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The ship and lighthouse saga

Lighthouse t= 1.00
Ship v/c(rel.to Ithse )=-0.50

Lighthouse t= w/

0 th\blink wave
(Frqm North)

from Main hits ship)[” /\at Main Lighthous
\

Tl

i 1st blink wave
\ - (From,Main)
0 th blink wave

Comparing Ship and Lighthouse views: Happening table (From,Main)

Ship v/c(rel.to Ithse.)=-0.50

1st blink Wave
(From Noyth)

. NAorth Lighthouse
BN
Happening 1 Happening 2
(1st blink wave (2nd blink happens

RN

1.0

Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10

(Lighthouse time) t =0 t = 2.00 t = 2.00

(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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The ship and lighthouse saga Happening 0.5:
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blinks first time.
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The ship and lighthouse saga | Happening 0.5: Ship Time t'= A =1~ (1-v?/c?) = cosh p = 1.15
Main Lite A2 = % +12A2

blinks first time. (= v?)a? =¢
Lighthouse: x =0 , 2 1
Lighthouse: ¢ =1.00 A= (Cz —v2) ( _ 22

Shig: X =0 l\
Ship: {=A=113 ¢ A=(c2+v2A2)

Lighthouse t= 1.064~ TN

Ship v/c(rel.to Ithse )=-0.50

Foru/c=1/2
Comparing Ship and Lighthouse views.: Happening tables A =1/ \/(] -1/ 4) =2/ \/3 =1.15..
Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10
(Lighthouse time) t =0 t = 2.00 t = 2.00
(Ship space) x'=0 x'= 0 xX'=cA
(Ship time) =0 = 1.75 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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Lighthouse t= w/

0 th\blink wave
(Frqm North)

Ship v/c(rel.to Ithse.)=-0.50

1st blink Wave
(From Noith)
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Lighthouse t=

blink wave
m North)

0 th
(Frd

Ship v/c(rel.to Ithse.)=-0.50

1st blink Wave
(From Noith)

] 3
Happening 1 Happening 2
(1st blink wave (2nd blink happens

from Main hits ship)[”

1st blink wave
(From,Main)

0 th blink wave

(From,Main) ~Comparing Ship and Lighthouse views:

Ship Time = A =1N(1-v¥/c?) = cosh p = 1.15

N

€ cA=V(c*HV2A?)

Happening tables

For u/c=1/2
A =IN(1-1/4)=2N3=1.15..

»

Happening O:

Ship passes Main Lighthouse.

Happening 1: Ship gets hit by
first blink from Main Lighthouse.

Happening 2: Main Lighthouse
blinks second time.

(Lighthouse space) x =10 x = -vc/(c-v) x=10
(Lighthouse time) t =0 t = c/(c-v) t = 2.00
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Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.

Lecture 24 ended here
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Light-conic-sections make invariants

Narth Lighthouse

Fig.2.B.5 Space-Space-Time plot of world li / ouses. North Lighthouse blink waves trace light cones.
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A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.

Y
Yl

Object 2 _f/ ™ : Object 1
(Gun Shoppe) ~"~- i (Saloon)

Object O: Object 1: Object 2:
Town Square. Saloon. Gun Shoppe.
(US surveyor)  x=10 x= 0.5 x= 0
y =10 y= 1.0 y= 1.0
(French surveyor) x’ = 0 x'= xX'= -0.45
V' =0 y'= 1.1 y'=0.89
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A politically incorrect analogy of rvotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Y ——— -
v = X' cos ' sl -
Y X=x'cos0+y'sind -ty sin O—-—x' cos O

. . =-x'sin®+vy' cos O
Obiect 2 - - y=-xsnury .
jec ~ \ Object 1 ~

(Gun Shoppe) ~“" i (Saloon)

_ cos 0 = =
; X' I + =
% sin @ = —B/¢
; 1 + ﬁ
CZ
—\b/c
Object O: Object 1: Object 2: x’=xcosO— ysinf = X - + ( )2)/
Town Square. Saloon. Gun Shoppe. - b 14 b
(US surveyor)  x=10 x= 0.5 x= 0 c? c2
y=20 y= 1.0 y= 1.0 (b/c)x
(2nd surveyor) — x =0 x'= x'=-0.45 y' =xsin@+ ycos6 = =+ J -
y'=0 y'= 11 y'= 0.89 1+b_2 /1+b_2
c c
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Y

Object 2 .,ﬁ '
(Gun Shoppe) ~‘.' i
A

Y'

Object 1 -
(Saloon)

‘ Reminder: Component-based derivation is clumsy!

X=x'cosO+y'sing -~

y=-x'sin® +y' cos 0

BC
b
. N B

1 S
‘_ 0 cos 0 = -
: 1 + b~
' X' c2
"Q?. sing=_br/¢
: | +b
C2
Object O: Object 1: Object 2:
Town Square. Saloon. Gun Shoppe.
(US surveyor)  x=10 x= 0.5 x= 0
y =10 y= 1.0 y= 1.0
(2nd surveyor) x'=10 xX'= 0 xX'= -0.45
V' =0 y'= 1.1 y'=0.89
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

‘ Reminder: Component-based derivation is clumsy!

Y —_—_

_ Y' X=x'cosO+y'sin0 -
. , =-x'sin O + y' cos 6
Object 2 ~ ; Object 1 Y d . Forget this!!'It’s too clumsy to

(Gun Shoppe) ~“" Al (Saloon) generalize to 3D, 4D,...

$LLT

or the inverse relation:

e =|x)=cosO|x")+sin6|y")

| Instead, use Dirac unit vectors |x)|y)and|x’) |y’ “le. =|y) = —sin6] ) +cos]y")
y

Object O: Object 1: Object 2:
Town Square. Saloon. Gun Shoppe.
(US surveyor)  x=10 x= 0.5 x= 0
y =10 y= 1.0 y= 1.0
(2nd surveyor) x'=10 xX'= 0 xX'= -0.45
V' =0 y'= 1.1 y'=0.89
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Reminder: Component-based derivation is clumsy!
‘ ——

Y
_ Y' X=Xx'cosO+y'sinO -
. , =-x'sin O + y' cos 6
Object 2 ~ . Object 1 g d ‘-~ Forget this!! Its too clumsy to

(Gun Shoppe) ~"" 1 (Saloon) \ generalize to 3D, 4D....

$LLT

. cos 0 = 1 b;
: X I + = / .
XY= cos6|x)—sin6|y)
5 sin O = b/c ) | |
: |+ b2 sin@| x)+ cos 6| y)
c? or the inverse relation:
e =|x)= cosB|x)+sinb|y’)
| Instead, use Dirac unit vectors |x)|y)and|x’) |y’ “le. =|y) = —sin6] ) +cos]y")
y
Object O: Object 1: Object 2: You may apply (Jacobian) transform matrix:
Town Square. _ Saloon. _ Gun Shopp_e. () (x]y) 03B sind
(US surveyor)  x =10 x= 05 x= 0 , N :
y=0 y= 1.0 y= 10 Ol o) —sinf  cosf
(2nd surveyor) x'=10 x'= x'= -0.45 or the inverse (Kajobian) transformation:
y'=0

y= 11 V= 0.89 (¥[x) () :( cos@ —sin6 ]
<y'|x> <y'|y> sin@ cos6
to any vector V=|V) = |x){x|V)+ |y){(y|V)
=) VY + V)
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Reminder: Component-based derivation is clumsy!
‘ ——

Y

Y' X=Xx'cosO+y'sinO -

Object 2 ~ Object 1 y =-x'sin 0 + y' cos ‘.EL
(Gun Shoppe) (Saloon) .

Sl
b/ ™

| Instead, use Dirac unit vectors |x)|y)and|x’)

Forget this!!'Its too clumsy to
generalize to 3D, 4D,...

or the inverse relation:

e =|x)=cosO|x")+sin6|y’

~—

1Y)

"le, =|y)=—sin6|x’)+cosb|y’)

Object O: Object 1: Object 2: You may apply (Jacobian) transform matrix:
Town Square. Saloon. Gun Shoppe. () (x]y) 03B sind
(US surveyor)  x =10 x= 05 x= 0 , N :

y= y=10 y= 10 W) O —sin6  cosd
(2nd surveyor) x'=10 xX'= 0 x'= -0.45 or the inverse (Kajobian) transformation:

=0 '= 1.1 '= 0.89 , ,
2 . ? (Xx) (¥]y) | cos@ —sinf
(Jacobian) transformation{VV, } from {V,V,} : Ox) (] | <in® cosB

Vo= (V)= G1[V) = (V) + 1) V)
V, =01V =0lv) = Ol V) + ) v)

to any vector V=|V) = |x){x|V)+ |y){(y|V)
=) VY + V)
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A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Reminder: Component-based derivation is clumsy!
‘ ——

Y

Y' X=Xx'cosO+y'sinO -

. | , =-x'sin O + y' cos 6
Object 2 ~ Object 1 g d ‘-~ Forget this!! Its too clumsy to
(Gun Shoppe) )

w
~"' L (Saloon) generalize to 3D, 4D,...
"‘W.‘w | o o ‘
‘_ 0 cos O = =
/ ! g _blc 1B X'y = c.059|x>—sin9| )
: |+ B2 1 sin@| x)+ cos 6| y)

or the inverse relation:

?x =|x)=cosO|x")+sin6|y’

~—

1Y)

| Instead, use Dirac unit vectors |x),|y)and|x’) "le, =|y)=—sinB|x")+cosb|y")
Y

Object O: Object 1: Object 2: You may apply (Jacobian) transform matrix:
Town Square. Saloon. Gun Shoppe. () (x]y) 03B sind
(US surveyor)  x =10 x= 0.5 x= 0 ) N _
y = y= 10 y= 1.0 (y[x) () —sinf cosf
(2nd surveyor) x'=10 xX'= 0 x'= -0.45 or the inverse (Kajobian) transformation:
=0 '= 1.1 "= 0.89 , ,
- . * (1) (19 ) [ cos —sind
(Jacobian) transformation{VV, } from {V,V,} : in matrix form: %) (] | sin® cosh

V.= (x|V) = (x[1|V) = (x| ") (x| V) + (x| y)(V'|V) [ V., J _( (x|x) (x[y) ] [ Ve ] to any vector V=|V) = |x){x|V)+ |y)(y|V)

V, = (V) =0l = Ol v+l v) 4 O} O1Y) =[) VYD) V)

y
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PLEASE!

Do N OT ever write
thig: ©T1¥i= cosblx)=sinbly)

Y'Y= sinB|x)+cosb|y)

ey,

. . (e ) (1) o
like this: | = |-| "/ :( cost s e]

\ €y )\ Y) ) sin@  cos6




PLEASE!

Do N OT ever write
thlS =[x"}=cos6|x)—sin6|y)

e, =|y)= sin6|x)+cosb|y)

Y

(This is an abstract definition.)

This is GARBAGE'!
like this:




PLEASE!

Do NOT ever write
Z_hlS e, =|x)= cosO|x)—sinb|y)=R|x)

e, =|y)= sinb|x)+cos6|y)=R]|y)
(This is an abstract definition.)

| . (e (Y his is GARBAGE/
like this: |\ |-| " rede]

Here is a matrix representation of abstract definitions: |x)=R|x), |y =R|y)

LG G (Ve [ IR IR Y[ Ve ) [ IR IR [V
Vo ) L O O JU Y ) L ORI OIR[y) JL Ve ) L IR R L Ve

<
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(a) Rotation Transformation y'
and Invariants

b/ c
x"=xcosf— ysinf =
’ , bZ
LS ,<< 3 1+_
= 165 : (b/c)
.41'= -0.85 - _) Yy’ =xsinf + ycosO = . -
Yol = 343 X ’ /1_|_b_ /1_,_17_
x'= 71.00 :
yv'=-156 - —
- ra 2:::':?;&«11(}—:(:““* ] 3_— (()).52. 5
X yE = 347 élu:xk'-kcl-(); 05774 " @40= 0.5236
(b) Lorentz Transformatign )
and Invariants \:
B B . | v
3 B —ct
x' = + = = xcosh p+ ysinh p
(% 1- ﬁ 1- ﬁ
Q xl;. K 2 62 Cz
v =/5453 ~ |
cr=0.9819 ' N ~ xsinh p+ ycosh p

Wo-fetf = 142
x'=235/2

‘\t'
ct'=2.0260
9 9 viic X'Relag¥@io X = -05 0= -{.5493
L _sopt)E — 2 vic X Relative to O =0 0= 0
: /(/) / 4- viie X'Relativeto O =-05 0+0'= -0.5493
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The straight scoop on “angle’ and “rapidity” (They re area!)

The “Area’” being calculated is the

W\W\@ total Gray Area between hyperbola
y/x*xtanh 0 =wy/c | pairs, X axis, and sloping u-line
Area
1.0 N : X
Area .
2 y=sinh p
———X=cosh
@ = lbatse faititude — area under curve = Ly [ydx
2— 2 SR
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The straight scoop on “angle’ and “rapidity” (They re area!)

The “Area’” being calculated is the

W\W\@ total Gray Area between hyperbola
y/x*xtanh 0 =wy/c | pairs, X axis, and sloping u-line
Area
1.0 N : X
Area .
2 y=sinh p
———'=Xx=cosh P Useful hyperbolic identities
1 1 p_ep Y | h2p—1
_ 2 / . _ _ 2 _ .2 | e —e _ L 2p 2p __COS p—
@ 5 basefaltitude — area under curve 5 xy—|ydx sinh” p —(—2 ] =2 (e +e 2) = 5
A 1
e = —sinh pcosh p — [sinh p d(coshp) P —eP\eP+e ) 1/, oy 1
2 sinh p cosh p= 5 5 :Z(e P—e p):a sinh2 p
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The straight scoop on “angle’ and “rapidity” (They re area!)

w\me
y/x*xtanh 0 =wy/c e
1.0 N\ :
Areap '
2

4 1 )
% = —basealtitude — area under curve =

22—
Area 1

= Esinhpcoshp — [sinh p d(cosh p)

The “Area’” being calculated is the
total Gray Area between hyperbola
pairs, X axis, and sloping u-line

<

y=sinh p
———¢X=cosh 0 Useful hyperbolic identities
2
1 o [eP=eP ) 1y 0, ), cosh2p—1
Exy—jy dx sinh p—[ > ] —Z(e +e —2)— >
0_ -6
sinh@ cosh@ =| &—° _29):lsinh29
2 2
1

Area 1 .
2

:zsmhpcoshp—jsinthdp:isiné—jcos}lzp dp

[coshap dp =—sinhap
a

2
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The straight scoop on “angle’ and “rapidity” (They re area!)

The “Area’” being calculated is the

W\N@ total Gray Area between hyperbola
y/x*xtanh 0 =wy/c | pairs, X axis, and sloping u-line
Area
1.0 N : X
Area .
2 y=sinh p
———=Xx=cosh P Useful hyperbolic identities
1 1 p_ep Y 1 h2p—-1
= — Altitude — — v .12 e —e 1 2p, 2p ,\_cosh2p—
— 2basefaltztude area under curve 2xy [y dx sinh p—( 5 ] —4(6 +e 2)— 5
Area 1
= —sinh pcosh p — | sinh p d(cosh p_,P
y Sinhpcosh p=Jsinh p (cosh ) sinhp coshp:[e 2’3 e2p—e_2p):—sinh2p

1

Area 1 . [ coshab d6 = —sinh af

1

= Esmhpcoshp— jsinh2 pdp= 4sin{p J COShiid,O/ a

1 l .

= —sinh2p—Zsmh2p+j% dp

Amazing result: Area = p is rapidity
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Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Pec = plac — ePAB+pBC

Evenson axiom requires geometric Doppler transform: ep AB L o
Easy to combine frame velocities using rapidity addition: Pysv = Py T Py

Receiver S()lll.('() R()(_'l() \'(’,' 5‘011"(‘6) R()('()I\'()I-

. . v, A
P = In(2)=0.69 “pyc=In(1/4)=-1.38 Py In(2)=0.69

Pas T Pec = Pac = Pca
0.69—-1.38 =-0.69
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Galilean velocity addition becomes rapidity addition
From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: ep AB . e

Easy to combine frame velocities using rapidity addition:

’

L= tanh(p, + p, ) =
C

Pec = plac — epAB+pBC

Pu+y = Py T Py

u-v
1+

.
tanh p, +tanhp, _+;
I+tanhp, tanhp, ,_ UV

cc

tanh x + tanh y

tanh(x+ y) =

1+ tanh x tanh y

Tuesday, January 28, 2014
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Galilean velocity addition becomes rapidity addition

From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:

Evenson axiom requires geometric Doppler transform: ep AB -, é

Easy to combine frame velocities using rapidity addition:

u v
: —+—
u tanh p, + tanh p
— =tanh(p, + p,) = u y =€ qu
C I+tanhp, tanhp, ,_ UV
cc
,  u+v
or: u =
L
T
C

No longer does (1/2+1/2)c equal (I )c...
1 1

_ _|_ _
L .2 2 1 1
Relativistic result 1s: C= C=—C=
11 1 5
I+— 1+- =
22 4 4

Pu+y = Py T Py

tanh(x+ y) =

Pec = plac — epAB+pBC

tanh x + tanh y

1+ tanh x tanh y

Tuesday, January 28, 2014
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Galilean velocity addition becomes rapidity addition
From Lect. 22 p. 27 or eq. (3.6) in Ch. 3 of Unit 2:
Evenson axiom requires geometric Doppler transform: ep AB . e

Easy to combine frame velocities using rapidity addition: Pysv = Py T Py
. v
u’ tanh p,, + tanh o
_:tanh(pu+pv): Pu Py =Lt C
C I+tanhp, tanhp, ,_ UV
CcC
, Uu-t+y
or. u =
1 u-v
T
C
No longer does (1/2+1/2)c equal (I )c...
1 1
. 2" 11 4
Relativistic result 1s: C = c=—FZCc=—cC
11 1 5 5
I+— 1+- =
22 4 4 1 o1
..but, (1/2+1)c does equal (I)c... 2 _.
1+11
2

tanh(x+ y) =

Pec = plac — epAB+pBC

tanh x + tanh y

1+ tanh x tanh y

Tuesday, January 28, 2014
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(a) Circlular Functions [Sjj\
(plane geometry) =10 cow

www.uark.edu/ua/pirelli/php/complex_phasors_|.php

Circlular arc area
¢ =().895d=angle
sin @ =(.7792
cos @ =0.6267
tan ¢ =1.2433
csc @ =1.2833
sec @ =1.53955
cot ¢ =0.8043

T,
tang

]ntrgducing the “Sin-Tan Rosetta Stone’” NOTE: Angle ¢ is now called stellar aberration angle o

Fig. C.2-3
and
Fig. 5.4
in Unit 2

Tuesday, January 28, 2014
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]ntrgducing the “Sin-Tan Rosetta Stone’” NOTE: Angle ¢ is now called stellar aberration angle o

(a) Circlular Functions

_—'-'_'_'_'_
T

(plane geomeiry)

~_

coshp

x(space)

rﬁ% COtg

Circlular arc area
¢ =(.893d=nngle
sin @ =(.7792

cos ¢ =0.6267
tan ¢ =1.2433

cse o =1.2833

sec @ =1.53955
col ¢ =) 8 3=

T,
tang

Hyperbolic arc area
p =104 3d=ramdity
sinh p=1.2433
cosh p =1.5955
tanh p =0.7792
csch p =Lsd ) =T
sech p =.6267
coth p=1.2833

time,

ew

b) Hyperbolic Functions

spacetime

geometry)

1

Fig. C.2-3
and
Fig. 5.4
in Unit 2

https://www.uark.edu/ua/pirelli/php/hyper_constrct.php

Tuesday, January 28, 2014
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]ntrgducing the “Sin-Tan Rosetta Stone’” NOTE: Angle ¢ is now called stellar aberration angle o

(a) Circlular Functions [ﬁ\ Circlular arc aea
. ¢ =(LaY3d=angle
(plane geometry) =10 cow sin  =0.7792

- _ cos ¢ =0.6267

see @ =1.53955
col ¢ =) 8 3=
o

Liuig

o _ tan @ =1.2433
: cse ¢ =1.2833

coshp

x(space)

Hyperbolic arc area
p =104 3d=ramdity
sinh p =12433

cosh p =1.5955
tanh p =0.7792
csch p =Lsd ) =T
sech p =.6267
coth p=1.2833

time,

ev
b) Hyperbolic Functions
spacetime geometry)

https://www.uark.edu/ua/pirelli/php/hyper_constrct.php
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Hyperbolic Function Valuep More gbout the
Arc Area=p=1.1758 {radiiA2} “SinAan Rosetta”
sinhp=1.4660

coshp=1.7746
tanhp=0.8261 -+
N cschp=0.6821
sechp=0.5635
cothp=1.2105
(p)=3.2406
exp(-p)=Q3086

sinhp
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CircularFunctionValues
mZ(c)=0.9722 {radians}
Arclength(c)=0.9722 {radii}
SectionArea(c)=0.9722 {radiiA2}
sinc=0.8261
c0sc=0.5635
tanc=1.4660
csco=1.2105
seco=1.7746

ZT\ coto=0.6821

More about the
“Sin-Tan Rosetta”

Tuesday, January 28, 2014
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ArcArea=p=1.1758 {radiiA2}
sinhp=1.4660
coshp=1.7746

Hyperbolic Function Value

=

D

ote iden

tanhp=0.8261 <=
N cschp=0.6821
sechp=0.5635
cothp=1.2105
(p)=3.2406

exp(-p)=0.3086

Y

mZ(0)=0.9722 {radians}

Arclength(c)=0.9722 {radii}

es

\ c0s6=0.5635
tanc=1.4660

---------------------------------------------------------

=» SINc=0.8261

csco=1.2105

A L

Seco=1.77
6821 -

“Sin1an Rosetta’”

sinhp
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Hyperbolic Function Values

ArcArea=p=1.1758 {radiiA2}

sinhp=1.4660 |
coshp=1.7746 \%den

Arclength(c)=0.9722 {radii}
fities

tanhp=0.8261 <€
N\ cschp=0.6821
sechp=0.5635
cothp=1.2105 €

(p)=3.2406
exp(-p)=0Q.3086

- e e e e e e e e e e e e e e e e e e - -—-- e - - -

More about the
“Sin1an Rosetta”

A
sinhp
exp(p)
27
X
> =¢—
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ivnarhalic Eninctian \Valin More about the

| “Sin-1an Rosetta”

sinhp=1.4660
coshp=1.7746
tanhp=0.8261
cschp=0.6821
sechp=0.5635
cothp=1.2105 €

Arclength(c)=0.9722 {radii}
ote identities

ME

sinhp

exp(p)

e Fay
cashpT|o 1
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Introducing the stellar aberration angle o vs. rapidity p

logether, rapidity p=In b and stellar aberration angle o are parameters of relative velocity

The rapidity p=In b is based on The stellar aberration angle o is based on the
longitudinal wave Doppler shift b=e” transverse wave rotation R=e'°

defined by u/c=tanh(p). defined by u/c=sin(o).

At low speed.: u/c~p. At low speed: u/c~ o.

(a) Fixed Observer (b) Moving Observer
S oy
X o/
U=c/sin O

Fig. 5.6 Epstein's cosmic speedometer with aberration angle 6 and transverse Doppler shift coshvz. Z
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The Ship and Lighthouse saga
Light-conic-sections make invariants

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)
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How Minkowski's space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.

Space-space Animation of Two Relativistic Ships Passing Two

Space-Time Movies in Lighthouse Rest Frame
Showing Lighthouse Now-Line (Black terminator-line)

i&. £

Happel
Happel

.........................................................................................

/200

appemng %
appening

. 243! ! -
b A il Lo

.

‘z-ing 1: Ship 1 is hit: v Blink 1
hing 2: Lighthouse émits Blink 2

- Shap v/e(rel.td\]lthse.)>0.50
- Ship v/e(rel.to dbs.)=-0.5

thse v/c(rel.to obs.)= 0.00

orth Lighthous
-l

| | I — L)
:
|}

B0 ot

4
/ i

.. \ , .

an v

"- ..,/? bwl/?

o

o,v..’:’ i Lightholrse
Happening 1 \

\

“TOR Lt
EENY
i i { |

ishthouse
P é : g
3 i

1+

b

|

Happening 2

www.uark.edu/ua/pirelli/php/lighthouse scenarios.php
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How Minkowski's space-time graphs help visualize relativity (Here:r=atanh(1/2)=0.549,

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.

...but, in Ship frame Happening 1 is at ' =1.74 and Happening 2 is at t'=2.30sec.

Space-Time Movies in Lighthouse Rest Frame
Showing the Sth/ Now-Lme (Black termi

f time't = 1.745cqn
ghthouse Grg

(U7 (AU Ay SN 2 U YRR ST, ¢ - a S

ppening

5

%
Happening 2
won t happen
il t=2.00

Happening 1

www.uark.edu/ua/pirelli/php/lighthouse scenarios.php

»~

Space-space Animation of Two Relativistic Lighthouses Passing Two

Dpening 1: ShipH is hit Blink~,
Happening 2: Lighfhouse gmits Blink 2
o=30 \
-/ | 15e.)=-0.50
hip time t' =71.74 | (reLFbO= 0.00
Lthse v/c{rgl.toiobs.}=Q50
Tappening 1 _ | rth 11
stellar abkangle
= 00 .
_..3" i ‘1 4 % NGO 1_ § 0
1 | 1 1 1 | gl .l 1 |
SN Tie
0 0 N

an

b

o=Asin(1/2)=0.52 or 30°)
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How Minkowski's space-time graphs help visualize relativity

Note that in Lighthouse frame Happening 1 is simultaneous with Happening 2 at t=2.00sec.
...but, in Ship frame Happening 1 is at ' =1.74 and Happening 2 is at t'=2.30sec.

Space-space Animation of Two Relativistic Lighthouses Passing Two

Happening 1. Ship;l is hit by Blink 1

Space-Time Movies in Lighthouse Rest Frame /
e Happening 2: Lighfhouse emits Blink 2

Showing the Sth/ Now-Lme (Black termi

f time't = 1.74Scqnl
ghthouse Grg

.............................................

- Shap v/e(rel.to Itfse.):=-0.50

. 7 e . - Ship v/e(rel.gfobs.)= 0.00
ppening, ST AT N 4 L vitglio bl 051
/ | | Sorth|L
""""""""""" ,. Tappening 2. skellay/abtangle '

................................................... 0—30°

glithouse ) T | : TN il
s ~ O\ - 0 J ~ h 0 3 . 0 /y
- :_ —“:E: 1.. T* . Ll / " 3 / 1§) -";;; 1..
T e — [ R T L1 1N :

."'. '.:,)" o ° ,._ 3 . " o
,\ FN 8 e
¢ — B0 14 3 31 3 3 f1
7 X H \p . 2 2 - & . - /
: appenin /
Happening 1 p &
won t happen

‘til t=2.00 [oT5 : an

‘o 1! o (Here.

That is ¥'=2.30 ship time | - N O
www.uark.edu/ua/pirelli/php/lighthouse scenarios.php and. o=Asin(1/2)=0.52 or 30°)

b
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c Ak

P hyperbolas

ck

-2 -1 0 1

do _ Ao
dk Ak
with LARGE Ak

(not infinitesimal)

Relativistic
group wave

speed u=c tanh p

Tuesday, January 28, 2014

Rare but important case where

Group vs. phase velocity and tangent contacts

Group velocity u and phase velocity c*/u
are hyperbolic tangent slopes

¢ line

(From Fig. 2.3.4)

G W _C
hyperbolas Ck o u "
© u  Group velocity
do _u _ck
ot dk-c- o
/ ®w=B cosh p
k:% isinh p "

c Ak

Newtonian speed u~cp

Low speed approximation

| Rapidity p approaches u/c

Lecture 25 ended here
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Phase velocity
o 0

1 = U phase ke

Phase-line slope

0 C _ uphase -

c_k:u_ C
=coth p

A®

Group velocity
c’k do Ao
_— u — —
® dk Ak

Group-line slope ¥
ck _u 1 da

w c~cdk |
=nhp
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Group vs. phase velocity and tangent contacts
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