Relativity of lightwaves and Lorentz-Minkowski coordinates IV.

(Ch. 0-3 of Unit 8)

More connections to conventional approach to relativity and old-fashioned formulas

Catching up to light (Coyote finally triumphs! Rest-frame at last.)
The most old-fashioned form(ula) of all: Thales & Euclid means
Galileo wins one! (...in gauge space) That “old-time” relativity (Circa 600BCE- 1905CE)
“Bouncing-photons” in smoke & mirrors

The Ship and Lighthouse saga
Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They both are area!)

Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle o vs. rapidity p

How Minkowski'’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
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Ai:How fast is the group velocity?
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Catching up to light (Coyote finally triumphs! Rest-frame at last.)
*T he most old-fashioned form(ula) of all: Thales & Euclid means
Galileo wins one! (...in gauge space) That “old-time” relativity (Circa 600BCE- 1905CE)
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Euclid's 3-means (300 BC) Thales (580BC) rectangle-in-circle

Geometric “heart” of wave mechanics Relates to wave interference by (Galilean)

phasor angular velocity addition

geometric |® y Y
mean: /,’/> )
1/2 difference A
[1- 4] it - s Rey
m/ean \ half—dlfﬁérence=group phase
2 [4-11=3/2 4+1
AHALF-
DIFFERENCE )| Jrequency

/ 3/2

3
1 4 (units of 300THz)

Linear velocity Vo, Oup/c::u/c

IS (HALF-DIFF./ )=3/5

Sites for animation:

http://www.uark.edu/ua/pirelli/php/means_1.php

http://www.uark.edu/ua/pirelli/php/half sum_2.php

Fig. 3.3a Euclidian mean geometry for counter-moving waves of frequency | and 4. (300THz units).
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(a) Sum of Wave Phasor Array

Grouplor Beat:

Node I?@)Zf‘ Z€r0:

\

Sites for animations.

http://www.uark.edu/ua/pirelli/php/means_1.php

http://www.uark.edu/ua/pirelli/php/half sum_5.php

/\/\WF\/\WW\W&
A2 AN AND ) AN VAW WAAN NI YA WA

(b) Typical Phasor Sum: (c) Phasor-relative views
A moves relative to B

Red phasor
?/w \ oy m ~
um: ¥, =y 7
K) o % >/Galzlea s revenge!

Galileo wins one (in gauge space)

| —

N

PLUS 5 /\ N\ /// Now we use Galilean relativity

/ ~ . to add angular velocity, that is

;o A BTVA VB f J ol
coso / \ , requency wq and Wp, in phasor or
K/ / (@=B) B moves relative to A ~ 1 ”y ! y p L
Green phasor A ) Aoz gauge ’space. No “c-limit
e (OL—B)/Z,/ oy N evident. (Sofar at 18-fig. precision.)

EQUALS: ¥, s7VatVp

f % .
A

Fig. 3.1 Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors.
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That “old-time” relativity (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)

Galilean velocity addition becomes rapidity addition
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How Minkowski'’s space-time graphs help visualize relativity
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The ship and lighthouse saga

Lighthouse t= 1.00
Ship v/c(rel.to Ithse )=-0.50

Lighthouse t= w/

0 th\blink wave
(Frqm North)

from Main hits ship)[” /\at Main Lighthous
\

Tl

i 1st blink wave
\ - (From,Main)
0 th blink wave

Comparing Ship and Lighthouse views: Happening table (From,Main)

Ship v/c(rel.to Ithse.)=-0.50

1st blink Wave
(From Noyth)

. NAorth Lighthouse
BN
Happening 1 Happening 2
(1st blink wave (2nd blink happens

RN

1.0

Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10

(Lighthouse time) t =0 t = 2.00 t = 2.00

(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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Comparing Ship and Lighthouse views: Happening tables\

\thp:

Happening 0.5:
Main Lite

blinks first time. P
Lighthouse: x =0 ///
Lighthouse: ¢ =1.00 /
/
//
Shlp: x/ =0 7 /W%\

AP

i
¢
;
North
f \
: 7
72
/ Shiptime t'= 1.15 i
3 N
3 Ship v/c(rel to Ithse )=-0.50
% | ! - !
Y Ship
Y L 1 1 ‘Q‘
X
\.\’hip vic(rel 1o obs.)= 000 w

AN
AN
kN

MainiLig

Happening 1: Ship gets hit by

Happening 2: Main Lighthouse

Happening O:

Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10
(Lighthouse time) t =0 t = 2.00 t = 2.00
(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.

20

Thursday, January 30, 2014



The ship and lighthouse saga

Lighthouse t= 1.00

Ship v/c(rel.to Ithse )=-0.50

Happening 0.5:
Main Lite
blinks first time.

Ship Time t'= A =?77?

Lighthouse: x =0
Lighthouse: ¢ =1.00

Ship: x' =0
Ship: ' =A=2??

N

€ cA=V(c*HV2A?)

Lo

Comparing Ship and Lighthouse views.: Happening tables

Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10

(Lighthouse time) t =0 t = 2.00 t = 2.00

(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.

Thursday, January 30, 2014

21




The ship and lighthouse saga

Lighthouse t= 1.00

Ship v/c(rel.to Ithse )=-0.50

Happening 0.5:
Main Lite
blinks first time.

Ship Time t'= A =?77?

AA? =t +V°A°

Lighthouse:
Lighthouse:

x =0
t =1.00

(Cz_vz)Az — 2

Ship: x' =0
Ship: ' =A=2??

N

€ cA=V(c*HV2A?)

Lo

Comparing Ship and Lighthouse views.: Happening tables

Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10

(Lighthouse time) t =0 t = 2.00 t = 2.00

(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.

Thursday, January 30, 2014

22




The ship and lighthouse saga Happening 0.5:
Main Lite

blinks first time.

A =+ 17N

(Cz_vz)Az — 2

Lighthouse: x =0
Lighthouse: ¢ =1.00

Ship Time /= A =1N(1-v?/c?) = cosh p

Lighthouse t= 1.064~ TN

Ship v/c(rel.to Ithse )=-0.50

Ship: x' =0
Ship: ' =A=2??

Comparing Ship and Lighthouse views.: Happening tables

Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10

(Lighthouse time) t =0 t = 2.00 t = 2.00

(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.

Thursday, January 30, 2014

23




Happening 0.5:
Main Lite
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The ship and lighthouse saga

A=+ VA’
(Cz _Vz)Az — 2

Lighthouse:
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t =1.00
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Lo

For u/c=1/2

A

=IN(1-1/4)=2~3=1.15..
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Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10
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Lighthouse t= w/

0 th\blink wave
(Frqm North)

Ship v/c(rel.to Ithse.)=-0.50

1st blink Wave
(From Noith)

N

- i VA\
Happening 1 Happening 2
(1st blink wave (2nd blink happens

from Main hits ship)[”

€ cA=V(c*HV2A?)
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i 1st blink wave
- (From,Main)
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»

Happening O:
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Happening 1: Ship gets hit by
first blink from Main Lighthouse.

Happening 2: Main Lighthouse
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Lighthouse t=

blink wave
m North)

0 th
(Frd

Ship v/c(rel.to Ithse.)=-0.50

1st blink Wave
(From Noith)

] 3
Happening 1 Happening 2
(1st blink wave (2nd blink happens

from Main hits ship)[”

1st blink wave
(From,Main)

0 th blink wave

(From,Main) ~Comparing Ship and Lighthouse views:

Ship Time = A =1N(1-v¥/c?) = cosh p = 1.15

N

€ cA=V(c*HV2A?)

Happening tables

For u/c=1/2
A =IN(1-1/4)=2N3=1.15..

»

Happening O:

Ship passes Main Lighthouse.

Happening 1: Ship gets hit by
first blink from Main Lighthouse.

Happening 2: Main Lighthouse
blinks second time.

(Lighthouse space) x =10 x = -vc/(c-v) x=10
(Lighthouse time) t =0 t = c/(c-v) t = 2.00
(Ship space) x'=0 xX'= 0 x = 2vA
(Ship time) =10 { = (vtc)Ac = 2A

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.

Lecture 24 ended here
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Light-conic-sections make invariants

Narth Lighthouse

Fig.2.B.5 Space-Space-Time plot of world li / ouses. North Lighthouse blink waves trace light cones.
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A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.

Y
Yl

Object 2 _f/ ™ : Object 1
(Gun Shoppe) ~‘Q' % (Saloon)

Object O: Object 1: Object 2:
Town Square. Saloon. Gun Shoppe.
(US surveyor)  x=10 x= 0.5 x= 0
y =10 y= 1.0 y= 1.0
(French surveyor) x’ = 0 x'= xX'= -0.45
V' =0 y'= 1.1 y'=0.89
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A politically incorrect analogy of rvotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Y ——— -
v = X' cos ' sl -
Y X=x'cos0+y'sind -ty sin O—-—x' cos O

. . =-x'sin®+vy' cos O
Obiect 2 - - y=-xsnury .
jec ~ \ Object 1 ~

(Gun Shoppe) ~“" i (Saloon)

_ cos 0 = =
; X' I + =
% sin @ = —B/¢
; 1 + ﬁ
CZ
—\b/c
Object O: Object 1: Object 2: x’=xcosO— ysinf = X - + ( )2)/
Town Square. Saloon. Gun Shoppe. - b 14 b
(US surveyor)  x=10 x= 0.5 x= 0 c? c2
y=20 y= 1.0 y= 1.0 (b/c)x
(2nd surveyor) — x =0 x'= x'=-0.45 y' =xsin@+ ycos6 = =+ J -
y'=0 y'= 11 y'= 0.89 1+b_2 /1+b_2
c c
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Y

Object 2 .,ﬁ '
(Gun Shoppe) ~‘.' i
A

Y'

Object 1 -
(Saloon)

‘ Reminder: Component-based derivation is clumsy!

X=x'cosO+y'sing -~

y=-x'sin® +y' cos 0

BC
b
. N B

1 S
‘_ 0 cos 0 = -
: 1 + b~
' X' c2
"Q?. sing=_br/¢
: | +b
C2
Object O: Object 1: Object 2:
Town Square. Saloon. Gun Shoppe.
(US surveyor)  x=10 x= 0.5 x= 0
y =10 y= 1.0 y= 1.0
(2nd surveyor) x'=10 xX'= 0 xX'= -0.45
V' =0 y'= 1.1 y'=0.89
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

‘ Reminder: Component-based derivation is clumsy!

Y —_—_

_ Y' X=x'cosO+y'sin0 -
. , =-x'sin O + y' cos 6
Object 2 ~ ; Object 1 Y d . Forget this!!'It’s too clumsy to

(Gun Shoppe) ~“" Al (Saloon) generalize to 3D, 4D,...

$LLT

or the inverse relation:

e =|x)=cosO|x")+sin6|y")

| Instead, use Dirac unit vectors |x)|y)and|x’) |y’ “le. =|y) = —sin6] ) +cos]y")
y

Object O: Object 1: Object 2:
Town Square. Saloon. Gun Shoppe.
(US surveyor)  x=10 x= 0.5 x= 0
y =10 y= 1.0 y= 1.0
(2nd surveyor) x'=10 xX'= 0 xX'= -0.45
V' =0 y'= 1.1 y'=0.89
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Reminder: Component-based derivation is clumsy!
‘ ——

Y
_ Y' X=Xx'cosO+y'sinO -
. , =-x'sin O + y' cos 6
Object 2 ~ . Object 1 g d ‘-~ Forget this!! Its too clumsy to

(Gun Shoppe) ~"" 1 (Saloon) \ generalize to 3D, 4D....

$LLT

. cos 0 = 1 b;
: X I + = / .
XY= cos6|x)—sin6|y)
5 sin O = b/c ) | |
: |+ b2 sin@| x)+ cos 6| y)
c? or the inverse relation:
e =|x)= cosB|x)+sinb|y’)
| Instead, use Dirac unit vectors |x)|y)and|x’) |y’ “le. =|y) = —sin6] ) +cos]y")
y
Object O: Object 1: Object 2: You may apply (Jacobian) transform matrix:
Town Square. _ Saloon. _ Gun Shopp_e. () (x]y) 03B sind
(US surveyor)  x =10 x= 05 x= 0 , N :
y=0 y= 1.0 y= 10 Ol o) —sinf  cosf
(2nd surveyor) x'=10 x'= x'= -0.45 or the inverse (Kajobian) transformation:
y'=0

y= 11 V= 0.89 (¥[x) () :( cos@ —sin6 ]
<y'|x> <y'|y> sin@ cos6
to any vector V=|V) = |x){x|V)+ |y){(y|V)
=) VY + V)
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Reminder: Component-based derivation is clumsy!
‘ ——

Y

Y' X=Xx'cosO+y'sinO -

Object 2 ~ Object 1 y =-x'sin 0 + y' cos ‘.EL
(Gun Shoppe) (Saloon) .

Sl
b/ ™

| Instead, use Dirac unit vectors |x)|y)and|x’)

Forget this!!'Its too clumsy to
generalize to 3D, 4D,...

or the inverse relation:

e =|x)=cosO|x")+sin6|y’

~—

1Y)

"le, =|y)=—sin6|x’)+cosb|y’)

Object O: Object 1: Object 2: You may apply (Jacobian) transform matrix:
Town Square. _ Saloon. _ Gun Shopp_e. () (x]y) ( cos6 sin®
(US surveyor)  x =10 x= 0.5 x= 0 ) N _
y = y= 10 y= 1.0 (y[x) () —sin@ cos6
(2nd surveyor) x'=10 xX'= 0 x'= -0.45 or the inverse (Kajobian) transformation:
V' =0 y'= 1.1

y'= 0.89 [ (x'|x) (x| y) ]_( cosf) —sin6 ]

(Jacobian) transformation{VV, } from {V,V,} : < y'| x> < y'| y> | sin® cosO

Vo= (V)= G1[V) = (V) + 1) V)
V, =01V =0lv) = Ol V) + ) v)

to any vector V=|V) = |x){x|V)+ |y){(y|V)
=) VY + V)
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Reminder: Component-based derivation is clumsy!
‘ ——

Y

Y' X=Xx'cosO+y'sinO -

. | , =-x'sin O + y' cos 6
Object 2 ~ Object 1 g d ‘-~ Forget this!! Its too clumsy to
(Gun Shoppe) )

w
~"' L (Saloon) generalize to 3D, 4D,...
"‘W.‘w | o o ‘
‘_ 0 cos O = =
/ ! g _blc 1B X'y = c.059|x>—sin9| )
: |+ B2 1 sin@| x)+ cos 6| y)

or the inverse relation:

?x =|x)=cosO|x")+sin6|y’

~—

1Y)

| Instead, use Dirac unit vectors |x),|y)and|x’) "le, =|y)=—sinB|x")+cosb|y")
Y

Object O: Object 1: Object 2: You may apply (Jacobian) transform matrix:
Town Square. Saloon. Gun Shoppe. () (x]y) 03B sind
(US surveyor)  x =10 x= 0.5 x= 0 ) N _
y = y= 10 y= 1.0 (y[x) () —sinf cosf
(2nd surveyor) x'=10 xX'= 0 x'= -0.45 or the inverse (Kajobian) transformation:
=0 '= 1.1 "= 0.89 , ,
- . * (1) (19 ) [ cos —sind
(Jacobian) transformation{VV, } from {V,V,} : in matrix form: %) (] | sin® cosh

V.= (x|V) = (x[1|V) = (x| ") (x| V) + (x| y)(V'|V) [ V., J _( (x|x) (x[y) ] [ Ve ] to any vector V=|V) = |x){x|V)+ |y)(y|V)

V, = (V) =0l = Ol v+l v) 4 O} O1Y) =[) VYD) V)

y
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PLEASE!

Do N OT ever write
thlS =|x")= cosB|x)—sinb|y)

Y'Y= sin6|x)+cos6|y)

ey,

" ; (e ) [ 1) cos@ —sin
like this: | & |-| ™/ =( "y 9]

\ e, J y> ) sin@ cos6@

aaaaaaaaaaaaaaaaaaaaaaa




PLEASE!

Do NOT ever write
Z_hlS e, =|x)= cosO|x)—sinb|y)=R|x)

e, =|y)= sinb|x)+cos6|y)=R]|y)
(This is a useful abstract definition.)

% (Not helpful)

like this: | & || [T essklem™ |

e, sin @

Here is a matrix representation of abstract definitions: |x)=R|x), |y =R|y)

Vo || G G || Ve || IR AR [ Ve ) [ R RDY) Vs
4 Ol Oy JL W OIR[x)  (v[R[y) || Vo OIR[x) Ry Ve
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(a) Rotation Transformation y'
and Invariants

b/ c
x"=xcosf— ysinf =
’ , bZ
LS ,<< 3 1+_
= 165 : (b/c)
.41'= -0.85 - _) Yy’ =xsinf + ycosO = . -
Yol = 343 X ’ /1_|_b_ /1_,_17_
x'= 71.00 :
yv'=-156 - —
- ra 2:::':?;&«11(}—:(:““* ] 3_— (()).52. 5
X yE = 347 élu:xk'-kcl-(); 05774 " @40= 0.5236
(b) Lorentz Transformatign )
and Invariants \:
B B . | v
3 B —ct
x' = + = = xcosh p+ ysinh p
(% 1- ﬁ 1- ﬁ
Q xl;. K 2 62 Cz
v =/5453 ~ |
cr=0.9819 ' N ~ xsinh p+ ycosh p

Wo-fetf = 142
x'=235/2

‘\t'
ct'=2.0260
9 9 viic X'Relag¥@io X = -05 0= -{.5493
L _sopt)E — 2 vic X Relative to O =0 0= 0
: /(/) / 4- viie X'Relativeto O =-05 0+0'= -0.5493
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That “old-time” relativity (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on “angle” and “rapidity” (They re area!)

Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)
Introducing the stellar aberration angle o vs. rapidity p

How Minkowski'’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
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The straight scoop on “angle” and “rapidity” (They both are area!)

The “Area’” being calculated is the

W\W\@ total Gray Area between hyperbola
y/xxtanh 0 =vy/c A . pairs, X axis, and sloping u-line
-1.0 L0 | X
Area .
2 y=sinh)
———=x=coslp
= lbatse {altitude — area under curve = e [ydx
2— 2 SR

2005 Web version:

www.uark.edu/ua/pirelli/php/complex_phasors_|.php
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The straight scoop on “angle” and “rapidity” (They both are area!)

The “Area’” being calculated is the
W\W\e total Gray Area between hyperbola
pairs, X axis, and sloping u-line

y=sinh()
———X=coskp

FEEE T e e TR P PP T PR P

y/x*xtanh 0 =w/c

1 1
Arcal— — pysefaltitude — area under curve = EX)’ —[ydx

2 D
S ransistion 10 Hyperbolic Controt:
Circular Functions_ Hyperbolic Functions Y
. m(0) = 0.8582 \ 0=09884
. Length(o) = 0.8582
2005 Web version. I =098

) . sin(o) = 0.7567 um\h\(Q) =0.7567
www.uark.edu/ua/pirelli/php/complex phasors |.php tan(o) = 1.1574 sinhtg) = 1.1574
) o ’ - - sec(0) = 1.5295 cosh(Q)= 1.5295
\
\
\

\\
A\

Circlular Views [ Transistion to Hyperbolic B3]
Reference Square linewidth 3 ] \
Show target point icon & \\,

tan(o) = sinh(Q)

Inset Information [ Al an(0) £~ sinh(Q)

Measurment ¥ Old School Grouping
Circular functions . Hyperbolic functions &

Linel Ll'v.r- x& ic 2) \
Line Groups [ Auto 3) \
Tangent's = Secant @ Sine &

Cotangent 0 Cosecant O Cosine C

2014... Web-app versions.: b comp ot

. Related hyperbolic elements

http://www.uark .edu/ua/modphys/markup/RelaWavity Web.html Curves (Show detaied yperbolas

Shaded regions: [ Circular & Hyperbolic )
Return )

(Return )
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Circular Function

Hyperbolic Functions M
m«(0) = 0.8582 |

0=09884

Length(c) = 0.8582 i A o
Area(o) = 0.8582 0) = 0.9884 PrAYS
sin(0) = 0.7567 tanky(Q) = 0.7567 I L

tan(0) = 1.1574 sinh(g) = 1.1574

sec(0) = 1.5295 cosh(0) = 1.5295

Circlular Views | Transistion to Hyperboli o4

—— tan(0) = sinh(Q
Reference Square linewidth 3 |
Show target point icon & - \
Inset Information (A D ] - sfn(0) = tanh(o) 0) /- sinh(Q

Measurment ¥ Old School Grouping #
Circular functions () Hyperbolic functions &

Line Labeling [ Trigonometric & Hyperbolic )
Line Groups [ Auto B
-2 Tangent'z— Secant ¥ Sine #
‘ Cotangent 0 Cosecant © Cosine ©)

N
05 0s
| | 3 I I I | 3\
J

# o Angles: 1 # Comp Angles: o ' ,"

Related hyperbolic elements
Curves | Show detailed hyperbolae )
Shaded regions: [ Circular & Hyperbolic 3 )

( Return )

05
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The straight scoop on “angle’ and “rapidity” (They re area!)

The “Area’” being calculated is the

W\W\@ total Gray Area between hyperbola
y/x*xtanh 0 =wy/c | pairs, X axis, and sloping u-line
Area
1.0 N : X
Area .
2 y=sinh p
———'=Xx=cosh P Useful hyperbolic identities
1 1 p_ep Y | h2p—1
_ 2 / . _ _ 2 _ .2 | e —e _ L 2p 2p __COS p—
@ 5 basefaltitude — area under curve 5 xy—|ydx sinh” p —(—2 ] =2 (e +e 2) = 5
A 1
e = —sinh pcosh p — [sinh p d(coshp) P —eP\eP+e ) 1/, oy 1
2 sinh p cosh p= 5 5 :Z(e P—e p):a sinh2 p
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The straight scoop on “angle’ and “rapidity” (They re area!)

w\me
y/x*xtanh 0 =wy/c e
1.0 N\ :
Areap '
2

4 1 )
% = —basealtitude — area under curve =

22—
Area 1

= Esinhpcoshp — [sinh p d(cosh p)

The “Area’” being calculated is the
total Gray Area between hyperbola
pairs, X axis, and sloping u-line

<

y=sinh p
———¢X=cosh 0 Useful hyperbolic identities
2
1 o [eP=eP ) 1y 0, ), cosh2p—1
Exy—jy dx sinh p—[ > ] —Z(e +e —2)— >
0_ -6
sinh@ cosh@ =| &—° _29):lsinh29
2 2
1

Area 1 .
2

:zsmhpcoshp—jsinthdp:isiné—jcos}lzp dp

[coshap dp =—sinhap
a

2
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The straight scoop on “angle’ and “rapidity” (They re area!)

The “Area’” being calculated is the

W\N@ total Gray Area between hyperbola
y/x*xtanh 0 =wy/c | pairs, X axis, and sloping u-line
Area
1.0 N : X
Area .
2 y=sinh p
———=Xx=cosh P Useful hyperbolic identities
1 1 p_ep Y 1 h2p—-1
= — Altitude — — v .12 e —e 1 2p, 2p ,\_cosh2p—
— 2basefaltztude area under curve 2xy [y dx sinh p—( 5 ] —4(6 +e 2)— 5
Area 1
= —sinh pcosh p — | sinh p d(cosh p_,P
y Sinhpcosh p=Jsinh p (cosh ) sinhp coshp:[e 2’3 e2p—e_2p):—sinh2p

1

Area 1 . [ coshab d6 = —sinh af

1

= Esmhpcoshp— jsinh2 pdp= 4sin{p J COShiid,O/ a

1 l .

= —sinh2p—Zsmh2p+j% dp

Amazing result: Area = p is rapidity
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That “old-time” relativity (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)

Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle o vs. rapidity p

How Minkowski'’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
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Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Pec = plac — ePAB+pBC

Evenson axiom requires geometric Doppler transform: ep AB L o
Easy to combine frame velocities using rapidity addition: Pysv = Py T Py

Receiver S()lll.('() R()(_'l() \'(’,' 5‘011"(‘6) R()('()I\'()I-

. . v, A
P = In(2)=0.69 “pyc=In(1/4)=-1.38 Py In(2)=0.69

Pas T Pec = Pac = Pca
0.69—-1.38 =-0.69
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Galilean velocity addition becomes rapidity addition
From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: ep AB . e

Easy to combine frame velocities using rapidity addition:

’

L= tanh(p, + p, ) =
C

Pec = plac — epAB+pBC

Put+v = Pu T Py

u-v
1+

.
tanh p, +tanhp, _+;
I+tanhp, tanhp, ,_ UV

cc

tanh x + tanh y

tanh(x+ y) =

1+ tanh x tanh y

Thursday, January 30, 2014

49



Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:

Evenson axiom requires geometric Doppler transform: ep AB -, é

Easy to combine frame velocities using rapidity addition:

u v
: —+—
u tanh p, + tanh p
— =tanh(p, +p,)= u Y= ¢ MCV
C I+tanhp, tanhp, ,_ UV
cc
,  u+v
or: u =
L
T
C

No longer does (1/2+1/2)c equal (I )c...
1 1

_ _|_ _
L .2 2 1 1
Relativistic result 1s: C= C=—C=
11 1 5
I+— 1+- =
22 4 4

Put+v = Pu T Py

tanh(x+ y) =

Pec = plac — epAB+pBC

tanh x + tanh y

1+ tanh x tanh y
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Galilean velocity addition becomes rapidity addition
From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: ep AB . e

Easy to combine frame velocities using rapidity addition: Pysv = Py T Py
. v
u’ tanh p,, + tanh o
_:tanh(pu+pv): Pu Py =Lt C
C I+tanhp, tanhp, ,_ UV
CcC
, Uu-t+y
or. u =
1 u-v
T
C
No longer does (1/2+1/2)c equal (I )c...
1 1
. 2" 11 4
Relativistic result 1s: C = c=—FZCc=—cC
11 1 5 5
I+— 1+- =
22 4 4 1 o1
..but, (1/2+1)c does equal (I)c... 2 _.
1+11
2

tanh(x+ y) =

Pec = plac — epAB+pBC

tanh x + tanh y

1+ tanh x tanh y
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Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)
Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)
Introducing the stellar aberration angle o vs. rapidity p
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www.uark.edu/ua/pirelli/php/complex_phasors_|.php

(a) Circlular Functions [Sjj\
(plane geometry) =10 cow

Circlular arc area
¢ =().895d=angle
sin @ =(.7792
cos @ =0.6267
tan ¢ =1.2433
csc @ =1.2833
sec @ =1.53955
cot ¢ =0.8043

T,
tang

]ntrgducing the “Sin-Tan Rosetta Stone’” NOTE: Angle ¢ is now called stellar aberration angle o

Fig. 5.4
in Unit 8
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(a) Circlular Functions /&j\
(plane geometry) 4L10 co

2005 Web version:

www.uark.edu/ua/pirelli/php/complex_phasors_|.php

2014...Web-app versions:

http://www.uark.edu/ua/modphys/markup/RelaWavity Web.html

Circlular arc area

¢ =().895d=angle
sin @ =0.7792
cos @ =0.6267
tan ¢ =1.2433
csc @ =1.2833
sec @ =1.53955
cot ¢ =0.8043

T,
tang

1.0 . X

Circular Functions

me(0) =0.8582
Length(o) = 0.8582
Area(o) = 0.8582

sin(0) = 0.7567
tan(o) = 1.1574
sec(o) = 1.5295

cos(0) = 0.6538
cot(o) = 0.8640
csc(o) = 1.3216

Circlular Views ( Sine, secant & Tangent )
Reference Square linewidth o
Show target point icon @

Inset Information [ None B)
Measurment & Old School Grouping #

Circular functions 0 Hyperbolic fi (3]
Line Labeling ( Trigonometric D)
LineGroups (Trigonomewic )

-2 Tangent : Secant &  Sine ¥

Cotangent :  Cosecant @ Cosine &

# 0 Angles: 1 # Comp Angles: o
Related hyp
Curves [ None :)
Shaded regi [ Circular )
( Return )

("Sin-Tan Rosetta 2] [ Sine, Secant & Tangent s) Controls

cot(0)

Select from the top menus to choose the view type and sub-type.
Click the 'Controls' button to set shared model & display vars.

Set the angle o with a click (& drag)

]ntrgducing the “Sin-Tan Rosetta Stone’” NOTE: Angle ¢ is now called stellar aberration angle o

Fig. 5.4
in Unit 8
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http://www.uark.edu/ua/pirelli/php/complex_phasors_1.php
http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html
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[ Sin-Tan Rosetta + ) [ Sine, Secant & Tangent & Controls

_ircular Functions

ms(0) = 0.8582
Length(o) = 0.8582
Area(o) = 0.8582

sin(0) = 0.7567
tan(o) = 1.1574
sec(o) = 1.5295

cos(0) = 0.6538
cot(o) = 0.8640
csc(o) = 1.3216

Circlular Views [ Sine. Secant & Tangent &)
Reference Square linewidth o
Show target point icon #

Inset Information [ Nore ?)
Measurment @ Old School Grouping #
Circular functions O Hyperbolic functions O

Line Labeling [ Trigonometric B3
Line Groups [ Trigonometric %)
-] Tangent’:  Secant ¥ Sine ¥

Cotangent :  Cosecant ¥ Cosine ¥
# 0 Angles: 1 # Comp Angles: o

Related hyperbolic elements

Curves [ None :)
Shaded regions: | Circular 3)
(Return )
k
. [
Select from the top menus to choose the view type and sub-type. | Set the angle o with a click

Click the 'Controls' button to set shared model & displav vars.
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Introducing the stellar aberration angle o vs. rapidity p

logether, rapidity p=In b and stellar aberration angle o are parameters of relative velocity

The rapidity p=In b is based on The stellar aberration angle o is based on the
longitudinal wave Doppler shift b=e” transverse wave rotation R=e'°

defined by u/c=tanh(p). defined by u/c=sin(o).

At low speed.: u/c~p. At low speed: u/c~ o.

(a) Fixed Observer (b) Moving Observer
S oy
X o/
U=c/sin O

Fig. 5.6 Epstein's cosmic speedometer with aberration angle 6 and transverse Doppler shift coshvz. Z
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That “old-time” relativity (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)
Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

Introducing the stellar aberration angle o vs. rapidity p

How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

Thursday, January 30, 2014

58



How Minkowski's space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.

Space-space Animation of Two Relativistic Ships Passing Two

Space-Time Movies in Lighthouse Rest Frame v
Showing ?qh thouse Now-Line (Black terminator-line)

...................... .................. ; :':,. : E& S

B0 N LY e WL - A —

appenng e, L7 TN
appening PRk

se¢. N4

/200

.

Happerz-ing 1: Ship 1 is hit: v Blink 1
Happehing 2: Lighthouse émits Blink 2

- Shap v/e(rel.td\]lthse.)>0.50
- Ship v/e(rel.to dbs.)=-0.5

thse v/c(rel.to obs.)= 0.00

~\&orth Lighthous
SRR

e e st
23

| | I — L)
:
|}

B0 i

Happening 1

o

—T 1t

S TS WY 'Qw LT
: Tighthouse
SINIR)

A

Happening 2
2005 Web versions:

www.uark.edu/ua/pirelli/php/lighthouse scenarios.php
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(Controls ) (‘Resume ) (‘ResetT=0) (Erase Paths ) Animation Speed {At}

O 2 x107 O— -3

7

/
Lighthouse time t =2.015

\
Ship v/c (Rel.to Lthse.)=-0.500

Ship V/C(Rel.ti) Obs.)=-0.500
Lthse v/c(Rel.to Obs.)=0.000

\I\l||ll

N

N\
“% ighthous
Shig 1 . \I-
T S T T 1- .Olgn‘gl 1 1/// \\\1 T S S T T 11 01 T S
ain Lighthous

Click & Dragat bottow to control animgtion speed

N ~
Lighthouse Graph \\\\\
Ref time t = 2.02 sec. N \
v/c =-0.50 litesec/sec.\ \ \

|Event 1
|Event 2

Click &

N
N

/_

—=

=
(@)

\\

—
=

g at bottom tp’control animafion speed|

vi4

2014... Web-app versions:

http://www.uark.edu/ua/modphys/markup/RelativitWeb.html
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How Minkowski's space-time graphs help visualize relativity (Here:r=atanh(1/2)=0.549,

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.

...but, in Ship frame Happening 1 is at ' =1.74 and Happening 2 is at t'=2.30sec.

Space-Time Movies in Lighthouse Rest Frame
Showing the Sth/ Now-Lme (Black termi

f time't = 1.745cqn
ghthouse Grg

(U7 (AU Ay SN 2 U YRR ST, ¢ - a S

ppening

5

%
Happening 2
won t happen
il t=2.00

Happening 1

www.uark.edu/ua/pirelli/php/lighthouse scenarios.php

»~

Space-space Animation of Two Relativistic Lighthouses Passing Two

Dpening 1: ShipH is hit Blink~,
Happening 2: Lighfhouse gmits Blink 2
o=30 \
-/ | 15e.)=-0.50
hip time t' =71.74 | (reLFbO= 0.00
Lthse v/c{rgl.toiobs.}=Q50
Tappening 1 _ | rth 11
stellar abkangle
= 00 .
_..3" i ‘1 4 % NGO 1_ § 0
1 | 1 1 1 | gl .l 1 |
SN Tie
0 0 N

an

b

o=Asin(1/2)=0.52 or 30°)

Thursday, January 30, 2014

61


http://www.uark.edu/ua/pirelli/php/lighthouse_scenarios.php
http://www.uark.edu/ua/pirelli/php/lighthouse_scenarios.php

How Minkowski's space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.
...but, in Ship frame Happening 1 is at ' =1.74 and Happening 2 is at t'=2.30sec.

Space-space Animation of Two Relativistic Lighthouses Passing Two

Happening 1. Ship;l is hit by Blink 1

Space-Time Movies in Lighthouse Rest Frame /
e Happening 2: Lighfhouse emits Blink 2

Showing the Sth/ Now-Lme (Black termi

f time't = 1.74Scqnl
ghthouse Grg
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That “old-time” relativity (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)
Galilean velocity addition becomes rapidity addition
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)
Introducing the stellar aberration angle o vs. rapidity p

How Minkowski'’s space-time graphs help visualize relativity
* Group vs. phase velocity and tangent contacts
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]ntrgducing the “Sin-Tan Rosetta Stone’” NOTE: Angle ¢ is now called stellar aberration angle o

(a) Circlular Functions

_—'-'_'_'_'_
T

(plane geomeiry)

~_

coshp

x(space)

rﬁ% COtg

Circlular arc area
¢ =(.893d=nngle
sin @ =(.7792
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sec @ =1.53955
col ¢ =) 8 3=

T,
tang

Hyperbolic arc area
p =104 3d=ramdity
sinh p=1.2433
cosh p =1.5955
tanh p =0.7792
csch p =Lsd ) =T
sech p =.6267
coth p=1.2833

time,

ew

b) Hyperbolic Functions

spacetime

geometry)

1

Fig. 5.4
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]ntrgducing the “Sin-Tan Rosetta Stone’” NOTE: Angle ¢ is now called stellar aberration angle o

(a) Circlular Functions [ﬁ\ Circlular arc aea
. ¢ =(LaY3d=angle
(plane geometry) =10 cow sin  =0.7792

- _ cos ¢ =0.6267
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Liuig
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coshp

x(space)
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time,
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( Sinh-Tanh Rosetta 3 ) [ Basic 3 )

Hyperbolic Functions Circular Functions Y

m.(0) = 0.9697
Length(o) = 0.9697
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sin(0) = 0.8247
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vic = =0.600
Doppler blue shift factor=b = 2.000
Doppler red shift factor =r
v =0.540 = 30.964°
0=0.693

0 =0.644 = 36.870°

Physical Terms [ Hamiltonian + )
Hamiltonian ( Show )
Momentum [ Show B
Lagrangian [ Don'tshow &)
Group velocity ( Don'tshow 3]
Rest Energy (Auto B
Phase velocity (Don'tshow )
Wavelength A ( Don'tshow 3 )
Minkowski Cells (+) = o
Sword line width = 0
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[ Physical Terms
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vic = =0.600
Doppler blue shift factor=b = 2.000

Doppler red shift factor =r
v =0.540 = 30.964°

0 =0.693
0 =0.644 = 36.870° \
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