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a ,a†⎡
⎣⎢

⎤
⎦⎥ ≡ aa

†- a†a= 1
2

Mω x+ ip / Mω( ) Mω x− ip / Mω( )− 1
2

Mω x− ip / Mω( ) Mω x+ ip / Mω( )
Commutation relations between a = (X+iP)/2 and a†= (X-iP)/2 with X≡√Mωx/√2  and P≡p/√2M : 

Creation-Destruction a†a algebra

   
a =

X + iP( )
ω

=
Mω x+ ip / Mω( )

2    
a† =

X − iP( )
ω

=
Mω x− ip / Mω( )

2

Define         Destruction operator                          and         Creation Operator

   
a ,a†⎡
⎣⎢

⎤
⎦⎥= 2i

2
px− xp( ) = −i


x ,p⎡⎣ ⎤⎦ = 1  

a ,a†⎡
⎣⎢

⎤
⎦⎥ = 1 or  aa

†=a†a + 1
   x ,p⎡⎣ ⎤⎦ ≡ xp -px=i 1
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1st excited state wavefunction ψ1(x) = 〈x |1〉 
       〈x | a†|0〉 = 〈x |1〉 = ψ1(x)  

The operator coordinate representations generate the first excited state wavefunction. 

Expanding the creation operator 

ψ1(x)

Classical turning points

1st Transition
energy E1 -E0

=ω

   
x a† 0 = 1

2
Mω x x 0 − i x p 0 / Mω( ) = x 1 =ψ1 x( )

ψ0(x)

Classical turning points

Zero-point
energy E0
=ω/2

a†a

Wavefunction creationism (1st Excited state) 

   

x 1 =ψ1 x( ) = 1
2

Mω xψ0 x( ) − i 
i
∂ψ0 x( )

∂x
/ Mω

⎛

⎝
⎜

⎞

⎠
⎟

        = 1
2

Mω x e−Mω x2 /2

const.
− i 

i
∂
∂x

e−Mω x2 /2

const.
/ Mω

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

        = 1
2

e−Mω x2 /2

const.
Mω x + i 

i
Mω x


/ Mω
⎛
⎝⎜

⎞
⎠⎟

        = Mω
2

e−Mω x2 /2

const.
2x( ) = Mω

π
⎛
⎝⎜

⎞
⎠⎟

3/4
2π x e−Mω x2 /2⎛

⎝⎜
⎞
⎠⎟
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Matrix 〈ana†n〉 calculation

n =
a† n 0
const.

,     where:      1= n n =
0 ana† n 0
const.( )2

= n! 0 1+ na†a + .. 0
const.( )2

= n!
const.( )2

Derive normalization for nth state obtained by (a†)n operator:
   
ana† n = n! 1+ na†a +

n n−1( )
2!⋅2!

a† 2a2 +…
⎛

⎝
⎜

⎞

⎠
⎟Use:

a† n =
a† n+1 0

n!
= n +1 a

† n+1 0
n +1( )!

a† n = n +1 n +1

Apply creation a†: Apply destruction a: 

a n =
aa† n 0

n!
=

(na† n−1 + a† na) 0
n!

= n a
† n−1 0
n −1( )!

a n = n n −1

  aa† n = na† n−1 + a† naUse:n =
a† n 0

n!
Root-factorial normalization  

Feynman’s mnemonic rule: Larger of two quanta goes in radical factor 

 

a† =

⋅
1 ⋅

2 ⋅
3 ⋅

4 ⋅
 ⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

 

 a =

⋅ 1
⋅ 2

⋅ 3
⋅ 4

⋅ 
⋅

⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟

a†a n =
a†aa† n 0

n!
= n a

†a† n−1 0
n!

= n a
† n 0
n!

= n n
Number operator and Hamiltonian operator
Number operator N=a†a counts quanta. 

Hamiltonian operator is ω N plus zero-point energy 1ω/2 .

  aa† n = na† n−1 + a† naUse:

H |n〉 = ω a†a |n〉 + ω/21 |n〉  =  ω(n+1/2)|n〉

 

H = ω a†a+ 2
11 = ω

0
1
2

3


⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

+ ω

1/ 2
1/ 2

1 / 2
1 / 2



⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Hamiltonian operator
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Expectation values of position, momentum, and uncertainty for eigenstate ⏐n〉

 

Mω
2

x = a + a
†

2
 

 
x |n= n x n = 

2Mω
n a + a†( ) n = 0

 
p |n= n p n = i Mω

2
n a† − a( ) n = 0

 

x2 |n= n x2 n =


2Mω
n a + a†( )2 n

  = 
2Mω

n a2 + a†a + aa† + a†2( ) n
  = 

2Mω
2n +1( )

 

p2 |n= n p2 n = i2 Mω
2

n a† − a( )2 n

     = −
Mω

2
n a†2 − a†a − aa† + a2( ) n

     = Mω
2

2n +1( )

Δq( )2 = q − q( )2     or:   Δq = q − q( )2
Uncertainty or standard deviation Δq of a statistical quantity q is its root mean-square difference.

 
Δx n = x2 =

 2n +1( )
2Mω  

Δp n = p2 =
Mω 2n +1( )

2

 
(Δx ⋅ Δp) n = x2 p2 =

 2n +1( )
2Mω

Mω 2n +1( )
2

Heisenberg uncertainty product for the n-quantum eigenstate ⏐n〉 

 
(Δx ⋅ Δp) 0 =


2

Heisenberg minimum uncertainty product occurs for the 0-quantum (ground) eigenstate. 
  

 

1
2Mω

p = a − a
†

2iOperator for position x: Operator for momentum p:

expectation for position 〈x〉: expectation for momentum 〈p〉:

expectation for (position)2 〈x2〉: expectation for (momentum)2 〈p2〉:

 
(Δx ⋅ Δp) n =  n + 1

2
⎛
⎝⎜

⎞
⎠⎟

 aa† = 1+ a†a
Use:
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V = 1
2

k + k12( )x1
2 − k12x1x2 +

1
2

k + k12( )x2
2 = 1

2
x K x = 1

2
x i K i x = x1 x2( ) k + k12 −k12

−k12 k + k12

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

2D HO potential energy V(x1, x2) quadratic form defines layers of elliptical V-contours (Here: k1 =k= k2) 

XX11

XX22
UU--

UU++

xx

FF== --∇∇VV ∇∇VV
FAST axis

SLOW axis
(a) PE Contours and gradients

(b) Symmetric UU++ Coordinate

SLOW Mode

XX11

XX22
UU--

UU++

U+
XX11

XX
22

XX11
pphhaassoorrUU++

pphhaassoorr

UU++
is SLOW

phasor

XX11

XX22
UU--

UU++

UU--

XX11

XX
22

XX22
pphhaassoorr
(90° turned)

XX11
pphhaassoorr

UU--
pphhaassoorr

UU--
is FAST

phasor

XX22
XX22
pphhaassoorr

XX22XX22
pphhaassoorr

0°

In-phase

mode

180°

Out-of-phase

mode

XX22
pphhaassoorr
(90° turned)

(c) Anti-symmetric UU-- Coordinate

FAST Mode

XX11
((EEaasstt))

XX22
((NNoorrtthh))

ε++
((NNoorrtthhEEaasstt))

--XX22
((SSoouutthh))

--XX11
((WWeesstt))

--ε++
((SSoouutthhWWeesstt))

ε--
((NNoorrtthhWWeesstt))

--ε--
((SSoouutthhEEaasstt))

Fig. 3.3.4 Plot of potential function V(x1,x2) showing elliptical V(x1,x2)=const. level curves.

ε++ aaxxiiss

ε-- aaxxiiss

PPootteennttiiaall
EEnneerrggyy
VV((xx11 ,, xx22 ))

ε

XX11
((EEaasstt))

--XX22
((SSoouutthh))

XX22
((NNoorrtthh))

--XX11
((WWeesstt))

Fig. 3.3.5 Topography lines of potential function V(x1,x2) and orthogonal ε+ and ε− normal mode slopes

What direction                    
is the same as         ??
Not most directions!
Only extremal axes
work. (major or minor axes)

  
x = en

 
K x

With Bilateral symmetry (k1 =k= k2) the extremal axes lie at ±45°

NW-SE “Advanced slope”

NE-SW “Beginner slope”

Force:F=-∇V
=M•a=-K•x

Review:
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C2
02

12

r0

0°

0°

0°

180°

t = 0

1/4

1/2

3/4

0°

45°

-45°

-45°

0°

45°

-45°

|+〉

revivals

or beats

|−〉

|+〉+|−〉
√2

|+〉+i|−〉
√2

|+〉−i|−〉
√2

|+〉−|−〉
√2

(φ= 0) (φ= π)(a)

(b)

parity

states

even +45°

odd -45°

localized x

flipped y

L

R

Optical

E(t)
Coupled

Pendular1
2D-HO beats and mixed mode geometry

t = 1/12

t = 1/6

A “visualization gauge”
We hold these two fixed...

...and let these two rotate at beat frequency

t = 1/4

Review:
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|χ〉=

χ↑

χ↓
=

x1=

Re χ1

p1=Im χ1

=

〈↑|χ〉

〈↓|χ〉

=|↑〉〈↑|Ψ〉+|↓〉〈↓|Ψ〉

(a) Electron Spin-1/2-Polarization

Spin-up

Spin-dn

|ψ〉=

ψ
x

ψ
y

= =

〈x|ψ〉

〈y|ψ〉

=|x〉〈x|ψ〉+|y〉〈y|ψ〉

(b) Photon Spin-1-Polarization

Plane-x

Plane-y

(c) Ammonia (NH3) Inversion States

N-UP

N-DN

|ν〉=

ν
UP

ν
DN

=

x
DN

p
DN=

〈UP|ν〉

〈DN|ν〉

=|UP〉〈UP|ν〉+|DN〉〈DN|ν〉

x
UP

p
UP

y

p
y

x

p
x

p2

x2

| 1 〉=|↑〉

| 2 〉=|↓〉

| 1 〉=|x 〉

| 2 〉=|y 〉

| 1 〉=|UP 〉

| 2 〉=|DN 〉

Some of the most famous 2-state systems and their two-complex-component coordinates.

Fig. 10.5.1 
QTCA Unit 3 Chapter 10

Review:
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Finally a 2nd time derivative (Assume constant A, B, D, and let C=0) gives 2nd-order classical Newton-Hooke-like equation:  

First start with 2-by-2 Hermitian (self-conjugate) matrix 

that operates on 2-D complex Dirac ket vector         .

Separate real xk and imaginary pk parts of Ψk amplitudes 
to convert the complex 1st-order equation i∂tΨ=HΨ  
into pairs of real 1st-order differential equations.

 
i Ψ t( ) = H Ψ t( )

Ψ

Ψ =
Ψ1
Ψ2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

x1 + ip1
x2 + ip2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

a1
a2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Then Hamilton’s equations of motion are the following. 

QM vs. Classical
Equations are

identical 

  
x = −K i x

For C=0 
Is form of 2D Hooke
harmonic oscillator

   

∂2

∂t2

x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
≡
x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= −

K11 K12

K21 K22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Here is an operator view of the QM-Classical connection: Take Schrodinger operator   i∂t = H (with C=0) and square it!         

i ∂
∂t

= A B
B D

⎛
⎝⎜

⎞
⎠⎟
⇒ i ∂

∂t
⎛
⎝⎜

⎞
⎠⎟
2
= A B

B D
⎛
⎝⎜

⎞
⎠⎟

2

⇒− ∂2

∂t2
= A2 + B2 AB + BD

AB + BD B2 + D2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Conclusion: 2-state Schro-equation                                 is like “square-root” of Newton-Hooke. 
 
i ∂
∂t

Ψ t( ) = H Ψ t( )   
x = −K i x

  
x = −K i x

Then start with classical Hamiltonian. (Designed to give same result.)

U(2) vs R(3):2-State Schrodinger: i∂t|Ψ(t)〉=H|Ψ(t)〉   vs.   Classical 2D-HO:   ∂2tx=-K•x 

   

x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= − A2 + B2 AB + BD

AB + BD B2 + D2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   

x1 = Ap1 + Bp2 −C x2

= −A Ax1 + Bx2 +Cp2( )− B Bx1 + Dx2 −Cp1( )−C Bp1 + Dp2 +Cx1( )
= − A2 + B2 +C2( )x1 − AB + BD( )x2 −C A+ D( ) p2    

x2 = Bp1 + Dp2 +C x1

= −B Ax1 + Bx2 +Cp2( )− D Bx1 + Dx2 −Cp1( ) +C Ap1 + Bp2 −Cx2( )
= − AB + BD( )x1 − B2 + D2 +C2( )x2 +C A+ D( ) p1

   

x1 = Ap1 + Bp2 −Cx2

x2 = Bp1 + Dp2 +Cx1

p1 = −Ax1 − Bx2 −Cp2

p2 = −Bx1 − Dx2 +Cp1    

x1 =
∂Hc
∂ p1

= Ap1 + Bp2 −Cx2

x2 =
∂Hc
∂ p2

= Bp1 + Dp2 +Cx1
   

p1 = −
∂Hc
∂ x1

= − Ax1 + Bx2 +Cp2( )

p2 = −
∂Hc
∂ x2

= − Bx1 + Dx2 −Cp1( )

  
Hc =

A
2

p1
2 + x1

2( ) + B x1x2 + p1p2( ) +C x1p2 − x2 p1( ) + D
2

p2
2 + x2

2( )

H = A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟
= H†
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−x1 = K11x1 + K12x2

−x2 = K21x1 + K22x2

m1K11 = A2 + B2 = k1 + k12, m1K12 = AB + BD = −k12,

m2K21 = AB + BD = −k12, m2K22 = B2 + D2 = k2 + k12.

x1k k kx21 12 2

m1 m2

(a)

For C=0 
Is form of 2D Hooke
harmonic oscillator    

∂2

∂t2

x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
≡
x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= −

K11 K12

K21 K22

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Here is an operator view of the QM-Classical connection: Take Schrodinger operator   i∂t = H (with C=0) and square it!         

Conclusion: 2-state Schro-equation                                 is like “square-root” of Newton-Hooke. 
 
i ∂
∂t

Ψ t( ) = H Ψ t( )   
x = −K i x

   

x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= − A2 + B2 AB + BD

AB + BD B2 + D2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x1

x2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

i ∂
∂t

= A B
B D

⎛
⎝⎜

⎞
⎠⎟
⇒ i ∂

∂t
⎛
⎝⎜

⎞
⎠⎟
2
= A B

B D
⎛
⎝⎜

⎞
⎠⎟

2

⇒− ∂2

∂t2
= A2 + B2 AB + BD

AB + BD B2 + D2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

i ∂
∂t

= A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟
⇒ i ∂

∂t
⎛
⎝⎜

⎞
⎠⎟
2
= A B − iC

B + iC D
⎛
⎝⎜

⎞
⎠⎟

2

⇒− ∂2

∂t2
= A2 + B2 +C2 AB + BD − iAC − iCD

AB + BD + iAC + iCD B2 +C2 + D2
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

General case for C≠0 

Review:

13Tuesday, April 1, 2014



Review : 1-D a†a algebra of U(1) representations

2-D Classical and semi-classical harmonic oscillator ABCD-analysis
U(2) vs R(3):2-State Schrodinger: i∂t|Ψ(t)〉=H|Ψ(t)〉 vs. Classical 2D-HO: ∂2tx=-K•x

Hamilton-Pauli spinor symmetry ( σ-expansion in ABCD-Types) H=ωµσµ

2-D a†a algebra of U(2) representations and R(3) angular momentum operators
            2D-Oscillator basics 
                 Commutation relations 
                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                       Anti-commutation relations
                 Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                      Outer product arrays
                      Entangled 2-particle states
            Two-particle (or 2-dimensional) matrix operators
                 U(2) Hamiltonian and irreducible representations
                 2D-Oscillator eigensolutions
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A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟
= A 1 0

0 0
⎛
⎝⎜

⎞
⎠⎟
+ B 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟
+C 0 −i

i 0
⎛
⎝⎜

⎞
⎠⎟
+ D 0 0

0 1
⎛
⎝⎜

⎞
⎠⎟
= Ae11 + BσB +CσC + De22

ABCD Symmetry operator analysis and U(2) spinors
Decompose the Hamiltonian operator H into four ABCD symmetry operators 
(Labeled to provide dynamic mnemonics as well as colorful analogies)

   

                           = A− D
2

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
+ B 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟
+C 0 −i

i 0
⎛

⎝⎜
⎞

⎠⎟
+ A+ D

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟

                        H = A− D
2

   σA         + B    σB       +C     σC         + A+ D
2

  σ0  

Symmetry archetypes: A (Asymmetric-diagonal)| B (Bilateral-balanced)| C (complex, circular, chiral, cyclotron, Coriolis, centrifugal, 

curly, and circulating-current-carrying...)

GO

SLOW

STOP

Motivation for coloring scheme:
        The Traffic Signal

C≠0:Moving waves or
“Galloping” wavesStanding waves

x1

x2

x1

x2

4455°°
x1

x2

(a-b) C2AABB-symmetry (b) C2BB-symmetry
A 0
0 D

A B
B D

A B
B A

slow

fast
slow

fast slo
w

fas
t |e 1

>=
|+

|e
2 >=|-

(a) C2AA-symmetry

C=0

Fig. 10.1.2 Potentials for (a) C2A-asymmetric-diagonal, (ab) C2AB-mixed , (b) C2B-bilateral (c) C2C-cicular U(2)system.

Review:
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Symmetry relations make spinors σX =σB ,  σY =σC , and σZ =σA or quaternions  i=-iσX,  j=-iσY, and  k=-iσZ powerful.

This allows Hamilton to generalize Euler’s  rotation          to                for any                                                                   .
    
                                                                           generalizes to:   

Hamilton replaces  (-i)  with         in the        power series above to get a sequence of terms just like it.      

   Ψ(t) = e−iH·t Ψ(0)

OBJECTIVE: Evaluate and (most important!) visualize matrix-exponent solutions.  

Hamilton generalized Euler’s expansion                                          so matrix exponential becomes powerful. e− iωt = cosωt − isinωt

      

 e−iH·t = e
−i A B−iC

B+iC D
⎛

⎝⎜
⎞

⎠⎟
·t
= e

−i A−D
2

1 0
0 −1

⎛

⎝⎜
⎞

⎠⎟
·t−iB 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟
·t−iC 0 −i

i 0
⎛

⎝⎜
⎞

⎠⎟
·t−i A+D

2
1 0
0 1

⎛

⎝⎜
⎞

⎠⎟
·t

       = e
−iσϕϕe−iω0 ·t = e−iσ• ω·te−iω0 ·t  where:  ϕ=

ϕA
ϕB
ϕC

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

= ω ⋅ t=

ωA
ωB
ωC

⎛

⎝

⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟⎟

⋅ t =

A− D
2
B
C

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⋅ t  and:  ω0 = A+ D
2

     

e−iϕ = 1+ (−iϕ)+
1
2!

(−iϕ)2 +
1
3!

(−iϕ)3 +
1
4!

(−iϕ)4=  [1        −
1
2!
ϕ2           +

1
4!
ϕ4] =       [ cosϕ]   

                                                                         − i(ϕ            +
1
3!
ϕ3               )      − i(sinϕ)

−iσϕ    e
−iϕ

 (−iσϕ )0 = +1,   (−iσϕ )1 = −iσϕ ,   (−iσϕ )2 = −1,   (−iσϕ )3 = +iσϕ ,   (−iσϕ )4 = +1,   (−iσϕ )5 = −iσϕ ,  etc.

   e
−iϕ

 e
−iσϕϕ

   σϕϕ = (σ • ϕ) =ϕAσ A +ϕBσ B +ϕCσ C = (σ • ϕ̂)ϕ

 e
−iϕ= 1 cosϕ   −   i sinϕ

σA= σ Z σB= σX σC=σY

Note even powers of (-i) are ±1 and odd powers of (-i) are ±i.:   (−i)0 = +1,   (−i)1 = −i,   (−i)2 = −1,   (−i)3 = +i,   (−i)4 = +1,   (−i)5 = −i,  etc.

ABCD Time 
evolution 
operator

Here:          = -i Here:         =

 
e−iσϕϕ= 1cosϕ   −   i σϕ sinϕ

The
Crazy Thing
Theorem:

If ( )2= -1
Then:

e( )ϕ =1cosϕ+( )sinϕ

ϕ

ϕ ϕ ϕ

   
−iσϕ = −i(σ • ϕ̂) = −i (σ •

ϕ)
ϕ

Crazy thing is 
just -√-1

    
=( 1cosϕ − iσϕ sinϕ)e−iω0 ·t

Hamilton is able to generalize Euler’s complex rotation operators        and         . (Recall Euler - DeMoivre Theorem.)   e
+iϕ

   e
−iϕ

From QTCA Lecture 7Review:
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“Crazy-Thing”-Theorem vs Lorentz
Use projectors to derive regular rotations and Lorentz rotations

Minimal equation of σB is: σB 2=1 
or: σB 2−1=0=(σB−1)(σB+1) 

   

1 1 1 1 1 σ B

σ B 1 1 σ B 1 σ B

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1 0

0 1
⎛

⎝⎜
⎞

⎠⎟
,            

1 σ B 1 1 σ B σ B

σ B σ B 1 σ B σ B σ B

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 0 1

1 0
⎛

⎝⎜
⎞

⎠⎟

Symmetry product table gives C2 group representations in group basis{|0〉=1|0〉≡|1〉 , |1〉=σB|0〉≡|σB〉}

P±-projectors:

   

P+ =
1+σ B

2
= 2

1
2
1

2
1

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

P− =
1−σ B

2
= 2

1
−2

1

−2
1

2
1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

   

  1 = P++ P−

σ B = P+− P−

Spectral decomposition of C2(σB) into {P+,P−}
with eigenvalues: 
{χ+(σB) = +1, χ−(σB) = −1}

 Regular rotation  RB(ϕ)=e-iϕσB

RB(ϕ ) = e− iϕσ B = e− iϕχ
+ (σ B )   P+       + e− iϕχ

− (σ B )   P−

                      = e− iϕ (+1)      P+       + e− iϕ (−1)      P−

                      = e− iϕ 2
1

2
1

2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ e+ iϕ 2

1 −2
1

−2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                      =   2
1 e− iϕ + e+ iϕ e− iϕ − e+ iϕ

e− iϕ − e+ iϕ e− iϕ + e+ iϕ
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   =     
cosϕ −isinϕ
− isinϕ cosϕ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 1cosϕ − iσB sinϕ

 Lorentz rotation  LB(ρ)=e-ρσB

LB(ρ) = e−ρσ B = e−ρχ
+ (σ B )   P+       + e−ρχ

− (σ B )   P−

                      = e−ρ (+1)      P+       + e−ρ (−1)      P−

                      = e−ρ 2
1

2
1

2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
+ e+ρ 2

1 −2
1

−2
1

2
1

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

                      =   2
1 e−ρ + e+ρ e−ρ − e+ρ

e−ρ − e+ρ e−ρ + e+ρ
⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

   =  
coshρ −sinhρ
− sinhρ coshρ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= 1coshρ − σB sinhρ

Calculation agrees with “Crazy-thing” Theorem

Review:
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 Lorentz rotation  LB(ρ)=e-ρσB

LB(ρ) = e
−ρ 0 1

1 0
⎛
⎝⎜

⎞
⎠⎟

=  
coshρ −sinhρ
− sinhρ coshρ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

 Lorentz rotation  LA(ρ)=e-ρσA

LA(ρ) = e
−ρ 1 0

0 −1
⎛
⎝⎜

⎞
⎠⎟

=  
e−ρ 0
0 e+ρ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

= 1coshρ −σ A sinhρ

 Lorentz rotation  LC(ρ)=e-ρσC

LC (ρ) = e
−ρ 0 − i

i 0
⎛
⎝⎜

⎞
⎠⎟

=  
coshρ +isinhρ
− isinhρ coshρ

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

= 1coshρ −σ C sinhρ

    

e
−i 1 0

0 −1
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
ϕA

= 1 0
0 1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
cosϕ

A
− i  1 0

0 −1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
sinϕ

A

=  
cosϕ

A
− i sinϕ

A
0

0 cosϕ
A

+ i sinϕ
A

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

= e−iϕA 0
0 eiϕA

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟

    

e
−i 0 −i

i 0
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
ϕC

= 1 0
0 1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
cosϕ

C
− i  0 −i

i 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
sinϕ

C

    =  
cosϕ

C
−sinϕ

C

sinϕ
C

cosϕ
C

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

Example A:
A or Z
rotation

Example C:
C or Y
rotation

 Regular rotation  RA(ϕ)=e-iϕσA

    

e
−i 0 1

1 0
⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟
ϕB

= 1 0
0 1

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
cosϕ

B
− i  0 1

1 0

⎛

⎝
⎜⎜⎜⎜

⎞

⎠
⎟⎟⎟⎟⎟
sinϕ

B

    =  
cosϕ

B
−i sinϕ

B

−i sinϕ
B

cosϕ
B

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

Example B:
B or X
rotation

 Regular rotation  RB(ϕ)=e-iϕσB  Regular rotation  RC(ϕ)=e-iϕσC

Comparing Lorentz rotations

Comparing regular rotations

Review:
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Euler Angle Dial
γ

(Twist coordinate)

Euler Angle Dial
α

(Azimuthal coordinate)

(a)
|α,β,γ 〉 β

α γ

β
x=x1

y=x2

z=x3

x=x1

y=x2

z=x3

An
astronomer’s
diagram

Euler Angle Dial
β

(Polar coordinate)

BOD frame view

z

x y

−β

−γ

Polar angles of

LAB zenith z=x3 are
(azimuth angle=−γ,
polar angle=−β )

z
LAB frame view

α

Polar angles of

BOD zenith z=x3 are
(azimuth angle=α,
polar angle=β )

z

x y

z
β

LAB x=x
1
axis α

Dial

LAB

z=x
3

zenith

BOD

z=x
3

zenith

β
Dial

γ
Dial

BOD y=x
2

axis

BOD x=x
1
axis

α
α

β

β

γ

γ

x′-Frame
x′′-Frame

x′′
1
=x
1
cos α+x

2
sin α

x′′
2
=-x

1
sin α+x

2
cos α

x-Frame

Fig. 10.A.3-4 Mechanical device demonstrating Euler angles (α,β,γ)

Euler’s rotation state definition using rotations R(α,0,0), R(0,β,0),and R(0,0,γ) 
                                  Spin-1 (3D-real vector) case 

Review:
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a =R αβγ( ) ↑
   =   R[αaboutZ ]⋅R[β aboutY ]⋅R[γ aboutZ ] ↑

    = e
−i
α
2 0

0 e
i
α
2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

cos
β
2
−sin

β
2

sin
β
2

cos
β
2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

e
−i
γ
2 0

0 e
i
γ
2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟
 

A

0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

=
e
−i
α+γ

2 cos
β
2
−e
−i
α−γ

2 sin
β
2

e
i
α−γ

2 sin
β
2

e
i
α+γ

2 cos
β
2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

A

0

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟

= A
e
−i
α
2 cos

β
2

e
i
α
2 sin

β
2

⎛

⎝

⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟

e
−i
γ
2 =

x
1

+ ip
1

x
2

+ ip
2

⎛

⎝

⎜⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟⎟⎟

S

SYSX

S

SZ

S

S

SZ

S

(1) Rotate by γ
around Z

β

γ

(2) Rotate by β
around Y

(3) Rotate by α
around Z

γ

α
β

Original

Spin State |1〉
= |↑〉

General Spin State

|Ψ〉=R(αβγ) |↑〉

β

α

S
Y=Ssinα sinβ

S
Z
=
S
c
o
s
β

SX
=

Scos
α sinβ

SY

γ

Euler’s rotation state definition using rotations R(α,0,0), R(0,β,0),and R(0,0,γ) 
                                  Spin-1/2 (2D-complex spinor) case Review:

Recall from Lecture 12 p. 117:
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Review:
Recall Lecture 12 p.131:
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Review : 1-D a†a algebra of U(1) representations

2-D Classical and semi-classical harmonic oscillator ABCD-analysis
U(2) vs R(3):2-State Schrodinger: i∂t|Ψ(t)〉=H|Ψ(t)〉 vs. Classical 2D-HO: ∂2tx=-K•x

Hamilton-Pauli spinor symmetry ( σ-expansion in ABCD-Types) H=ωµσµ

2-D a†a algebra of U(2) representations and R(3) angular momentum operators
            2D-Oscillator basics 
                 Commutation relations 
                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                       Anti-commutation relations
                 Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                      Outer product arrays
                      Entangled 2-particle states
            Two-particle (or 2-dimensional) matrix operators
                 U(2) Hamiltonian and irreducible representations
                 2D-Oscillator eigensolutions
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lecture 12.)
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

a1 = (x1 + i p1)/√2         a†1 = (x1 - i p1)/√2 a2 = (x2 + i p2)/√2     a†2 = (x2 - i p2)/√2   
Define a and a† operators 

(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lecture 12.)
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

a1 = (x1 + i p1)/√2         a†1 = (x1 - i p1)/√2 

x1 = (a†1 + a1 )/√2       p1 = i (a†1 - a1 )/√2

a2 = (x2 + i p2)/√2     a†2 = (x2 - i p2)/√2   

x2 = (a†2 + a2 )/√2     p2 = i (a†2 - a2 )/√2

Define a and a† operators 
(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lecture 12.)
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

a1 = (x1 + i p1)/√2         a†1 = (x1 - i p1)/√2 

x1 = (a†1 + a1 )/√2       p1 = i (a†1 - a1 )/√2

a2 = (x2 + i p2)/√2     a†2 = (x2 - i p2)/√2   

x2 = (a†2 + a2 )/√2     p2 = i (a†2 - a2 )/√2

Each system dimension x1 and x2 is assumed orthogonal, neither being constrained by the other.

Define a and a† operators 
(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lecture 12.)

26Tuesday, April 1, 2014



2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

a1 = (x1 + i p1)/√2         a†1 = (x1 - i p1)/√2 

x1 = (a†1 + a1 )/√2       p1 = i (a†1 - a1 )/√2

a2 = (x2 + i p2)/√2     a†2 = (x2 - i p2)/√2   

x2 = (a†2 + a2 )/√2     p2 = i (a†2 - a2 )/√2

Each system dimension x1 and x2 is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[ x1 , p2] = 0 = [ x2 , p1] ,   [ a1 , a†2] = 0 = [ a2 , a†1] 

Define a and a† operators 
(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lecture 12.)
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Review : 1-D a†a algebra of U(1) representations

2-D Classical and semi-classical harmonic oscillator ABCD-analysis
U(2) vs R(3):2-State Schrodinger: i∂t|Ψ(t)〉=H|Ψ(t)〉 vs. Classical 2D-HO: ∂2tx=-K•x

Hamilton-Pauli spinor symmetry ( σ-expansion in ABCD-Types) H=ωµσµ

2-D a†a algebra of U(2) representations and R(3) angular momentum operators
            2D-Oscillator basics 
                 Commutation relations 
                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                       Anti-commutation relations
                 Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                      Outer product arrays
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

a1 = (x1 + i p1)/√2         a†1 = (x1 - i p1)/√2 

x1 = (a†1 + a1 )/√2       p1 = i (a†1 - a1 )/√2

a2 = (x2 + i p2)/√2     a†2 = (x2 - i p2)/√2   

x2 = (a†2 + a2 )/√2     p2 = i (a†2 - a2 )/√2

Each system dimension x1 and x2 is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[ x1 , p2] = 0 = [ x2 , p1] ,   [ a1 , a†2] = 0 = [ a2 , a†1] 

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
 [ a1, a†1] = 1 ,   [ a2, a†2] = 1 

Define a and a† operators 
(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lecture 12.)
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[ x1 , p2] = 0 = [ x2 , p1] ,   [ a1 , a†2] = 0 = [ a2 , a†1] 

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
 [ a1, a†1] = 1 ,   [ a2, a†2] = 1 

This applies in general to N-dimensional oscillator problems.

   [ am, an] = aman - anam = 0         [ am, a†n] = ama†n - a†nam= δmn1      [ a†m, a†n] = a†ma†n - a†na†m= 0   

Define a and a† operators 
(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lecture 12.)
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)
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Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
 [ a1, a†1] = 1 ,   [ a2, a†2] = 1 

This applies in general to N-dimensional oscillator problems.

   [ am, an] = aman - anam = 0         [ am, a†n] = ama†n - a†nam= δmn1      [ a†m, a†n] = a†ma†n - a†na†m= 0   

H =
H11 H12
H21 H22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

New symmetrized a†man operators replace the old ket-bras |m〉〈n| that define semi-classical H matrix.

Define a and a† operators 
(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lecture 12.)
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)
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Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
 [ a1, a†1] = 1 ,   [ a2, a†2] = 1 

This applies in general to N-dimensional oscillator problems.

   [ am, an] = aman - anam = 0         [ am, a†n] = ama†n - a†nam= δmn1      [ a†m, a†n] = a†ma†n - a†na†m= 0   

H = H11 a1
†a1 +1/ 2( ) +     H12a1

†a2             

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )            
H =

H11 H12
H21 H22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

New symmetrized a†man operators replace the old ket-bras |m〉〈n| that define semi-classical H matrix.

Define a and a† operators 
(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lecture 12.)
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)
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p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D
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x2 = (a†2 + a2 )/√2     p2 = i (a†2 - a2 )/√2

Each system dimension x1 and x2 is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[ x1 , p2] = 0 = [ x2 , p1] ,   [ a1 , a†2] = 0 = [ a2 , a†1] 

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
 [ a1, a†1] = 1 ,   [ a2, a†2] = 1 

This applies in general to N-dimensional oscillator problems.

   [ am, an] = aman - anam = 0         [ am, a†n] = ama†n - a†nam= δmn1      [ a†m, a†n] = a†ma†n - a†na†m= 0   

H = H11 a1
†a1 +1/ 2( ) +     H12a1

†a2             = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )            + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
H =

H11 H12
H21 H22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= A B − iC

B + iC D
⎛
⎝⎜

⎞
⎠⎟

New symmetrized a†man operators replace the old ket-bras |m〉〈n| that define semi-classical H matrix.

Define a and a† operators 
(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lecture 12.)
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2D-Oscillator basics
First rewrite a classical 2-D Hamiltonian (10.1.3a) with a thick-tip pen! (They’re operators now!)

H = A
2
p12 + x12( ) + B x1x2 +p1p2( ) +C x1p2 − x2p1( ) + D

2
p22 + x22( )

a1 = (x1 + i p1)/√2         a†1 = (x1 - i p1)/√2 

x1 = (a†1 + a1 )/√2       p1 = i (a†1 - a1 )/√2

a2 = (x2 + i p2)/√2     a†2 = (x2 - i p2)/√2   

x2 = (a†2 + a2 )/√2     p2 = i (a†2 - a2 )/√2

Each system dimension x1 and x2 is assumed orthogonal, neither being constrained by the other.
This includes an axiom of inter-dimensional commutivity.

[ x1 , p2] = 0 = [ x2 , p1] ,   [ a1 , a†2] = 0 = [ a2 , a†1] 

Commutation relations within space-1 or space-2 space are those of a 1D-oscillator.
 [ a1, a†1] = 1 ,   [ a2, a†2] = 1 

This applies in general to N-dimensional oscillator problems.

   [ am, an] = aman - anam = 0         [ am, a†n] = ama†n - a†nam= δmn1      [ a†m, a†n] = a†ma†n - a†na†m= 0   

H = H11 a1
†a1 +1/ 2( ) +     H12a1

†a2             = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )            + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
H =

H11 H12
H21 H22

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= A B − iC

B + iC D
⎛
⎝⎜

⎞
⎠⎟

New symmetrized a†man operators replace the old ket-bras |m〉〈n| that define semi-classical H matrix.

Both are elementary "place-holders" for parameters Hmn or A, B±iC, and D.

m n → am† an + anam†( ) / 2 = am† an +δm,n1/ 2

Define a and a† operators 
(Mass factors √M, spring constants Kij, and Planck  constants are absorbed into A, B, C, and D constants used in Lecture 12.)
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Review : 1-D a†a algebra of U(1) representations

2-D Classical and semi-classical harmonic oscillator ABCD-analysis
U(2) vs R(3):2-State Schrodinger: i∂t|Ψ(t)〉=H|Ψ(t)〉 vs. Classical 2D-HO: ∂2tx=-K•x

Hamilton-Pauli spinor symmetry ( σ-expansion in ABCD-Types) H=ωµσµ
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                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
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                      Outer product arrays
                      Entangled 2-particle states
            Two-particle (or 2-dimensional) matrix operators
                 U(2) Hamiltonian and irreducible representations
                 2D-Oscillator eigensolutions
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Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. 
(am, a†n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
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Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. 
(am, a†n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If a†m raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If a†m raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.
If a†m raises liquid 4He rotational quantum number m to m+1 it is said to create a roton.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
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Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. 
(am, a†n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If a†m raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If a†m raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.
If a†m raises liquid 4He rotational quantum number m to m+1 it is said to create a roton.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.

Fermi operators (cm,cn) are defined to create Fermions and use anti-commutators {A,B} = AB+BA.

    {cm,cn}=cmcn+cncm=0             {cm,c†n}=cmc†n+c†ncm=δmn1            {c†m,c†n}=c†mc†n+c†nc†m =0  
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Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. 
(am, a†n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If a†m raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If a†m raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.
If a†m raises liquid 4He rotational quantum number m to m+1 it is said to create a roton.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.

Fermi operators (cm,cn) are defined to create Fermions and use anti-commutators {A,B} = AB+BA.

    {cm,cn}=cmcn+cncm=0             {cm,c†n}=cmc†n+c†ncm=δmn1            {c†m,c†n}=c†mc†n+c†nc†m =0  

Fermi c†n has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.

c†mc†m |0〉 = - c†mc†m |0〉 = 0
Creating two Fermions of the same type is punished by death. This is because x=-x implies x=0.
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Commutivity is known as Bose symmetry. Bose and Einstein discovered this symmetry of light quanta. 
(am, a†n) operators called Boson operators create or destroy quanta or "particles" known as Bosons.

If a†m raises electromagnetic mode quantum number m to m+1 it is said to create a photon.

If a†m raises crystal vibration mode quantum number m to m+1 it is said to create a phonon.
If a†m raises liquid 4He rotational quantum number m to m+1 it is said to create a roton.

Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry

Anti-commutivity is named Fermi-Dirac symmetry or anti-symmetry. It is found in electron waves.

Fermi operators (cm,cn) are defined to create Fermions and use anti-commutators {A,B} = AB+BA.

    {cm,cn}=cmcn+cncm=0             {cm,c†n}=cmc†n+c†ncm=δmn1            {c†m,c†n}=c†mc†n+c†nc†m =0  

Fermi c†n has a rigid birth-control policy; they are allowed just one Fermion or else, none at all.

c†mc†m |0〉 = - c†mc†m |0〉 = 0
Creating two Fermions of the same type is punished by death. This is because x=-x implies x=0.

That no two indistinguishable Fermions can be in the same state, is called the Pauli exclusion principle. 

 c†mcm |0〉 = 0  ,  c†mcm |1〉 = |1〉 ,  c†mcm |n〉 = 0  for: n>1 

Quantum numbers of n=0 and n=1 are the only allowed eigenvalues of the number operator c†mcm.
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" |n1〉|n2〉 
It is outer product of the kets for each single dimension or particle. 
The dual description is done similarly using "bra-bras" 〈n2|〈n1| = (|n1〉|n2〉)† 
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" |n1〉|n2〉 
It is outer product of the kets for each single dimension or particle. 
The dual description is done similarly using "bra-bras" 〈n2|〈n1| = (|n1〉|n2〉)† 

This applies to all types of states |Ψ1〉|Ψ2〉 : eigenstates |n1〉|n2〉, or 〈n2|〈n1|, 
position states |x1〉|x2〉 and 〈x2|〈x1|, coherent states |α1〉|α2〉 and 〈α2|〈α1|, or whatever.
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
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It is outer product of the kets for each single dimension or particle. 
The dual description is done similarly using "bra-bras" 〈n2|〈n1| = (|n1〉|n2〉)† 

This applies to all types of states |Ψ1〉|Ψ2〉 : eigenstates |n1〉|n2〉, or 〈n2|〈n1|, 
position states |x1〉|x2〉 and 〈x2|〈x1|, coherent states |α1〉|α2〉 and 〈α2|〈α1|, or whatever.

Scalar product is defined so that each kind of particle or dimension
 will "find" each other and ignore the presence of other kind(s).  〈x2 |〈x1 ||Ψ1〉|Ψ2〉  = 〈x1 |Ψ1〉〈x2 |Ψ2〉 
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" |n1〉|n2〉 
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position states |x1〉|x2〉 and 〈x2|〈x1|, coherent states |α1〉|α2〉 and 〈α2|〈α1|, or whatever.

Scalar product is defined so that each kind of particle or dimension
 will "find" each other and ignore the presence of other kind(s).  〈x2 |〈x1 ||Ψ1〉|Ψ2〉  = 〈x1 |Ψ1〉〈x2 |Ψ2〉 

Probability axiom-1 gives correct probability for finding particle-1 at x1 and particle-2 at x2, 
if state |Ψ1〉|Ψ2〉 must choose between all (x1 , x2).  |〈x1, x2|Ψ1,Ψ2〉|2=|〈x2|〈x1||Ψ1〉|Ψ2〉|2

                  =|〈x1|Ψ1〉|2|〈x2|Ψ2〉|2 
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" |n1〉|n2〉 
It is outer product of the kets for each single dimension or particle. 
The dual description is done similarly using "bra-bras" 〈n2|〈n1| = (|n1〉|n2〉)† 

This applies to all types of states |Ψ1〉|Ψ2〉 : eigenstates |n1〉|n2〉, or 〈n2|〈n1|, 
position states |x1〉|x2〉 and 〈x2|〈x1|, coherent states |α1〉|α2〉 and 〈α2|〈α1|, or whatever.

Scalar product is defined so that each kind of particle or dimension
 will "find" each other and ignore the presence of other kind(s).  〈x2 |〈x1 ||Ψ1〉|Ψ2〉  = 〈x1 |Ψ1〉〈x2 |Ψ2〉 

Probability axiom-1 gives correct probability for finding particle-1 at x1 and particle-2 at x2, 
if state |Ψ1〉|Ψ2〉 must choose between all (x1 , x2).  |〈x1, x2|Ψ1,Ψ2〉|2=|〈x2|〈x1||Ψ1〉|Ψ2〉|2

                  =|〈x1|Ψ1〉|2|〈x2|Ψ2〉|2 
Product of individual probabilities |〈x1|Ψ1〉|2 and |〈x2|Ψ2〉|2 respects standard Bayesian probability theory.
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Two-dimensional (or 2-particle) base states: ket-kets and bra-bras

A state for a particle in two-dimensions (or two one-dimensional particles) is a"ket-ket" |n1〉|n2〉 
It is outer product of the kets for each single dimension or particle. 
The dual description is done similarly using "bra-bras" 〈n2|〈n1| = (|n1〉|n2〉)† 

This applies to all types of states |Ψ1〉|Ψ2〉 : eigenstates |n1〉|n2〉, or 〈n2|〈n1|, 
position states |x1〉|x2〉 and 〈x2|〈x1|, coherent states |α1〉|α2〉 and 〈α2|〈α1|, or whatever.

Scalar product is defined so that each kind of particle or dimension
 will "find" each other and ignore the presence of other kind(s).  〈x2 |〈x1 ||Ψ1〉|Ψ2〉  = 〈x1 |Ψ1〉〈x2 |Ψ2〉 

Probability axiom-1 gives correct probability for finding particle-1 at x1 and particle-2 at x2, 
if state |Ψ1〉|Ψ2〉 must choose between all (x1 , x2).  |〈x1, x2|Ψ1,Ψ2〉|2=|〈x2|〈x1||Ψ1〉|Ψ2〉|2

                  =|〈x1|Ψ1〉|2|〈x2|Ψ2〉|2 
Product of individual probabilities |〈x1|Ψ1〉|2 and |〈x2|Ψ2〉|2 respects standard Bayesian probability theory.

Note common shorthand big-bra-big-ket notation 〈x1, x2|Ψ1,Ψ2〉 = 〈x2|〈x1||Ψ1〉|Ψ2〉
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 will "find" each other and ignore the presence of other kind(s).  〈x2 |〈x1 ||Ψ1〉|Ψ2〉  = 〈x1 |Ψ1〉〈x2 |Ψ2〉 

Probability axiom-1 gives correct probability for finding particle-1 at x1 and particle-2 at x2, 
if state |Ψ1〉|Ψ2〉 must choose between all (x1 , x2).  |〈x1, x2|Ψ1,Ψ2〉|2=|〈x2|〈x1||Ψ1〉|Ψ2〉|2

                  =|〈x1|Ψ1〉|2|〈x2|Ψ2〉|2 
Product of individual probabilities |〈x1|Ψ1〉|2 and |〈x2|Ψ2〉|2 respects standard Bayesian probability theory.

Note common shorthand big-bra-big-ket notation 〈x1, x2|Ψ1,Ψ2〉 = 〈x2|〈x1||Ψ1〉|Ψ2〉

Must ask a perennial modern question: "How are these structures stored in a computer program?" 
The usual answer is in outer product or tensor arrays. Next pages show sketches of these objects.
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Review : 1-D a†a algebra of U(1) representations

2-D Classical and semi-classical harmonic oscillator ABCD-analysis
U(2) vs R(3):2-State Schrodinger: i∂t|Ψ(t)〉=H|Ψ(t)〉 vs. Classical 2D-HO: ∂2tx=-K•x

Hamilton-Pauli spinor symmetry ( σ-expansion in ABCD-Types) H=ωµσµ

2-D a†a algebra of U(2) representations and R(3) angular momentum operators
            2D-Oscillator basics 
                 Commutation relations 
                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                       Anti-commutation relations
                 Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                      Outer product arrays
                      Entangled 2-particle states
            Two-particle (or 2-dimensional) matrix operators
                 U(2) Hamiltonian and irreducible representations
                 2D-Oscillator eigensolutions
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Start with an elementary ket basis for each dimension or particle type-1 and type-2.
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Outer products are constructed for the states that might have non-negligible amplitudes. 
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Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard
∞-D analysis and finite computers
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Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard
∞-D analysis and finite computers

Make adjustable-size finite phasor 
arrays for each particle/dimension.
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Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard
∞-D analysis and finite computers

Make adjustable-size finite phasor 
arrays for each particle/dimension.

Convergence is achieved by orderly 
upgrades in the number of phasors to 
a point where results do not change.
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Outer product arrays

 

Type−1                                                         Type− 2                                           

01 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 11 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 21 =

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,         02 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 12 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 22 =

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

 

01 02 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
0
0

0
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , 01 12 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
1
0

0
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,  11 02 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0

1
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,  11 22 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0

0
0
1

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,

Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard
∞-D analysis and finite computers

Make adjustable-size finite phasor 
arrays for each particle/dimension.

Convergence is achieved by orderly 
upgrades in the number of phasors to 
a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.
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Outer product arrays

 

Type−1                                                         Type− 2                                           

01 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 11 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 21 =

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,         02 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 12 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 22 =

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

 

01 02 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
0
0

0
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , 01 12 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
1
0

0
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,  11 02 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0

1
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,  11 22 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0

0
0
1

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,

Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard
∞-D analysis and finite computers

Make adjustable-size finite phasor 
arrays for each particle/dimension.

Convergence is achieved by orderly 
upgrades in the number of phasors to 
a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

 

Ψ1 Ψ2 =

0 Ψ1

1 Ψ1

2 Ψ1



⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⊗

0 Ψ2

1 Ψ2

2 Ψ2



⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 Ψ1 0 Ψ2

0 Ψ1 1 Ψ2

0 Ψ1 2 Ψ2


1 Ψ1 0 Ψ2

1 Ψ1 1 Ψ2

1 Ψ1 2 Ψ2


2 Ψ1 0 Ψ2

2 Ψ1 1 Ψ2

2 Ψ1 2 Ψ2



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

0102 Ψ1Ψ2

0112 Ψ1Ψ2

0122 Ψ1Ψ2


1102 Ψ1Ψ2

1112 Ψ1Ψ2

1122 Ψ1Ψ2


2102 Ψ1Ψ2

2112 Ψ1Ψ2

2122 Ψ1Ψ2



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
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Outer product arrays

 

Type−1                                                         Type− 2                                           

01 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 11 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 21 =

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,         02 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 12 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 22 =

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 , 

Start with an elementary ket basis for each dimension or particle type-1 and type-2.

 

01 02 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
0
0

0
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 , 01 12 =

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
1
0

0
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,  11 02 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

1
0
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0

1
0
0

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,  11 22 =

0
1
0


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

0
0
1


⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0
0
0

0
0
1

0
0
0


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 ,

Outer products are constructed for the states that might have non-negligible amplitudes. 

Herein lies conflict between standard
∞-D analysis and finite computers

Make adjustable-size finite phasor 
arrays for each particle/dimension.

Convergence is achieved by orderly 
upgrades in the number of phasors to 
a point where results do not change.

A 2-wave state product has a lexicographic (00, 01, 02, ...10, 11, 12,..., 20, 21, 22, ..) array indexing.

 

Ψ1 Ψ2 =

0 Ψ1

1 Ψ1

2 Ψ1



⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

⊗

0 Ψ2

1 Ψ2

2 Ψ2



⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

0 Ψ1 0 Ψ2

0 Ψ1 1 Ψ2

0 Ψ1 2 Ψ2


1 Ψ1 0 Ψ2

1 Ψ1 1 Ψ2

1 Ψ1 2 Ψ2


2 Ψ1 0 Ψ2

2 Ψ1 1 Ψ2

2 Ψ1 2 Ψ2



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

=

0102 Ψ1Ψ2

0112 Ψ1Ψ2

0122 Ψ1Ψ2


1102 Ψ1Ψ2

1112 Ψ1Ψ2

1122 Ψ1Ψ2


2102 Ψ1Ψ2

2112 Ψ1Ψ2

2122 Ψ1Ψ2



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 

 

Ψ =

0102 Ψ
0112 Ψ
0122 Ψ


1102 Ψ
1112 Ψ
1122 Ψ


2102 Ψ
2112 Ψ
2122 Ψ


⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

 =

Ψ00

Ψ01

Ψ02


Ψ10

Ψ11

Ψ12


Ψ20

Ψ21

Ψ22



⎛

⎝

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟

shorthand 
big-bra-big-ket 
notation
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Review : 1-D a†a algebra of U(1) representations

2-D Classical and semi-classical harmonic oscillator ABCD-analysis
U(2) vs R(3):2-State Schrodinger: i∂t|Ψ(t)〉=H|Ψ(t)〉 vs. Classical 2D-HO: ∂2tx=-K•x

Hamilton-Pauli spinor symmetry ( σ-expansion in ABCD-Types) H=ωµσµ

2-D a†a algebra of U(2) representations and R(3) angular momentum operators
            2D-Oscillator basics 
                 Commutation relations 
                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                       Anti-commutation relations
                 Two-dimensional (or 2-particle) base states: ket-kets and bra-bras
                      Outer product arrays
                      Entangled 2-particle states
            Two-particle (or 2-dimensional) matrix operators
                 U(2) Hamiltonian and irreducible representations
                 2D-Oscillator eigensolutions
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A matrix operator M is rarely a single nilpotent operator |1〉〈2| or idempotent |1〉〈1|.

Entangled 2-particle states
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A two-particle state |Ψ〉 is rarely a single outer product |Ψ1〉|Ψ2〉 of 1-particle states |Ψ1〉 and |Ψ2〉.
        (Even rarer is |Ψ1〉|Ψ1〉.)

A matrix operator M is rarely a single nilpotent operator |1〉〈2| or idempotent |1〉〈1|.

Entangled 2-particle states

61Tuesday, April 1, 2014



A two-particle state |Ψ〉 is rarely a single outer product |Ψ1〉|Ψ2〉 of 1-particle states |Ψ1〉 and |Ψ2〉.
        (Even rarer is |Ψ1〉|Ψ1〉.)

A matrix operator M is rarely a single nilpotent operator |1〉〈2| or idempotent |1〉〈1|.

A general n-by-n matrix M operator is a combination of n2 terms:  
   
M = M j,k j k

k=1

n
∑

j=1

n
∑

Entangled 2-particle states
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A two-particle state |Ψ〉 is rarely a single outer product |Ψ1〉|Ψ2〉 of 1-particle states |Ψ1〉 and |Ψ2〉.
        (Even rarer is |Ψ1〉|Ψ1〉.)

A matrix operator M is rarely a single nilpotent operator |1〉〈2| or idempotent |1〉〈1|.

A general n-by-n matrix M operator is a combination of n2 terms:  

...that might be diagonalized to a combination of n projectors:

   
M = M j,k j k

k=1

n
∑

j=1

n
∑

   
M = µe e e

e=1

n
∑

Entangled 2-particle states
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A two-particle state |Ψ〉 is rarely a single outer product |Ψ1〉|Ψ2〉 of 1-particle states |Ψ1〉 and |Ψ2〉.
        (Even rarer is |Ψ1〉|Ψ1〉.)

A matrix operator M is rarely a single nilpotent operator |1〉〈2| or idempotent |1〉〈1|.

A general n-by-n matrix M operator is a combination of n2 terms:  

...that might be diagonalized to a combination of n projectors:

   
M = M j,k j k

k=1

n
∑

j=1

n
∑

   
M = µe e e

e=1

n
∑

So a general two-particle state |Ψ〉 is a combination of entangled products: 
   
Ψ = ψ j,k |Ψ j〉|Ψk〉

k
∑

j
∑

Entangled 2-particle states
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A two-particle state |Ψ〉 is rarely a single outer product |Ψ1〉|Ψ2〉 of 1-particle states |Ψ1〉 and |Ψ2〉.
        (Even rarer is |Ψ1〉|Ψ1〉.)

A matrix operator M is rarely a single nilpotent operator |1〉〈2| or idempotent |1〉〈1|.

A general n-by-n matrix M operator is a combination of n2 terms:  

...that might be diagonalized to a combination of n projectors:

   
M = M j,k j k

k=1

n
∑

j=1

n
∑

   
M = µe e e

e=1

n
∑

So a general two-particle state |Ψ〉 is a combination of entangled products: 
   
Ψ = ψ j,k |Ψ j〉|Ψk〉

k
∑

j
∑

...that might be de-entangled to a combination of n terms:
 
Ψ = φe ϕe ϕe

e
∑

Entangled 2-particle states
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2-D Classical and semi-classical harmonic oscillator ABCD-analysis
U(2) vs R(3):2-State Schrodinger: i∂t|Ψ(t)〉=H|Ψ(t)〉 vs. Classical 2D-HO: ∂2tx=-K•x

Hamilton-Pauli spinor symmetry ( σ-expansion in ABCD-Types) H=ωµσµ

2-D a†a algebra of U(2) representations and R(3) angular momentum operators
            2D-Oscillator basics 
                 Commutation relations 
                 Bose-Einstein symmetry vs Pauli-Fermi-Dirac (anti)symmetry
                       Anti-commutation relations
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                      Outer product arrays
                      Entangled 2-particle states
            Two-particle (or 2-dimensional) matrix operators
                 U(2) Hamiltonian and irreducible representations
                 2D-Oscillator eigensolutions
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2

General definition of the 2D oscillator base state.

n1n2 =
a1†( )n1 a2†( )n2

n1!n2!
0 0
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2

General definition of the 2D oscillator base state.

n1n2 =
a1†( )n1 a2†( )n2

n1!n2!
0 0

The am
†an combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = H11 a1
†a1 +1/ 2( ) +        H12a1

†a2             

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )   
         

H  = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

     + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2

General definition of the 2D oscillator base state.

n1n2 =
a1†( )n1 a2†( )n2

n1!n2!
0 0

The am
†an combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = H11 a1
†a1 +1/ 2( ) +        H12a1

†a2             

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )   
         

H  = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

     + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
a1

†a1 n1n2 = n1 n1 n2                            a1
†a2 n1n2 = n1 +1 n2 n1 +1n2 −1

a2
†a1 n1n2 = n1 n2 +1 n1 −1n2 +1                          a2

†a2 n1n2 = n2 n1 n2
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2

General definition of the 2D oscillator base state.

n1n2 =
a1†( )n1 a2†( )n2

n1!n2!
0 0

The am
†an combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = H11 a1
†a1 +1/ 2( ) +        H12a1

†a2             

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )   
         

H  = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

     + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
a1

†a1 n1n2 = n1 n1 n2                            a1
†a2 n1n2 = n1 +1 n2 n1 +1n2 −1

a2
†a1 n1n2 = n1 n2 +1 n1 −1n2 +1                          a2

†a2 n1n2 = n2 n1 n2

 

00 01 02  10 11 12  20 21 22 

00 0  ⋅  

01 D  B + iC ⋅  

02 2D  2 B + iC( ) ⋅  

         
10 ⋅ B − iC  A  ⋅ 

11 ⋅ 2 B − iC( )  A + D  2 B + iC( ) ⋅ 

12 ⋅  A + 2D  4 B + iC( ) ⋅ 

            

20 ⋅ 2 B − iC( )  2A 

21 ⋅ 4 B − iC( )  2A + D 

22 ⋅  2A + 2D 

        

 H = A(1/ 2)+ D(1/ 2)+  
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2

General definition of the 2D oscillator base state.

n1n2 =
a1†( )n1 a2†( )n2

n1!n2!
0 0

The am
†an combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = H11 a1
†a1 +1/ 2( ) +        H12a1

†a2             

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )   
         

H  = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

     + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
a1

†a1 n1n2 = n1 n1 n2                            a1
†a2 n1n2 = n1 +1 n2 n1 +1n2 −1

a2
†a1 n1n2 = n1 n2 +1 n1 −1n2 +1                          a2

†a2 n1n2 = n2 n1 n2

 

00 01 02  10 11 12  20 21 22 

00 0  ⋅  

01 D  B + iC ⋅  

02 2D  2 B + iC( ) ⋅  

         
10 ⋅ B − iC  A  ⋅ 

11 ⋅ 2 B − iC( )  A + D  2 B + iC( ) ⋅ 

12 ⋅  A + 2D  4 B + iC( ) ⋅ 

            

20 ⋅ 2 B − iC( )  2A 

21 ⋅ 4 B − iC( )  2A + D 

22 ⋅  2A + 2D 

        

 H = A(1/ 2)+ D(1/ 2)+  
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Two-particle (or 2-dimensional) matrix operators
When 2-particle operator ak acts on a 2-particle state, ak "finds" its type-k state but ignores the others. 
a1

† n1n2 = a1
† n1 n2 = n1 +1 n1 +1n2             a2

† n1n2 = n1 a2
† n2 = n2 +1 n1 n2 +1

a1 n1n2 = a1 n1 n2 = n1 n1 −1n2                  a2 n1n2 = n1 a2 n2 = n2 n1 n2 −1
a1"finds" its type-1 a2"finds" its type-2

General definition of the 2D oscillator base state.

n1n2 =
a1†( )n1 a2†( )n2

n1!n2!
0 0

The am
†an combinations in the ABCD Hamiltonian H have fairly simple matrix elements.

H = H11 a1
†a1 +1/ 2( ) +        H12a1

†a2             

         +H21a2
†a1 + H22 a2

†a2 +1/ 2( )   
         

H  = A a1
†a1 +1/ 2( ) + B − iC( )a1

†a2

     + B + iC( )a2
†a1 + D a2

†a2 +1/ 2( )
a1

†a1 n1n2 = n1 n1 n2                            a1
†a2 n1n2 = n1 +1 n2 n1 +1n2 −1

a2
†a1 n1n2 = n1 n2 +1 n1 −1n2 +1                          a2

†a2 n1n2 = n2 n1 n2

 

00 01 02  10 11 12  20 21 22 

00 0  ⋅  

01 D  B + iC ⋅  

02 2D  2 B + iC( ) ⋅  

         
10 ⋅ B − iC  A  ⋅ 

11 ⋅ 2 B − iC( )  A + D  2 B + iC( ) ⋅ 

12 ⋅  A + 2D  4 B + iC( ) ⋅ 

            

20 ⋅ 2 B − iC( )  2A 

21 ⋅ 4 B − iC( )  2A + D 

22 ⋅  2A + 2D 

        

 H = A(1/ 2)+ D(1/ 2)+  
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00 01 02  10 11 12  20 21 22 

00 0  ⋅  

01 D  B + iC ⋅  

02 2D  2 B + iC( ) ⋅  

         
10 ⋅ B − iC  A  ⋅ 

11 ⋅ 2 B − iC( )  A + D  2 B + iC( ) ⋅ 

12 ⋅  A + 2D  4 B + iC( ) ⋅ 

            

20 ⋅ 2 B − iC( )  2A 

21 ⋅ 4 B − iC( )  2A + D 

22 ⋅  2A + 2D 

        

 H = A(1/ 2)+ D(1/ 2)+  

Rearrangement of rows and columns brings the matrix to a block-diagonal form. 

2-dimensional HO Hamiltonian matrices: U(2) irreducible representations

"Big-Endian"
indexing 
(...01,02,..10,11 ...
20,21...)
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00 01 02  10 11 12  20 21 22 

00 0  ⋅  

01 D  B + iC ⋅  

02 2D  2 B + iC( ) ⋅  

         
10 ⋅ B − iC  A  ⋅ 

11 ⋅ 2 B − iC( )  A + D  2 B + iC( ) ⋅ 

12 ⋅  A + 2D  4 B + iC( ) ⋅ 

            

20 ⋅ 2 B − iC( )  2A 

21 ⋅ 4 B − iC( )  2A + D 

22 ⋅  2A + 2D 

        

 H = A(1/ 2)+ D(1/ 2)+  

Rearrangement of rows and columns brings the matrix to a block-diagonal form. 
Base states |n1〉|n2〉 with the same total quantum number ν= n1 + n2 define each block.

2-dimensional HO Hamiltonian matrices: U(2) irreducible representations

"Big-Endian"
indexing 
(...01,02,..10,11 ...
20,21...)
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00 01 02  10 11 12  20 21 22 

00 0  ⋅  

01 D  B + iC ⋅  

02 2D  2 B + iC( ) ⋅  

         
10 ⋅ B − iC  A  ⋅ 

11 ⋅ 2 B − iC( )  A + D  2 B + iC( ) ⋅ 

12 ⋅  A + 2D  4 B + iC( ) ⋅ 

            

20 ⋅ 2 B − iC( )  2A 

21 ⋅ 4 B − iC( )  2A + D 

22 ⋅  2A + 2D 

        

 H = A(1/ 2)+ D(1/ 2)+  

Rearrangement of rows and columns brings the matrix to a block-diagonal form. 
Base states |n1〉|n2〉 with the same total quantum number υ = n1 + n2 define each block.

 

00 01 10 02 11 20 03 12 21 30 

00 0
01 D B + iC

10 B − iC A

02 2D 2 B + iC( )
11 2 B − iC( ) A + D 2 B + iC( )
20 2 B − iC( ) 2A

03 3D 3 B + iC( )
12 3 B − iC( ) A + 2D 4 B + iC( )
21 4 B − iC( ) 2A + D 3 B + iC( )
30 3 B − iC( ) 3A


 H = A(1/ 2)+ D(1/ 2)+

2-dimensional HO Hamiltonian matrices: U(2) irreducible representations

Fundamental (ν=1) 
vibrational sub-space

Vacuum (ν=0) 

Overtone (ν=2) 
vibrational sub-space

Overtone (ν=3) 
vibrational sub-space

"Big-Endian"
indexing 
(...01,02,..10,11 ...
20,21...)

"Big-Endian"
indexing 
(...01,02,..10,11 ...
20,21...)

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( ) εn1n2
A = A n1 +

1
2

⎛
⎝⎜

⎞
⎠⎟ + D n2 +

1
2

⎛
⎝⎜

⎞
⎠⎟ =

A + D
2

n1 + n2 +1( ) + A − D
2

n1 − n2( )
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2D-Oscillator eigensolutions

H υ=1
Fundamental =

n1,n2 1,0 0,1
1,0 A B − iC

0,1 B + iC D

+ A + D
2

1
Fundamental eigenstates
 The first step is to diagonalize the fundamental 2-by-2 matrix .

"Little-Endian" indexing (... 10, 01, ...20,11,21...)
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2D-Oscillator eigensolutions

H υ=1
Fundamental =

n1,n2 1,0 0,1
1,0 A B − iC

0,1 B + iC D

+ A + D
2

1
Fundamental eigenstates
 The first step is to diagonalize the fundamental 2-by-2 matrix .

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟

+ A+D
2
1= A + D( ) 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

 + 2B 0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + 2C 0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + A − D( ) 1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

1
2

Recall decomposition of H
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2D-Oscillator eigensolutions

H υ=1
Fundamental =

n1,n2 1,0 0,1
1,0 A B − iC

0,1 B + iC D

+ A + D
2

1
Fundamental eigenstates
 The first step is to diagonalize the fundamental 2-by-2 matrix .

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟

+ A+D
2
1= A + D( ) 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

 + 2B 0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + 2C 0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + A − D( ) 1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

1
2

 

H =Ω01+Ω •

S =Ω01+ΩBSB +ΩCSC +ΩASA    (ABC Optical vector notation)

                          =Ω01+ΩXSX +ΩYSY +ΩZSZ    (XYZ Electron spin notation)

Recall decomposition of H

in terms of Jordan-Pauli spin operators. 
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2D-Oscillator eigensolutions

H υ=1
Fundamental =

n1,n2 1,0 0,1
1,0 A B − iC

0,1 B + iC D

+ A + D
2

1
Fundamental eigenstates
 The first step is to diagonalize the fundamental 2-by-2 matrix .

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟

+ A+D
2
1= A + D( ) 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

 + 2B 0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + 2C 0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + A − D( ) 1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

1
2

 

H =Ω01+Ω •

S =Ω01+ΩBSB +ΩCSC +ΩASA    (ABC Optical vector notation)

                          =Ω01+ΩXSX +ΩYSY +ΩZSZ    (XYZ Electron spin notation)

Recall decomposition of H

in terms of Jordan-Pauli spin operators. 

Frequency eigenvalues ω± of H-Ω01/2 and fundamental transition frequency Ω = ω+ - ω- :

ω± = Ω0 ±Ω
2

=
A + D ± 2B( )2 + 2C( )2 + A − D( )2

2
= A + D

2
± A − D

2
⎛
⎝⎜

⎞
⎠⎟
2
+ B2 +C2
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2D-Oscillator eigensolutions

H υ=1
Fundamental =

n1,n2 1,0 0,1
1,0 A B − iC

0,1 B + iC D

+ A + D
2

1
Fundamental eigenstates
 The first step is to diagonalize the fundamental 2-by-2 matrix .

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟

+ A+D
2
1= A + D( ) 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

 + 2B 0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + 2C 0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + A − D( ) 1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

1
2

 

H =Ω01+Ω •

S =Ω01+ΩBSB +ΩCSC +ΩASA    (ABC Optical vector notation)

                          =Ω01+ΩXSX +ΩYSY +ΩZSZ    (XYZ Electron spin notation)

Recall decomposition of H

in terms of Jordan-Pauli spin operators. 

Frequency eigenvalues ω± of H-Ω01/2 and fundamental transition frequency Ω = ω+ - ω- :

ω± = Ω0 ±Ω
2

=
A + D ± 2B( )2 + 2C( )2 + A − D( )2

2
= A + D

2
± A − D

2
⎛
⎝⎜

⎞
⎠⎟
2
+ B2 +C2

Polar angles (ϕ,ϑ) of +Ω-vector (or polar angles (ϕ,ϑ±π) of -Ω-vector) gives H eigenvectors.

ω+ =
e−iϕ /2 cosϑ

2

eiϕ /2 sinϑ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,     ω− =
−e−iϕ /2 sinϑ

2

eiϕ /2 cosϑ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

    where: 
cosϑ= A-D

Ω

tanϕ = C
B

⎧

⎨
⎪⎪

⎩
⎪
⎪

  

             

e
−iα+γ

2 cos β
2

−e
−iα−γ

2 sin β
2

e
iα−γ

2 sin β
2

e
iα+γ

2 cos β
2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

1

0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

x1+ip1

x2+ip2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

Euler state definition lets us relate R(αβγ) to R[ϕϑΘ]  ... 
⏐ αβγ〉= R(αβγ)⏐ 000〉    (αβγ make better coordinates)

Recall from Lecture 12 p. 117 and p.131:
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2D-Oscillator eigensolutions

H υ=1
Fundamental =

n1,n2 1,0 0,1
1,0 A B − iC

0,1 B + iC D

+ A + D
2

1
Fundamental eigenstates
 The first step is to diagonalize the fundamental 2-by-2 matrix .

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟

+ A+D
2
1= A + D( ) 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

 + 2B 0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + 2C 0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + A − D( ) 1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

1
2

 

H =Ω01+Ω •

S =Ω01+ΩBSB +ΩCSC +ΩASA    (ABC Optical vector notation)

                          =Ω01+ΩXSX +ΩYSY +ΩZSZ    (XYZ Electron spin notation)

Recall decomposition of H

in terms of Jordan-Pauli spin operators. 

Frequency eigenvalues ω± of H-Ω01/2 and fundamental transition frequency Ω = ω+ - ω- :

ω± = Ω0 ±Ω
2

=
A + D ± 2B( )2 + 2C( )2 + A − D( )2

2
= A + D

2
± A − D

2
⎛
⎝⎜

⎞
⎠⎟
2
+ B2 +C2

Polar angles (ϕ,ϑ) of +Ω-vector (or polar angles (ϕ,ϑ±π) of -Ω-vector) gives H eigenvectors.

ω+ =
e−iϕ /2 cosϑ

2

eiϕ /2 sinϑ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,     ω− =
−e−iϕ /2 sinϑ

2

eiϕ /2 cosϑ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

    where: 
cosϑ= A-D

Ω

tanϕ = C
B

⎧

⎨
⎪⎪

⎩
⎪
⎪

More important for the general solution, are the eigen-creation operators a†+ and a†- defined by

a+† =e−iϕ /2 cosϑ
2
a1

† + eiϕ sinϑ
2
a2

†⎛
⎝⎜

⎞
⎠⎟

 ,    a−† =e−iϕ /2 − sinϑ
2
a1

† + eiϕ cosϑ
2
a2

†⎛
⎝⎜

⎞
⎠⎟

84Tuesday, April 1, 2014



2D-Oscillator eigensolutions

H υ=1
Fundamental =

n1,n2 1,0 0,1
1,0 A B − iC

0,1 B + iC D

+ A + D
2

1
Fundamental eigenstates
 The first step is to diagonalize the fundamental 2-by-2 matrix .

"Little-Endian" indexing (... 10, 01, ...20,11,21...)

A B − iC
B + iC D

⎛
⎝⎜

⎞
⎠⎟

+ A+D
2
1= A + D( ) 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

 + 2B 0 1
1 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + 2C 0 −i
i 0

⎛
⎝⎜

⎞
⎠⎟

1
2

 + A − D( ) 1 0
0 −1

⎛
⎝⎜

⎞
⎠⎟

1
2

 

H =Ω01+Ω •

S =Ω01+ΩBSB +ΩCSC +ΩASA    (ABC Optical vector notation)

                          =Ω01+ΩXSX +ΩYSY +ΩZSZ    (XYZ Electron spin notation)

Recall decomposition of H

in terms of Jordan-Pauli spin operators. 

Frequency eigenvalues ω± of H-Ω01/2 and fundamental transition frequency Ω = ω+ - ω- :

ω± = Ω0 ±Ω
2

=
A + D ± 2B( )2 + 2C( )2 + A − D( )2

2
= A + D

2
± A − D

2
⎛
⎝⎜

⎞
⎠⎟
2
+ B2 +C2

Polar angles (ϕ,ϑ) of +Ω-vector (or polar angles (ϕ,ϑ±π) of -Ω-vector) gives H eigenvectors.

ω+ =
e−iϕ /2 cosϑ

2

eiϕ /2 sinϑ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

 ,     ω− =
−e−iϕ /2 sinϑ

2

eiϕ /2 cosϑ
2

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

    where: 
cosϑ= A-D

Ω

tanϕ = C
B

⎧

⎨
⎪⎪

⎩
⎪
⎪

More important for the general solution, are the eigen-creation operators a†+ and a†- defined by

a+† =e−iϕ /2 cosϑ
2
a1

† + eiϕ sinϑ
2
a2

†⎛
⎝⎜

⎞
⎠⎟

 ,    a−† =e−iϕ /2 − sinϑ
2
a1

† + eiϕ cosϑ
2
a2

†⎛
⎝⎜

⎞
⎠⎟

 a±
† create H eigenstates directly from the ground state. 

a+† 0 = ω+  ,    a−† 0 = ω-
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 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( )
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 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( ) εn1n2
A = A n1 +

1
2

⎛
⎝⎜

⎞
⎠⎟ + D n2 +

1
2

⎛
⎝⎜

⎞
⎠⎟ =

A + D
2

n1 + n2 +1( ) + A − D
2

n1 − n2( )
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 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( ) εn1n2

A = A n1 +
1
2

⎛
⎝⎜

⎞
⎠⎟ + D n2 +

1
2

⎛
⎝⎜

⎞
⎠⎟ =

A + D
2

n1 + n2 +1( ) + A − D
2

n1 − n2( )

         =Ω0 n1 + n2 +1( ) + Ω
2
n1 − n2( ) =Ω0 υ +1( ) +Ω m
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 m = 

n1 − n2
2  

 

 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

Define total quantum number υ=2j and half-difference or asymmetry quantum number m 

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( ) εn1n2

A = A n1 +
1
2

⎛
⎝⎜

⎞
⎠⎟ + D n2 +

1
2

⎛
⎝⎜

⎞
⎠⎟ =

A + D
2

n1 + n2 +1( ) + A − D
2

n1 − n2( )

         =Ω0 n1 + n2 +1( ) + Ω
2
n1 − n2( ) =Ω0 υ +1( ) +Ω m

  υ = n1 + n2 = 2 j   
j =

n1 + n2
2

= υ
2
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 m = 

n1 − n2
2  

 

 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

Define total quantum number υ=2j and half-difference or asymmetry quantum number m 

HA = A a1†a1 +1/ 2( ) + D a2†a2 +1/ 2( ) εn1n2

A = A n1 +
1
2

⎛
⎝⎜

⎞
⎠⎟ + D n2 +

1
2

⎛
⎝⎜

⎞
⎠⎟ =

A + D
2

n1 + n2 +1( ) + A − D
2

n1 − n2( )

         =Ω0 n1 + n2 +1( ) + Ω
2
n1 − n2( ) =Ω0 υ +1( ) +Ω m

  υ = n1 + n2 = 2 j   
j =

n1 + n2
2

= υ
2

 

υ+1=2j+1 multiplies base frequency ω=Ω0 
 m multiplies beat frequency Ω 

Ω

ω=Ω0

m =+1/2

m =-1/2

υ=1
ω+= Ω0 +Ω(+  )1

2

ω−= Ω0 +Ω(−  )1
2
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 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

j=3/2

j=1/2

j=2

j=1

j=0

m = +2
+1
0
-1
-2

m = +1
0
-1

m = 0

m = +3/2
+1/2
-1/2
-3/2

m = +1/2
-1/2

SU(2) Multiplets R(3) Multiplets

"spinor" "scalar"

"vector"

"tensor"
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 H = A(1/ 2)+ D(1/ 2)+

00 01 10 02 11 20 03 12 21 30 

00 0
01 ω−

10 ω +

02 2ω−

11 ω + +ω−

20 2ω +

03 3ω−

12 ω + + 2ω−

21 2ω + +ω−

30 3ω +



 

Setting (B=0=C) and (A=ω+ ) and (D=ω- )  gives diagonal block matrices. 

ω+ −ω− =Ω

= 2B( )2 + 2C( )2 + A − D( )2

= A − D

7
8 j=4

j=7/2

υ=0
1
2
3
4
5
6

ω Ω=ω

j=3

j=5/2

j=2

j=3/2

j=1

j=1/2

Ω=2ω/3Ω=ω/3

9
10 j=5

j=9/2

11
12 j=6

j=11/2

SU(2)

C2A,B,or C

j=3/2

j=1/2

j=2

j=1

j=0

m = +2
+1
0
-1
-2

m = +1
0
-1

m = 0

m = +3/2
+1/2
-1/2
-3/2

m = +1/2
-1/2

SU(2) Multiplets R(3) Multiplets

"spinor" "scalar"

"vector"

"tensor"
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m
j = n1n2  

j = 0      0
0 = 00    "scalar"

j = 1
2

  
1/2
1/2 = 10 = ↑

-1/2
1/2 = 01 = ↓

 "spinor"

j = 1   
1
1 = 20

0
1 = 11

-1
1 = 02

 "3-vector"

j = 3
2

 

1/2
3/2 = 30

1/2
3/2 = 21

-1/2
3/2 = 12

-3/2
3/2 = 03

 "4-spinor"

j = 2 

2
2 = 40

1
2 = 31

0
2 = 22

-1
2 = 13

-2
2 = 04

  "tensor"



⎧

⎨

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

⎩

⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪
⎪

 

  
j=υ

2
= n1 + n2

2

m = n1 − n2

2

⎧

⎨
⎪⎪

⎩
⎪
⎪

       
n1 = j +m = 2υ +m
n2 = j −m = 2υ −m

1 2

1 1 1 2 2 2

1 1 1 1 1 2 1 2 2 2 2 2

1 1 1 1 1 1 1 2 1 1 2 2 1 2 2 2 2 2 2 2

1 1 1 1 1 1 1 1 1 2 1 1 1 2 2 1 1 2 2 2 1 2 2 2 2 2 2 2 2 2

(vacuum)

1

(a) N-particle 2-level states
= |1 0〉 =a1† |0 0〉

= |0 0〉

2 = |0 1〉 =a2† |0 0〉

1 = |2 0〉 =a1†a1† |0 0〉1
2 = |1 1〉 =a1†a2† |0 0〉1

...or spin-1/2 states

N=1

N=2

N=3

N=4

MS=〈Jz〉
Spin z-component

+1/2 +3/2 +5/2
+1 +2

-1/2-3/2
-1

S=1/2

S=3/2

S=5/2

S=1

S=2

Total Spin S

1 = |↑〉 =| 〉
2 = |↓〉 =| 〉

j = 1/2
m=+1/2
j = 1/2
m=−1/2

n2n1

a1
†a2

a2
†a1 a2

a1a1
†

a2
†

Structure of U(2)
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()00()10()20()30()40

()11()21()31()41
()22()32()42
()33()43 ()44

1
1 1
1 2 1
1 3 3 1
1 4 6 4 1
1 5 10 10 5 1
1 6 15 20 15 6 1
1 7 21 35 35 21 7 1
1 8 28 56 70 56 28 8 1

Dimension of oscillator

N=1

N=2

N=3

N=4

N=5

N=6

N=7

N=8

υ=1
υ=2

υ=3
υ=4

υ=5
υ=6

υ=7

υ=0
Principal Quantum Number

(a) N-D Oscillator Degeneracy  of quamtum levelυ

υ

(b) Stacking numbers

triangular

numbers

tetrahedral

numbers

( )=N-1+υ
υ

N-1+υ
N-1( )(c) Binomial coefficients

(N-1+υ)!
(N-1)!υ!

=

3

6

10

4

10

Introducing U(N)
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(b) N-particle 3-level states ...or spin-1 states
1 = |1 0 0〉 =a1† |0 0 0〉
2 = |0 1 0〉 =a2† |0 0 0〉
3 = |0 0 1〉 =a3† |0 0 0〉

1 = |↑〉 =| 〉
2 = |↔〉 = | 〉

j = 1
m=+1
j = 1
m=0

3 = |↓〉 = | 〉j = 1
m=-1

(vacuum)
= |0 0 0〉

1 2

3

1 1 1 1 1 2 1 2 2 2 2 2

2 2 3

2 3 3

3 3 3

1 3 3

1 1 3 1 2 3

n2n1

n3

angular
momentum

z-component
M=n

1 -n
3

0

−1

−2

−3

−4

+1

+2

+3

+4

a2
†a1

a1
†a2

a2
†a3

a3
†a2a1

†a3

a3
†a1

Introducing U(3)
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Ψ x1, x2, t( ) = 1
2
ψ10 x1, x2( )e−iω10t +ψ 01 x1, x2( )e−iω01t

2
e− x1

2 +x2
2( ) = e

− x1
2 +x2

2( )
2π

2x1e
−iω10t + 2x1e

−iω01t
2

                 = e
− x1

2 +x2
2( )

π
x1

2 + x2
2 + 2x1x2 cos ω10 −ω01( )t( ) = e

− x1
2 +x2

2( )
π

x1 + x2
2

   for: t=0          

x1
2 + x2

2       for: t=τbeat / 4

x1 − x2
2

  for: t=τbeat / 2

⎧

⎨

⎪
⎪

⎩

⎪
⎪

    (21.1.30)
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