D/ SNVA
— — X =\ VAR,

Some
NOT OK numbers: n=0.67 n=4

too fat! -

/I\.\ / ~ '
— ...not tolerated !

NOTE: We’re using “false-color” here.

Rings tolerate a zero (kinkless) quantum wave but require *integral wave number.
OK ring quantum numbers: m=0 m==x1 m==£2

(+ integral number
of wavelengths) |

Bohr’s models of atomic spectra (1913-1923) are beginnings of quan_t;tm wave mechanics
built on Planck-Einstein (1900-1905) relation E=hv. DeBroglie relation p=h/A comes around /923.
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’ 2nd Quantization: Quantizing amplitudes (“photons”, “vibrons”, and “what-ever-ons”)
Introducing coherent states (What lasers use)
Analogy with (w,k) wave packets
Wave coordinates need coherence
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Quantized Ampl itude Counting “photon’” number

www.uark.edu/ua/pirelli/php/quantized |.php

Planck’s relation E=Nmv began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study 1it.

A current view 1s that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude (“photon” num@r)

These are the fu

m=1 m=2

N=0—1

3] levels

_point” or “vacti

ndamental

m=3 m—=4

Quantized Wavenumber (“kink” or momentum number)
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www.uark.edu/ua/pirelli/php/quantized |.php

Quantized Ampl itude Counting “photon’” number

Planck’s relation E=Nmv began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study 1it.

A current view 1s that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.

2 N
£ violet photon
c e\
S = it
o blue photon \ WO\“
o MO«
T A< ..
g i \Nd Quantum field definitions have been called
B N o] [~ —= od o “2nd quantization” or “wave-waves”’
g ’ @Qm NOTE: We're using “false-color” here.
E green photon s\
o e
() Ox@
N ¢
= {he>
S| N =] N,=0 u
o red photon N;=0 [ — » Jevels
2 43 VO_
N =0 r— L fundamenml zero-p
These are the

m=1 m=2 m=3 m=4
Quantized Wavenumber (“kink” or momentum number)
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Quantized Ampl itude Counting “photon’” number

www.uark.edu/ua/pirelli/php/quantized |.php

Planck’s relation E=Nmv began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study 1it.

A current view 1s that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude (“photon” num@r)

N =2

red photons

N =1

|
N

red photon

N,=0

— | ¢ 4
N,=2 = T f@\@* violet photon
green photons A\ oo
& N=1[ = "
wd 3 U
N blue photon \ WO\“
& A ..
‘W@ ,S-\mav Quantum field definitions have been called

N =] <>. &@a" o “2nd quantization” or “wave-waves”

’ jﬁcx NOTE: We're using “false-color” here.

m=2

These are the

>

3] levels

) €€ uum
it or vac

fi Jamental “zor0-pOint

un

m=3 m—=4

Quantized Wavenumber (“kink” or momentum number)
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Quantized Ampl itude Counting “photon’” number

www.uark.edu/ua/pirelli/php/quantized |.php

Planck’s relation E=Nmv began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study 1it.

A current view 1s that it represents the quantization of optical

| field amplitude. We

picture this below as N-photon wave states for each box-moc

e of m wave kinks.

£ $ \S N=1] o
;E, N=2 |~ = ,\@@\@ violgt photon
c A )
| green phOtonz © e \@\7@
c=) ’L‘(\d N3 )| S.\)“O“
° W
.g_ _ /~ N\ W blue photona\ L
8 N=3== R et
8| red photons (i\(\@@ ’3‘\)\“&0 Quantum field definitions have been called
2 | N o] [~ —= &@é" oY “2nd quantization” or “wave-waves”
g N ; =2 [N g;een D Toton \S}‘ Q)QCX NOTE: We're using “false-color” here.
o e
() 0\(@
N ¢
c _ 1 —
S| N=/ %; N,=0
d re d p hO Z_On SR e . levels
N =0 m:> 1 t” or “Vacuum
B 2 | “zero-pout
N =0 r—— fundamenta
These are the
m=1 m=2 m=3 m=4
Quantized Wavenumber (“kink” or momentum number)
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Quantized Ampl itude Counting “photon’” number

www.uark.edu/ua/pirelli/php/quantized |.php

Planck’s relation E=Nmv began as a tenative axiom to explain low-T light. Then he
tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has
grown enormously and continues to amaze, amuse (or bewilder) all who study 1it.

A current view 1s that it represents the quantization of optical field amplitude. We
picture this below as N-photon wave states for each box-mode of m wave kinks.

I
W/

|
N
!
\

Quantized Amplitude (“photon” num@r)

red photon

N,=0

m=2
Quantized Wavenumber (“kink” or momentum number)

These are the

— Y &@@\ vzo{gt photon
reen photons,,:\ ¢
A\ 3 !
N A\ K blue photon \ WO\V\S
oY (WmQuantum field definitions have been called
(i\(\ . gw“ ‘¢ . . i3) 6 I3
N o] [~ —= od oY 2nd quantization” or “wave-waves
’ jﬁcx NOTE: We’re using “‘false-color” here.
green photon s\ ¢
¢
o O1° &
e
% 1 N,=0 -
3] levels
N, =0 | — 2 ero-point 0F v

fundamentd

m=3 m—=4
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A Quantum numbers N of field or n, m,.. of modes are invariants and not changed by boosting velocity.

g
[0 N
3 n=10= n=2
@ E=hv,=hNv,
£~ o N —
| &
(@)
()
c
Ll
~ -
2
1
KA cp=hcxK
\\\; ] /// |
| o
\ > >
|
| ./ //
\ /
| ) //
\\\\x\\\ | L ,} . // , /
— N, = 11—
Nl" =8 — //
| /
| /
/
/
\ | .
~ ‘ ~ /
~__ A /
\ /
\ | / /
\ / /
\ / f 7 \ “‘,f"/
T \
N

= n=3
E=hN,v,
N 270

5 \\

4

7 3 \\\\\\
:
]

cp

1
N—

E=hN;v;

cp

n=4

N

Each mode fundamental frequency v, =nv, and its N-photon multiples belong to invariant hyperbolas.

/\

MVARY

E=hN,v,

AV

P

c-Momentum or hc-Wavenumber

Boosted observers see distorted frequencies and lengths, but
will agree on the numbers n and N of mode nodes and photons.

This 1s how light waves can “fake” some of the properties of
classical “things” such as invariance or object permanence.

It takes at least TWO CW’s to achieve such invariance. One CW
1s not enough and cannot have non-zero invariant N . Invariance
1s an interference effect that needs at least two-to-tango!

www.uark.edu/ua/pirelli/php/quantized_2.ph
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http://www.uark.edu/ua/pirelli/php/quantized_1.php
http://www.uark.edu/ua/pirelli/php/quantized_1.php

Lecture 30 ended here

2nd Quantization: Quantizing amplitudes (“photons”, “vibrons”, and “what-ever-ons”)
Introducing coherent states (What lasers use)
Analogy with (w,k) wave packets
Wave coordinates need coherence
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www.uark.edu/ua/pirelli/php/coherent_vs_photon_|.php

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets
We saw how adding CW’s (Continuous Waves m=1,2,3...) can make PW (Pulse Wave) or WP (Wave Packet)
that 1s more like a classical “thing” with more localization in space x and time ¢.

m=1)  PLUS - PLUS  n5) etc. EQUALS [P, Time t

Space x
Analogy: -

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator
Amplitude Packet) that 1s more like a classical wave oscillation with more localization 1n field amplitude.

IN=0) PLUS IN=1) PLUS IN=2) etc EQUALS |OAP) ATime t
Qwunc!umy |

[-poinguncertainty

Zero-poi certainly -

- ]

@m&@m{émww

(hbbiRbbd A

N=0 * - G 1 G
Zero-photon state [-photon state 2—p50ton state OSCZZZatmg Amplitude Packet
>

(Vacuum state) (Fundamental) (1st overtone)

Field Amplitude E

Pure photon'states have localized (certain) Nbut  delocalized (uncertain) amplitude and phase. *

OAP states have delocalized (uncertain) N but more localized (certain) amplitude and phase.

www.uark.edu/ua/pirelli/php/coherent_vs_photon_|.php
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www.uark.edu/ua/pirelli/php/coherent_vs_photon_2.php

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

Pure photon number N-states would make useless spacetime coordinates
ATime t

Phtn numer N-state

S Total uncertainty of amplitude and phase makes the count pattern a wash.
i : To see grids some N-uncertainty is necessary!

s Space X

Coherent-a-states are defined by continuous amplitude-packet parameter o0 whose square 1s average
photon number N=|a|>. Coherent-states make better spacetime coordinates for larger N=|o/?.

Quantum field coherent O-states Classical limit

N=1010
AN=10 AN=10° AN=1(°
Coherent-state uncertainty in photon number (and mass) varies with amplitude parameter AN~0~VN s0

a coherent state with N=|o*> =10° only has a 1-in-1000 uncertainty AN~0~NN=1000.
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Relativistic effects on charge, current, and Maxwell Fields

* Current density changes by Lorentz asynchrony
Magnetic B-field is relativistic sinhp [5! order-effect
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Relativistic effects on charge, current, and Maxwell Fields

Observer velocity
1s zero relative to
(+) line of charge

wire appears
neutral

(+) Charge fixed (-) Charge moving to right (Negative current density)
(+) Charge density 1s Equal to the (-) Charge density
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Relativistic effects on charge, current, and Maxwell Fields

Observer velocity
1s zero relative to
(+) line of charge

wire appears
neutral

(+) Charge fixed (-) Charge moving to right (Negative current density j(x.t))
(+) Charge density 1s Equal to the (-) Charge density (Zero p(x,t)=0)
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Relativistic effects on charge, current, and Maxwell Fields

Current density changes by Lorentz

Asynchrony dueio off-diagonal (sinh p) (a 1¥-order effect)

( coshp (sinhp ) { 1 (vic ]
in Lorentztranform :| ~
sinhp  coshp %

/c 1

asynchrony
in PAST observer has

q[+]
“test-charge”

asynchrony
; i FUTYRE Observer velocit
+) is +v relative to

| (+)\ine of charge

(+) Charge fixed (-) Charge moving to right (Negative current densi¥ j(x.t))
(+) Charge density i1s Greater than (-) Charge density (Positive p(x,t)>0)
wire appears
postive (+)
(repulsive to
observer gp+))
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Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz
Asynchrony dueto off-diagonal (a 1™-order effect)

cosh 1 (vic
in Lorentztranform : ~
cosh vic 1

observer has

qi+]

asynchrony “test-charge”

" | R _ ODbserver velocit

Lo e asynchrony . relative to

"""" v \\"c of charg:

(+) Charge fixed (-) Charge moving to right (Regarive énprent denXh SRS

(+) Charge density is Greater than (-) Chargedensity * (Positive} p(x,t)> 7

yire appear
pOstive (+)
(repulsive to
observer gp+))
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Relativistic effects on charge, current, and Maxwell Fields

Current density changes by Lorentz observer has
Asynchrony dueto off-diagonal (a 1™-order effect) ql+]
“test-charge”
cosh 1 (vic
in Lorentz tranform : ~

1

cosh v/c Observer velocity

1s -v relativeg to

asynchrony (+) line offcharge
in PAST =

2308,

asynchrony

in|FUTURE . _ - _4 wire appears

(attractive to
observer gp+))

(+) Charge fixed (-) Charge moving to right (Negative current density j(x.t))
(+) Charge density is Less than (-) Charge density (Negative p(x,1)<0)
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Relativistic effects on charge, current, and Maxwell Fields

Current density changes by Lorentz observer has
Asynchrony dueto off-diagonal (a 1™-order effect) ql+]
“test-charge”
cosh 1 (vic
in Lorentz tranform : ~

vic 1

cosh Observer velocity
| is -v relativg to

(+) line offcharge

asynchrony
in PAST

asynchrony wire appears
in|FUTURE | , negative (-)

| T (attractive to
. observer g[+])
(+) Charge fixed (-) Charge n) Wit (Negative current density j(x,t))
(+) Charge density is Less thag{-) Charge density (Negative p(x,1)<0)
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Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
* Magnetic B-field is relativistic sinhp [5! order-effect
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Magnetic B-field is relativistic sinhp [ order-effect

p(=) _ (+) charge separation _ x(+)+x(-)

p(+) - (—) charge separation x(—)

(+) charge
separation

L T _
(-) ch |X(+)—y u/c | = ~ + 1= +
sep(;r:tri%)?l I =X(-) UV/CZI p(+)  x(=) c?
- |
vie p(=)|_ _uv
P =p()=p(1)| 1-5 === o)

Unit square: (u/c) /1 = x(+)/y
(v/c) /1 =y/x(-)
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Magnetic B-field is relativistic sinhp 15! order-effect

The electric force field E of a charged line varies inversely with radius. The Gauss formula for force in mks units :

2
F=qE:q|:41 2pi| , Where: 41 :9X109]Z'ml
ot "o out 147z 4=9-10°
1 2( wuv 2 qv p(+)u - ]q Ip c2=9-1(0-16
F=gF=qg| ———| — = —_2%10
! QLMO ’”( c? p(ﬂﬂ dme c” v g r 1/(4mepc?)=10"7
' [H<O 4F
S L
| >0 o+
+ g > [ see excess (+)
F (repels) " charge up there. Yuk!
' [5<0 &F
. < = A+
<

[ see excess (-) < :
charge up there. Yum! F (attracts)
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Magnetic B-field is relativistic sinhp 15! order-effect

The electric force field E of a charged line varies inversely with radius. The Gauss formula for force in mks units :

2
F:qE:qu1 2/3} ,  Where: 41 :9X109]Z’ml
TCEO r TESO oul. ]/47T80 —0.70°
I 1 2=0.7()16
4me, r c? 47t8002 r r 1/(4mepc?)=10"7
' Ip<0 AF
% ‘ - - __)_ - - - - _
‘ >0 +++++++++
+ g > [ see excess (1)
F (repels) " charge up there. Yuk!
Nlvinhieia
<€ (Suppose (+) carriers)
' Ip<0 F
: < ++4+++++++
; O it Iq<0
see excess (- ' @ —m—L (1 Ll
.*/4 + 4 F 4
Charge up there. Yum. F (attracts) <€<— (Suppose (1) carriers)
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p(—)  (+) charge separation  x(+)+ x(—)

p(+) (-) charge separation  x(-)

(+) charge
separation

(-) charge
separation

—v (| ~
y=X()|v/c

> >

Unit square: (u/c) /1 = x(+)/y
(v/ic) /1 = y/x(-)

| x(+)=y u/c | P _ x(+)+l—% 1
i=x<-) uv/c2j{ p(+)  x(=) ¢
v/c

Using 4-vectors to EL Transform (charge-current)=(cp, J)
( cp’ ) ( coshp sinhp Y cp \

J sinhp coshp J

Jy Jy
N AN

Thursday, March 6, 2014

70



