AMOP Lecture 3.5 Tue 1.28-Thur 1.30.2014

Relativity of lightwaves and Lorentz-Minkowski coordinates IV. (Ch. 0-3 of Unit 8)

5. That "old-time" relativity (Circa 600BCE- 1905CE) ("Bouncing-photons" in smoke & mirrors and Thales, again) The Ship and Lighthouse saga Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation The straight scoop on "angle" and "rapidity" (They're area!) Galilean velocity addition becomes rapidity addition Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!) Introducing the stellar aberration angle σ vs. rapidity ρ How Minkowski's space-time graphs help visualize relativity Group vs. phase velocity and tangent contacts

"Bouncing-photons" in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga

Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ

How Minkowski's space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts

Happening 0:		Happening 1: Ship gets hit by	Happening 2: Main Lighthouse
Ship passes Main Lighthouse.		first blink from Main Lighthouse.	blinks second time.
(Lighthouse space)	x = 0	x = -1.00 c	x = 0
(Lighthouse time)	t = 0	t = 2.00	t = 2.00
(Ship space)	x'=0	x'=0	$x'=c\Delta$
(Ship time)	t'=0	t' = 1.75	$t'= 2\Delta = 2.30$

Comparing Ship and Lighthouse views: Happening tables

Happening 0:		Happening 1: Ship gets hit by	Happening 2: Main Lighthouse
Ship passes Main Lighthouse.		first blink from Main Lighthouse.	blinks second time.
(Lighthouse space)	x = 0	x = -1.00 c	x = 0
(Lighthouse time)	t = 0	t = 2.00	t = 2.00
(Ship space)	x'=0	x'=0	$x'=c\Delta$
(Ship time)	t'=0	t' = 1.75	$t'=2\Delta=2.30$

Comparing Ship and Lighthouse views: Happening tables

Happening 0: Ship passes Main Lighthouse.		Happening 1: Ship gets hit by first blink from Main Lighthouse.	Happening 2: Main Lighthouse blinks second time.
(Lighthouse space) (Lighthouse time)	x = 0 $t = 0$	x = -1.00 c t = 2.00	x = 0 t = 2.00
(Ship space) (Ship time)	$\begin{array}{l} x'=0\\ t'=0 \end{array}$	x' = 0 t' = 1.75	$x' = c \Delta$ $t' = 2\Delta = 2.30$

Comparing Ship and Lighthouse views: Happening tables

Happening 0: Ship passes Main Lighthouse.		Happening 1: Ship gets hit by first blink from Main Lighthouse.	Happening 2: Main Lighthouse blinks second time.
(Lighthouse space) $x = 0$ (Lighthouse time) $t = 0$		x = -1.00 c t = 2.00	x = 0 t = 2.00
(Ship space) (Ship time)	$\begin{array}{l} x'=0\\ t'=0 \end{array}$	x' = 0 t' = 1.75	$x' = c \Delta$ $t' = 2\Delta = 2.30$

For u/c = 1/2 $\Delta = 1/\sqrt{(1-1/4)} = 2/\sqrt{3} = 1.15..$

Comparing Ship and Lighthouse views: Happening tables

Happening 0: Ship passes Main Lighthouse.		Happening 1: Ship gets hit by first blink from Main Lighthouse.	Happening 2: Main Lighthouse blinks second time.
(Lighthouse space) $x = 0$ (Lighthouse time) $t = 0$		x = -1.00 c t = 2.00	x = 0 t = 2.00
(Ship space) (Ship time)	x' = 0 $t' = 0$	x' = 0 t' = 1.75	$x' = c \Delta$ $t' = 2\Delta = 2.30$

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.

("Bouncing-photons" in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga
Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

Fig. 2.B.5 Space-Space-Time plot of world lines for Lighthouses. North Lighthouse blink waves trace light cones.

("Bouncing-photons" in smoke & mirrors and Thales, again) The Ship and Lighthouse saga Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation The straight scoop on "angle" and "rapidity" (They're area!) Galilean velocity addition becomes rapidity addition Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!) Introducing the stellar aberration angle σ vs. rapidity ρ How Minkowski's space-time graphs help visualize relativity Group vs. phase velocity and tangent contacts A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.

Object 0:	Object 1:	Object 2:
Town Square.	Saloon.	Gun Shoppe.
$(US \ surveyor) x = 0$	x = 0.5	x = 0
y = 0	y = 1.0	y = 1.0
(French surveyor) $x' = 0$	x'=0	x' = -0.45
y' = 0	y' = 1.1	y' = 0.89

Object 0:		Object 1:	Object 2:
Town Square.		Saloon.	Gun Shoppe.
(US surveyor)	x = 0	x = 0.5	x = 0
	y = 0	y = 1.0	y = 1.0
(2nd surveyor)	x' = 0	x' = 0	x' = -0.45
	y' = 0	y'= 1.1	y' = 0.89

Object 0:		Object 1:	Object 2:
Town Square.		Saloon.	Gun Shoppe.
(US surveyor)	x = 0	x = 0.5	x = 0
	y = 0	y = 1.0	y = 1.0
(2nd surveyor)	x' = 0	x'=0	x' = -0.45
	y' = 0	y'= 1.1	y' = 0.89

Object 0:		Object 1:	Object 2:
Town Square.		Saloon.	Gun Shoppe.
(US surveyor)	x = 0	x = 0.5	x = 0
	y = 0	y = 1.0	y = 1.0
(2nd surveyor)	x' = 0	x'=0	x' = -0.45
	y' = 0	v' = 1.1	y' = 0.89

You may apply (Jacobian) transform matrix:

$$\begin{pmatrix} \langle x | x' \rangle & \langle x | y' \rangle \\ \langle y | x' \rangle & \langle y | y' \rangle \end{pmatrix} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}$$

or the inverse (Kajobian) transformation:

$$\begin{pmatrix} \langle x'|x \rangle & \langle x'|y \rangle \\ \langle y'|x \rangle & \langle y'|y \rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

to any vector $\mathbf{V} = |V\rangle = |x\rangle\langle x|V\rangle + |y\rangle\langle y|V\rangle$
 $= |x'\rangle\langle x'|V\rangle + |y'\rangle\langle y'|V\rangle$

Object 0:		Object 1:	Object 2:
Town Square.		Saloon.	Gun Shoppe.
(US surveyor)	x = 0	x = 0.5	x = 0
	y = 0	y = 1.0	y = 1.0
(2nd surveyor)	x' = 0	x'=0	x' = -0.45
	y' = 0	y'= 1.1	y' = 0.89

(Jacobian) transformation $\{V_x V_y\}$ from $\{V_{x'} V_{y'}\}$: $V_x = \langle x | V \rangle = \langle x | 1 | V \rangle = \langle x | x' \rangle \langle x' | V \rangle + \langle x | y' \rangle \langle y' | V \rangle$ $V_y = \langle y | V \rangle = \langle y | 1 | V \rangle = \langle y | x' \rangle \langle x' | V \rangle + \langle y | y' \rangle \langle y' | V \rangle$ You may apply (Jacobian) transform matrix:

$$\begin{cases} \langle x | x' \rangle & \langle x | y' \rangle \\ \langle y | x' \rangle & \langle y | y' \rangle \end{cases} = \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{cases}$$

or the inverse (Kajobian) transformation:

$$\begin{pmatrix} \langle x'|x \rangle & \langle x'|y \rangle \\ \langle y'|x \rangle & \langle y'|y \rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$

to any vector $\mathbf{V} = |V\rangle = |x\rangle\langle x|V\rangle + |y\rangle\langle y|V\rangle$
 $= |x'\rangle\langle x'|V\rangle + |y'\rangle\langle y'|V\rangle$

$\langle x x' \rangle$	$\langle x y' \rangle$	$\cos \theta$	$\sin heta$
$\langle y x' \rangle$	$\langle y y' \rangle$	$-\sin\theta$	$\cos\theta$

or the inverse (Kajobian) transformation:

$$\begin{pmatrix} \langle x' | x \rangle & \langle x' | y \rangle \\ \langle y' | x \rangle & \langle y' | y \rangle \end{pmatrix} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}$$

to any vector $\mathbf{V} = |V\rangle = |x\rangle\langle x|V\rangle + |y\rangle\langle y|V\rangle$
 $= |x'\rangle\langle x'|V\rangle + |y'\rangle\langle y'|V\rangle$

		1	
Object 0:		Object 1:	Object 2:
Town Square.		Saloon.	Gun Shoppe.
$(US \ surveyor) x = 0$		x = 0.5	x = 0
	y = 0	y = 1.0	y = 1.0
(2nd surveyor)	x' = 0	x'=0	x' = -0.45
	y' = 0	y'= 1.1	y'= 0.89

(Jacobian) transformation $\{V_x V_y\}$ from $\{V_{x'} V_{y'}\}$: $V_x = \langle x | V \rangle = \langle x | 1 | V \rangle = \langle x | x' \rangle \langle x' | V \rangle + \langle x | y' \rangle \langle y' | V \rangle$ $V_y = \langle y | V \rangle = \langle y | 1 | V \rangle = \langle y | x' \rangle \langle x' | V \rangle + \langle y | y' \rangle \langle y' | V \rangle$

in matrix form:

$$\begin{array}{c} V_{x} \\ V_{y} \end{array} \end{array} = \left(\begin{array}{c} \langle x | x' \rangle & \langle x | y' \rangle \\ \langle y | x' \rangle & \langle y | y' \rangle \end{array} \right) \left(\begin{array}{c} V_{x'} \\ V_{y'} \end{array} \right)$$

PLEASE!

Do NOT <u>ever</u> write **this:** $e_{x'} = |x'\rangle = \cos\theta |x\rangle - \sin\theta |y\rangle$ $e_{y'} = |y'\rangle = \sin\theta |x\rangle + \cos\theta |y\rangle$

like this:
$$\begin{pmatrix} \mathbf{e}_{x'} \\ \mathbf{e}_{y'} \end{pmatrix} = \begin{pmatrix} |x'\rangle \\ |y'\rangle \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} |x\rangle \\ |y\rangle \end{pmatrix}$$

PIHASHI

Do NOT ever write

 $\mathbf{e}_{x'} = |x'\rangle = \cos\theta |x\rangle - \sin\theta |y\rangle$ this: $\mathbf{e}_{y'} = |y'\rangle = \sin\theta |x\rangle + \cos\theta |y\rangle$

(This is an abstract definition.)

PLEASE!

Do NOT <u>ever</u> write

this: $\mathbf{e}_{x'} = |x'\rangle = \cos\theta |x\rangle - \sin\theta |y\rangle \equiv \mathbf{R} |x\rangle$ $\mathbf{e}_{y'} = |y'\rangle = \sin\theta |x\rangle + \cos\theta |y\rangle \equiv \mathbf{R} |y\rangle$ (*This is an abstract definition.*)

like this: $\begin{pmatrix} \mathbf{e}_{x'} \\ \mathbf{e}_{y'} \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} x' \\ y' \end{pmatrix} = \begin{pmatrix} cos\theta & sin\sigma \\ sin\theta & cos\theta \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix}$

Here is a matrix <u>representation</u> of abstract definitions: $|x'\rangle \equiv \mathbb{R}|x\rangle$, $|y'\rangle \equiv \mathbb{R}|y\rangle$ $\begin{pmatrix} V_{x} \\ V_{y} \end{pmatrix} = \begin{pmatrix} \langle x|x'\rangle & \langle x|y'\rangle \\ \langle y|x'\rangle & \langle y|y'\rangle \end{pmatrix} \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} \langle x|\mathbb{R}|x\rangle & \langle x|\mathbb{R}|y\rangle \\ \langle y|\mathbb{R}|x\rangle & \langle y|\mathbb{R}|y\rangle \end{pmatrix} \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} \langle x'|\mathbb{R}|x'\rangle & \langle x'|\mathbb{R}|y'\rangle \\ \langle y'|\mathbb{R}|x'\rangle & \langle y'|\mathbb{R}|y'\rangle \end{pmatrix} \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} \langle x'|\mathbb{R}|x'\rangle & \langle x'|\mathbb{R}|y'\rangle \\ \langle y'|\mathbb{R}|x'\rangle & \langle y'|\mathbb{R}|y'\rangle \end{pmatrix} \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} \langle x'|\mathbb{R}|x'\rangle & \langle x'|\mathbb{R}|y'\rangle \\ \langle y'|\mathbb{R}|x'\rangle & \langle y'|\mathbb{R}|y'\rangle \end{pmatrix} \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} \langle x'|\mathbb{R}|x'\rangle & \langle x'|\mathbb{R}|y'\rangle \\ \langle y'|\mathbb{R}|x'\rangle & \langle y'|\mathbb{R}|y'\rangle \end{pmatrix} \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} \langle x'|\mathbb{R}|x'\rangle & \langle x'|\mathbb{R}|y'\rangle \\ \langle y'|\mathbb{R}|x'\rangle & \langle y'|\mathbb{R}|y'\rangle \end{pmatrix} \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} \langle x'|\mathbb{R}|x'\rangle & \langle x'|\mathbb{R}|y'\rangle \\ \langle y'|\mathbb{R}|x'\rangle & \langle y'|\mathbb{R}|y'\rangle \end{pmatrix} \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} \langle x'|\mathbb{R}|x'\rangle & \langle x'|\mathbb{R}|y'\rangle \\ \langle y'|\mathbb{R}|x'\rangle & \langle y'|\mathbb{R}|y'\rangle \end{pmatrix} \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} \langle x'|\mathbb{R}|x'\rangle & \langle x'|\mathbb{R}|y'\rangle \\ \langle y'|\mathbb{R}|x'\rangle & \langle y'|\mathbb{R}|y'\rangle \end{pmatrix} \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} \langle x'|\mathbb{R}|x\rangle & \langle x'|\mathbb{R}|y\rangle \\ \langle y'|\mathbb{R}|x'\rangle & \langle y'|\mathbb{R}|y'\rangle \end{pmatrix} \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \end{pmatrix} = \begin{pmatrix} V_{x'} \\ V_{y'} \\ V_{y'} \\ V_{y'} \\$

("Bouncing-photons" in smoke & mirrors and Thales, again) The Ship and Lighthouse saga Light-conic-sections make invariants
A politically incorrect analogy of rotational transformation and Lorentz transformation The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!) Introducing the stellar aberration angle σ vs. rapidity ρ How Minkowski's space-time graphs help visualize relativity Group vs. phase velocity and tangent contacts

The "Area" being calculated is the total Gray Area between hyperbola pairs, X axis, and sloping u-line

Amazing result: $Area = \rho$ is rapidity

("Bouncing-photons" in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga

Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on "angle" and "rapidity" (They're area!)

Galilean velocity addition becomes rapidity addition

Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ

How Minkowski's space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts

From Lect. 22 *p*. 27 *or eq.* (3.6) *in Ch.* 3 *of Unit* 2:

Evenson axiom requires *geometric* Doppler transform: $e^{\rho_{AB}} \cdot e^{\rho_{BC}} = e^{\rho_{AC}} = e^{\rho_{AB} + \rho_{BC}}$

Easy to combine frame velocities using rapidity addition:

 $\rho_{u+v} = \rho_u + \rho_v$

From Lect. 22 *p*. 27 *or eq*. (3.6) *in Ch.* 3 *of Unit* 2:

Evenson axiom requires geometric Doppler transform: $e^{\rho_{AB}} \cdot e^{\rho_{BC}} = e^{\rho_{AC}} = e^{\rho_{AB} + \rho_{BC}}$

Easy to combine frame velocities using rapidity addition:

$$\rho_{u+v} = \rho_u + \rho_v$$

$$\frac{u'}{c} = \tanh(\rho_u + \rho_v) = \frac{\tanh\rho_u + \tanh\rho_v}{1 + \tanh\rho_u \tanh\rho_v} = \frac{\frac{u}{c} + \frac{v}{c}}{1 + \frac{u}{c} \frac{v}{c}}$$

$$tanh(x + y) = \frac{tanh x + tanh y}{1 + tanh x tanh y}$$

or:
$$u' = \frac{u+v}{1+\frac{u\cdot v}{c^2}}$$

From Lect. 22 *p*. 27 *or eq.* (3.6) *in Ch.* 3 *of Unit* 2:

Evenson axiom requires geometric Doppler transform: $e^{\rho_{AB}} \cdot e^{\rho_{BC}} = e^{\rho_{AC}} = e^{\rho_{AB} + \rho_{BC}}$

Easy to combine frame velocities using rapidity addition:

$$\rho_{u+v} = \rho_u + \rho_v$$

 $\frac{u'}{c} = \tanh(\rho_u + \rho_v) = \frac{\tanh\rho_u + \tanh\rho_v}{1 + \tanh\rho_u \tanh\rho_v} = \frac{\frac{u}{c} + \frac{v}{c}}{1 + \frac{u}{c} \frac{v}{c}}$

or:
$$u' = \frac{u+v}{1+\frac{u\cdot v}{c^2}}$$

No longer does (1/2+1/2)c equal (1)c...

Relativistic result is:
$$\frac{\frac{1}{2} + \frac{1}{2}}{1 + \frac{1}{2}\frac{1}{2}}c = \frac{1}{1 + \frac{1}{4}}c = \frac{1}{\frac{5}{4}}c = \frac{4}{5}c$$

From Lect. 22 *p.* 27 *or eq.* (3.6) *in Ch.* 3 *of Unit* 2:

Evenson axiom requires geometric Doppler transform: $e^{\rho_{AB}} \cdot e^{\rho_{BC}} = e^{\rho_{AC}} = e^{\rho_{AB} + \rho_{BC}}$

Easy to combine frame velocities using *rapidity addition*: $\rho_{u+v} = \rho_u + \rho_v$

$$P_{u+v} - P_u + P_u$$

 $\frac{u'}{c} = \tanh(\rho_u + \rho_v) = \frac{\tanh\rho_u + \tanh\rho_v}{1 + \tanh\rho_u \tanh\rho_v} = \frac{\frac{u}{c} + \frac{v}{c}}{1 + \frac{u}{c} \frac{v}{c}}$

 $tanh(x+y) = \frac{tanh x + tanh y}{1 + tanh x tanh y}$

or:
$$u' = \frac{u+v}{1+\frac{u\cdot v}{c^2}}$$

No longer does (1/2+1/2)c equal (1)c...

Relativistic result is:
$$\frac{\frac{1}{2} + \frac{1}{2}}{1 + \frac{1}{2}\frac{1}{2}}c = \frac{1}{1 + \frac{1}{4}}c = \frac{1}{\frac{5}{4}}c = \frac{4}{5}c$$

...but, $(1/2 + 1)c$ does equal $(1)c$... $\frac{\frac{1}{2} + 1}{1 + \frac{1}{2}1}c = c$

("Bouncing-photons" in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga

Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

Introducing the "Sin-Tan Rosetta Stone" NOTE: Angle ϕ is now called stellar aberration angle σ

Fig. C.2-3 and Fig. 5.4 in Unit 2

Introducing the "Sin-Tan Rosetta Stone" NOTE: Angle ϕ is now called stellar aberration angle σ

("Bouncing-photons" in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga

Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

Introducing the stellar aberration angle σ vs. rapidity ρ Together, rapidity $\rho = \ln b$ and stellar aberration angle σ are parameters of relative velocity

("Bouncing-photons" in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga

Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ

How Minkowski's space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts

How Minkowski's space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.

Space-space Animation of Two Relativistic Ships Passing Two

www.uark.edu/ua/pirelli/php/lighthouse scenarios.php

How Minkowski's space-time graphs help visualize relativity (Here:r=atanh(1/2)=0.549,

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec. ...but, in Ship frame Happening 1 is at t'=1.74 and Happening 2 is at t'=2.30sec.

Space-space Animation of Two Relativistic Lighthouses Passing Two

How Minkowski's space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec. ...but, in Ship frame Happening 1 is at t'=1.74 and Happening 2 is at t'=2.30sec.

Space-space Animation of Two Relativistic Lighthouses Passing Two

("Bouncing-photons" in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga

Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on "angle" and "rapidity" (They're area!)
Galilean velocity addition becomes rapidity addition
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
Introducing the stellar aberration angle σ vs. rapidity ρ
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

Group vs. phase velocity and tangent contacts **Group velocity u and phase velocity** c^2/u **are hyperbolic tangent slopes**

(From Fig. 2.3.4)

