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Circular Functions

mZ(0) = 0.6435
Length(o) = 0.6435
Area(o) =0.6435

sin(0) = 0.6000
tan(o) = 0.7500
sec(o) =1.2500

cos(o) = 0.8000

cot(o) = 1.3333
csc(0) = 1.6667
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[ Sin-Tan Rosetta Q | Transistion to Hyperbolic @

“Sin-Tan Rosetta”

Circular Functions
mZ(0) = 0.6435 rapidity p
Length(o) = 0.6435
Area(o) =0.6435
sin(0) = 0.6000
tan(o) = 0.7500
sec(o)=1.2500
cos(o) =0.8000
cot(o)=1.3333
csc(o) = 1.6667 /
1(0)
tanh(o)
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stellar aberration angle o

Circular Functions
mZ(o) =0.6435
Length(o) = 0.6435
Area(o) =0.6435
sin(o) = 0.6000

tan(o) =0.7500
sec(0) =1.2500

cos(o) =0.8000
cot(o) =1.3333 —

csc(0) = 1.6667 P

rapidity p

cot(o) =csch(p)

h(0) = sinh(p)
sinh(p)

Thursday, February 20, 2014



[ Sin-Tan Rosetta @ | Transistion to Hyperbolic @

stellar aberration angle o

“Sin-Tan Rosetta™
Circular Functions Hyperbolic Functions

mZ(0) = 0.6435 0=0.6931 rapidity p
Length(o) = 0.6435

Area(o) =0.6435 Area(p) =0.6931

sin(o) = 0.6000 tanh(p) = 0.6000

tan(o) = 0.7500 sinh(p) =0.7500

sec(o) = 1.2500 cosh(p) = 1.2500
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Hyperbolic Eunctions
0= 1.08811;‘\

Area(p) = 1.0881
sinh(p) = 1.3159
cosh(p) = 1.6527
tanh(p) = 0.7962
csch(p) = 0.7600
sech(p) = 0.6051
coth(p) = 1.2560

Circular Functions -

mZ(0) =0.9209
Length(o) = 0.9209
a(0) =0.9209

Sc(0) = l.§56()
sec(o) = 1.6527
cot(o) = 0.7600
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The “Sinh-Tanh Rosetta’™

HyperbolicWions Circular Functions

0 = 1.0881
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Per-Time (w)
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Per-space-time has Minkowski coordinates, too!

R T NGO — Gz

LASER LAB FRAME ATOM FRAME view of LASER WAVE.

atg speed -u @ —

LaserPer-Spacetime AtomPer-Spacetime
) versus Ck (l), versus Ck,

1'24@!@""-["1_12 \_PQT)VOT 1z

4.
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600THz or 500nm

500THz or 600nm

2, 400THz or 750nm
(=
1 o
N O
% \& Laser per-space
ck
-2 1 1 2

Atom per-space

ck’

7 Fig. 3.5 from
CMwBang!

Fig. 8.3.5 Dispersion hyperbolas for 2-CW interference (a) Laser lab view. (b)Atom frame view. _
Ch. 3 of Unit §.
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Group velocity u and phase velocity c*/u
are hyperbolic tangent slopes

P hyperbolas
C Ak > ¢ line

G

\ hyperbolas
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|
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Ch. 3 of Unit §.
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Group velocity u and phase velocity c*/u
are hyperbolic tangent slopes

Rare but important case where

Relativistic
group wave

speed u=c tanh p

do Ao

dk Ak
with LARGE Ak
(not infinitesimal)

P A ———
B sinh p

Low speed approximation

Newtonian speed u~cp

Rapidity p approaches u/c

Thursday, February 20, 2014
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Group velocity u and phase velocity c*/u
are hyperbolic tangent slopes

-

u  Group velocity

_ck
W

ck
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. . 2 Fig. 3.4 from
Group velocity u and phase velocity c*/u CMwBang!
are hyperbolic tangent slopes Ch. 3 of Unit 8
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-2 -1 0 1 2 3 4
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do _ Ao e ¢ Ak =

dk Ak
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(not infinitesimal) fo ///’/‘\\ g

7 Newtonian speed u~cp

Relativistic ' \ Low speed approximation
group wave N -
speed u=c tanh | Rapidity p approaches u/c
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Relativistic Classical and Quantum Mechanics

How optical CW group and phase properties give relativistic mechanics
What s the Matter with Mass?

Brief look at Higgs
Three kinds of mass (Einstein rest mass, Galilean momentum mass, Newtonian inertial mass)
What's the matter with light?
Bohr-Schrodinger (BS) approximation throws out Mc?
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Start with low speed approximations: @ = Bcoshp=B(1+,p’+...) where: p = ?
%

CW Axioms (“All colors go c.” and “r=1/b) imply hyperbolic dispersion
then mechanics of matter

1B 9 These follow from

W= BCOShpﬁ B+—?H ‘_‘ \ CW axioms / k=—8111hp——21»¢‘_‘

Thursday, February 20, 2014
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Start with low speed approximations: @ = Bcoshp=B(1+,p’+...) where: p = ?

C
CW Axioms (“All colors go c.” and “r=1/b) imply hyperbolic dispersion
then mechanics of matter

1 These follow f B . B
m=Bcoshsz+5§2uzl NCE R lar

1
E= constant + EMIIZ P = Mu <~—

(Newton's energy) (Galileo s momentum)

So 2-CW-light frequency m is like|energy| E while i-number 1s like momentum p,
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Start with low speed approximations: @ = Bcoshp=B(1+,p’+...) where: p = ?

C
CW Axioms (“All colors go c.” and “r=1/b) imply hyperbolic dispersion
then mechanics of matter

1 These follow f B . B
m=Bcoshsz+5§2uzl NCE R lar

1
E= constant + EMIIZ P = MH -

(Newton's energy) (Galileo s momentum)
So 2-CW-light frequency m is like|energy| E while i-number 1s like momentum p,

implies Planck's E=s- scaling with|factors: s=h=s equal to DeBroglie’s p=s-k.

—_ — I B - —_ :_B 1 ,-.,_B -+
E=sw=sB cosh p= sB +-52u? ) | p=sk=<; Smhp=igﬂ

c .
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Start with low speed approximations: @ = Bcoshp=B(1+,p’+...) where: p = ?

C
CW Axioms (“All colors go c.” and “r=1/b) imply hyperbolic dispersion
then mechanics of matter

1 These follow f B . B
0= cosh p= B+5§2uzl N et

1
E= constant + EMHZ P = MH -

(Newton's energy) (Galileo s momentum)
So 2-CW-light frequency m is like|energy| E while i-number 1s like momentum p,

implies Planck's E=s- scaling with|factors: s=h=s equal to DeBroglie’s p=s-k.

— SBginh o= 3B -
~—sinh p= 2 U

E=sm=sB cosh p= sB +%%u2 pum—— p=sk

giving|a (famous) rest eneray constant. : | sB=Me?

Both relations imply: ‘M Z%

E

This then gives the famous Ei

nstein|energy| £ and also the Einstein momentum p
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CW Axioms (“All colors go c.” and “r=1/b) imply hyperbolic dispersion
then mechanics of matter

1 These follow f B . B
m=Bcoshsz+5§2uzl NCE R lar

1
E= constant + EMIIZ P = MH -

(Newton's energy) (Galileo s momentum)
So 2-CW-light frequency m is like|energy| E while i-number 1s like momentum p,

implies Planck's E=s- scaling with|factors: s=h=s equal to DeBroglie’s p=s-k.

— SBginh o= 3B -
~—sinh p= 242

E=sm=sB cosh p= sB +%%u2 pum—— p=sk

giving|a (famous) rest eneray constant. : | sB=Me?

Both relations imply: ‘M Z%

E

This then gives the famous Einstein energy| E and also the Einstein momentun p

1 — ol — - —_
E=sw=Mc?cosh p= Mc? +5 Mu? «<— | p=sk=Mecsinhp= Mu «—
2
_ _Mc . | Mu
= Scale factors determined by experiment =
/\/1- u’/c? Planck's constant ’\/1— u’/c?

Rest enerey(i= 0): hB=Mc” s=N=1.054572-10Joule's
o h=6.626069-10-34Js=2rh

Thursday, February 20, 2014



Summary of geometry W-vs-cK or E-vs-cp relations with velocity u or rapidity p

Lxact y , ’
Relativistic ® — / = tanh p = p+...
/! C
group wave C / Newtonian
speed u=c tanh p / speed u~cp
\“\\ approximates /// Low {ﬁééd@ﬁpfOXlMdflOﬂ
N \Vow speed /’ rest Newtonian
| N\
_ Lxact energy  energy
'Newton’s 1
parsials only a E=hw=Mc’cosh p= Mc? +5 Mu?

little better than circl

A1- u2/c?
Relativistic
Planck energy
E=h w ck
Relativistic p= hk = Mc sinh p‘g Mu Newtonian momentum
DeBroglie momentum — Mu Where: h B_ =M |is rest mass
p=h k A/1- u2/c2 ¢’
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\

Einstein - Planck Dispersion

_ E2 - c2p2 =me22 /7
\ .
\\\\\ Energy ,
N\ | E=p ’
. =nw tachyon:
photon: M=0
E=cp
\\ Momentum
| <4 N\ | cp=hck
\ \ NN
Bohr - Schrodinger Dispersion
W}, =49 ]
36 H = p22Mm \\
N QY\\\
D5 N N\
/6 E = Bm?
9
4
(1

-6-4-4-3-2-1 012345 6<
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Relativistic Classical and Quantum Mechanics

How optical CW group and phase properties give relativistic mechanics
What s the Matter with Mass?

Brief look at Higgs
Three kinds of mass (Einstein rest mass, Galilean momentum mass, Newtonian inertial mass)
What's the matter with light?
Bohr-Schrodinger (BS) approximation throws out Mc?
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What's the matter with Mass?

Dealing with one of the elephants in the spacetime room:

A brief History of defining Mass M :
1590 Galileo’s “impago”

M. . = Momentum — M

1687 Newton's “inertia”

ct M _ Change in Momentum _ M-a
Newton  Change in Velocity a

1905 Einstein's “rest mass”’

M - Energy M2
FEinstein (lightspeed)? o2
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What's the matter with Mass?

Dealing with one of the elephants in the spacetime room:

ct

A brief History of defining Mass M :

1590 Galileo’s “impago”

M. . = Momentum — M

1687 Newton's “inertia”

M _ Change in Momentum _ M-a
Newton  Change in Velocity a

1905 Einstein's “rest mass”’

M - Energy M2
FEinstein (lightspeed)? o2

2013 Higgs “Boson”

MHiggS: ?  (No simple formula)
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What's the matter with Mass?

ct

News for higgs boson

Fas  \Working on the '‘God particle' saved my life, says Peter Higgs
S~ The Independent - by Kunal Dutta - 1 day ago
lli—5 = The Nobel prize-winning physicist Peter Higgs has described the

g ;.;.‘"j' ¥ fame he has endured since the discovery of his "God particle" as “a
' i bitofa...

Dealing with one of the elephants in the spacetime room:

A brief History of defining Mass M :

1590 Galileo’s “impago”

M. . = Momentum — M

1687 Newton's “inertia”

M _ Change in Momentum _ M-a
Newton  Change in Velocity a

1905 Einstein's “rest mass”’

M - Energy M2
FEinstein (lightspeed)? o2

2013 Higgs “Boson”

MHiggS: ?  (No simple formula)
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What's the matter with Mass?

Dealing with one of the elephants in the spacetime room:

A brief History of defining Mass M :

1590 Galileo’s “impago”

M. . = Momentum — M

1687 Newton's “inertia”

ct M _ Change in Momentum _ M-a
Newton  Change in Velocity a

1905 Einstein's “rest mass”’

News for higgs boson

Ener 2
PR Working on the ‘God particle’ saved my life, says Peter Higgs M Einstein — ZTgX )2 = Mc
e The Independent - by Kunal Dutta - 1 day ago mstein (lightspee ) ¢’
" J—%'ay The Nobel prize-winning physicist Peter Higgs has described the
1 . RSt fame he has endured since the discovery of his “God particle” as “a o ¢ 9
B bitofa... 2013 Higgs “Boson
Father of 'the God particle’ Peter Higgs says fame is a bit of a nuisance M =7 (No simple formula)

The Guardian - 1 day ago Higgs

Professor Higgs Says Fame Is 'A Bit Of A Nuisance' Since Boson's Discovery
Huffington Post UK - 1 day ago
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Peter Higgs and the Higgs
Boson

In the News

Companion of Honour
Letters of Congratulation
Higgs Boson Discovery
Higgs Centre for Theoretical
Physics

Searching for the Higgs
Boson

Higgs Research at Edinburgh

Brief History of the Higgs
Mechanism

Peter Higgs: Curriculum
Vitae

My Life As A Boson

Nonino Prize Man of Our
Time 2013

Edinburgh Award 2011

A Layperson's Guide to the
Higgs Boson

A Lay-Scientist's Guide to the
Higgs Boson

Image Galleries
Contact Us

Welcome to the Higgs site at the University of Edinburgh

8th October 2013: The Nobel Prize in Physics 2013 was awarded jointly to
Francois Englert and Peter W. Higgs "for the theoretical discovery of a
mechanism that contributes to our understanding of the origin of mass of
subatomic particles, and which recently was confirmed through the
discovery of the pr%dicted fundamental particle, by the ATLAS and CMS
experiments at CERN's Large Hadron Collider” Nobel Prize
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544

Higgs Model based on Molecular
Symmetry Stablllty (Jahn, Teller, Renner, ...)

_ The electronic eigenstates can be expressed very nicely in terms of the
(o gs Boson t normal coordinate polar angle for the case r = 0
<

ATF

.
I Radi o e -

O'TNE

le,) = cos(d>/2)‘§>— sin( ¢ /2)

(6.7.9)

le_) = sin(¢/2)|‘15> + cos(b/2) §>

1.2-Coordinate Plots

Welcome to the Higgs site at the University of Edi~n‘bu:'gh
8th October 2013: The Nobel Prize in Physics 2013 was awarded~j5rmly 30

~

Frangois Englert and Peter W. Higgs "for the theoretical discoveryofa ~~_

~

mechanism that contributes to our understanding of the origin of mass of Fi ~r§~ ,
subatomic particles, and which recently was confirmed through the gu )
discovery of the prbdicted fundamental particle, by the ATLAS and CMS  t€rms (r=

experiments at CERN's Large Hadron Collider” Nobel Prize

INTRODUCTION TO THEORY OF SYMMETRY STABILITY
¢ = 360°

545

THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATION PRODUCTS

Fig. 6.7.1-2
from
Principles of

Symmetry,
Dynamics and
Spectroscopy

Figure 6.7.2 Electronic state |e ) for various nuclear positions allowed by varying E
coardinates
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Relativistic Classical and Quantum Mechanics

How optical CW group and phase properties give relativistic mechanics
What s the Matter with Mass?

Brief look at Higgs
Three kinds of mass (Einstein rest mass, Galilean momentum mass, Newtonian inertial mass)
What's the matter with light?
Bohr-Schrodinger (BS) approximation throws out Mc?
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What’s the Matter With nght?T hree definitions of “optical mass”

1. Rest mass M,~hv,/c? based on Planck’s law E=hv,=Nhv,
Rest mass: M _=E/c?=hv ]\/CZ (Is p-invariant)

rest

Thursday, February 20, 2014

40



1. Rest mass M NZhU N/c2 based on Planck’s law E=hv NzNhD ;
=E/c’=hv A/CZ (Is p-invariant)

Rest mass: M ost

2. Momentum mass 1s defined by Galileo’s old formula p=Mu with newer forms for
u-cosh p=M __u-/(1-u?/c?)!”? and group velocity u = dw/dk.

momentum p=/N ost

rest
It 1s the ratio p/u of momentum to velocity.

Momentum mass: M =p/u =M coshp (Not p-invariant)
=M /(1-1/12/62)1/2

res

41
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1. Rest mass M, =hv N/c2 based on Planck’s law £=hv, =Nhv,
Rest mass: M , St:E/CZ =hv N/02 (Is p-invariant)

2. Momentum mass 1s defined by Galileo’s old formula p=Mu with newer forms for
momentum p=M __u-cosh p=M __u/(1-u?/c?)*? and group velocity u = dw/dk.

rest rest
It 1s the ratio p/u of momentum to velocity.

Momentum mass: M =p/u =M _ _coshp (Not p-invariant)

momentum rest

=M /(1-u?/c?)1?

res

3. Effective mass 1s defined by Newton’s old formula F'=Ma with newer forms
for F=dp/dt=nhdk/dt and a=du/dt= to give F/a=(hdk/dt)(dt/du)=hdk/du=n/(du/dk).

It 1s the ratio F/a of change of momentum to the change of velocity,

Effective mass: M effective =h/(du/dk)=h/(d°ov/dk?) (Not p-invariant)
=M cosh3p=M __/(1-u?/c?)*?

rest res
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Relativistic Classical and Quantum Mechanics

How optical CW group and phase properties give relativistic mechanics
What s the Matter with Mass?
Brief look at Higgs
Three kinds of mass (Einstein rest mass, Galilean momentum mass, Newtonian inertial mass)
What's the matter with light? (Not too much.)
Bohr-Schrodinger (BS) approximation throws out Mc?
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What's the matter with light?

(1)Einstein rest mass

MVeSt: hwproper

2
C

Three kinds of mass for photon Yy in CW relativistic theory

(2) Galilean momentum mass (3) Newtonian inertial mass
Mipom=p/u=1% Mipom=F/a=—"
mom — do mom Lo
dk dk’
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What's the matter with light?
Three kinds of mass for photon Yy in CW relativistic theory

(1)Einstein rest mass (2) Galilean mon%intum mass (3) Newtonian inertial mass
p— ha) roper p— e p— p—
Myesi= 5—2 Myom p/u d_a) Meﬁf Fra o
dk dk>
Mest(7Y)=0 Mpom(Y)=p/c=hk/c=hw/c? Mep(7y) =00

Equations (4.11) in Unit 8
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What's the matter with light?

Three kinds of mass for photon Yy in CW relativistic theory

(1)Einstein rest mass (2) Galilean mon%intum mass (3) Newtonian inel;_ltial mass
p— ha) roper j— e p— p—
Myesi= cp—2 M om p/M d_a) Meﬁf F/a e
dk dk’
Mest(7Y)=0 Mpom(Y)=p/c=hk/c=hw/c? Mep(7y) =00

Equations (4.11) in Unit 8

A 2-CW 600THz cavity has zero total momentum p, but each photon adds a tiny mass M, to it.
M~=ho/c=m (1.2:10°Nkg-s= 4.5-103%g (for: ®=2m-600THz )
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What's the matter with light?

Three kinds of mass for photon Yy in CW relativistic theory

(1)Einstein rest mass (2) Galilean mon;zlintum mass (3) Newtonian inel;_ltial mass
— hw roper — __ g —
Miyest= cp—2 Miom p/M do Meff Fra Lo
dk dk’
Mrest(Y) =() Mmom(Y) :p/C:hk/C:hO)/CZ Meﬁ(”Y) =00

Equations (4.11) in Unit 8

A 2-CW 600THz cavity has zero total momentum p, but each photon adds a tiny mass M, to it.
M~=ho/c=m (1.2:10°Nkg-s= 4.5-103%g (for: ®=2m-600THz )

A 1-CW state has no rest mass, but 1-photon momentum is a non-zero value py=My c. (Galilean revenge I1.)

py=hk=ho/c=m (4.5-10)kg-m=1.7-10*"kg-m-s! (for: ®=2n-600THz )
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Relativistic Classical and Quantum Mechanics

How optical CW group and phase properties give relativistic mechanics
What s the Matter with Mass?

Brief look at Higgs
Three kinds of mass (Einstein rest mass, Galilean momentum mass, Newtonian inertial mass)
What's the matter with light?
Bohr-Schrodinger (BS) approximation throws out Mc?
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Bohr-Schrodinger (BS) approximation throws out Mc?

M02

E =
\/1—1/12/02

2
= Mc? cosh p = Mc? \/1 + sinh? p= \/(Mc2) =+ (cp)2

SN ! !
_ 2 a2 2 . 2
E—{(Mc ) +(cp) } ~ Mc +2Mp BS—ampron ,2Mp

t.
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Bohr-Schrodinger (BS) approximation throws out Mc?

M02

) \/1—u2 /2 = Mc? cosh p = Mcz\/1+sinh2 p= \/(Mcz)2 +(cp)2

E

1
D’

) 5 1/2 1
_ 2 _ 2, & 2 .
E= {(Mc ) +(cp) } =~ Mc™ + Y, p BS—approx 27

The BS claim: may shift energy origin (E=Mc?, cp=0) to (E=0, cp=0). (Frequency is relative!)

Einstein - Planck Dispersion
_ E2- 202 =Mc2)2 /0
\ f
K\\\\ -Energy

N\ .
- E:h Q) ,," tachyon.
\ \ \ // photon: M=0
K N . ’ E =cp
\ . - e
- \ Momentur
N\ cp=hck
pa N N NN N
Bohr - Schrodinger Dispersion
Wy, =497

36 E = p2
25

/

M
N
16 4:Bm2
/ 9
4
m

-6-4-4-3-2-1 012345 6\7

ey
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Bohr-Schrodinger (BS) approximation throws out Mc?

Mc” 2 2 .2 \/ 2\? 2
E= = Mc* cosh p= Mc \/1+smh P =\Mc™ ) +|cp
\/1—1/12/02 ( ) ( )
1/2
B 2\? 2 oo, 1 9 L

The BS claim: may shift energy origin (E=Mc?, cp=0) to (E=0, cp=0). (Frequency is relative!)

Einstein - Planck Dispersion
_ E2 - 2p2 =(Mc2)2
X\\\\ X -Energy

N\ | E=fie

tachyon:

\ \ // photon: M=0
*. E=cp
~ \ Momentum
N\ cp=hck
| . . . . . ‘s : . . . .
AT NN\ NN N . . . . . .. :
Bohr - Schrodinger Dispersion Group velocity u=Vgoup =42 is a differential quantity unaffected by origin shift.
WO =49W] But, Phase velocity %) =Vphase 18 greatly reduced by deleting Mc? from E=#A®.
36 H = p2i2m N\
sVl
25
Z 6 4 = Bm? §
/ 9
4 " I

-6-4-4-3-2-1 012345 6\7
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Bohr-Schrodinger (BS) approximation throws out Mc?

Mc2

E =
\/1—1/12/02

2
= Mc? cosh p = Mc? \/1 + sinh? p= \/(Mcz) =+ (cp)2

1
D’

) 5 1/2 |
_ 2 _ 2, = 2 .
E= {(Mc ) +(cp) } =~ Mc™ + Y, p BS—approx 27

The BS claim: may shift energy origin (E=Mc?, cp=0) to (E=0, cp=0). (Frequency is relative!)

Einstein - Planck Dispersion
_ E2 - 2p2 =(Mc2)2
X\\\\ X -Energy

N\ | E=fie

tachyon:

\\\ \ \ / phOtOfl.' M:O
s\ ,/ E - Cp

\ Momentum
- cp=hck
| . . : . : < : . . . .
AT N NN NN N . o : : : o
Bohr - Schrodinger Dispersion Group velocity u=Vgroup =52 1s a differential quantity unaffected by origin shift.
WO =49W] But, Phase velocity %) =Vphase 18 greatly reduced by deleting Mc? from E=Fh.
36 B = p?2m X\&\slows from Vynase=c?/u to a sedate sub-luminal speed of Veouy/2.
N\ \ 2
25 k : Wy K
/ Oy (k)=— gives: V = =
16 - B 2M kK 2M
9
dw k
/ 4 n and: V= y kBS =

-6-4-4-3-2-1 012345 6\7
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(a) Geometry of relativistic transformation (b)ﬂ@;w/c =3/5)

and wave based mechanics
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p-circlle

&—g-circle
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- “Lagrangian
-L =B sech p

Y elocity-Mc

Mcu=B tanh p

—
Hamiltonian =H =B cosh p

(d) u/c=3/5

H=53/28
5/4
- / u/c =3/5
// u/c =1 e u/c =1
/ /
/ L =4/5
/ //
// /
-L#28/45 ’
/ /
/ /
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| |
P=2/7 cp=45028| | eP=1n ep=3M4| 1

Fig. 5.5

Relativistic wave mechanics
geometry.

(a) Overview.

(b-d) Details of contacting
tangenits.
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