Relativity of lightwaves and Lorentz-Minkowski coordinates IV.

(Ch. 0-3 of Unit 8)
5. That "old-time" relativity (Circa 600BCE- 1905CE)
("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

5. That "old-time" relativity (Cira 600BCE- 1905CE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

Comparing Ship and Lighthouse views: Happening tables

0 th blink wave (From Main)

Happening 0:
Ship passes Main Lighthouse.

Happening 1: Ship gets hit by Happening 2: Main Lighthouse first blink from Main Lighthouse. blinks second time.

(Lighthouse space)	$x=0$	$x=-1.00 c$	$x=0$
(Lighthouse time)	$t=0$	$t=2.00$	$t=2.00$
(Ship space)	$x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=c \Delta$
(Ship time)	$t^{\prime}=0$	$t^{\prime}=1.75$	$t^{\prime}=2 \Delta=2.30$

Fig. 2.A. 3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Happening 0.5:
Ship Time $t^{\prime}=\Delta=? ?$

Comparing Ship and Lighthouse views: Happening tables

Happening 0: Ship passes Main Lighthouse.		Happening 1: Ship gets hit by first blink from Main Lighthouse.	
Happening 2: Main Lighthouse blinks second time.			
(Lighthouse space)	$x=0$	$x=-1.00 c$	$x=0$
(Lighthouse time)	$t=0$	$t=2.00$	$t=2.00$
(Ship space)	$x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=c \Delta$
(Ship time)	$t^{\prime}=0$	$t^{\prime}=1.75$	$t^{\prime}=2 \Delta=2.30$

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

The ship and lighthouse saga
Happening 0.5:
Main Lite blinks first time.

Ship Time $t^{\prime}=\Delta=? ? ?$

$$
c^{2} \Delta^{2}=c^{2}+v^{2} \Delta^{2}
$$

$$
\left(c^{2}-v^{2}\right) \Delta^{2}=c^{2}
$$

Comparing Ship and Lighthouse views: Happening tables

Happening 0: Ship passes Main Lighthouse.			Happening 1: Ship gets hit by first blink from Main Lighthouse.
Happening 2: Main Lighthouse			
blinks second time.			
(Lighthouse space)	$x=0$	$x=-1.00 c$	$x=0$
(Lighthouse time)	$t=0$	$t=2.00$	$t=2.00$
(Ship space)	$x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=c \Delta$
(Ship time)	$t^{\prime}=0$	$t^{\prime}=1.75$	$t^{\prime}=2 \Delta=2.30$

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

The ship and lighthouse saga
Happening 0.5:
Main Lite blinks first time.

Ship Time $t^{\prime}=\Delta=1 / \sqrt{ }\left(1-v^{2} / c^{2}\right)=\cosh \rho$ $c^{2} \Delta^{2}=c^{2}+v^{2} \Delta^{2}$

$$
\left(c^{2}-v^{2}\right) \Delta^{2}=c^{2}
$$

Comparing Ship and Lighthouse views: Happening tables

Happening 0: Ship passes Main Lighthouse.			Happening 1: Ship gets hit by first blink from Main Lighthouse.
Happening 2: Main Lighthouse			
blinks second time.			
(Lighthouse space)	$x=0$	$x=-1.00 c$	$x=0$
(Lighthouse time)	$t=0$	$t=2.00$	$t=2.00$
(Ship space)	$x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=c \Delta$
(Ship time)	$t^{\prime}=0$	$t^{\prime}=1.75$	$t^{\prime}=2 \Delta=2.30$

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

The ship and lighthouse saga

Comparing Ship and Lighthouse views: Happening tables

Ship Time $t^{\prime}=\Delta=1 / \sqrt{ }\left(1-v^{2} / c^{2}\right)=\cosh \rho=1.15$ $c^{2} \Delta^{2}=c^{2}+v^{2} \Delta^{2}$

$$
\left(c^{2}-v^{2}\right) \Delta^{2}=c^{2}
$$

$$
\Delta^{2}=\frac{c^{2}}{\left(c^{2}-v^{2}\right)}=\frac{1}{\left(1-v^{2} / c^{2}\right)}
$$

For $u / c=1 / 2$,

Happening 0:	Happening 1: Ship gets hit by		Happening 2: Main Lighthouse Ship passes Main Lighthouse.
first blink from Main Lighthouse.	blinks second time.		

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$. Lecture 24 ended here

5. That "old-time" relativity (Circa 600BCE- 1905CE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation The straight scoop on "angle" and "rapidity" (They're area!)

Galilean velocity addition becomes rapidity addition Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

Fig. 2.B.5 Space-Space-Time plot of world likes for Lighthouses. North Lighthouse blink waves trace light cones.

5. That "old-time" relativity (Cira 600BCE- 999SE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B. 1 Town map according to a "tipsy" surveyor.

Object 0: Town Square.	Object 1: Saloon.	Object 2: Gun Shoppe.
$\begin{array}{\|ll} \hline \text { (US surveyor }) & x=0 \\ & y=0 \\ \hline \end{array}$	$\begin{aligned} & x=0.5 \\ & y=1.0 \end{aligned}$	$\begin{aligned} & x=0 \\ & y=1.0 \end{aligned}$
$\begin{array}{r} \text { (French surveyor) } x^{\prime}=0 \\ y^{\prime}=0 \end{array}$	$\begin{aligned} x^{\prime} & =0 \\ y^{\prime} & =1.1 \end{aligned}$	$\begin{aligned} & x^{\prime}=-0.45 \\ & y^{\prime}=0.89 \end{aligned}$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Object 0:	Object 1: Saloon.		Object 2: Gun Shoppe.
Town Square.		Sal	$x=0$
(US surveyor $)$	$x=0$	$x=0.5$	$y=1.0$
	$y=0$	$y=1.0$	$x^{\prime}=-0.45$
(2nd surveyor)	$x^{\prime}=0$	$x^{\prime}=0$	$y^{\prime}=0.89$

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta=\frac{x}{\sqrt{1+\frac{b^{2}}{c^{2}}}}+\frac{-(b / c) y}{\sqrt{1+\frac{b^{2}}{c^{2}}}} \\
& y^{\prime}=x \sin \theta+y \cos \theta=\frac{(b / c) x}{\sqrt{1+\frac{b^{2}}{c^{2}}}}+\frac{y}{\sqrt{1+\frac{b^{2}}{c^{2}}}}
\end{aligned}
$$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Object 0: Town Square.		Object 1: Saloon.	Object 2: Gun Shoppe.
(US surveyor)	$\begin{gathered} x=0 \\ y=0 \end{gathered}$	$\begin{aligned} & x=0.5 \\ & y=1.0 \end{aligned}$	$\begin{aligned} & x=0 \\ & y=1.0 \end{aligned}$
(2nd surveyor)	$\begin{aligned} & x^{\prime}=0 \\ & y^{\prime}=0 \end{aligned}$	$\begin{aligned} & x^{\prime}=0 \\ & y^{\prime}=1.1 \end{aligned}$	$\begin{aligned} & x^{\prime}=-0.45 \\ & y^{\prime}=0.89 \end{aligned}$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

$\left[\begin{array}{l}\mathbf{e}_{x}=|x\rangle=\cos \theta\left|x^{\prime}\right\rangle+\sin \theta\left|y^{\prime}\right\rangle \\ \mathbf{e}_{y}=|y\rangle=-\sin \theta\left|x^{\prime}\right\rangle+\cos \theta\left|y^{\prime}\right\rangle\end{array}\right]$

Object 0:		Object 1:	lobject 2:
Town Square.		Saloon.	Gun Shoppe.
(US surveyor)	$x=0$	$x=0.5$	$x=0$
	$y=0$	$y=1.0$	$y=1.0$
(2nd surveyor)	$x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=-0.45$
	$y^{\prime}=0$	$y^{\prime}=1.1$	$y^{\prime}=0.89$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B. 1 Town map according to a "tipsy" surveyor. Fig. 2.B. 2 Diagram and formulas for reconciliation of the two surveyor's data.

$$
\mathrm{x}=\mathrm{x}^{\prime} \cos \theta+\mathrm{y}^{\prime} \sin \theta
$$

$$
y=-x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

Instead, use Dirac unit vectors $|x\rangle,|y\rangle$ and $\left|x^{\prime}\right\rangle,\left|y^{\prime}\right\rangle$
Reminder: Component-based derivation is clumsy!

- $y^{\prime} \sin \theta-$-x' $\cos \theta \rightarrow$

Forget this!! It's too clumsy to generalize to $3 D, 4 D, \ldots$

$\cos \theta=\frac{1}{\sqrt{1+\frac{b^{2}}{c^{2}}}}$

$$
\sin \theta=\frac{\mathrm{b} / \mathrm{c}}{\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{c}^{2}}}}
$$

$$
\begin{aligned}
& \mathbf{e}_{x^{\prime}}=\left|x^{\prime}\right\rangle=\cos \theta|x\rangle-\sin \theta|y\rangle \\
& \mathbf{e}_{y^{\prime}}=\left|y^{\prime}\right\rangle=\sin \theta|x\rangle+\cos \theta|y\rangle
\end{aligned}
$$

or the inverse relation:

$$
{ }^{\mathbf{e}_{x}}=|x\rangle=\cos \theta\left|x^{\prime}\right\rangle+\sin \theta \mid \overline{\left.y^{\prime}\right\rangle},
$$

| Object 0: | | Object 1:
 Town Square. | Saloon. |
| :--- | :---: | :--- | :--- | | Object 2: |
| :--- |
| Gun Shoppe. |

You may apply (Jacobian) transform matrix:
$\left(\begin{array}{ll}\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\ \left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle\end{array}\right)=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
or the inverse (Kajobian) transformation:

$$
\left(\begin{array}{cc}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

to any vector $\mathbf{V}=|V\rangle=|x\rangle\langle x \mid V\rangle+|y\rangle\langle y \mid V\rangle$

$$
=\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left|y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle
$$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B. 2 Diagram and formulas for reconciliation of the two surveyor's data.

$$
\mathrm{x}=\mathrm{x}^{\prime} \cos \theta+\mathrm{y}^{\prime} \sin \theta
$$

$$
y=-x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

Instead, use Dirac unit vectors $|x\rangle,|y\rangle$ and $\left|x^{\prime}\right\rangle,\left|y^{\prime}\right\rangle$

$\cos \theta=\frac{1}{\sqrt{1+\frac{b^{2}}{\mathrm{c}^{2}}}}$
$\sin \theta=\frac{\mathrm{b} / \mathrm{c}}{\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{c}^{2}}}}$

Reminder: Component-based derivation is clumsy!
$4 y^{\prime} \sin \theta \rightarrow-x^{\prime} \cos \theta \rightarrow$

Forget this!! It's too clumsy to generalize to $3 D, 4 D, \ldots$

Object 2:
Gun Shop
Gun Shoppe.

Object 1: Saloon.	Object 2: Gun Shoppe.
$x=0.5$	$x=0$
$y=1.0$	$y=1.0$
$x^{\prime}=0$	$x^{\prime}=-0.45$
$y^{\prime}=1.1$	$y^{\prime}=0.89$

(Jacobian) transformation $\left\{V_{x} V_{y}\right\}$ from $\left\{V_{x^{\prime}} V_{y^{\prime}}\right\}$:
$V_{x}=\langle x \mid V\rangle=\langle x| 1|V\rangle=\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left\langle x \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle$
$V_{y}=\langle y \mid V\rangle=\langle y| 1|V\rangle=\left\langle y \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left\langle y \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle$

You may apply (Jacobian) transform matrix:
$\left(\begin{array}{ll}\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\ \left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle\end{array}\right)=\left(\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right)$
or the inverse (Kajobian) transformation:

$$
\left(\begin{array}{ll}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

to any vector $\mathbf{V}=|V\rangle=|x\rangle\langle x \mid V\rangle+|y\rangle\langle y \mid V\rangle$

$$
=\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left|y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle
$$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B. 2 Diagram and formulas for reconciliation of the two surveyor's data.

$$
\mathrm{x}=\mathrm{x}^{\prime} \cos \theta+\mathrm{y}^{\prime} \sin \theta
$$

$$
y=-x^{\prime} \sin \theta+y^{\prime} \cos \theta
$$

Instead, use Dirac unit vectors $|x\rangle,|y\rangle$ and $\left|x^{\prime}\right\rangle,\left|y^{\prime}\right\rangle$
Reminder: Component-based derivation is clumsy!
$4 y^{\prime} \sin \theta \rightarrow-x^{\prime} \cos \theta \rightarrow$

Forget this!! It's too clumsy to generalize to $3 D, 4 D, \ldots$

$\cos \theta=\frac{1}{\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{c}^{2}}}}$
$\sin \theta=\frac{\mathrm{b} / \mathrm{c}}{\sqrt{1+\frac{\mathrm{b}^{2}}{\mathrm{c}^{2}}}}$

$$
\begin{aligned}
& \mathbf{e}_{x^{\prime}}=\left|x^{\prime}\right\rangle=\cos \theta|x\rangle-\sin \theta|y\rangle \\
& \mathbf{e}_{y^{\prime}}=\left|y^{\prime}\right\rangle=\sin \theta|x\rangle+\cos \theta|y\rangle
\end{aligned}
$$

or the inverse relation:

$$
\begin{aligned}
& \mathbf{e}_{x}=|x\rangle=\cos \theta\left|x^{\prime}\right\rangle+\sin \theta\left|y^{\prime}\right\rangle \\
& \mathbf{e}_{y}=|y\rangle=-\sin \theta\left|x^{\prime}\right\rangle+\cos \theta\left|y^{\prime}\right\rangle
\end{aligned}
$$

| Object 0: | | Object 1:
 Town Square. | Saloon. |
| :--- | :---: | :--- | :--- | | Object 2: |
| :--- |
| Gun Shoppe. |

(Jacobian) transformation $\left\{V_{x} V_{y}\right\}$ from $\left\{V_{x^{\prime}} V_{y^{\prime}}\right\}$: in matrix form:

$$
\begin{aligned}
& V_{x}=\langle x \mid V\rangle=\langle x| 1|V\rangle=\left\langle x \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left\langle x \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle \\
& V_{y}=\langle y \mid V\rangle=\langle y| 1|V\rangle=\left\langle y \mid x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left\langle y \mid y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle
\end{aligned} \quad\binom{V_{x}}{V_{y}}=\left(\begin{array}{cc}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)\binom{V_{x^{\prime}}}{V_{y^{\prime}}}
$$

You may apply (Jacobian) transform matrix:

$$
\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

or the inverse (Kajobian) transformation:

$$
\left(\begin{array}{ll}
\left\langle x^{\prime} \mid x\right\rangle & \left\langle x^{\prime} \mid y\right\rangle \\
\left\langle y^{\prime} \mid x\right\rangle & \left\langle y^{\prime} \mid y\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)
$$

to any vector $\mathbf{V}=|V\rangle=|x\rangle\langle x \mid V\rangle+|y\rangle\langle y \mid V\rangle$

$$
=\left|x^{\prime}\right\rangle\left\langle x^{\prime} \mid V\right\rangle+\left|y^{\prime}\right\rangle\left\langle y^{\prime} \mid V\right\rangle
$$

PLEASE!

Do NOT ever write

this: $\quad \begin{aligned} & \mathbf{e}_{x^{\prime}}=\left|x^{\prime}\right\rangle=\cos \theta|x\rangle-\sin \theta|y\rangle \\ & \mathbf{e}_{y^{\prime}}=\left|y^{\prime}\right\rangle=\sin \theta|x\rangle+\cos \theta|y\rangle\end{aligned}$
like this: $\binom{\mathbf{e}_{x^{\prime}}}{\mathbf{e}_{y^{\prime}}}=\binom{\left|x^{\prime}\right\rangle}{\left|y^{\prime}\right\rangle}=\left(\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right)\binom{|x\rangle}{|y\rangle}$

PLEASE!

Do NOT ever write

this: $\quad \begin{aligned} & \mathbf{e}_{x^{\prime}}=\left|x^{\prime}\right\rangle=\cos \theta|x\rangle-\sin \theta|y\rangle \\ & \mathbf{e}_{y^{\prime}}=\left|y^{\prime}\right\rangle=\sin \theta|x\rangle+\cos \theta|y\rangle\end{aligned}$
(This is an abstract definition.)

PLEASE!

Do NOT ever write

this: $\begin{aligned} \mathbf{e}_{x^{\prime}} & =\left|x^{\prime}\right\rangle \\ \mathbf{e}_{y^{\prime}} & =\left|y^{\prime}\right\rangle=\cos \theta|x\rangle-\sin \theta|y\rangle\end{aligned}=\mathbf{R}|x\rangle+\cos \theta|y\rangle \equiv \mathbf{R}|y\rangle$
(This is an abstract definition.)

Here is a matrix representation of abstract definitions: $\left|x^{\prime}\right\rangle \equiv \mathbb{R}|x\rangle,\left|y^{\prime}\right\rangle=\mathbb{R}|y\rangle$

$$
\binom{V_{x}}{V_{y}}=\left(\begin{array}{ll}
\left\langle x \mid x^{\prime}\right\rangle & \left\langle x \mid y^{\prime}\right\rangle \\
\left\langle y \mid x^{\prime}\right\rangle & \left\langle y \mid y^{\prime}\right\rangle
\end{array}\right)\binom{V_{x^{\prime}}}{V_{y^{\prime}}}=\left(\begin{array}{ll}
\langle x| \mathbf{R}|x\rangle & \langle x| \mathbf{R}|y\rangle \\
\langle y| \mathbf{R}|x\rangle & \langle y| \mathbf{R}|y\rangle
\end{array}\right)\binom{V_{x^{\prime}}}{V_{y^{\prime}}}=\left(\begin{array}{cc}
\left\langle x^{\prime}\right| \mathbf{R}\left|x^{\prime}\right\rangle & \left\langle x^{\prime}\right| \mathbf{R}\left|y^{\prime}\right\rangle \\
\left\langle y^{\prime}\right| \mathbf{R}\left|x^{\prime}\right\rangle & \left\langle y^{\prime}\right| \mathbf{R}\left|y^{\prime}\right\rangle
\end{array}\right)\binom{V_{x^{\prime}}}{V_{y^{\prime}}}
$$

(a) Rotation Transformation and Invariants
$x=1.65$
$y=-0.85$
$x^{2}+y^{2}=3.43$
$x^{\prime}=1.00$
$y^{\prime}=-1.56$
$x^{2}+y^{2}=3.43$

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta=\frac{x}{\sqrt{1+\frac{b^{2}}{c^{2}}}}+\frac{-(b / c) y}{\sqrt{1+\frac{b^{2}}{c^{2}}}} \\
& y^{\prime}=x \sin \theta+y \cos \theta=\frac{(b / c) x}{\sqrt{1+\frac{b^{2}}{c^{2}}}}+\frac{y}{\sqrt{1+\frac{b^{2}}{c^{2}}}}
\end{aligned}
$$

(b) Lorentz Transformation and Invariants

$$
\begin{aligned}
& x=1.5453 \\
& c t=0.9819 \\
& x^{2}-(c t)^{2}=1.42 \\
& x^{\prime}=2.3512 \\
& c t^{\prime}=2.0260 \\
& x^{2}-\left(c t^{\prime}\right)^{2}=1.42
\end{aligned}
$$

,

$$
\begin{aligned}
& x^{\prime}=\frac{x}{\sqrt{1-\frac{v^{2}}{c^{2}}}}+\frac{\frac{v}{c} c t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=x \cosh \rho+y \sinh \rho \\
& c t^{\prime}=\frac{\frac{v}{c} x}{\sqrt{1-\frac{v^{2}}{c^{2}}}}+\frac{c t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=x \sinh \rho+y \cosh \rho
\end{aligned}
$$

5. That "old-time" relativity (Cira 600BCE- 999SE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

The straight scoop on "angle" and "rapidity" (They're area!)

The "Area" being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line

The straight scoop on "angle" and "rapidity" (They're area!)

The straight scoop on "angle" and "rapidity" (They're area!)

The "Area" being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line
Useful hyperbolic identities

$$
\frac{\text { Area }}{2}=\frac{1}{2} \sinh \rho \cosh \rho-\int \sinh \rho d(\cosh \rho)
$$

$$
\begin{aligned}
& \sinh \theta \cosh \theta=\left(\frac{e^{\theta}-e^{-\theta}}{2}\right)\left(\frac{e^{\theta}+e^{-\theta}}{2}\right)=\frac{1}{4}\left(e^{2 \theta}-e^{-2 \theta}\right)=\frac{1}{2} \sinh 2 \theta \\
& -\int \frac{\cosh 2 \rho-1}{2} d \rho \quad \int \cosh a \rho d \rho=\frac{1}{a} \sinh a \rho
\end{aligned}
$$

The straight scoop on "angle" and "rapidity" (They're area!)

Amazing result: Area $=\rho$ is rapidity

5. That "old-time" relativity (Circa bobece- 905 CE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Halilean velocity addition becomes rapidity addition Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)

Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity Group vs. phase velocity and tangent contacts

Galilean velocity addition becomes rapidity addition
From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: $\boldsymbol{e}^{\rho_{A B}} \cdot e^{\rho_{B C}}=e^{\rho_{A C}}=e^{\rho_{A B}+\rho_{B C}}$

Easy to combine frame velocities using rapidity addition: $\quad \rho_{u+v}=\rho_{u}+\rho_{v}$

Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: $\boldsymbol{e}^{\rho_{A B}} \cdot \boldsymbol{e}^{\rho_{B C}}=e^{\rho_{A C}}=e^{\rho_{A B}+\rho_{B C}}$

Easy to combine frame velocities using rapidity addition:

$$
\rho_{u+v}=\rho_{u}+\rho_{v}
$$

$$
\frac{u^{\prime}}{c}=\tanh \left(\rho_{u}+\rho_{v}\right)=\frac{\tanh \rho_{u}+\tanh \rho_{v}}{1+\tanh \rho_{u} \tanh \rho_{v}}=\frac{\frac{u}{c}+\frac{v}{c}}{1+\frac{u}{c} \frac{v}{c}}
$$

or: $u^{\prime}=\frac{u+v}{1+\frac{u \cdot v}{c^{2}}}$

Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: $\boldsymbol{e}^{\rho_{A B}} \cdot \boldsymbol{e}^{\rho_{B C}}=e^{\rho_{A C}}=e^{\rho_{A B}+\rho_{B C}}$

Easy to combine frame velocities using rapidity addition: $\quad \rho_{u+v}=\rho_{u}+\rho_{v}$

$$
\frac{u^{\prime}}{c}=\tanh \left(\rho_{u}+\rho_{v}\right)=\frac{\tanh \rho_{u}+\tanh \rho_{v}}{1+\tanh \rho_{u} \tanh \rho_{v}}=\frac{\frac{u}{c}+\frac{v}{c}}{1+\frac{u}{c} \frac{v}{c}}
$$

or: $\quad u^{\prime}=\frac{u+v}{1+\frac{u \cdot v}{c^{2}}}$
No longer does $(1 / 2+1 / 2) c$ equal (1)c...
Relativistic result is: $\frac{\frac{1}{2}+\frac{1}{2}}{1+\frac{1}{2} \frac{1}{2}} c=\frac{1}{1+\frac{1}{4}} c=\frac{1}{\frac{5}{4}} c=\frac{4}{5} c$

Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: $\boldsymbol{e}^{\rho_{A B}} \cdot \boldsymbol{e}^{\rho_{B C}}=\boldsymbol{e}^{\rho_{A C}}=\boldsymbol{e}^{\rho_{A B}+\rho_{B C}}$

Easy to combine frame velocities using rapidity addition: $\quad \rho_{u+v}=\rho_{u}+\rho_{v}$

$$
\frac{u^{\prime}}{c}=\tanh \left(\rho_{u}+\rho_{v}\right)=\frac{\tanh \rho_{u}+\tanh \rho_{v}}{1+\tanh \rho_{u} \tanh \rho_{v}}=\frac{\frac{u}{c}+\frac{v}{c}}{1+\frac{u}{c} \frac{v}{c}}
$$

or: $u^{\prime}=\frac{u+v}{1+\frac{u \cdot v}{c^{2}}}$
No longer does $(1 / 2+1 / 2) c$ equal (1) c...
Relativistic result is: $\frac{\frac{1}{2}+\frac{1}{2}}{1+\frac{1}{2} \frac{1}{2}} c=\frac{1}{1+\frac{1}{4}} c=\frac{1}{\frac{5}{4}} c=\frac{4}{5} c$
...but, $(1 / 2+1) c$ does equal (1)c...

$$
\frac{\frac{1}{2}+1}{1+\frac{1}{2} 1} c=c
$$

5. That "old-time" relativity (Circa boobek- 1905CE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation The straight scoop on "angle" and "rapidity" (They're area!)

Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity Group vs. phase velocity and tangent contacts

Introducing the "Sin-Tan Rosetta Stone" NOTE: Angle ϕ is now called stellar aberration angle σ

$$
\begin{gathered}
\text { Fig. C.2-3 } \\
\text { and } \\
\text { Fig. } 5.4 \\
\text { in Unit } 2
\end{gathered}
$$

Introducing the "Sin-Tan Rosetta Stone" NOTE: Angle ϕ is now called stellar aberration angle σ

Introducing the "Sin-Tan Rosetta Stone" NOTE: Angle ϕ is now called stellar aberration angle σ

* Circular Function Values

More about the
$\mathrm{m} \angle(\sigma)=0.9722\{$ radians $\}$
"Sin-Tan Rosetta"
ArcArea $=\rho=1.1758\{$ radii^2 $\}$
$=$ Arclength $(\sigma)=0.9722$ \{radii $\}$ $\sinh \rho=1.4660$
$\cosh \rho=1.7746$$\quad$ Note identities $\begin{gathered}\text { Arclength }(\sigma)=0.9722 \text { \{radii }\}\end{gathered}$ $\tanh \rho=0.8261$

$\sin \sigma=0.8261$ cschp $=0.6821$
sech $=0.5635$
coth $\rho=1.2105$
$\exp (\rho)=3.2406$

Hyperbolic Function Value
Circular Function Values
$\mathrm{m} \angle(\sigma)=0.9722\{$ radians $\}$

- Arclength $(\sigma)=0.9722$ \{radii\}

$\sin \sigma=0.8261$
ArcArea $=\rho=1.1758\{$ radii^2 $\}$ $S_{\text {ctionArea }}(\sigma)=0.9722\{$ radii^2 $\}$ $\cos \sigma=0.5635$

Hyperbolic Function Value

Circular Function Values
More about the
$\mathrm{m} \angle(\sigma)=0.9722\{$ radians $\}$
"Sin-Tan Rosetta"
ArcArea $=\rho=1.1758\{$ radii^2 $\}$

Arclength $(\sigma)=0.9722$ \{radii $\}$

5. That "old-time" relativity (Circa 600BCE- 1905CE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

Introducing the stellar aberration angle σ vs. rapidity ρ
Together, rapidity $\rho=\ln b$ and stellar aberration angle σ are parameters of relative velocity

The rapidity $\rho=\ln b$ is based on longitudinal wave Doppler shift $b=e^{\rho}$ defined by u/c=tanh (ρ). At low speed: u/c~p.

The stellar aberration angle σ is based on the transverse wave rotation $R=e^{i \sigma}$
defined by $u / c=\sin (\sigma)$.
At low speed: u/c~ σ.
(b) Moving Observer

5. That "old-time" relativity (Cira 600BCE-1905CE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

How Minkowski's space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at $t=2.00$ sec.
Space-space Animation of Two Relativistic Ships Passing Two

Happening 1: Ship 1 is hit by Blink 1

Happening 2: Lighthouse emits Blink 2
hthouse $=2.00 \quad$ Ship v / c (rel.tolthse. $)=0.50$ Ship v / c (rel.to $\mathrm{g} b \mathrm{~s}$.) $=-0.50$
Lthse $v / c($ rel.to obs.) $)=0.00$

Happening 2

How Minkowski's space-time graphs help visualize relativity (Here: $r=\operatorname{atanh}(1 / 2)=0.549$,
Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at $t=2.00$ sec. ...but, in Ship frame Happening 1 is at $t^{\prime}=1.74$ and Happening 2 is at $t^{\prime}=2.30$ sec.

Space-space Animation of Two Relativistic Lighthouses Passing Two

Space-Time Movies in Lighthouse Rest Frame Showing the Ship Now-Line (Black terminator-line

How Minkowski's space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at $t=2.00$ sec. ...but, in Ship frame Happening 1 is at $t^{\prime}=1.74$ and Happening 2 is at $t^{\prime}=2.30$ sec.

Space-space Animation of Two Relativistic Lighthouses Passing Two

That is $t^{\prime}=2.30$ ship time www.uark.edu/ua/pirelli/php/lighthouse scenarios.php

and: $\quad \sigma=A \sin (1 / 2)=0.52$ or 30°)

5. That "old-time" relativity (Cira 600BCE- 999SE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
\xrightarrow{n}
Group vs. phase velocity and tangent contacts

Group vs. phase velocity and tangent contacts
Group velocity u and phase velocity c^{2} / u are hyperbolic tangent slopes

Rare but important case where

$$
\frac{d \omega}{d k}=\frac{\Delta \omega}{\Delta k}
$$

with LARGE Δk (not infinitesimal)

Relativistic group wave speed $u=c \tanh \rho$

Newtonian speed $u \sim c \rho$ Low speed approximation Rapidity ρ approaches u/c

Phase velocity

Group vs. phase velocity and tangent contacts

