AMOP Lecture 1 Tue. 1.13.2014

2-Wave Interference: Phase and Group Dynamics

(Ch. 0-1 of Unit 8 CMwBang! and p.1-20 Relativity&QuantumTheory by Rule&Compass)

1. Review of basic formulas for waves in space-time (x,t) or per-space-time (ω ,k)

1-Plane-wave phase velocity

2-Plane-wave phase velocity and group velocity (1/2-sum &1/2-diff.)

2-Plane-wave real zero grid in (x,t) or (ω,k)

Geometric analysis of Bohr-Schrodinger "matter-wave"

Algebraic analysis of Bohr-Schrodinger "matter-wave"

2. Geometric construction of wave-zero grids

Continuous Wave (CW) grid based on $\mathbf{K}_{phase} = (\mathbf{K}_a + \mathbf{K}_b)/2$ and $\mathbf{K}_{group} = (\mathbf{K}_a - \mathbf{K}_b)/2$ vectors Pulse Wave (PW) grid based on primitive $\mathbf{K}_a = \mathbf{K}_{phase} + \mathbf{K}_{group}$ and $\mathbf{K}_b = \mathbf{K}_{phase} - \mathbf{K}_{group}$ vectors When this doesn't work (When you don't need it!)

3. Beginning wave relativity

Dueling lasers make lab frame space-time grid Einstein PW Axioms versus Evenson CW Axioms (Occam at Work) Only CW light clearly shows Doppler shift Dueling lasers make lab frame space-time grid

Geometric Analysis of Bohr-Schrodinger "matter-wave" - Fig.6(top) Rel&Quant.Th. by R&

Geometric Analysis of Bohr-Schrodinger "matter-wave" - Fig.6(top) Rel&Quant.Th. by R&C

Geometric Analysis of Bohr-Schrodinger "matter-wave" - Fig.6(top) Rel&Quant.Th. by R&C

Geometric Analysis of Bohr-Schrodinger "matter-wave" - Fig.7(a) Rel&Quant.Th. by R&C

Geometric Analysis of Bohr-Schrodinger "matter-wave" - Fig.7(a) Rel&Quant.Th. by R&C

Geometric Analysis of Bohr-Schrodinger "matter-wave" - Fig.7(a) Rel&Quant.Th. by R&C

Geometric Analysis of Bohr-Schrodinger "matter-wave" - Fig.7(a) Rel&Quant.Th. by R&C

Geometric Analysis of Bohr-Schrodinger "matter-wave" - Fig.7(a) Rel&Quant.Th. by R&C

Fundamental wave dynamics based on Euler Expo-cosine Identity

Define K-vectors in per-spacetime

$$\mathbf{K}_{1} = (\boldsymbol{\omega}_{1}, k_{1}) \qquad \mathbf{K}_{2} = (\boldsymbol{\omega}_{2}, k_{2}) \qquad \mathbf{K}_{p} = (\boldsymbol{\omega}_{p}, k_{p}) \qquad \mathbf{K}_{g} = (\boldsymbol{\omega}_{g}, k_{g}) \\ = \mathbf{K}_{p} + \mathbf{K}_{g} \qquad = \mathbf{K}_{p} - \mathbf{K}_{g} \qquad = (\mathbf{K}_{1} + \mathbf{K}_{2})/2 \qquad = (\mathbf{K}_{1} - \mathbf{K}_{2})/2$$

Geometric analysis of Bohr-Schrodinger "matter-wave" Algebraic analysis of Bohr-Schrodinger "matter-wave"

However, <u>CW</u>-paths require wave interference to make group and phase *zeros*. Space-time lattice points are real-zeros for *both* phase-factor *and* group-factor in Fig.5 (top half). Algebraic Analysis of Re phase factor = $\cos(\frac{k_1 + k_2}{2}x - \frac{\omega_1 + \omega_2}{2}t) = 0 \Rightarrow k_{phase}x - \omega_{phase}t = n_{phase}^{(odd)}\frac{\pi}{2}$ CW pair (6)Rel&Quant. Regroup factor = $\cos(\frac{k_1 - k_2}{2}x - \frac{\omega_1 - \omega_2}{2}t) = 0 \Rightarrow k_{group}x - \omega_{group}t = n_{group}^{(odd)}\frac{\pi}{2}$ Th. by R&C(7)

p.20

Algebraic Analysis of CW pair Rel&Quant. Th. by R&C p.20 However, <u>CW</u>-paths require wave interference to make group and phase *zeros*. Space-time lattice points are real-zeros for *both* phase-factor *and* group-factor in Fig.5 (top half).

Re phase factor =
$$\cos(\frac{k_1 + k_2}{2}x - \frac{\omega_1 + \omega_2}{2}t) = 0 \Rightarrow k_{phase}x - \omega_{phase}t = n_{phase}^{(odd)}\frac{\pi}{2}$$
 (6)

Regroup factor =
$$\cos(\frac{k_1 - k_2}{2}x - \frac{\omega_1 - \omega_2}{2}t) = 0 \Rightarrow k_{group}x - \omega_{group}t = n_{group}^{(odd)}\frac{\pi}{2}$$
 (7)

This is a matrix equation equating each phase $(kx - \omega t)$ to odd integers times $\pi/2$.

$$\begin{pmatrix} k_{phase} & -\boldsymbol{\omega}_{phase} \\ k_{group} & -\boldsymbol{\omega}_{group} \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} = \begin{pmatrix} n_{phase}^{(odd)} \\ n_{group}^{(odd)} \end{pmatrix} \frac{\pi}{2}$$

(8)

Algebraic Analysis of CW pair Rel&Quant. Th. by R&C p.20 However, <u>CW</u>-paths require wave interference to make group and phase *zeros*. Space-time lattice points are real-zeros for *both* phase-factor *and* group-factor in Fig.5 (top half).

Re phase factor =
$$\cos(\frac{k_1 + k_2}{2}x - \frac{\omega_1 + \omega_2}{2}t) = 0 \Rightarrow k_{phase}x - \omega_{phase}t = n_{phase}^{(odd)}\frac{\pi}{2}$$
 (6)

Regroup factor =
$$\cos(\frac{k_1 - k_2}{2}x - \frac{\omega_1 - \omega_2}{2}t) = 0 \Rightarrow k_{group}x - \omega_{group}t = n_{group}^{(odd)}\frac{\pi}{2}$$
 (7)

This is a matrix equation equating each phase $(kx - \omega t)$ to odd integers times $\pi/2$.

$$\begin{pmatrix} k_{phase} & -\omega_{phase} \\ k_{group} & -\omega_{group} \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} = \begin{pmatrix} n_{phase}^{(odd)} \\ n_{group}^{(odd)} \end{pmatrix} \frac{\pi}{2}$$
(8)

Matrix inverse gives (x, t) loci of the group-phase <u>CW</u> zero-path intersection lattice.

$$\begin{pmatrix} x \\ t \end{pmatrix} = \begin{pmatrix} -\omega_{group} & \omega_{phase} \\ -k_{group} & k_{phase} \end{pmatrix} \begin{pmatrix} n_{phase}^{(odd)} \\ n_{group}^{(odd)} \end{pmatrix} \frac{\pi}{2D}$$
(9)

Algebraic Analysis of CW pair Rel&Quant. Th. by R&C p.20 However, <u>CW</u>-paths require wave interference to make group and phase *zeros*. Space-time lattice points are real-zeros for *both* phase-factor *and* group-factor in Fig.5 (top half).

Re phase factor =
$$\cos(\frac{k_1 + k_2}{2}x - \frac{\omega_1 + \omega_2}{2}t) = 0 \Rightarrow k_{phase}x - \omega_{phase}t = n_{phase}^{(odd)}\frac{\pi}{2}$$
 (6)

Regroup factor =
$$\cos(\frac{k_1 - k_2}{2}x - \frac{\omega_1 - \omega_2}{2}t) = 0 \Rightarrow k_{group}x - \omega_{group}t = n_{group}^{(odd)}\frac{\pi}{2}$$
 (7)

This is a matrix equation equating each phase $(kx - \omega t)$ to odd integers times $\pi/2$.

$$\begin{pmatrix} k_{phase} & -\boldsymbol{\omega}_{phase} \\ k_{group} & -\boldsymbol{\omega}_{group} \end{pmatrix} \begin{pmatrix} x \\ t \end{pmatrix} = \begin{pmatrix} n_{phase}^{(odd)} \\ n_{group}^{(odd)} \end{pmatrix} \frac{\pi}{2}$$
(8)

Matrix inverse gives (x, t) loci of the group-phase CW zero-path intersection lattice.

$$\begin{pmatrix} x \\ t \end{pmatrix} = \begin{pmatrix} -\omega_{group} & \omega_{phase} \\ -k_{group} & k_{phase} \end{pmatrix} \begin{pmatrix} n_{phase}^{(odd)} \\ n_{group}^{(odd)} \end{pmatrix} \frac{\pi}{2D}$$
(9)

So group-phase lattice vectors are odd-integer multiples of \mathbf{K}_{phase} or \mathbf{K}_{group} and π/D .

$$\begin{pmatrix} x \\ t \end{pmatrix} = \frac{n_{group}^{(odd)}\pi}{D} \begin{pmatrix} \omega_{phase} \\ k_{phase} \end{pmatrix} - \frac{n_{phase}^{(odd)}\pi}{D} \begin{pmatrix} \omega_{group} \\ k_{group} \end{pmatrix} = \frac{\pi}{D} (n_{group}^{(odd)}\mathbf{K}_{phase} - n_{phase}^{(odd)}\mathbf{K}_{group}) (10)$$

Matrix determinate D equals area spanned by <u>CW</u> lattice vectors \mathbf{K}_{phase} and \mathbf{K}_{group} .

$$D = \left| \mathbf{K}_{phase} \times \mathbf{K}_{group} \right| = k_{group} \boldsymbol{\omega}_{phase} - k_{phase} \boldsymbol{\omega}_{group} = (\boldsymbol{\omega}_1 \boldsymbol{k}_2 - \boldsymbol{\omega}_2 \boldsymbol{k}_1) / 2$$
(11)

2. Geometric construction of wave-zero grids
Continuous Wave (CW) grid based on K_{phase}=(K_a+K_b)/2 and K_{group}=(K_a-K_b)/2 vectors Pulse Wave (PW) grid based on primitive K_a=K_{phase}+K_{group} and K_b=K_{phase}-K_{group} vectors When this doesn't work (When you don't need it!)

 $k_{phase} x - \omega_{phase} t = m(\pi / 2) \qquad m = \pm 1, \pm 3, \dots$ $k_{group} x - \omega_{group} t = n(\pi / 2) \qquad n = \pm 1, \pm 3, \dots$

2-Wave Source: Unifying Trajectory-Space-time (x,t) and Fourier-Per-space-time (
$$\omega,k$$
)
 $\psi_{+} = e^{ia} + e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} + e^{-i\frac{a-b}{2}} \right) = 2e^{i\frac{a+b}{2}} \cos \frac{a-b}{2} = 2(\cos \frac{a+b}{2} + i\sin \frac{a+b}{2})\cos \frac{a-b}{2}$
Suppose we are given two
"mystery" sources"
 $k_{2}=(\omega_{2},k_{3})$
 $t^{*}Schrodinger matter waves$
 $0 = \operatorname{Re}\psi_{+} = \operatorname{Re}e^{i\frac{a+b}{2}}\cos \frac{a-b}{2} = \cos \frac{a+b}{2}\cos \frac{a-b}{2} = \cos \left(\frac{k_{a}+k_{b}}{2}x - \frac{\omega_{a}+\omega_{b}}{2}t\right)\cos \left(\frac{k_{a}-k_{b}}{2}x - \frac{\omega_{a}-\omega_{b}}{2}t\right)$
 $space-time Rev-zeros X_{w,e}$ determined by: Matrix equation:
 $k_{powe}x - \omega_{powe}t = n(\pi/2)$
 $m = \pm 1, \pm 3, \dots$
 $k_{group} - \omega_{group}t = (mK_{group} - nK_{plaxe})$
 (x,t)
 (x,t)

2-Wave Source: Unifying Trajectory-Space-time (x,t) and Fourier-Per-space-time (
$$\omega,k$$
)
 $\psi_{+} = e^{ia} + e^{ib} = e^{i\frac{a+b}{2}} \left(e^{i\frac{a-b}{2}} + e^{-i\frac{a-b}{2}} \right) = 2e^{i\frac{a+b}{2}} \cos \frac{a-b}{2} = 2(\cos \frac{a+b}{2} + i\sin \frac{a+b}{2})\cos \frac{a-b}{2}$
Suppose we are given two
"mystery" sources"
$$\int \frac{1}{10} \int \frac{1}{$$

2-Source Case: Unifying Trajectory-Spacetime (x,t) and Fourier-Per-spacetime (ω,k)

The wave-interference-zero paths given by K-vectors (ω_g, k_g) and (ω_p, k_p) .

2. Geometric construction of wave-zero grids Continuous Wave (CW) grid based on K_{phase}=(K_a+K_b)/2 and K_{group}=(K_a-K_b)/2 vectors
Pulse Wave (PW) grid based on primitive K_a=K_{phase}+K_{group} and K_b=K_{phase}-K_{group} vectors When this doesn't work (When you don't need it!)

> "Waves are illusory!" Corpuscles rule! Pa-tooey!

2-Source Case: Unifying Trajectory-Spacetime (x,t) and Fourier-Per-spacetime (ω ,k)

2. Geometric construction of wave-zero grids
Continuous Wave (CW) grid based on K_{phase}=(K_a+K_b)/2 and K_{group}=(K_a-K_b)/2 vectors
Pulse Wave (PW) grid based on primitive K_a=K_{phase}+K_{group} and K_b=K_{phase}-K_{group} vectors
When this doesn't work (When you don't need it!)

"Waves are illusory!" Corpuscles rule! Pa-tooey!

What happens when the grid area $\mathbf{K}_{group} \times \mathbf{K}_{phase}$ is ZERO:

...But, if you collide the beams <u>Head-On</u>...

Beginning wave relativity
 Dueling lasers make lab frame space-time grid (CW or PW)
 Einstein PW Axioms versus Evenson CW Axioms (Occam at Work)
 Only CW light clearly shows Doppler shift
 Dueling lasers make lab frame space-time grid

Zeros of head-on CW sum gives (x,ct)-grid

Zeros of head-on CW sum gives (x,ct)-grid

• Optical wave coordinate manifolds and frames Shining some light on light using complex phasor analysis

300THz Laser plane wave $\langle x,t | k, \omega \rangle = Ae^{i(kx - wt)}$

New-fashioned laser clocks & meter sticks (contd.) Dual views:

Single plane-wave meter-stick-clocks are too fast (...But at least this view is <u>constant</u>) (can't catch'em) Interfering wave <u>pairs</u> needed to make rest frame coordinates...

Newton's "Fits" in Optical Interference

Newton complained that light waves have "fits" (what we now know as wave *interference* or *resonance*.) Examples of interference are head-on collision of two *Continuous Waves (2-CW)* or two *Pulse Waves (PW)*

Newton's "Fits" in Optical Interference

Newton complained that light waves have "fits" (what we now know as wave interference or resonance.) Examples of interference are head-on collision of two Continuous Waves (2-CW) or two Pulse Waves (PW)

3. Beginning wave relativity
 Dueling lasers make lab frame space-time grid (CW or PW)

 Einstein PW Axioms versus Evenson CW Axioms (Occam at Work)
 Only CW light clearly shows Doppler shift
 Dueling lasers make lab frame space-time grid

Einstein PW Axioms versus Evenson CW Axioms (Occam at Work)

#	Release date	Title	Duration	Credits		Pseudo-Latin nar	nes given		
				Story/writing	Direction	For the Road Runner	For the Coyote	Acme Corporation devices used	Books Studied
1	1949·9·17	Fast and Furry-ous	6:55	Michael Maltese	Chuck Jones	Acceleratii incredibus	Carnivorous vulgaris	ACME Super Outfit	dia-2012
2	1952·5·24	Beep, Beep	6:45	Michael Maltese	Chuck Jones	Accelerati incredibilus	Carnivorous vulgaris	Asprin, Matches, Rocket-Powered Roller Skates	None
3	1952·8·23	Going! Going! Gosh!	6:25	Michael Maltese	Chuck Jones	Acceleratti incredibilis	Carnivorous vulgaris	an anvil, a weather balloon, a street cleaner's bin, and a fan	
4	1953·9·19	Zipping Along	6:55	Michael Maltese	Chuck Jones	Velocitus tremenjus	Road-Runnerus digestus	Giant Kite Kit, Bomb, Detonator, Nitroglycerin	
5	1954·8·14	Stop! Look! And Hasten!	7:00	Michael Maltese	Chuck Jones	Hot-roddicus supersonicus	Eatibus anythingus	Bird Seed, Triple Strength Fortified Leg Muscle Vitamins	"How to Build a Burmese Tiger Trap
6	1955-4-30	Ready, Set, Zoom!	6:55	Michael Maltese	Chuck Jones	Speedipus Rex	Famishus- Famishus	Glue	
7	1955·12·10	Guided Muscle	6:40	Michael Maltese	Chuck Jones	Velocitus delectiblus	Eatibus almost anythingus	ACME Grease	
8	1956-5-5	Gee Whiz-z-z-z-z-z	6:35	Michael Maltese	Chuck Jones	Delicius-delicius	Eatius birdius	ACME Triple Strength Battleship Steel Armor Plate, Rubber Band, Jet Bike	
9	1956-11-10	There They Go-Go-Go!	6:35	Michael Maltese	Chuck Jones	Dig-outius tid-bittius	Famishius fantasticus		
10	1957-1-26	Scrambled Aches	6:50	Michael Maltese	Chuck Jones	Tastyus supersonicus	Eternalii famishiis	ACME Dehydrated Boulders, Outboard Steam Roller	
11	1957-9-14	Zoom and Bored	6:15	Michael Maltese	Chuck Jones	Birdibus zippibus	Famishus vulgarus	ACME Bumblebees	
12	1958-4-12	Whoa, Be-Gone!	6:10	Michael Maltese	Chuck Jones	Birdius high-ballius	Famishius vulgaris ingeniusi	Tornado Seeds	
13	1958·10·11	Hook, Line and Stinker	5:55	Michael Maltese	Chuck Jones	Burnius-roadibus	Famishius- famishius		
14	1958·12·6	Hip Hip-Hurry!	6:13	Michael Maltese	Chuck Jones	digoutius- unbelieveablii	eatius-slobbius		
15	1959·5·9	Hot-Rod and Reel!	6:25	Michael Maltese	Chuck Jones	Super-sonicus- tastius	Famishius- famishius	Jet-Propelled Pogo Stick, Jet-Propelled Unicycle	None.
16	1959-10-10	Wild About Hurry	6:45	Michael Maltese	Chuck Jones	Batoutahelius	Hardheadipus oedipus	Giant Elastic Rubber Band, 5 Miles of Railroad Track, Rocket Sled, Bird Seed, Iron Pellets, Indestructo Steel Ball	None
17	1960-1-9	Fastest with the Mostest	7:20	None	Chuck Jones	Velocitus incalcublii	Carnivorous slobbius		
			1						

18	1960-10-8	Hopalong Casualty	6:05	Chuck Jones	Chuck Jones	speedipus-rex	Hard-headipus ravenus	Christmas Packaging Machine, Earthquake Pills
19	1961.1.21	Zip 'N Snort	5:50	Chuck Jones	Chuck Jones	digoutius- hot-rodis	evereadii eatibus	List 17-34 of Roadrunner Episodes Chuck Jones-Wikipedia-2012
20	1961-6-3	Lickety-Splat	6:20	Chuck Jones	Chuck Jones, Abe Levitow	Fastius tasty-us	Appetitius giganticus	Roller skis, dart bombs
21	1961-11-11	Beep Prepared	6:00	John Dunn, Chuck Jones	Chuck Jones, Maurice Noble	Tid-bittius velocitus	Hungrii flea-bagius	ACME Iron Bird Seed
Film	1962-6-2	Adventures of the Road Runner	26:00	John Dunn, Chuck Jones, Michael Maltese	Chuck Jones	Super-Sonnicus Idioticus	Desertous- operativus Idioticus	
22	1962-6-30	Zoom at the Top	6:30	Chuck Jones	Chuck Jones, Maurice Noble	disappearialis quickius	overconfidentii vulgaris	Bird seed, instant icicle-maker, boomerang
23	1963-12-28	To Beep or Not to Beep ¹	6:35	John Dunn, Chuck Jones	Chuck Jones, Maurice Noble	None	None	
24	1964-6-6	War and Pieces	6:40	John Dunn	Chuck Jones, Maurice Noble	Burn-em upus asphaltus	Caninus nervous rex	Invisible Paint
25	1965-1-1	Zip Zip Hooray! ²	6:15	John Dunn	Chuck Jones	Super-Sonnicus Idioticus	None	
26	1965·2·1	Road Runner a Go-Go ²	6:05	John Dunn	Chuck Jones	None	None	None
27	1965·2·27	The Wild Chase	6:30	None	Friz Freleng, Hawley Pratt	None	None	
28	1965-7-31	Rushing Roulette	6:20	David Detiege	Robert McKimson	None	None	
29	1965·8·21	Run, Run, Sweet Road Runner	6:00	Rudy Larriva	Rudy Larriva	None	None	
30	1965-9-18	Tired and Feathered	6:20	Rudy Larriva	Rudy Larriva	None	None	
31	1965-10-9	Boulder Wham!	6:30	Len Janson	Rudy Larriva	None	None	Deluxe Hi-bounce Trampoline Kit
32	1965-10-30	Just Plane Beep	6:45	Don Jurwich	Rudy Larriva	None	None	War Surplus Biplane
33	1965-11-13	Hairied and Hurried	6:45	Nick Bennion	Rudy Larriva	None	None	Snow Machine, Magnetic Gun, Practice Bombs, Super Bomb, Kit
34	1965-12-11	Highway Runnery	6:45	Al Bertino	Rudy Larriva	None	None	

Tuesday, January 14, 2014

35	1965-12-25	Chaser on the Rocks	6:45	Tom Dagenais	Rudy Larriva	None	None		
36	1966-1-8	Shot and Bothered	6:30	Nick Bennion	Rudy Larriva	None	None	Suction Cups	٢
37	1966-1-29	Out and Out Rout	6:00	Dale Hale	Rudy Larriva	None	None	No ACME labeled devices used.	" -
38	1966-2-19	The Solid Tin Coyote	6:15	Don Jurwich	Rudy Larriva	None	None		
39	1966-3-12	Clippety Clobbered	6:15	Tom Dagenais	Rudy Larriva	None	None		
40	1966-11-5	Sugar and Spies	6:20	Tom Dagenais	Robert McKimson	None	None	Do-it-Yourself Kit Remote Control Missile-Bombs	r
41	1979-11-27	Freeze Frame	6:05	John W. Dunn Chuck Jones	Chuck Jones	Semper food-ellus	Grotesques appetitus	k	
42	1980-5-21	Soup or Sonic	9:10	Chuck Jones	Chuck Jones, Phil Monroe	Ultra-sonicus ad infinitum	Nemesis ridiculii		
43	1994·12·21	Chariots of Fur ³	7:00	Chuck Jones	Chuck Jones	Boulevardius- burnupius	Dogius ignoramii		
44	2000-12-30	Little Go Beep	7:55	Kathleen Helppie-Shipley, Earl Kress	Spike Brandt	Morselus babyfatius tastius	Poor schnookius		
45	2003-11-1	The Whizzard of Ow	7:00	Chris Kelly	Bret Haaland	Geococcyx californianus ⁴	Canis latrans ⁴	Book of Magic, Flying Broom, Bomb, Clear Paint	" P
Film	2003·11·14	Looney Tunes: Back in Action	91:00	Larry Doyle	Joe Dante	None	Desertus operatus idioticus		
46	2010-7-30	Coyote Falls ³	2:59	Tom Sheppard ^[10]	Matthew O'Callaghan	None	None	Bird Seed, Bungee Cord	r
47	2010-9-24	Fur of Flying ³	3:03 ^[11]	Tom Sheppard	Matthew O'Callaghan ^[11]	None	None	Bonnie Bike, Mega-Motor, Football Helmet, Ceiling Fan	r
48	2010-12-17	Rabid Rider ³	3:07	Tom Sheppard	Matthew O'Callaghan	None	None	Hyper-Sonic Transport	r
49	ТВА	Untitled Wile E. Coyote and Road Runner Short Film	5:38	Tom Sheppard	Matthew O'Callaghan	None	None		

Evenson CW Axiom ("All colors go c.") is only reasonable conclusion: <u>Linear dispersion</u>: $\omega = ck$

(inverse wavelength $1/\lambda$)

Evenson CW Axiom ("All colors go c.") is only reasonable conclusion: $\underline{Linear} \ dispersion: \omega = ck$

(inverse wavelength 1/ λ)

What if blue were to travel 0.001% slower than red from a galaxy 9 billion light years away? (...and show up 10⁵ years late)

That would mean Good-Bye Hubble Astronomy!

3. Beginning wave relativity Dueling lasers make lab frame space-time grid (CW or PW) Einstein PW Axioms versus Evenson CW Axioms (Occam at Work) Only CW light clearly shows Doppler shift Dueling lasers make lab frame space-time grid

3. Beginning wave relativity

Dueling lasers make lab frame space-time grid (CW or PW)
Einstein PW Axioms versus Evenson CW Axioms (Occam at Work)
Only CW light clearly shows Doppler shift
Dueling lasers make lab frame space-time grid

