Relativity of lightwaves and Lorentz-Minkowski coordinates IV.

(Ch. 0-3 of Unit 8)
More connections to conventional approach to relativity and old-fashioned formulas
Catching up to light (Coyote finally triumphs! Rest-frame at last.)
The most old-fashioned form(ula) of all: Thales \& Euclid means
Galileo wins one! (...in gauge space) That "old-time" relativity (Circa 600BCE- 1905CE)
"Bouncing-photons" in smoke \& mirrors
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation The straight scoop on "angle" and "rapidity" (They both are area!)

Galilean velocity addition becomes rapidity addition Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)

Introducing the stellar aberration angle σ v. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

Catching up to light (Coyote finally triumphs! Rest-frame at last.) The most old-fashioned form(ula) of all: Thales \& Euclid means

Galileo wins one! (...in gauge space) That "old-time" relativity (Circa 600BCE- 1905CE)

Catching up to light (Coyote finally triumphs! Rest-frame at last.)
The most old-fashioned form(ula) of all: Thales \& Euclid means
Galileo wins one! (...in gauge space) That "old-time" relativity (Circa 600BCE-1905CE)

$$
\begin{aligned}
\left(\omega_{R \rightarrow}, c k_{R \rightarrow}\right) \text { meets }\left(\omega_{L \leftarrow}\right. & \left.,-c k_{L \leftarrow}\right) \\
\quad=(4,+4 c) & =(1,-1 c)
\end{aligned}
$$

Catching up to light (Coyote finally triumphs! Rest-frame at last.) $\quad=(4,+4 c)$
going left.

$$
\begin{aligned}
& \left(\omega_{R \rightarrow}, c k_{R \rightarrow}\right) \text { meets }\left(\omega_{L \leftarrow},-c k_{L \leftarrow}\right) \\
& =(4,+4 c) \\
& =(1,-1 c)
\end{aligned}
$$

Catching up to light (Coyote finally triumphs! Rest-frame at last.)
 Suppose you see two counter-propagating laser beams $\omega_{R \rightarrow}$ going right and $\omega_{L \leftarrow}$ going left.
Q_{1} :How fast do you go to "catch up" to see both as the same color (frequency ϖ)?

$$
\left.\left.\begin{array}{rl}
\left(\omega_{R \rightarrow}, c k_{R \rightarrow}\right) & \text { meets }\left(\omega_{L \leftarrow}\right.
\end{array},-c k_{L \leftarrow}\right)\right)
$$

Catching up to light (Coyote finally triumphs! Rest-frame at last.)

Suppose you see two counter-propagating laser beams $\omega_{R \rightarrow}$ going right and $\omega_{L \leftarrow}$ going left.
$Q_{1}: H o w f a s t ~ d o ~ y o u ~ g o ~ t o ~ " c a t c h ~ u p " ~ t o ~ s e e ~ b o t h ~ a s ~ t h e ~ s a m e ~ c o l o r ~\left(f r e q u e n c y ~ \omega_{A}\right)$?
Q_{2} : What is that color (frequency ω_{A})?

$$
\begin{aligned}
&\left(\omega_{R \rightarrow}, c k_{R \rightarrow}\right) \text { meets }\left(\omega_{L \leftarrow},-c k_{L \leftarrow}\right) \\
& \quad=(4,+4 c)=(1,-1 c)
\end{aligned}
$$

Catching up to light (Coyote finally triumphs! Rest-frame at last.)
 Suppose you see two counter-propagating laser beams $\omega_{R \rightarrow}$ going right and $\omega_{L \leftarrow}$ going left.
$Q_{1}: H o w f a s t ~ d o ~ y o u ~ g o ~ t o ~ " c a t c h ~ u p " ~ t o ~ s e e ~ b o t h ~ a s ~ t h e ~ s a m e ~ c o l o r ~\left(f r e q u e n c y ~ \omega_{A}\right)$?
Q2: What is that color (frequency ω_{A})?
"Jeopardy" answers:
A_{1} :How fast is the group velocity?

$$
\begin{aligned}
\left(\omega_{R \rightarrow}, c k_{R \rightarrow}\right) \text { meets }\left(\omega_{L \leftarrow}\right. & \left.,-c k_{L \leftarrow}\right) \\
=(4,+4 c) & =(1,-1 c)
\end{aligned}
$$

Catching up to light (Coyote finally triumphs! Rest-frame at last.)

Suppose you see two counter-propagating laser beams $\omega_{R \rightarrow}$ going right and $\omega_{L \leftarrow}$ going left.
$Q_{1}: H o w f a s t ~ d o ~ y o u ~ g o ~ t o ~ " c a t c h ~ u p " ~ t o ~ s e e ~ b o t h ~ a s ~ t h e ~ s a m e ~ c o l o r ~\left(f r e q u e n c y ~ \omega_{A}\right)$?
Q2: What is that color (frequency ω_{A})?
"Jeopardy" answers:
A_{1} :How fast is the group velocity?

$$
\frac{V_{\text {group }}}{c}=\frac{\omega_{R \rightarrow}-\omega_{L \leftarrow}}{c k_{R \rightarrow}-c k_{L \leftarrow}}=\frac{\omega_{R \rightarrow}-\omega_{L \leftarrow}}{\omega_{R \rightarrow}+\omega_{L \leftarrow}}=\frac{4-1}{4+1}=\frac{3}{5}
$$

$$
\begin{aligned}
&\left(\omega_{R \rightarrow}, c k_{R \rightarrow}\right) \text { meets }\left(\omega_{L \leftarrow}\right. \\
& \quad=\left(4,-c k_{L \leftarrow}\right) \\
&=(1,-1 c)
\end{aligned}
$$

Catching up to light (Coyote finally triumphs! Rest-frame at last.)

Suppose you see two counter-propagating laser beams $\omega_{R \rightarrow}$ going right and $\omega_{L \leftarrow}$ going left.
$Q_{1}: H o w f a s t ~ d o ~ y o u ~ g o ~ t o ~ " c a t c h ~ u p " ~ t o ~ s e e ~ b o t h ~ a s ~ t h e ~ s a m e ~ c o l o r ~\left(f r e q u e n c y ~ \omega_{A}\right)$?
Q_{2} : What is that color (frequency ω_{A})?
"Jeopardy" answers:
A_{1} :How fast is the group velocity? $\quad \frac{V_{\text {group }}}{c}=\frac{\omega_{R \rightarrow}-\omega_{L \leftarrow}}{c k_{R \rightarrow}-c k_{L \leftarrow}}=\frac{\omega_{R \rightarrow}-\omega_{L \leftarrow}}{\omega_{R \rightarrow}+\omega_{L \leftarrow}}=\frac{4-1}{4+1}=\frac{3}{5}$
$A_{2}:$ What is the geometric mean of $\omega_{R \rightarrow}$ and $\omega_{L \leftarrow ?}$

$$
\begin{aligned}
&\left(\omega_{R \rightarrow}, c k_{R \rightarrow}\right) \text { meets }\left(\omega_{L \leftarrow},-c k_{L \leftarrow}\right) \\
&=(4,+4 c) \\
&=(1,-1 c)
\end{aligned}
$$

Catching up to light (Coyote finally triumphs! Rest-frame at last.)
Suppose you see two counter-propagating laser beams $\omega_{R \rightarrow}$ going right and $\omega_{L \leftarrow}$ going left.
Q_{1} :How fast do you go to "catch up" to see both as the same color (frequency ω_{A})?
Q_{2} : What is that color (frequency ω_{A})?
"Jeopardy" answers:
A_{1} :How fast is the group velocity? $\quad \frac{V_{\text {group }}}{c}=\frac{\omega_{R \rightarrow}-\omega_{L \leftarrow}}{c k_{R \rightarrow}-c k_{L \leftarrow}}=\frac{\omega_{R \rightarrow}-\omega_{L \leftarrow}}{\omega_{R \rightarrow}+\omega_{L \leftarrow}}=\frac{4-1}{4+1}=\frac{3}{5}$
$A_{2:}$ What is the geometric mean of $\omega_{R \rightarrow}$ and $\omega_{L \leftarrow ?} \quad \omega_{A}=\sqrt{\omega_{R \rightarrow} \cdot \omega_{L \leftarrow}}=\sqrt{4 \cdot 1}=2$

$$
\left.\left.\left.\begin{array}{rl}
\left(\omega_{R \rightarrow}, c k_{R \rightarrow}\right) & \text { meets }\left(\omega_{L \leftarrow}\right.
\end{array}\right)-c k_{L \leftarrow}\right)\right)
$$

Catching up to light (Coyote finally triumphs! Rest-frame at last.)

Suppose you see two counter-propagating laser beams $\omega_{R \rightarrow}$ going right and $\omega_{L \leftarrow}$ going left.
$Q_{1}: H o w f a s t ~ d o ~ y o u ~ g o ~ t o ~ " c a t c h ~ u p " ~ t o ~ s e e ~ b o t h ~ a s ~ t h e ~ s a m e ~ c o l o r ~\left(f r e q u e n c y ~ \omega_{A}\right)$?
Q2: What is that color (frequency ω_{A})?
"Jeopardy" answers:
A_{1} :How fast is the group velocity?

$$
\frac{V_{g r o u p}}{c}=\frac{\omega_{R \rightarrow}-\omega_{L \leftarrow}}{c k_{R \rightarrow}-c k_{L \leftarrow}}=\frac{\omega_{R \rightarrow}-\omega_{L \leftarrow}}{\omega_{R \rightarrow}+\omega_{L \leftarrow}}=\frac{4-1}{4+1}=\frac{3}{5}
$$

$A_{2:}$ What is the geometric mean of $\omega_{R \rightarrow}$ and $\omega_{L \leftarrow ?} \quad \omega_{A}=\sqrt{\omega_{R \rightarrow} \cdot \omega_{L \leftarrow}}=\sqrt{4 \cdot 1}=2$

If youlaccelerate to $V_{\text {group }}=\frac{3}{5}$ c then you see...

... a standing wave...(assuming equal amplitudes, coherence, etc.) $\xrightarrow{\mathbf{k}_{A}} \underset{\sim}{\mathbf{k}_{A}}$

$$
\begin{aligned}
&\left(\omega_{R \rightarrow}, c k_{R \rightarrow}\right) \text { meets }\left(\omega_{L \leftarrow},-c k_{L \leftarrow}\right) \\
&=(4,+4 c) \\
&=(1,-1 c)
\end{aligned}
$$

Catching up to light (Coyote finally triumphs! Rest-frame at last.)
Suppose you see two counter-propagating laser beams $\omega_{R \rightarrow}$ going right and $\omega_{L \leftarrow}$ going left.
$Q_{1}: H o w ~ f a s t ~ d o ~ y o u ~ g o ~ t o ~ " c a t c h ~ u p " ~ t o ~ s e e ~ b o t h ~ a s ~ t h e ~ s a m e ~ c o l o r ~\left(f r e q u e n c y ~ \omega_{A}\right)$?
Q_{2} : What is that color (frequency ω_{A})?
"Jeopardy" answers:
A_{1} :How fast is the group velocity?

$$
\frac{V_{\text {group }}}{c}=\frac{\omega_{R \rightarrow}-\omega_{L \leftarrow}}{c k_{R \rightarrow}-c k_{L \leftarrow}}=\frac{\omega_{R \rightarrow}-\omega_{L \leftarrow}}{\omega_{R \rightarrow}+\omega_{L \leftarrow}}=\frac{4-1}{4+1}=\frac{3}{5}
$$

$A_{2:}$ What is the geometric mean of $\omega_{R \rightarrow}$ and $\omega_{L \leftarrow ?} \quad \omega_{A}=\sqrt{\omega_{R \rightarrow} \cdot \omega_{L \leftarrow}}=\sqrt{4 \cdot 1}=2$

If youraccelerate to $V_{\text {group }}=\frac{3}{5}$ ct hen you see...

... a standing wave...(assuming equal amplitudes, coherence, etc.)

$\xrightarrow{\mathbf{k}_{A}} \mathbf{k}_{A}$

Catching up to light (Coyote finally triumphs! Rest-frame at last.) The most old-fashioned form(ula) of all: Thales \& Euclid means Galileo wins one! (...in gauge space) That "old-time" relativity (Circa 600BCE-1905CE)

Euclid's 3-means (300 BC) Geometric "heart" of wave mechanics

Thales (580BC) rectangle-in-circle Relates to wave interference by (Galilean) phasor angular velocity addition

Fig. 3.3a Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units).

Fig. 3.1 Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors.

That "old-time" relativity (Circa 600BCE- -905CE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Happening 0.5:
Ship Time $t^{\prime}=\Delta=? ?$

Comparing Ship and Lighthouse views: Happening tables

Happening 0: Ship passes Main Lighthouse.		Happening 1: Ship gets hit by first blink from Main Lighthouse.	
Happening 2: Main Lighthouse blinks second time.			
(Lighthouse space)	$x=0$	$x=-1.00 c$	$x=0$
(Lighthouse time)	$t=0$	$t=2.00$	$t=2.00$
(Ship space)	$x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=c \Delta$
(Ship time)	$t^{\prime}=0$	$t^{\prime}=1.75$	$t^{\prime}=2 \Delta=2.30$

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Happening 0.5:
Main Lite blinks first time.

Ship Time $t^{\prime}=\Delta=? ? ?$

$$
c^{2} \Delta^{2}=c^{2}+v^{2} \Delta^{2}
$$

$$
\left(c^{2}-v^{2}\right) \Delta^{2}=c^{2}
$$

Comparing Ship and Lighthouse views: Happening tables

Happening 0: Ship passes Main Lighthouse.		Happening 1: Ship gets hit by first blink from Main Lighthouse.	
Happening 2: Main Lighthouse blinks second time.			
(Lighthouse space)	$x=0$	$x=-1.00 c$	$x=0$
(Lighthouse time)	$t=0$	$t=2.00$	$t=2.00$
(Ship space)	$x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=c \Delta$
(Ship time)	$t^{\prime}=0$	$t^{\prime}=1.75$	$t^{\prime}=2 \Delta=2.30$

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

The ship and lighthouse saga
Happening 0.5:
Main Lite blinks first time.

Ship Time $t^{\prime}=\Delta=1 / \sqrt{ }\left(1-v^{2} / c^{2}\right)=\cosh \rho$ $c^{2} \Delta^{2}=c^{2}+v^{2} \Delta^{2}$

$$
\left(c^{2}-v^{2}\right) \Delta^{2}=c^{2}
$$

Comparing Ship and Lighthouse views: Happening tables

Happening 0: Ship passes Main Lighthouse.		Happening 1: Ship gets hit by first blink from Main Lighthouse.	
Happening 2: Main Lighthouse			
blinks second time.			

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

The ship and lighthouse saga

Comparing Ship and Lighthouse views: Happening tables

Ship Time $t^{\prime}=\Delta=1 / \sqrt{ }\left(1-v^{2} / c^{2}\right)=\cosh \rho=1.15$ $c^{2} \Delta^{2}=c^{2}+v^{2} \Delta^{2}$

$$
\left(c^{2}-v^{2}\right) \Delta^{2}=c^{2}
$$

$$
\Delta^{2}=\frac{c^{2}}{\left(c^{2}-v^{2}\right)}=\frac{1}{\left(1-v^{2} / c^{2}\right)}
$$

For $u / c=1 / 2$,

Happening 0:	Happening 1: Ship gets hit by		Happening 2: Main Lighthouse Ship passes Main Lighthouse.
first blink from Main Lighthouse.	blinks second time.		

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$. Lecture 24 ended here

That "old-time" relativity (Circa 600BCE- -905CE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
I Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation The straight scoop on "angle" and "rapidity" (They're area!)

Galilean velocity addition becomes rapidity addition Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity Group vs. phase velocity and tangent contacts

Fig. 2.B.5 Space-Space-Time plot of world likes for Lighthouses. North Lighthouse blink waves trace light cones.

That "old-time" relativity (Circa 600BCE-1905SE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B. 1 Town map according to a "tipsy" surveyor.

Object 0:	Object 1: Town Square.		Object 2: Saloon.
(US surveyor $)$	$x=0$	$x=0.5$	$x=0$
	$y=0$	$y=1.0$	$y=1.0$
(French surveyor) $x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=-0.45$	
	$y^{\prime}=0$	$y^{\prime}=1.1$	$y^{\prime}=0.89$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Object 0:	Object 1: Saloon.		Object 2: Gun Shoppe.
Town Square.		Sal	$x=0$
(US surveyor $)$	$x=0$	$x=0.5$	$y=1.0$
	$y=0$	$y=1.0$	$x^{\prime}=-0.45$
(2nd surveyor)	$x^{\prime}=0$	$x^{\prime}=0$	$y^{\prime}=0.89$

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta=\frac{x}{\sqrt{1+\frac{b^{2}}{c^{2}}}}+\frac{-(b / c) y}{\sqrt{1+\frac{b^{2}}{c^{2}}}} \\
& y^{\prime}=x \sin \theta+y \cos \theta=\frac{(b / c) x}{\sqrt{1+\frac{b^{2}}{c^{2}}}}+\frac{y}{\sqrt{1+\frac{b^{2}}{c^{2}}}}
\end{aligned}
$$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Object 0: Town Square.		Object 1: Saloon.	Object 2: Gun Shoppe.
(US surveyor)	$\begin{gathered} x=0 \\ y=0 \end{gathered}$	$\begin{aligned} & x=0.5 \\ & y=1.0 \end{aligned}$	$\begin{aligned} & x=0 \\ & y=1.0 \end{aligned}$
(2nd surveyor)	$\begin{aligned} & x^{\prime}=0 \\ & y^{\prime}=0 \end{aligned}$	$\begin{aligned} & x^{\prime}=0 \\ & y^{\prime}=1.1 \end{aligned}$	$\begin{aligned} & x^{\prime}=-0.45 \\ & y^{\prime}=0.89 \end{aligned}$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

$\left[\begin{array}{l}\mathbf{e}_{x}=|x\rangle=\cos \theta\left|x^{\prime}\right\rangle+\sin \theta\left|y^{\prime}\right\rangle \\ \mathbf{e}_{y}=|y\rangle=-\sin \theta\left|x^{\prime}\right\rangle+\cos \theta\left|y^{\prime}\right\rangle\end{array}\right]$

Object 0:		Object 1:	
Saloon.	Object 2:		
Town Square.	$x=0$	$x=0.5$	Gun Shoppe.
(US surveyor)	$x=0$	$x=0$	
	$y=0$	$y=1.0$	$y=1.0$
(2nd surveyor)	$x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=-0.45$
	$y^{\prime}=0$	$y^{\prime}=1.1$	$y^{\prime}=0.89$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B. 1 Town map according to a "tipsy" surveyor. Fig. 2.B. 2 Diagram and formulas for reconciliation of the two surveyor's data.

$$
x=x^{\prime} \cos \theta+y^{\prime} \sin \theta
$$

$$
y=-x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

Instead, use Dirac unit vectors $|x\rangle,|y\rangle$ and $\left|x^{\prime}\right\rangle,\left|y^{\prime}\right\rangle$
Reminder: Component-based derivation is clumsy!

- $y^{\prime} \sin \theta-$-x' $\cos \theta \rightarrow$

Forget this!! It's too clumsy to generalize to $3 D, 4 D, \ldots$

$\cos \theta=\frac{1}{\sqrt{1+\frac{b^{2}}{c^{2}}}}$

$$
\sin \theta=\frac{\mathrm{b} / \mathrm{c}}{\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{c}^{2}}}}
$$

$$
\begin{aligned}
& \mathbf{e}_{x^{\prime}}=\left|x^{\prime}\right\rangle=\cos \theta|x\rangle-\sin \theta|y\rangle \\
& \mathbf{e}_{y^{\prime}}=\left|y^{\prime}\right\rangle=\sin \theta|x\rangle+\cos \theta|y\rangle
\end{aligned}
$$

or the inverse relation:

$$
\begin{aligned}
& \mathbf{e}_{x}=|x\rangle=\cos \theta\left|x^{\prime}\right\rangle+\sin \theta\left|\overline{y^{\prime}}\right\rangle \\
& \mathbf{e}_{y}=|y\rangle=-\sin \theta\left|x^{\prime}\right\rangle+\cos \theta\left|y^{\prime}\right\rangle
\end{aligned}
$$

$\left.$| Object 0: | | Object 1:
 Town Square. | Saloon. |
| :--- | :--- | :--- | :--- | | Object 2: |
| :--- |
| Gun Shoppe. | \right\rvert\, | (US surveyor $)$ | $x=0$ | $x=0.5$ |
| :--- | :--- | :--- |
| | $y=0$ | $y=1.0$ |

You may apply (Jacobian) transform matrix:

$$
\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

or the inverse (Kajobian) transformation:

$$
\left(\begin{array}{ll}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

to any vector $\mathbf{V}=|V\rangle=|x\rangle\langle x \mid V\rangle+|y\rangle\langle y \mid V\rangle$

$$
=\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left|y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle
$$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B. 2 Diagram and formulas for reconciliation of the two surveyor's data.

$$
\mathrm{x}=\mathrm{x}^{\prime} \cos \theta+\mathrm{y}^{\prime} \sin \theta
$$

$$
y=-x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

Instead, use Dirac unit vectors $|x\rangle,|y\rangle$ and $\left|x^{\prime}\right\rangle,\left|y^{\prime}\right\rangle$
Reminder: Component-based derivation is clumsy!
$4 y^{\prime} \sin \theta \rightarrow-x^{\prime} \cos \theta \rightarrow$

Forget this!! It's too clumsy to generalize to $3 D, 4 D, \ldots$

$\cos \theta=\frac{1}{\sqrt{1+\frac{b^{2}}{\mathrm{c}^{2}}}}$
$\sin \theta=\frac{\mathrm{b} / \mathrm{c}}{\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{c}^{2}}}}$

$$
\begin{aligned}
& \mathbf{e}_{x^{\prime}}=\left|x^{\prime}\right\rangle=\cos \theta|x\rangle-\sin \theta|y\rangle \\
& \mathbf{e}_{y^{\prime}}=\left|y^{\prime}\right\rangle=\sin \theta|x\rangle+\cos \theta|y\rangle
\end{aligned}
$$

or the inverse relation:

$$
\begin{aligned}
& \mathbf{e}_{x}=|x\rangle=\cos \theta\left|x^{\prime}\right\rangle+\sin \theta \mid \overline{\left.y^{\prime}\right\rangle} \\
& \mathbf{e}_{y}=|y\rangle=-\sin \theta\left|x^{\prime}\right\rangle+\cos \theta\left|y^{\prime}\right\rangle
\end{aligned}
$$

Object 0:		Object 1: Saloon.	Object 2: Gun Shoppe.
Town Square.		Sal	$x=0$
(US surveyor $)$	$x=0$	$x=0.5$	$y=1.0$
(2nd surveyor)	$x^{\prime}=0$	$y=1.0$	$x^{\prime}=-0.45$
	$y^{\prime}=0$	$x^{\prime}=0$	$y^{\prime}=0.89$

(Jacobian) transformation $\left\{V_{x} V_{y}\right\}$ from $\left\{V_{x^{\prime}} V_{y^{\prime}}\right\}$:
$V_{x}=\langle x \mid V\rangle=\langle x| 1|V\rangle=\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left\langle x \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle$
$V_{y}=\langle y \mid V\rangle=\langle y| 1|V\rangle=\left\langle y \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left\langle y \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle$
You may apply (Jacobian) transform matrix:
$\left(\begin{array}{ll}\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\ \left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle\end{array}\right)=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
or the inverse (Kajobian) transformation:

$$
\left(\begin{array}{ll}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

to any vector $\mathbf{V}=|V\rangle=|x\rangle\langle x \mid V\rangle+|y\rangle\langle y \mid V\rangle$

$$
=\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left|y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle
$$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B. 2 Diagram and formulas for reconciliation of the two surveyor's data.

$$
\mathrm{x}=\mathrm{x}^{\prime} \cos \theta+\mathrm{y}^{\prime} \sin \theta
$$

$$
y=-x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

Instead, use Dirac unit vectors $|x\rangle,|y\rangle$ and $\left|x^{\prime}\right\rangle,\left|y^{\prime}\right\rangle$
Reminder: Component-based derivation is clumsy!
Hy' $\sin \theta \rightarrow-x^{\prime} \cos \theta \rightarrow$

Forget this!! It's too clumsy to generalize to $3 D, 4 D, \ldots$

$\cos \theta=\frac{1}{\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{c}^{2}}}}$
$\sin \theta=\frac{\mathrm{b} / \mathrm{c}}{\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{c}^{2}}}}$

$$
\begin{aligned}
& \mathbf{e}_{x^{\prime}}=\left|x^{\prime}\right\rangle=\cos \theta|x\rangle-\sin \theta|y\rangle \\
& \mathbf{e}_{y^{\prime}}=\left|y^{\prime}\right\rangle=\sin \theta|x\rangle+\cos \theta|y\rangle
\end{aligned}
$$

or the inverse relation:

$$
\begin{aligned}
& \mathbf{e}_{x}=|x\rangle=\cos \theta\left|x^{\prime}\right\rangle+\sin \theta \mid \overline{\left.y^{\prime}\right\rangle} \\
& \mathbf{e}_{y}=|y\rangle=-\sin \theta\left|x^{\prime}\right\rangle+\cos \theta\left|y^{\prime}\right\rangle
\end{aligned}
$$

Object 0:	Object 1: Taloon.		Object 2: Gun Shoppe.
Town Square.		Saloo	$x=0$
(US surveyor $)$	$x=0$	$x=0.5$	$y=1.0$
	$y=0$	$y=1.0$	$x^{\prime}=-0.45$
(2nd surveyor)	$x^{\prime}=0$	$x^{\prime}=0$	$y^{\prime}=0.89$
	$y^{\prime}=0$	$y^{\prime}=1.1$	

(Jacobian) transformation $\left\{V_{x} V_{y}\right\}$ from $\left\{V_{x^{\prime}} V_{y^{\prime}}\right\}$: in matrix form:

$$
\begin{aligned}
& V_{x}=\langle x \mid V\rangle=\langle x| 1|V\rangle=\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left\langle x \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle \\
& V_{y}=\langle y \mid V\rangle=\langle y| 1|V\rangle=\left\langle y \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left\langle y \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle
\end{aligned} \quad\binom{V_{x}}{V_{y}}=\left(\begin{array}{cc}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)\binom{V_{x^{\prime}}}{V_{y^{\prime}}}
$$

You may apply (Jacobian) transform matrix:

$$
\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

or the inverse (Kajobian) transformation:

$$
\left(\begin{array}{ll}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

to any vector $\mathbf{V}=|V\rangle=|x\rangle\langle x \mid V\rangle+|y\rangle\langle y \mid V\rangle$

$$
=\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left|y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle
$$

PLEASE!

Do NOT ever write

this: $\quad \begin{aligned} & \mathbf{e}_{x^{\prime}}=\left|x^{\prime}\right\rangle=\cos \theta|x\rangle-\sin \theta|y\rangle \\ & \mathbf{e}_{y^{\prime}}=\left|y^{\prime}\right\rangle=\sin \theta|x\rangle+\cos \theta|y\rangle\end{aligned}$
like this: $\binom{\mathbf{e}_{x^{\prime}}}{\mathbf{e}_{y^{\prime}}}=\binom{\left|x^{\prime}\right\rangle}{\left|y^{\prime}\right\rangle}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{|x\rangle}{|y\rangle}$

PLEASE!

Do NOT ever write

this: $\quad \begin{aligned} \mathbf{e}_{x^{\prime}} & =\left|x^{\prime}\right\rangle \\ \mathbf{e}_{y^{\prime}} & =\left|y^{\prime}\right\rangle=\cos \theta|x\rangle-\sin \theta|y\rangle \equiv \mathbf{R}|x\rangle \\ \ln ^{\prime} \theta|x\rangle+\cos \theta|y\rangle & \equiv \mathbf{R}|y\rangle\end{aligned}$
(This is a useful abstract definition.)

Here is a matrix representation of abstract definitions: $\left|x^{\prime}\right\rangle \equiv \mathbb{R}|x\rangle,\left|y^{\prime}\right\rangle=\mathbb{R}|y\rangle$

$$
\binom{V_{x}}{V_{y}}=\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)\binom{V_{x^{\prime}}}{V_{y^{\prime}}}=\left(\begin{array}{ll}
\langle x| \mathbf{R}|x\rangle & \langle x| \mathbf{R}|y\rangle \\
\langle y| \mathbf{R}|x\rangle & \langle y| \mathbf{R}|y\rangle
\end{array}\right)\binom{V_{x^{\prime}}}{V_{y^{\prime}}}=\left(\begin{array}{cc}
\left\langle x^{\prime}\right| \mathbf{R}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{R}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{R}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{R}\left|y^{\prime}\right\rangle
\end{array}\right)\binom{V_{x^{\prime}}}{V_{y^{\prime}}}
$$

(a) Rotation Transformation and Invariants
$x=1.65$
$y=-0.85$
$x^{2}+y^{2}=3.43$
$x^{\prime}=1.00$
$y^{\prime}=-1.56$
$x^{2}+y^{2}=3.43$

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta=\frac{x}{\sqrt{1+\frac{b^{2}}{c^{2}}}}+\frac{-(b / c) y}{\sqrt{1+\frac{b^{2}}{c^{2}}}} \\
& y^{\prime}=x \sin \theta+y \cos \theta=\frac{(b / c) x}{\sqrt{1+\frac{b^{2}}{c^{2}}}}+\frac{y}{\sqrt{1+\frac{b^{2}}{c^{2}}}}
\end{aligned}
$$

(b) Lorentz Transformation and Invariants

$$
\begin{aligned}
& x=1.5453 \\
& c t=0.9819 \\
& x^{2}-(c t)^{2}=1.42 \\
& x^{\prime}=2.3512 \\
& c t^{\prime}=2.0260 \\
& x^{2}-\left(c t^{\prime}\right)^{2}=1.42
\end{aligned}
$$

.

$$
\begin{aligned}
x^{\prime} & =\frac{x}{\sqrt{1-\frac{v^{2}}{c^{2}}}}+\frac{\frac{v}{c} c t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=x \cosh \rho+y \sinh \rho \\
c t^{\prime} & =\frac{\frac{v}{c} x}{\sqrt{1-\frac{v^{2}}{c^{2}}}}+\frac{c t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=x \sinh \rho+y \cosh \rho
\end{aligned}
$$

That "old-time" relativity (Circa 600BCE- -905SE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

The straight scoop on "angle" and "rapidity" (They both are area!)

The "Area" being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line

2005 Web version:

www.uark.edu/ua/pirelli/php/complex_phasors_I.php

The straight scoop on "angle" and "rapidity" (They both are area!)

The "Area" being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line

2005 Web version:

www.uark.edu/ua/pirelli/php/complex_phasors_I.php
2014...Web-app versions:
http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html

Hyperbolic Functions

$$
\mathrm{m} \angle(\sigma)=0.8582
$$

$$
\text { Length }(\sigma)=0.8582
$$

$$
\operatorname{Area}(\sigma)=0.8582
$$

$$
\sin (\sigma)=0.7567
$$

$$
\begin{aligned}
& \tan (\sigma)=1.1574 \\
& \sec (\sigma)=15795
\end{aligned}
$$

$$
\sec (\sigma)=1.5295
$$

$\varrho=0.9884$

Area $(\mathrm{\varrho})=0.9884$
$\tanh (\mathrm{\varrho})=0.7567$
$\sinh (Q)=1.1574$
$\cosh (\varrho)=1.5295$

Circlular Views Transistion to Hyperbolic :
Reference Square linewidth 3
Show target point icon
Inset Information All
Measurment \boxtimes Old School Grouping \boxtimes Circular functions \square Hyperbolic functions \square

Line Labeling	Trigonometric \& Hyperbolic :
Line Groups	Auto :
Tangent 3	Secant \downarrow Sine \downarrow
Cotangent 0	Cosecant \square Cosine \square

\# σ Angles: 1 \# Comp Angles:

Related hyperbolic elements
Curves Show detailed hyperbolae :
Shaded regions: Circular \& Hyperbolic : Return

The straight scoop on "angle" and "rapidity" (They're area!)

The straight scoop on "angle" and "rapidity" (They're area!)

The "Area" being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line
Useful hyperbolic identities

$$
\sinh ^{2} \rho=\left(\frac{e^{\rho}-e^{-\rho}}{2}\right)^{2}=\frac{1}{4}\left(e^{2 \rho}+e^{-2 \rho}-2\right)=\frac{\cosh 2 \rho-1}{2}
$$

$$
\frac{\text { Area }}{2}=\frac{1}{2} \sinh \rho \cosh \rho-\int \sinh \rho d(\cosh \rho)
$$

$$
\begin{aligned}
& \frac{\text { Area }}{2}=\frac{1}{2} \sinh \rho \cosh \rho-\int \sinh \rho d(\cosh \rho) \\
& \frac{\text { Area }}{2}=\frac{1}{2} \sinh \rho \cosh \rho-\int \sinh ^{2} \rho d \rho=\frac{1}{4} \sinh 2 \rho-\int \frac{\cosh 2 \rho-1}{2} d \rho \quad \int \cosh \theta=\left(\frac{e^{\theta}-e^{-\theta}}{2}\right)\left(\frac{e^{\theta}+e^{-\theta}}{2}\right)=\frac{1}{4}\left(e^{2 \theta}-e^{-2 \theta}\right)=\frac{1}{2} \sinh 2 \theta \\
&
\end{aligned}
$$

The straight scoop on "angle" and "rapidity" (They're area!)

Amazing result: Area $=\rho$ is rapidity

That "old-time" relativity (Circa 60 BCE - 905 SE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity Group vs. phase velocity and tangent contacts

Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: $\boldsymbol{e}^{\rho_{A B}} \cdot e^{\rho_{B C}}=e^{\rho_{A C}}=e^{\rho_{A B}+\rho_{B C}}$

Easy to combine frame velocities using rapidity addition: $\quad \rho_{u+v}=\rho_{u}+\rho_{v}$

Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: $\boldsymbol{e}^{\rho_{A B}} \cdot \boldsymbol{e}^{\rho_{B C}}=e^{\rho_{A C}}=e^{\rho_{A B}+\rho_{B C}}$

Easy to combine frame velocities using rapidity addition:

$$
\rho_{u+v}=\rho_{u}+\rho_{v}
$$

$$
\frac{u^{\prime}}{c}=\tanh \left(\rho_{u}+\rho_{v}\right)=\frac{\tanh \rho_{u}+\tanh \rho_{v}}{1+\tanh \rho_{u} \tanh \rho_{v}}=\frac{\frac{u}{c}+\frac{v}{c}}{1+\frac{u}{c} \frac{v}{c}}
$$

or: $u^{\prime}=\frac{u+v}{1+\frac{u \cdot v}{c^{2}}}$

Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: $\boldsymbol{e}^{\rho_{A B}} \cdot \boldsymbol{e}^{\rho_{B C}}=e^{\rho_{A C}}=e^{\rho_{A B}+\rho_{B C}}$

Easy to combine frame velocities using rapidity addition: $\quad \rho_{u+v}=\rho_{u}+\rho_{v}$

$$
\frac{u^{\prime}}{c}=\tanh \left(\rho_{u}+\rho_{v}\right)=\frac{\tanh \rho_{u}+\tanh \rho_{v}}{1+\tanh \rho_{u} \tanh \rho_{v}}=\frac{\frac{u}{c}+\frac{v}{c}}{1+\frac{u}{c} \frac{v}{c}}
$$

or: $\quad u^{\prime}=\frac{u+v}{1+\frac{u \cdot v}{c^{2}}}$
No longer does $(1 / 2+1 / 2) c$ equal (1)c...
Relativistic result is: $\frac{\frac{1}{2}+\frac{1}{2}}{1+\frac{1}{2} \frac{1}{2}} c=\frac{1}{1+\frac{1}{4}} c=\frac{1}{\frac{5}{4}} c=\frac{4}{5} c$

Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: $\boldsymbol{e}^{\rho_{A B}} \cdot \boldsymbol{e}^{\rho_{B C}}=\boldsymbol{e}^{\rho_{A C}}=\boldsymbol{e}^{\rho_{A B}+\rho_{B C}}$

Easy to combine frame velocities using rapidity addition: $\quad \rho_{u+v}=\rho_{u}+\rho_{v}$

$$
\frac{u^{\prime}}{c}=\tanh \left(\rho_{u}+\rho_{v}\right)=\frac{\tanh \rho_{u}+\tanh \rho_{v}}{1+\tanh \rho_{u} \tanh \rho_{v}}=\frac{\frac{u}{c}+\frac{v}{c}}{1+\frac{u}{c} \frac{v}{c}}
$$

or: $\quad u^{\prime}=\frac{u+v}{1+\frac{u \cdot v}{c^{2}}}$
No longer does $(1 / 2+1 / 2) c$ equal (1) c...
Relativistic result is: $\frac{\frac{1}{2}+\frac{1}{2}}{1+\frac{1}{2} \frac{1}{2}} c=\frac{1}{1+\frac{1}{4}} c=\frac{1}{\frac{5}{4}} c=\frac{4}{5} c$
...but, $(1 / 2+1) c$ does equal (1)c...

$$
\frac{\frac{1}{2}+1}{1+\frac{1}{2} 1} c=c
$$

Fig. 7 SRQMbyR\&C
Fig. 7 SRQMbyR\&C

$$
\begin{aligned}
& \binom{v_{\text {phase }}^{\prime}}{c \kappa_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=v_{A}\binom{\frac{e^{+\rho}+e^{-\rho}}{2}}{\frac{e^{+\rho}-e^{-\rho}}{2}}=v_{A}\binom{\cosh \rho}{\sinh \rho}=v_{A}\binom{\frac{5}{4}}{\frac{3}{4}} \\
& \binom{v_{\text {group }}^{\prime}}{c \kappa_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=v_{A}\binom{\frac{e^{+\rho}-e^{-\rho}}{2}}{\frac{e^{+\rho}+e^{-\rho}}{2}}=v_{A}\binom{\sinh \rho}{\cosh \rho}=v_{A}\binom{\frac{3}{4}}{\frac{5}{4}}
\end{aligned}
$$

(a) Space-time $\left(c \tau^{\prime}, x^{\prime}\right)$ geometry of CW ϕ-paths $c \cdot$ Time-Period $c \cdot \tau^{\prime}=\lambda^{\prime}$ (units: $\lambda_{A}=c \tau_{A}=\frac{1}{2}$ micron)

Space-Wavelength x^{\prime}
(units : $\lambda_{A}=\frac{1}{2}$ micron)
"meter's per wave"
Fig. 7 SRQMbyR\&C

$$
\begin{aligned}
& \binom{v_{\text {phase }}^{\prime}}{c \kappa_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=v_{A}\binom{\frac{e^{+\rho}+e^{-\rho}}{2}}{\frac{e^{+\rho}-e^{-\rho}}{2}}=v_{A}\binom{\cosh \rho}{\sinh \rho}=v_{A}\binom{\frac{5}{4}}{\frac{3}{4}} \\
& \binom{v_{\text {group }}^{\prime}}{c \kappa_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=v_{A}\binom{\frac{e^{+\rho}-e^{-\rho}}{2}}{\frac{e^{+\rho}+e^{-\rho}}{2}}=v_{A}\binom{\sinh \rho}{\cosh \rho}=v_{A}\binom{\frac{3}{4}}{\frac{5}{4}}
\end{aligned}
$$

Fig. 7 SRQMbyR\&C

$$
\begin{aligned}
& \binom{v_{\text {phase }}^{\prime}}{c \kappa_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=v_{A}\binom{\frac{e^{+\rho}+e^{-\rho}}{2}}{\frac{e^{+\rho}-e^{-\rho}}{2}}=v_{A}\binom{\cosh \rho}{\sinh \rho}=v_{A}\binom{\frac{5}{4}}{\frac{3}{4}} \\
& \binom{v_{\text {group }}^{\prime}}{c \kappa_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=v_{A}\binom{\frac{e^{+\rho}-e^{-\rho}}{2}}{\frac{e^{+\rho}+e^{-\rho}}{2}}=v_{A}\binom{\sinh \rho}{\cosh \rho}=v_{A}\binom{\frac{3}{4}}{\frac{5}{4}}
\end{aligned}
$$

(b) Per-space-time $\left[\left(v^{\prime}, c \kappa^{\prime}\right)\right.$ geometry of CW point vectors Frequency: $v^{\prime}=2 \pi \cdot \omega^{\prime}$ (units : $\mathrm{v}_{A}=600 \mathrm{THz}$)

$$
\begin{aligned}
& \binom{v_{\text {phase }}^{\prime}}{c \kappa_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=v_{A}\binom{\frac{e^{+\rho}+e^{-\rho}}{2}}{\frac{e^{+\rho}-e^{-\rho}}{2}}=v_{A}\binom{\cosh \rho}{\sinh \rho}=v_{A}\binom{\frac{5}{4}}{\frac{3}{4}} \\
& \binom{v_{\text {group }}^{\prime}}{c \kappa_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=v_{A}\binom{\frac{e^{+\rho}-e^{-\rho}}{2}}{\frac{e^{+\rho}+e^{-\rho}}{2}}=v_{A}\binom{\sinh \rho}{\cosh \rho}=v_{A}\binom{\frac{3}{4}}{\frac{5}{4}}
\end{aligned}
$$

Fig. 7 SRQMbyR\&C
Fig. 7 SRQMbyR\&C

$$
\begin{aligned}
& \binom{v_{\text {phase }}^{\prime}}{c \kappa_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=v_{A}\binom{\frac{e^{+\rho}+e^{-\rho}}{2}}{\frac{e^{+\rho}-e^{-\rho}}{2}}=v_{A}\binom{\cosh \rho}{\sinh \rho}=v_{A}\binom{\frac{5}{4}}{\frac{3}{4}} \\
& \binom{v_{\text {group }}^{\prime}}{c \kappa_{\text {group }}^{\prime}}=\mathbf{G}^{\prime}=\frac{\mathbf{R}^{\prime}-\mathbf{L}^{\prime}}{2}=v_{A}\binom{\frac{e^{+\rho}-e^{-\rho}}{2}}{\frac{e^{+\rho}+e^{-\rho}}{2}}=v_{A}\binom{\sinh \rho}{\cosh \rho}=v_{A}\binom{\frac{3}{4}}{\frac{5}{4}}
\end{aligned}
$$

(a) Space-time $\left(c \tau^{\prime}, x^{\prime}\right)$ geometry of $\mathrm{CW} \phi$-paths $c \cdot$ Time-Period $c \cdot \tau^{\prime}=\lambda^{\prime}$
(units: $\lambda_{A}=c \tau_{A}=\frac{1}{2}$ micron)
(b) Per-space-time $\left(v^{\prime}, c \kappa^{\prime}\right)$ geometry of CW point vectors Frequency: $v^{\prime}=2 \pi \cdot \omega^{\prime}$ (units : $\mathrm{v}_{A}=600 \mathrm{THz}$
$\left(v^{\prime}, c \kappa^{\prime}\right)$ geometry of CW point vectors

$$
\begin{aligned}
& e^{-\rho}=\frac{1}{2} \\
& e^{+\rho}=2
\end{aligned}
$$

(a) Space-time $\left(c \tau^{\prime}, x^{\prime}\right)$ geometry of $\mathrm{CW} \phi$-paths, $c \cdot$ Time-Period $c \cdot \tau^{\prime}=\lambda^{\prime}$
(units: $\lambda_{A}=c \tau_{A}=\frac{1}{2}$ micron) (units : $\left.\mathrm{v}_{A}=600 \mathrm{THz}\right)$
"waves per second" 2.0
(b) Per-space-time $\Gamma\left(v^{\prime}, c \kappa^{\prime}\right)$ geometry of CW point vectors Frequency: $v^{\prime}=2 \pi \cdot \omega^{\prime}$

$$
\begin{aligned}
& e^{-\rho}=\frac{1}{2} \\
& e^{+\rho}=2
\end{aligned}
$$

$$
\begin{aligned}
& \left(\begin{array}{c}
\frac{e^{+\rho}+e^{-\rho}}{2} \\
\frac{e^{+\rho}-e^{-\rho}}{} \\
\hdashline-2 \\
\vdots \\
\cosh \rho \\
\sinh \rho
\end{array}\right)=v_{A}\binom{\frac{e^{+\rho}-e^{-\rho}}{2}}{\frac{e^{+\rho}+e^{-\rho}}{2}}=v_{A}\binom{\sinh \rho}{\cosh \rho}=v_{A}
\end{aligned}
$$

(a) Space-time $\left(c \tau^{\prime}, x^{\prime}\right)$ geometry of $C W \phi$-paths

$$
\begin{aligned}
& e^{-\rho}=\frac{1}{2} \\
& e^{+\rho}=2
\end{aligned}
$$

(b) Per-space-time $\left[\left(v^{\prime}, c \kappa^{\prime}\right)\right.$ geometry of CW point vectors Frequency: $v^{\prime}=2 \pi \cdot \omega^{\prime}$ (units : $v_{A}=600 \mathrm{THz}$)
R^{\prime} c Wave Number $c \cdot \kappa^{\prime}=c \cdot k^{\prime} / 2 \pi$ (units : $\mathrm{v}_{A}=c \cdot \kappa_{A}=600 \mathrm{THz}$)
'waves per meter

$$
\binom{v_{\text {phase }}^{\prime}}{c \mathcal{K}_{\text {phase }}^{\prime}}=\mathbf{P}^{\prime}=\frac{\mathbf{R}^{\prime}+\mathbf{L}^{\prime}}{2}=v_{A}
$$

A laser phasor sketched in Fig. 4 should be taken seriously as a gauge of time (clock) and of space (metric ruler) by giving time (wave period τ) and distance (wavelength λ) in Fig.7a. A time-stamp reading of phase ϕ at a particular space-time point should be equal for Alice and Bob in spite of having unequal readings (x, t) and $\left(x^{\prime}, t^{\prime}\right)$ for that point and unequal frequency-wavevector readings (ω, k) and $\left(\omega^{\prime}, k^{\prime}\right)$ for a laser group-wave or its phase-wave.

$$
\begin{align*}
& \phi_{\text {phase }}^{\prime} \equiv k_{\text {phase }}^{\prime} x^{\prime}-\omega_{\text {phase }}^{\prime} t^{\prime}=k_{\text {phase }} x-\omega_{\text {phase }} t \equiv \phi_{\text {phase }} \tag{20}\\
& \phi_{\text {group }}^{\prime} \equiv k_{\text {group }}^{\prime} x^{\prime}-\omega_{\text {group }}^{\prime} t^{\prime}=k_{\text {group }} x-\omega_{\text {group }} t \equiv \phi_{\text {group }}
\end{align*}
$$

A laser phasor sketched in Fig. 4 should be taken seriously as a gauge of time (clock) and of space (metric ruler) by giving time (wave period τ) and distance (wavelength λ) in Fig.7a. A time-stamp reading of phase ϕ at a particular space-time point should be equal for Alice and Bob in spite of having unequal readings (x, t) and $\left(x^{\prime}, t^{\prime}\right)$ for that point and unequal frequency-wavevector readings (ω, k) and $\left(\omega^{\prime}, k^{\prime}\right)$ for a laser group-wave or its phase-wave.

$$
\begin{align*}
& \phi_{\text {phase }}^{\prime} \equiv k_{\text {phase }}^{\prime} x^{\prime}-\omega_{\text {phase }}^{\prime} t^{\prime}=k_{\text {phase }} x-\omega_{\text {phase }} t \equiv \phi_{\text {phase }} \tag{20}\\
& \phi_{\text {group }}^{\prime} \equiv k_{\text {group }}^{\prime} x^{\prime}-\omega_{\text {group }}^{\prime} t^{\prime}=k_{\text {group }} x-\omega_{\text {group }} t \equiv \phi_{\text {group }}
\end{align*}
$$

Bob's ($\omega^{\prime}, k^{\prime}$) components are in (14) and (15). Alice's (ω, k) are the same with $\rho=0$. An Einstein-Lorentz Transformation (ELT) of Bob's $\left(x^{\prime}, t^{\prime}\right)$ to Alice's (x, t) follows.

$$
\begin{align*}
& \phi_{\text {phase }} \equiv x^{\prime} \frac{\omega_{A}}{c} \cosh \rho-t^{\prime} \omega_{A} \sinh \rho=0 \cdot x-\omega_{A} t \quad \Rightarrow \quad c t=c t^{\prime} \cosh \rho-x^{\prime} \sinh \rho \\
& \phi_{\text {group }} \equiv x^{\prime} \frac{\omega_{A}}{c} \sinh \rho-t^{\prime} \omega_{A} \cosh \rho=\frac{\omega_{A}}{c} x-0 \cdot t \quad \Rightarrow \quad x=-c t^{\prime} \sinh \rho+x^{\prime} \cosh \rho \tag{21}
\end{align*}
$$

A laser phasor sketched in Fig. 4 should be taken seriously as a gauge of time (clock) and of space (metric ruler) by giving time (wave period τ) and distance (wavelength λ) in Fig.7a. A time-stamp reading of phase ϕ at a particular space-time point should be equal for Alice and Bob in spite of having unequal readings (x, t) and $\left(x^{\prime}, t^{\prime}\right)$ for that point and unequal frequency-wavevector readings (ω, k) and $\left(\omega^{\prime}, k^{\prime}\right)$ for a laser group-wave or its phase-wave.

$$
\begin{align*}
\phi_{\text {phase }}^{\prime} & \equiv k_{\text {phase }}^{\prime} x^{\prime}-\omega_{\text {phase }}^{\prime} t^{\prime}=k_{\text {phase }} x-\omega_{\text {phase }} t \equiv \phi_{\text {phase }} \tag{20}\\
\phi_{\text {group }}^{\prime} & \equiv k_{\text {group }}^{\prime} x^{\prime}-\omega_{\text {group }}^{\prime} t^{\prime}=k_{\text {group }} x-\omega_{\text {group }} t \equiv \phi_{\text {group }}
\end{align*}
$$

Bob's ($\omega^{\prime}, k^{\prime}$) components are in (14) and (15). Alice's (ω, k) are the same with $\rho=0$. An Einstein-Lorentz Transformation (ELT) of Bob's $\left(x^{\prime}, t^{\prime}\right)$ to Alice's (x, t) follows.

$$
\begin{align*}
& \phi_{\text {phase }} \equiv x^{\prime} \frac{\omega_{A}}{c} \cosh \rho-t^{\prime} \omega_{A} \sinh \rho=0 \cdot x-\omega_{A} t \quad \Rightarrow \quad c t=c t^{\prime} \cosh \rho-x^{\prime} \sinh \rho \\
& \phi_{\text {group }} \equiv x^{\prime} \frac{\omega_{A}}{c} \sinh \rho-t^{\prime} \omega_{A} \cosh \rho=\frac{\omega_{A}}{c} x-0 \cdot t \quad \Rightarrow \quad x=-c t^{\prime} \sinh \rho+x^{\prime} \cosh \rho \tag{21}
\end{align*}
$$

The ELT matrix form and its inverse complete the space-time side of Fig.7.

$$
\binom{c t}{x}=\left(\begin{array}{cc}
\cosh \rho & -\sinh \rho \tag{22}\\
-\sinh \rho & \cosh \rho
\end{array}\right)\binom{c t^{\prime}}{x^{\prime}} \Rightarrow\binom{c t^{\prime}}{x^{\prime}}=\left(\begin{array}{cc}
\cosh \rho & +\sinh \rho \\
+\sinh \rho & \cosh \rho
\end{array}\right)\binom{c t}{x}
$$

A laser phasor sketched in Fig. 4 should be taken seriously as a gauge of time (clock) and of space (metric ruler) by giving time (wave period τ) and distance (wavelength λ) in Fig.7a. A time-stamp reading of phase ϕ at a particular space-time point should be equal for Alice and Bob in spite of having unequal readings (x, t) and $\left(x^{\prime}, t^{\prime}\right)$ for that point and unequal frequency-wavevector readings (ω, k) and $\left(\omega^{\prime}, k^{\prime}\right)$ for a laser group-wave or its phase-wave.

$$
\begin{align*}
\phi_{\text {phase }}^{\prime} & \equiv k_{\text {phase }}^{\prime} x^{\prime}-\omega_{\text {phase }}^{\prime} t^{\prime}=k_{\text {phase }} x-\omega_{\text {phase }} t \equiv \phi_{\text {phase }} \tag{20}\\
\phi_{\text {group }}^{\prime} & \equiv k_{\text {group }}^{\prime} x^{\prime}-\omega_{\text {group }}^{\prime} t^{\prime}=k_{\text {group }} x-\omega_{\text {group }} t \equiv \phi_{\text {group }}
\end{align*}
$$

Direct derivation of ELT uses base vectors \mathbb{P}^{\prime} and \mathbb{G}^{\prime} or \mathbf{P}^{\prime} and \mathbf{G}^{\prime} in (14) and (15).

$$
\begin{align*}
& \mathbf{P}^{\prime}=\binom{\omega_{\text {phase }}^{\prime}}{c k_{\text {phase }}^{\prime}}=\omega_{A}\binom{\cosh \rho}{\sinh \rho}=\binom{\omega_{A}}{0} \cosh \rho+\binom{0}{\omega_{A}} \sinh \rho=\mathbf{P} \cosh \rho+\mathbf{G} \sinh \rho \tag{23}\\
& \mathbf{G}^{\prime}=\binom{\omega_{\text {group }}^{\prime}}{c k_{\text {group }}^{\prime}}=\omega_{A}\binom{\sinh \rho}{\cosh \rho}=\binom{\omega_{A}}{0} \sinh \rho+\binom{0}{\omega_{A}} \cosh \rho=\mathbf{P} \sinh \rho+\mathbf{G} \cosh \rho \tag{24}
\end{align*}
$$

That "old-time" relativity (Circa 60 BCE - 905 SE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation The straight scoop on "angle" and "rapidity" (They're area!)

Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity Group vs. phase velocity and tangent contacts

Introducing the "Sin-Tan Rosetta Stone" NOTE: Angle ϕ is now called stellar aberration angle σ

> Fig. 5.4 in Unit 8

Introducing the "Sin-Tan Rosetta Stone" NOTE: Angle ϕ is now called stellar aberration angle σ

2005 Web version:
www.uark.edu/ua/pirelli/php/complex_phasors_I.php

2014...Web-app versions:

http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html

Circular Functions	
$\mathrm{m} \angle(\mathrm{\sigma})=0.8582$$\text { Length }(\mathrm{O})=0.8582$	
Area $(\sigma)=0.8582$	
$\begin{aligned} & \sin (\sigma)=0.7567 \\ & \tan (\sigma)=1.1574 \end{aligned}$	
$\sec (\sigma)=1.5295$	
$\begin{aligned} & \cos (\sigma)=0.6538 \\ & \cot (\sigma)=0.8640 \end{aligned}$	
$\begin{aligned} & \cot (\sigma)=0.8640 \\ & \csc (\sigma)=1.3216 \end{aligned}$	
Circlular Views Sthe, Sceam S Tengemt :	
Reference Square linewidth 0	
Show target point icon ®	
Inset Information Noome :	
Measurment ® Old School Grouping 』	
Circular functions \square Hyperbolic functions \square	
Line Labeling (Tigoomemetric :	
Line Groups Trigenometic :	
Tangent 1 ${ }^{1}$ Secant \triangle Sine \boxtimes	
Cotangent 1 Cosecant \otimes Cosine $®$	
\# σ Angles: 1 \# Comp Angles: 0	
Related hyperbolic elements	
Curves None $:$	
Shaded regions: (Circular :	

Fig. 5.4 in Unit 8

Circular Functions
$\mathrm{m} \angle(\sigma)=0.8582$
Length $(\sigma)=0.8582$
Area(σ) $=0.8582$
$\sin (\sigma)=0.7567$
$\tan (\sigma)=1.1574$
$\sec (\sigma)=1.5295$
$\cos (\sigma)=0.6538$
$\cot (\sigma)=0.8640$
$\csc (\sigma)=1.3216$

That "old-time" relativity (Circa 600BCE- -905SE)

```
("Bouncing-photons" in smoke & mirrors and Thales, again)
    The Ship and Lighthouse saga
            Light-conic-sections make invariants
    A politically incorrect analogy of rotational transformation and Lorentz transformation
    The straight scoop on "angle" and "rapidity" (They're area!)
            Galilean velocity addition becomes rapidity addition
    Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
# Introducing the stellar aberration angle \sigmavs. rapidity \rho
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
```

Introducing the stellar aberration angle σ vs. rapidity ρ
Together, rapidity $\rho=\ln b$ and stellar aberration angle σ are parameters of relative velocity

The rapidity $\rho=\ln b$ is based on longitudinal wave Doppler shift $b=e^{\rho}$ defined by u/c=tanh (ρ). At low speed: u/c~p.
(a) Fixed Observer
x

Fig. 5.6 Epstein's cosmic speedometer with aberration angle σ and transverse Doppler shift cosh $\mathrm{v}_{\text {z }}$.

That "old-time" relativity (Circa 600BCE- 1995CE)

> ("Bouncing-photons" in smoke \& mirrors and Thales, again)
> The Ship and Lighthouse saga
> Light-conic-sections make invariants
> A politically incorrect analogy of rotational transformation and Lorentz transformation
> The straight scoop on "angle" and "rapidity" (They're area!)
> Galilean velocity addition becomes rapidity addition
> Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
> Introducing the stellar aberration angle σ vs. rapidity ρ
> How Minkowski's space-time graphs help visualize relativity
> Group vs. phase velocity and tangent contacts

How Minkowski's space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at $t=2.00$ sec.
Space-space Animation of Two Relativistic Ships Passing Two

Space-Time Movies in Lighthouse Rest Frame Showing Lighthouse Now-Line (Black terminator-line)

Ship v/c(rel.tolthse.) $=0.50$ Ship v / c (rel.to dbs .) $=-0.50$
Lthse v/c(rel.to obs.) $=0.00$
North Lighthouse

Happening 1
Happening 2
2005 Web versions:
www.uark.edu/ua/pirelli/php/lighthouse scenarios.php

2014...Web-app versions:

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html

How Minkowski's space-time graphs help visualize relativity (Here: $r=\operatorname{atanh}(1 / 2)=0.549$,
Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at $t=2.00$ sec. ...but, in Ship frame Happening 1 is at $t^{\prime}=1.74$ and Happening 2 is at $t^{\prime}=2.30$ sec.

Space-space Animation of Two Relativistic Lighthouses Passing Two

Space-Time Movies in Lighthouse Rest Frame Showing the Ship Now-Line (Black terminator-line

How Minkowski's space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at $t=2.00$ sec. ...but, in Ship frame Happening 1 is at $t^{\prime}=1.74$ and Happening 2 is at $t^{\prime}=2.30$ sec.

Space-space Animation of Two Relativistic Lighthouses Passing Two

That is $t^{\prime}=2.30$ ship time www.uark.edu/ua/pirelli/php/lighthouse scenarios.php

and: $\quad \sigma=A \sin (1 / 2)=0.52$ or 30°)

2014...Web-app versions:

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html

2014...Web-app versions:

http://www.uark.edu/ua/modphys/markup/RelativItWeb.html

That "old-time" relativity (Circa 600BCE- -905SE)

[^0]Introducing the "Sin-Tan Rosetta Stone" NOTE: Angle ϕ is now called stellar aberration angle σ

Introducing the "Sin-Tan Rosetta Stone" NOTE: Angle ϕ is now called stellar aberration angle σ

Hyperbolic Functions

$\varrho=1.1714$
Area(0) $=1.1714$
$\sinh (\mathrm{\varrho})=1.4582$
$\cosh (\mathrm{\varrho})=1.7682$
$\tanh (\mathrm{Q})=0.8247$
$\operatorname{csch}(\mathrm{Q})=0.6858$
$\operatorname{sech}(\varrho)=0.5656$
$\operatorname{coth}(\mathrm{\varrho})=1.2125$

Circular Functions
$\mathrm{m}_{\angle}(\sigma)=0.9697$
Length $(\sigma)=0.9697$
Area $(\sigma)=0.9697$
$\sin (\sigma)=0.8247$
$\cos (\sigma)=0.5656$
$\tan (\sigma)=1.4582$
$\csc (\sigma)=1.2125$
$\sec (\sigma)=1.7682$
$\cot (\sigma)=0.6858$

Per-Time $(\omega)_{4}$

Laser frequency $=\mathrm{B}=2=600 \mathrm{THz}$
Doppler blue shift factor $=\mathrm{b}=2.005$
Doppler red shift factor $=r=0.499$
$\varrho=0.696$

CW Light Axioms

All colors go c: $\omega / \mathrm{k}=\mathrm{c}$ or L\&R on diagonals
Time Reversal ($\mathrm{r} \leftrightarrow \mathrm{b}$): $\mathrm{r}=1 / \mathrm{b}$

2014...Web-app versions.
er frequency $=\mathrm{B}=2=600 \mathrm{THz}$
pler blue shift factor $=b=2.005$
pler red shift factor $=\mathrm{r}=0.499$

0.696

Light Axioms

11 colors goc: $\omega / \mathrm{k}=\mathrm{c}$ or $\mathrm{L} \& R$ on diagonals ime Reversal ($\mathrm{r} \leftrightarrow \mathrm{b}$): $\mathrm{r}=1 / \mathrm{b}$

```
Time Views Shifted u=3c/5:
ency
hase Vectors
gions
tt Strip
Cells (+)=
Branches -ck
eference Circles Auto :
cle p-Circle }\boxtimes g-Circle 
ft-Circle }\square\mathrm{ Blue Shift-Circle
Rapidity & Components :
nation Auto :
Numerical \boxtimes Relations
    Return
```



``` \(\ddagger\) \(\square\) cle \(\square\)

> Rapidity \& Components
\(:\)
\(\square\) Numerical \(\boxtimes\) Relations \(\square\)
Return
```


Per-Time (ω)
:

$\mathrm{v} / \mathrm{c}=\beta=0.600$
Doppler blue shift factor $=\mathrm{b}=2.000$
Doppler red shift factor $=r=0.500$
$v=0.540=30.964^{\circ}$
$\mathrm{Q}=0.693$
$\sigma=0.644=36.870^{\circ}$

Coordinate angle $v=\operatorname{atan}(\mathrm{u} / \mathrm{c})$
Energy (E)

Shaded regions: Rapidity \& Sigma $\%$

Tangent Lines To hyperbola \& circle :
Reference Circles \& Angles Auto :
-Circle $\nabla \quad$ g-Circle \square p-Circle ∇ L-Circle \square

-Circle \square	g-Circle \square	p-Circle \boxtimes	L-Circle \square
-Circle \square	λ-Circle \square	β-Arc \boxtimes	σ-Arc \square
	Return		

Rest Energy
$B=\boldsymbol{\omega}$
b-circle

$\mathrm{v} / \mathrm{c}=\beta=0.600$

Doppler blue shift factor $=\mathrm{b}=2.000$
Doppler red shift factor $=r=0.500$
$v=0.540=30.964{ }^{\circ}$
$\mathrm{Q}=0.693$
$\sigma=0.644=36.870^{\circ}$

Coordinate angle $v=\operatorname{atan}(\mathrm{u} / \mathrm{c})$

Energy (E)

Hamiltonian	Show
Momentum	Show
Lagrangian	Show
Group velocity	Show
Rest Energy	Auto
Phase velocity	Don't show
Wavelength λ	Don't show
Minkowski Cells (+) $=$	1
Sword line width $=$	1

Shaded regions: Rapidity \& Sigma :

Tangent Lines To hyperbola \& circle :
Reference Circles \& Angles Auto :
Circle $\boxtimes \quad \mathrm{g}$-Circle \square p-Circle \boxtimes L-Circle \square
Circle $\quad \lambda$-Circle $\square \quad \beta$-Arc $\boxtimes \quad \sigma$-Arc Return
b-circle
$\mathrm{v} / \mathrm{c}=\beta=0.600$
Doppler blue shift factor $=\mathrm{b}=2.000$
Doppler red shift factor $=r=0.500$
$v=0.540=30.964^{\circ}$
$\mathrm{Q}=0.693$
$\sigma=0.644=36.870^{\circ}$

Energy (E)

Physical Terms Hamiltonian $+\quad$:

Hamiltonian	Show
Momentum	Show
Lagrangian	Show :
Group velocity	Show :
Rest Energy	Auto :
Phase velocity	Don't show :
Wavelength λ	Don't show :
Minkowski Cells (+) =	1
Sword line width $=$	1

Shaded regions: Rapidity \& Sigma :
Tangent Lines Auto
Reference Circles \& Angles

Circle \boxtimes	g -Circle \boxtimes	p -Circle \boxtimes	L-Circle \boxtimes
-Circle	λ-Circle \square	β-Arc \boxtimes	σ-Arc \boxtimes
	Return		

Coordinate angle $v=\operatorname{atan}(\mathrm{u} / \mathrm{c})$

Rest Energy
$B=\varpi$
b-circle

$$
\text { ift factor }=b=2.000
$$

$$
\text { ff factor }=r=0.500
$$

$$
964^{\circ}
$$

$$
874^{\circ}
$$

$$
870^{\circ}
$$

[^0]: ("Bouncing-photons" in smoke \& mirrors and Thales, again)
 The Ship and Lighthouse saga
 Light-conic-sections make invariants
 A politically incorrect analogy of rotational transformation and Lorentz transformation
 The straight scoop on "angle" and "rapidity" (They're area!)
 Galilean velocity addition becomes rapidity addition
 Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
 Introducing the stellar aberration angle σ vs. rapidity ρ
 How Minkowski's space-time graphs help visualize relativity
 Group vs. phase velocity and tangent contacts

