AMOP Lecture 17 Thur. 4.15 2014

Based on QTCA Lectures 24-25 Group Theory in Quantum Mechanics

Introduction to Rotational Eigenstates and Spectra III (Int.J.Mol.Sci, 14, 714(2013) p.755-774, QTCA Unit 7 Ch. 21-25) (PSDS - Ch. 5, 7)

Review: Building Hamiltonian $\mathbf{H} = A \mathbf{J}_x^2 + B \mathbf{J}_y^2 + C \mathbf{J}_z^2 + out of scalar and tensor operators$ *Review: Symmetric rotor levels and RES plots* Asymmetric rotor levels and RES plots $D_2 \supset C_2$ symmetry correlation Spherical rotor levels and RES plots Spectral fine structure of SF₆, SiF₄, C₈H₈, CF₄,... $O \supset C_4$ and $O \supset C_3$ symmetry correlation Details of *P*(88) v₄ SF₆ spectral structure and implications Beginning theory Rovibronic nomograms and PQR structure *Rovibronic energy surfaces (RES) and cone geometry* Spin symmetry correlation, tunneling, and entanglement Analogy between PE surface dynamics and RES Rotational Energy Eigenvalue Surfaces (REES)

Review: Building Hamiltonian $\mathbf{H} = A\mathbf{J}_x^2 + B\mathbf{J}_y^2 + C\mathbf{J}_z^2 + \text{ out of scalar and tensor operators}$ Review: Symmetric rotor levels and RES plots Asymmetric rotor levels and RES plots $D_2 \supset C_2$ symmetry correlation Spherical rotor levels and RES plots Spectral fine structure of SF₆, SiF₄, C₈H₈, CF₄,... $O \supset C_4$ and $O \supset C_3$ symmetry correlation Details of P(88) v₄ SF₆ spectral structure and implications Review of freshman Chemistry and Physics (contd)Momentum 101p = m v $J = L = I \omega$ BANG!(linear)(rotation) $E = \frac{1}{2}m v^2 = p^2/2m$ $E = \frac{1}{2}I \omega^2 = J^2/2I$ BUCK\$

Simple Rigid Rotor Hamiltonian... (Hamiltonian H=E is $\frac{BANGI}{energy}$ in terms of $\frac{BANGI}{momentum}$) $\mathbf{H} = A\mathbf{J}_x^2 + B\mathbf{J}_y^2 + C\mathbf{J}_z^2 + \cdots$...and its multi-pole expansion...

Building Hamiltonian
$$\mathbf{H} = A \mathbf{J}_x^2 + B \mathbf{J}_y^2 + C \mathbf{J}_z^2$$
 out of scalar and tensor operators

$$\mathbf{T}_0^0 = \mathbf{J}_x^2 + \mathbf{J}_y^2 + \mathbf{J}_z^2 = \mathbf{J}^2 \qquad \mathbf{T}_0^2 = \frac{2\mathbf{J}_z^2 - \mathbf{J}_x^2 - \mathbf{J}_y^2}{2} = \mathbf{J}^2 \frac{3\cos^2\theta - 1}{2} = \mathbf{J}^2 P_2(\cos\theta) \qquad \mathbf{T}_2^2 + \mathbf{T}_{-2}^2 = \sqrt{6} \frac{\mathbf{J}_x^2 - \mathbf{J}_y^2}{2} = \sqrt{\frac{3}{2}} \mathbf{J}^2 \sin^2\theta \cos2\phi$$

$$\mathbf{H} = A \mathbf{J}_x^2 + B \mathbf{J}_y^2 + C \mathbf{J}_z^2$$

$$= (\frac{1}{3}A + \frac{1}{3}B + \frac{1}{3}C)(\mathbf{J}_x^2 + \mathbf{J}_y^2 + \mathbf{J}_z^2) \qquad = (\frac{1}{3}A + \frac{1}{3}B + \frac{1}{3}C)(\mathbf{J}_x^2 + \mathbf{J}_y^2 + \mathbf{J}_z^2) \qquad = \frac{1}{3}(A + B + C)(\mathbf{T}_0^0)$$

$$+ (\frac{-1}{6}A + \frac{-1}{6}B + \frac{2}{6}C)(-\mathbf{J}_x^2 - \mathbf{J}_y^2 + 2\mathbf{J}_z^2) \qquad + (\frac{-1}{3}A + \frac{-1}{3}B + \frac{2}{3}C)(\frac{2\mathbf{J}_z^2 - \mathbf{J}_x^2 - \mathbf{J}_y^2}{2}) \qquad + \frac{1}{3}(-A - B + 2C)(\mathbf{T}_0^2)$$

$$+ (\frac{1}{2}A + \frac{-1}{2}B + 0C)(-\mathbf{J}_x^2 - \mathbf{J}_y^2 + 0) \qquad + (\frac{1}{\sqrt{6}}A + \frac{-1}{\sqrt{6}}B + 0C)(\sqrt{6}\frac{\mathbf{J}_x^2 - \mathbf{J}_y^2}{2}) \qquad + \frac{1}{\sqrt{6}}(A - B)(\mathbf{T}_2^2 + \mathbf{T}_{-2}^2)$$

asymmetry

Resulting asymmetric top Hamiltonian expansion:

 $\mathbf{H} = A \mathbf{J}_{x}^{2} + B \mathbf{J}_{y}^{2} + C \mathbf{J}_{z}^{2} = \frac{1}{3} (A + B + C)(\mathbf{T}_{0}^{0}) + \frac{1}{3} (2C - A - B)(\mathbf{T}_{0}^{2}) + \frac{A - B}{\sqrt{6}} (\mathbf{T}_{2}^{2} + \mathbf{T}_{-2}^{2})$

Resulting semi-classical asymmetric top Hamiltonian expansion: asymmetry

$$\mathbf{H} = A \mathbf{J}_{x}^{2} + B \mathbf{J}_{y}^{2} + C \mathbf{J}_{z}^{2} = \frac{1}{3} (A + B + C) (\mathbf{J}^{2}) + \frac{1}{3} (2C - A - B) (\mathbf{J}^{2} \frac{3\cos^{2} \theta - 1}{2}) + \frac{A - B}{\sqrt{6}} (\sqrt{\frac{3}{2}} \mathbf{J}^{2} \sin^{2} \theta \cos 2\phi)$$
$$\mathbf{H} = A \mathbf{J}_{x}^{2} + B \mathbf{J}_{y}^{2} + C \mathbf{J}_{z}^{2} = \mathbf{J}^{2} \left[\frac{A + B + C}{3} + \frac{2C - A - B}{6} (3\cos^{2} \theta - 1) + \frac{A - B}{2} \sin^{2} \theta \cos 2\phi \right]$$

Resulting semi-classical symmetric top Hamiltonian expansion:

$$\mathbf{H} = B \mathbf{J}_{x}^{2} + B \mathbf{J}_{y}^{2} + C \mathbf{J}_{z}^{2} = \mathbf{J}^{2} \left[\frac{B + B + C}{3} + \frac{2C - B - B}{6} (3\cos^{2}\theta - 1) + \frac{B - B}{2} \sin^{2}\theta \cos 2\phi \right] = \mathbf{J}^{2} \left[B + (C - B)\cos^{2}\theta \right]$$
$$= B \mathbf{J}^{2} + (C - B)\mathbf{J}_{z}^{2} = B \mathbf{J}^{2} + (C - B)\mathbf{J}^{2}\cos^{2}\theta$$

Tuesday, April 15, 2014

Review: Building Hamiltonian $H = AJ_x^2 + BJ_y^2 + CJ_z^2 + out of scalar and tensor operators$ Review: Symmetric rotor levels and RES plotsAsymmetric rotor levels and RES plots $<math>D_2 \supset C_2$ symmetry correlation Spherical rotor levels and RES plots Spectral fine structure of SF₆, SiF₄, C₈H₈, CF₄,... $O \supset C_4$ and $O \supset C_3$ symmetry correlation Details of P(88) v₄ SF₆ spectral structure and implications

Rotational Energy Surface (RES):

Plot Hamiltonian
$$\mathbf{H} = B\mathbf{J}^2 + (C - B)\mathbf{J}_z^2$$
 radially as $H(\Theta) = BJ(J+1) + (C - B)J(J+1)\cos^2\Theta$
 $\begin{vmatrix} j\\m,n \end{vmatrix}$
Conventional notation: $n=K$

$$H(\Theta_K^J) = BJ(J+1) + (C - B)J(J+1)\cos^2\Theta_K^J$$

$$= BJ(J+1) + (C - B)K^2$$

(Here this gives exact quantum eigenvalues!)

Tuesday, April 15, 2014

Review: Building Hamiltonian $H = AJ_x^2 + BJ_y^2 + CJ_z^2 + out of scalar and tensor operators$ Review: Symmetric rotor levels and RES plotsAsymmetric rotor levels and RES plots $<math>D_2 \supset C_2$ symmetry correlation Spherical rotor levels and RES plots Spectral fine structure of SF₆, SiF₄, C₈H₈, CF₄,... $O \supset C_4$ and $O \supset C_3$ symmetry correlation

Details of P(88) v₄ SF₆ spectral structure and implications

after QTforCA Unit 8. Ch. 25 Fig. 25.4.1

Separatrix circle pair dihedral angle

 $\theta_{sep} = \operatorname{atan}(\frac{A-B}{B-C})$

Int.J.Molecular Science 14.(2013) Fig.3 p. 733

Review: Building Hamiltonian $\mathbf{H} = A\mathbf{J}_x^2 + B\mathbf{J}_y^2 + C\mathbf{J}_z^2 + \text{ out of scalar and tensor operators}$ Review: Symmetric rotor levels and RES plots Asymmetric rotor levels and RES plots $D_2 \supset C_2$ symmetry correlation Spherical rotor levels and RES plots Spectral fine structure of SF₆, SiF₄, C₈H₈, CF₄,... $O \supset C_4$ and $O \supset C_3$ symmetry correlation Details of P(88) v₄ SF₆ spectral structure and implications

Tuesday, April 15, 2014

Completing diagonalization from new D_2 basis:

Need only diagonalize the two A_1 's:

⁽Recall (J=2)-example of correlation from Lecture 16)

Review: Building Hamiltonian $H = AJ_x^2 + BJ_y^2 + CJ_z^2 + out of scalar and tensor operators$ Review: Symmetric rotor levels and RES plotsAsymmetric rotor levels and RES plots $<math>D_2 \supset C_2$ symmetry correlation Spherical rotor levels and RES plots Spectral fine structure of SF₆, SiF₄, C₈H₈, CF₄,... $O \supset C_4$ and $O \supset C_3$ symmetry correlation

Details of P(88) v₄ SF₆ spectral structure and implications

Semi Rigid Rotor Hamiltonian: Centrifugal and Coriolis terms... $\mathbf{H} = A\mathbf{J}_x^2 + B\mathbf{J}_v^2 + C\mathbf{J}_z^2 + t_{xxxx}\mathbf{J}_x^4 + t_{xxvv}\mathbf{J}_x^2\mathbf{J}_v^2 + \cdots$ Semi Rigid O_h or T_d Spherical Top: (Hecht Hamiltonian 1960) $\mathbf{H} = B\left(\mathbf{J}_{x}^{2} + \mathbf{J}_{y}^{2} + \mathbf{J}_{z}^{2}\right) + t_{440}\left(\mathbf{J}_{x}^{4} + \mathbf{J}_{y}^{4} + \mathbf{J}_{z}^{4} - \frac{3}{5}J^{4}\right) + \cdots$ precessing $+ t_{440} \left(\mathbf{T}_{0}^{4} + \sqrt{\frac{5}{14}} \left[\mathbf{T}_{4}^{4} + \mathbf{T}_{-4}^{4} \right] \right) + \cdots \right) \mathbf{J}$ $B\mathbf{J}^2$ **J** vector $K_{A}=30$ J=30J = 88after QTforCA Unit 8. Ch. 25 Fig. 25.4.5

Review: Building Hamiltonian $\mathbf{H} = A\mathbf{J}_x^2 + B\mathbf{J}_y^2 + C\mathbf{J}_z^2 + \text{ out of scalar and tensor operators}$ Review: Symmetric rotor levels and RES plots Asymmetric rotor levels and RES plots $D_2 \supset C_2$ symmetry correlation Spherical rotor levels and RES plots Spectral fine structure of SF₆, SiF₄, C₈H₈, CF₄,... $O \supset C_4$ and $O \supset C_3$ symmetry correlation Details of P(88) v₄ SF₆ spectral structure and implications

Previous page: QTforCA Unit 8. Ch. 25 Fig. 25.4.9

Fig. 25.4.9 Infrared spectra showing fine structure clusters. Tetrafluorosilane (SiF₄) spectrum from a v₃ R(30) transition _____. [After C. W. Patterson, R. S. McDowell, N. G. Nereson, B. J. Krohn, J. S. Wells, and F. R. Peterson, J. Mol. Spectrosc. **91**, 416 (1982). [Cubane (C₈H₈) spectrum from v₁₁ P(30), P(31), and P(32), transitions; cubane (C₈H₈) spectrum from v₁₂ R(36), transition. [After A. S. Pine, A. G. Maki, A. G. Robiette, B. J. Krohn, J. K. G. Watson, and Th Urbanek, J. Am. Chem. Soc., **106**, 891 (1984).]

Review: Building Hamiltonian $\mathbf{H} = A \mathbf{J}_x^2 + B \mathbf{J}_y^2 + C \mathbf{J}_z^2 + out of scalar and tensor operators$ Review: Symmetric rotor levels and RES plotsAsymmetric rotor levels and RES plots $<math>D_2 \supset C_2$ symmetry correlation Spherical rotor levels and RES plots Spectral fine structure of SF₆, SiF₄, C₈H₈, CF₄,... $O \supset C_4$ and $O \supset C_3$ symmetry correlation Details of P(88) v₄ SF₆ spectral structure and implications

Fig. 25.4.7 Different choices of rotation axes for octahedral rotor corresponding to local symmetry C₃, C₂, and C₄. Tables correlate global octahedral symmetry species with the local ones.

QTforCA Unit 8. Ch. 25 Fig. 25.4.7

Octahedral $O \supset C_4$ *subgroup correlations*

$1, R_{z+90^{\circ}}, \rho_{z180^{\circ}}, R_{z-90^{\circ}}$								
$\mathbf{A}_1(\mathbf{O}) \downarrow C_4 = 1, 1,$	1,	1.	$=(0)_4$					
$A_2(O) \downarrow C_4 = 1, -1,$	1,	-1.	$=(2)_4$					
$E(O) \downarrow C_4 = 2, 0,$	2,	0.	$=(0)_4 \oplus (2)_4$					
$T_1(O) \downarrow C_4 = 3, 1,$	-1,	1.	$=(0)_4 \oplus (1)_4$	ı⊕(3)₄				
$T_2(O) \downarrow C_4 = 3, -1,$	-1,	-1.	$=(2)_4 \oplus (1)_4$	⊕(3)₄	$O \downarrow C_4$ subduction			
				$O \downarrow C_4$	0_4	14	24	$3_4 = \overline{1}_4$
				A_1	1	•	•	•
				A_2	•	•	1	•
				E	1	•	1	•

 T_1

 T_2

1

•

1

1

•

1

1

1

Octahedral $O \supset C_4$ *subgroup correlations*

Tuesday, April 15, 2014

 $(2)_{3}$

 $e^{-i2\pi/3}$

 $e^{i2\pi/3}$

 T_2

1

Review: Building Hamiltonian $\mathbf{H} = A\mathbf{J}_x^2 + B\mathbf{J}_y^2 + C\mathbf{J}_z^2 + \text{ out of scalar and tensor operators}$ Review: Symmetric rotor levels and RES plots Asymmetric rotor levels and RES plots $D_2 \supset C_2$ symmetry correlation Spherical rotor levels and RES plots Spectral fine structure of SF₆, SiF₄, C₈H₈, CF₄,... $O \supset C_4$ and $O \supset C_3$ symmetry correlation Details of P(88) v₄ SF₆ spectral structure and implications

FT IR and Laser Diode Spectra K.C. Kim, W.B. Person, D. Seitz, and B.J. Krohn J.Mol. Spectrosc. **76**, 322 (1979).

IR Spectra of SF6 v₄ P(88)

Int.J.Molecular Science 14.(2013) Fig.26 p. 783

Review: Building Hamiltonian $\mathbf{H} = A \mathbf{J}_x^2 + B \mathbf{J}_y^2 + C \mathbf{J}_z^2 + out of scalar and tensor operators$ *Review: Symmetric rotor levels and RES plots* Asymmetric rotor levels and RES plots $D_2 \supset C_2$ symmetry correlation Spherical rotor levels and RES plots Spectral fine structure of SF₆, SiF₄, C₈H₈, CF₄,... $O \supset C_4$ and $O \supset C_3$ symmetry correlation Details of *P*(88) v₄ SF₆ spectral structure and implications Beginning theory with graphical approaches *Rovibronic nomograms and PQR structure Rovibronic energy surfaces (RES) and cone geometry* Spin symmetry correlation, tunneling, and entanglement Analogy between PE surface dynamics and RES Rotational Energy Eigenvalue Surfaces (REES)

Symmetry-level-cluster effects in SF_6 , SiF_4 , CH_4 , CF_4 Graphical approach to rotation-vibration-spin Hamiltonian

<H $> \sim v_{vib}$ +BJ(J+1)+<H^{Scalar Coriolis}>+<H^{Tensor Centrifugal}>+<H^{Nuclear Spin}>+<H^{Tensor Coriolis}>+...

to help understand complex rotational spectra and dynamics.

OUTLINE

Introductory review

- Rovibronic nomograms and PQR structure v_3 and $v_4 SF_6$
- -• Rotational Energy Surfaces (RES) and Θ_{K}^{J} -cones $v_{4}P(88)$ SF₆
- -• Spin symmetry correlation tunneling and entanglement SF₆ Recent developments
- Analogy between PE surface and RES dynamics
- Rotational Energy Eigenvalue Surfaces (REES)

 v_3 SF₆

Example(s)

Graphical approach to rotation-vibration-spin Hamiltonian

<H $> \sim v_{vib}$ +BJ(J+1)+<H^{Scalar Coriolis}>+<H^{Tensor Centrifugal}>+<H^{Nuclear Spin}>+<H^{Tensor Coriolis}>+...

OUTLINE

Example(s)

 ν_3 and $\nu_4\,\text{SF}_6$

Introductory review

Rovibronic nomograms and PQR structure

- Rotational Energy Surfaces (RES) and θ_{ν} -cones $v_4 P(88) SF_6$
- Spin symmetry correlation tunneling and entanglement SF₆ Recent developments
- Analogy between PE surface and RES dynamics
- Rotational Energy Eigenvalue Surfaces (REES) v₃ SF₆

Graphical approach to rotation-vibration-spin Hamiltonian

<H $> \sim v_{vib}$ +BJ(J+1)+<H^{Scalar Coriolis}>+<H^{Tensor Centrifugal}>+<H^{Nuclear Spin}>+<H^{Tensor Coriolis}>+...

OUTLINE

Introductory review

Rovibronic nomograms and PQR structure

Rotational Energy Surfaces (RES) and θ_{ν}^{J} -cones $v_{4}P(88)$ SF₆

- Spin symmetry correlation tunneling and entanglement SF₆ Recent developments
- Analogy between PE surface and RES dynamics
- Rotational Energy Eigenvalue Surfaces (REES)

Example(s)

 v_3 and v_4 SF₆

V₃ SF₆

 $<H>\sim v_{vib}+BJ(J+1)+<H^{Scalar\ Coriolis}>+<H^{Tensor\ Centrifugal}>+<H^{Tensor\ Coriolis}>+<H^{Nuclear\ Spin}>+...$

SF₆ Spectra of O_h Ro-vibronic Hamiltonian described by RE Tensor Topography

Graphical approach to rotation-vibration-spin Hamiltonian

<H $> \sim v_{vib}$ +BJ(J+1)+<H^{Scalar Coriolis}>+<H^{Tensor Centrifugal}>+<H^{Nuclear Spin}>+<H^{Tensor Coriolis}>+...

OUTLINE

Introductory review

- Rovibronic nomograms and PQR structure
- -• Rotational Energy Surfaces (RES) and θ_{ν}^{J} -cones $v_{4}P(88)$ SF₆

• Spin symmetry correlation tunneling and entanglement $_{SF_6}$

Recent developments

- Analogy between PE surface and RES dynamics
- Rotational Energy Eigenvalue Surfaces (REES)

Example(s)

 v_3 and v_4 SF₆

V3 SF6

Graphical approach to rotation-vibration-spin Hamiltonian

 $<H> \sim v_{vib}+BJ(J+1)+<H^{Scalar Coriolis}++H^{Tensor Centrifugal}++H^{Nuclear Spin}++H^{Tensor Coriolis}++...$

OUTLINE

Introductory review

- Rovibronic nomograms and PQR structure
- -• Rotational Energy Surfaces (RES) and θ_{K}^{J} -cones $v_{4}P(88)$ SF₆
- -• Spin symmetry correlation tunneling and entanglement SF₆ Recent developments
 - Analogy between PE surface and RES dynamics
 - Rotational Energy Eigenvalue Surfaces (REES)

 v_3 SF₆

Example(s)

 v_3 and v_4 SF₆

How to display such monstrous avoided cluster crossings: REES: *Rotational Energy Eigenvalue Surfaces*

Vibration (or vibronic) momentum ℓ retains its quantum representaion(s).

For $\ell = 1$ that is the usual 3-by-3 matrices.

Rotational momentum *J* is treated semi-classically. $|J| = \sqrt{J(J+1)}$ Usually **J** is written in Euler coordinates: $J_x = |J| \cos \gamma \sin \beta$, etc.

Plot resulting H-matrix eigenvalues vs. classical variables. ($\ell = 1$) 3-by-3 H-matrix e-values are polar plotted vs. azimuth γ and polar β .

New geometric approach to rotational eigenstates and spectra Introduction to Rotational Energy Surfaces (RES) and multipole tensor expansion Rank-2 tensors from D²-matrix

Building Hamiltonian $H = AJ_x^2 + BJ_y^2 + CJ_z^2$ out of scalar and tensor operators Comparing quantum and semi-classical calculations Symmetric rotor levels and RES plots Asymmetric rotor levels and RES plots Spherical rotor levels and RES plots SF_6 spectral fine structure CF_4 spectral fine structure

Example of frequency hierarchy for 16µm spectra of CF4 (Freon-14) W.G.Harter Fig. 32.7 Springer Handbook of Atomic, Molecular, & Optical Physics Gordon Drake Editor (2005)

As of April 3, 2014

Links to the current Harter-Soft LearnIt web apps for Physics

Bold links have default redirect pages. *Italics* are not yet meant for production.**Red**: the final stages of testing.

List of production Harter-Soft Web Apps & Textbooks (For public)

<u>Classical Mechanics with a Bang! - URL is "http://www.uark.edu/ua/modphys/markup/CMwBangWeb.html"</u> <u>Quantum Theory for the Computer Age - URL is "http://www.uark.edu/ua/modphys/markup/QTCAWeb.html"</u> <u>LearnIt Web Applications - URL is "http://www.uark.edu/ua/modphys/markup/LearnItWeb.html"</u>

Individual web-apps for current classes:

BohrIt - Production; URL is "http://www.uark.edu/ua/modphys/markup/BohrItWeb.html" BounceIt - Production; URL is "http://www.uark.edu/ua/modphys/markup/BoxItWeb.html" BoxIt - Production; URL is "http://www.uark.edu/ua/modphys/markup/CoulItWeb.html" CoulIt - Production; URL is "http://www.uark.edu/ua/modphys/markup/CoulItWeb.html" Cycloidulum - Production; URL is "http://www.uark.edu/ua/modphys/markup/CycloidulumWeb.html" JerkIt - Production; URL is "http://www.uark.edu/ua/modphys/markup/JerkItWeb.html" MolVibes - Production; URL is "http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html" Pendulum - Production; URL is "http://www.uark.edu/ua/modphys/markup/MolVibesWeb.html" QuantIt - Production; URL is "http://www.uark.edu/ua/modphys/markup/PendulumWeb.html"

The old relativity website (2005):

Relativity - Pirelli Entrant - Production; URL is "http://www.uark.edu/ua/pirelli" or "http://www.uark.edu/ua/pirelli/html/default.html"

Newer relativity web-apps currently being developed (2013-)

RelativIt Production; URL is "http://www.uark.edu/ua/modphys/markup/RelativItWeb.html" RelaWavity Production; URL is "http://www.uark.edu/ua/modphys/markup/RelaWavityWeb.html"

Additional classical wep-apps:

<u>Trebuchet Production; URL is "http://www.uark.edu/ua/modphys/markup/TrebuchetWeb.html"</u> WaveIt Production; URL is "http://www.uark.edu/ua/modphys/markup/WaveItWeb.html"

Link to master list of all Harter-Soft Web Apps & Textbooks (Prod, Testing, & Developement)

http://www.uark.edu/ua/modphys/testing/markup/Harter-SoftWebApps.html