Relativity of $1^{\text {st }}$ Quantization and electromagnetic fields

(Ch. 2-5 of CMwBang-Unit 8 Ch. 6 of QTforCA Unit 2)

1st Quantization: Quantizing phase variables ω and k
Understanding how quantum transitions require "mixed-up" states
Closed cavity vs ring cavity
2nd Quantization: Quantizing amplitudes ("photons", "vibrons", and "what-ever-ons") Analogy with molecular Born-Oppenheimer-Approximate energy levels Introducing coherent states (What lasers use)

Analogy with (ω, k) wave packets
Wave coordinates need coherence
Relativistic effects on charge, current, and magnetic fields
Current density changes by Lorentz asynchrony
Magnetic B-field is relativistic sinh $\rho 1^{\text {st }}$ order-effect

1st Quantization: Quantizing phase variables ω and k Understanding how quantum transitions require "mixed-up" states Closed cavity vs ring cavity

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only) Some
$n=2$

$$
n=3
$$

$$
n=4
$$

NOTE: We're using "false-color" here.

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only) Some

NOT OK numbers: $n=0.67$

$n=2$

$$
n=3
$$

$$
n=4
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left.\left|E_{1}>,\right| E_{2}\right\rangle,\left|E_{3}\right\rangle,\left|E_{4}\right\rangle, \ldots$

1st Quantization: Quantizing phase variables ω and k Understanding how quantum transitions require "mixed-up" states Closed cavity vs ring cavity

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only)
Some

NOT OK numbers: $n=0.67$

$$
n=1.7
$$

$n=2$
$n=3$
$n=4$

$n=2.59$
wrong color again!

$$
n=4
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left|E_{1}\right\rangle,\left|E_{2}\right\rangle,\left|E_{3}\right\rangle,\left|E_{4}\right\rangle, \ldots$ That's the only way you get any light in or out of the system to "see" it.

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only)

Some

NOT OK numbers: $n=0.67$

$n=2$

$$
n=3
$$

$$
n=4
$$

$$
n=1.7
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left.\left|E_{1}>,\right| E_{2}\right\rangle,\left|E_{3}>,\right| E_{4}>, \ldots$ That's the only way you get any light in or out of the system to "see" it.

$$
\text { frequency } \omega_{32}=\left(E_{3}-E_{2}\right) / \hbar \wedge \sim \sim \sqrt{\mid E_{2}>}
$$

These eigenstates are the only ways the system can "play dead"... ... "sleep with the fishes"...

Consider two lowest E-states bv themselves

$\|\|\cdot\| \cdot\| \cdot\|\cdot\| \cdot\|\cdot N \cdot\|(1) \sqrt{n}\|\cdot\| \cdot\|\cdot\| \cdot \| \cdot$

By Harter-Qfe and University of Askaneas Physics Slegant Eddecational Toob ©fince 2001

Consider two lowest E-states bv themselves in time

By Harter-Qfe and University of Arksisas Physics Elegant Edacational Toab ©fince SOO/

Consider two lowest E-states bv themselves in time

By Harter-Qff and University of Arksisas Physics Elegant Widneational Todb ©ince SOO/

Now combine (add) them and let time roll! $\left(\mathrm{e}^{-i \omega_{1} t}\left|E_{1}\right\rangle+\mathrm{e}^{-i \omega_{2} t}\left|E_{2}\right\rangle\right) / \sqrt{ } 2$

5tt:

Consider two lowest E-states bv themselves in time

By Harter-off and University of Arkaness Physics ©ilegant Wdacational Toob ©fince 2001

Now combine (add) them and let time roll! $\left(\mathrm{e}^{-i \omega_{1} t}\left|E_{1}\right\rangle+\mathrm{e}^{-i \omega_{2} t}\left|E_{2}\right\rangle\right) / \sqrt{ } 2$

Consider two lowest E-states bv themselves in time

By Harter-Qfe and University of Arksisas Physics Elegant Edacational Toab ©fince SOO/

Now combine (add) them and let time roll! $\left(\mathrm{e}^{-i \omega_{1} t}\left|E_{1}\right\rangle+\mathrm{e}^{-i \omega_{2} t}\left|E_{2}\right\rangle\right) / \sqrt{ } 2$

1st Quantization: Quantizing phase variables ω and k

Understanding how quantum transitions require "mixed-up" states $川$ Closed cavity vs ring cavity

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only) Some
NOT OK numbers: $n=0.67$

$n=1.7$

$$
n=3
$$

$$
n=4
$$

wrong color again!

NOTE: We're using "false-color" here.
Rings tolerate a zero (kinkless) quantum wave but require \pm integral wave number. OK ring quantum numbers: $m=0$

$$
m= \pm 1
$$

(\pm integral number of wavelengths)

Bohr's models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics built on Planck-Einstein (1900-1905) relation $E=h v$. DeBroglie relation $p=h / \lambda$ comes around 1923.

Consider two lowest E-states by themselves

By Harter-Off and University of Askaness Physies Elegant ©dicational Sood ©/ince OOO/

Consider two lowest E-states by themselves
|

$$
\left|E_{m=0}\right\rangle
$$

ByHarter-Off and University of Arkanses Physics Elegant Edicational Sodb ©ince SOOI

[^0]Consider two lowest E-states by themselves

$$
\left|E_{m=+1}\right\rangle
$$

$$
\left|E_{m=0}\right\rangle
$$

By Harter-Ofe and University of Askansas Physies Elegant Fidicational Toeld ©ince 9001
(Just moves forward rigidly)

Consider two degenerate E-states by themselves

Ferew wrow

$517 \% 1$

Consider two degenerate E-states by themselves
Now combine (add) them and let time roll!
$\underbrace{\left|E_{m=+1}\right\rangle}$

Ferewnex

90ThMern

Consider more than two E-states combined...

2nd Quantization: Quantizing amplitudes ("photons","vibrons", and "what-ever-ons") Analogy with molecular Born-Oppenheimer-Approximate energy levels Introducing coherent states (What lasers use) Analogy with (ω, k) wave packets Wave coordinates need coherence

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

$N_{2}=0$

or "vacuum" levels
$m=2 \quad m=3$
$m=4$
Quantized Wavenumber ("kink" or momentum number)

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Boosted observers see distorted frequencies and lengths, but will agree on the numbers n and N of mode nodes and photons.

This is how light waves can "fake" some of the properties of classical "things" such as invariance or object permanence.

It takes at least $T W O C W$'s to achieve such invariance. One CW is not enough and cannot have non-zero invariant N. Invariance is an interference effect that needs at least two-to-tango!

2nd Quantization: Quantizing amplitudes ("photons","vibrons", and "what-ever-ons") Analogy with molecular Born-Oppenheimer-Approximate energy levels
Introducing coherent states (What lasers use)
Analogy with (ω, k) wave packets
Wave coordinates need coherence

A sketch of modern

 molecular spectroscopy

ELECTRON MOTION

From Fig. 6.5.5.
Principles of Symmetry, Dynamics, and
Spectroscopy
W. G. Harter, Wiley Interscience, NY (1993)

Spectral Quantities

Frequency v Hertz(sec $^{-1}$) $\mathrm{THz} \quad 10^{12} \mathrm{~s}^{-1}$ $\mathrm{GHz} \quad 10^{9} \mathrm{~s}^{-1}$ $\mathrm{MHz} 10^{6} \mathrm{~s}^{-1}$
vibronic spectra
rovibrational spectra
$\begin{array}{lll}\mathrm{kHz} & 10^{3} \mathrm{~s}^{-1}\end{array}$

Wavelength λ
meters (m)
fm $10^{-15} m$
pm $10^{-12} \mathrm{~m}$
$n m \quad 10^{-9} m$
$\mu m \quad 10^{-6} \mathrm{~m}$
mm $\quad 10^{-3} \mathrm{~m}$

H-Lyman α	cm	$10^{-2} \mathrm{~m}$

ULTRAVIOLET $\mathrm{km} \quad 10^{3} \mathrm{~m}$
$v=2.4 \mathrm{PHz}$
$\mathrm{E}_{\text {Ly } \alpha}=10.2 \mathrm{eV}$
$\lambda=125 \mathrm{~nm}$
Typical VISIBLE
$v=600 \mathrm{THz}$
$1 / \lambda=2 \cdot 10^{6} \mathrm{~m}^{-}$
$=2 \cdot 10^{4} \mathrm{~cm}^{-1}$
$\lambda=0.5 \mu \mathrm{~m}$
$=500 \mathrm{~nm}$
$=5000 \mathrm{~A}$
$\mathrm{E}_{\mathrm{eV}}=2.48 \mathrm{eV}$
or

Wavenumber per meter $\left(m^{-1}\right)$ $\mathrm{cm}^{-1} \quad 10^{2} m^{-1}$

Energy ehv electonVolts (eV)
rovibronic spectra

Example of frequency hierarchy
for 16 $16 m$ spectra of CF_{4}
(Freon-14) W.G.Harter

Fig. 32.7
Springer Handbook of Atomic, Molecular, \& Optical Physics Gordon Drake Editor (2005)
a) CF_{4} vibrational structure

e) Hyperfine (nuclear spin) structure
\square

Case (2) Case (1)

$-100 \mathrm{kHz}$
Case (2) Case (1)

Lecture 30 ended here

2nd Quantization: Quantizing amplitudes ("photons", "vibrons", and "what-ever-ons") Analogy with molecular Born-Oppenheimer-Approximate energy levels
Introducing coherent states (What lasers use)
Analogy with (ω, k) wave packets
Wave coordinates need coherence

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

We saw how adding CW's (Continuous Waves $m=1,2,3 \ldots$) can make $P W$ (Pulse Wave) or $W P$ (Wave Packet) that is more like a classical "thing" with more localization in space x and time t.

Lecture 30 ended here

2nd Quantization: Quantizing amplitudes ("photons", "vibrons", and "what-ever-ons") Analogy with molecular Born-Oppenheimer-Approximate energy levels Introducing coherent states (What lasers use)

Analogy with (ω, k) wave packets
Wave coordinates need coherence

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

We saw how adding CW's (Continuous Waves $m=1,2,3 \ldots$) can make $P W$ (Pulse Wave) or WP (Wave Packet) that is more like a classical "thing" with more localization in space x and time t.

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator Amplitude Packet) that is more like a classical wave oscillation with more localization in field amplitude.

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

We saw how adding CW's (Continuous Waves $m=1,2,3 \ldots$) can make $P W$ (Pulse Wave) or WP (Wave Packet) that is more like a classical "thing" with more localization in space x and time t.

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator Amplitude Packet) that is more like a classical wave oscillation with more localization in field amplitude.

Pure photon states have localized (certain) N but delocalized (uncertain) amplitude and phase. $O A P$ states have delocalized (uncertain) N but more localized (certain) amplitude and phase.

Lecture 30 ended here

2nd Quantization: Quantizing amplitudes ("photons", "vibrons", and "what-ever-ons") Analogy with molecular Born-Oppenheimer-Approximate energy levels Introducing coherent states (What lasers use) Analogy with (ω, k) wave packets
Wave coordinates need coherence

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

Pure photon number N-states would make useless spacetime coordinates

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

Pure photon number N-states would make useless spacetime coordinates

Coherent- α-states are defined by continuous amplitude-packet parameter α whose square is average photon number $\bar{N}=|\alpha|^{2}$. Coherent-states make better spacetime coordinates for larger $\bar{N}=|\alpha|^{2}$.

Quantum field coherent α-states

$\bar{N}=100$
$\Delta N=10$

$\bar{N}=10^{6}$
$\Delta N=10^{3}$

$$
\bar{N}=10^{10}
$$

$$
\Delta N=10^{5} .
$$

Classical limit

Coherent-state uncertainty in photon number (and mass) varies with amplitude parameter $\Delta N \sim \alpha \sim \sqrt{ } N$ so a coherent state with $\bar{N}=|\alpha|^{2}=10^{6}$ only has a 1-in-1000 uncertainty $\Delta N \sim \alpha \sim \sqrt{ } N=1000$.

Relativistic effects on charge, current, and Maxwell Fields \rightarrow Current density changes by Lorentz asynchrony
 Magnetic B-field is relativistic $\sinh \rho 1^{\text {st }}$ order-effect

Relativistic effects on charge, current, and Maxwell Fields

Observer velocity is zero relative to $(+)$ line of charge
wire appears
neutral
$(+)$ Charge fixed (-) Charge moving to right (Negative current density)
$(+)$ Charge density is Equal to the (-) Charge density

Relativistic effects on charge, current, and Maxwell Fields

Observer velocity is zero relative to $(+)$ line of charge
wire appears neutral
$(+)$ Charge fixed (-) Charge moving to right (Negative current density $\overrightarrow{\mathbf{j}}(x, t)$)
$(+)$ Charge density is Equal to the (-) Charge density
(Zero $\rho(x, t)=0)$

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony
Asynchrony dueto off-diagonal $\sinh \rho$ (a $1^{\text {st}}$-order effect)
in Lorentztranform: $:\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right) \sim\left(\begin{array}{cc}1 & (v / c) \\ v / c & 1\end{array}\right)$

$(+)$ Charge fixed (-) Charge moving to right (Negative current densi $\overrightarrow{\mathbf{j}}(x, t))>$
$(+)$ Charge density is Greater than $(-)$ Charge density (Positive $\rho(x, t)>0) \downarrow$
wire appears
postive (+)
(repulsive to observer $q_{[+]}$)

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
Asynchrony dueto off-diagonal $\sinh \rho$ (a $1^{\text {st}}$-order effect)
in Lorentztranform : $\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right) \sim\left(\begin{array}{cc}1 & v / c \\ v / c & 1\end{array}\right)$

(+) Charge fixed (-) Charge moving to right (Fegative cryrent dens $\hat{\mathbf{j}}(x, t))^{\prime \prime}$
$(+)$ Charge density is Greater than (-) Charge density \quad (Positive $\rho(x, t)>0)$

Relativistic effects on charge, current, and Maxwell Fields

Current density changes by Lorentz asynchrony Asynchronydueto off-diagonal sinh ρ (a $1^{\text {st }}$-order effect) in Lorentztranform : $\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right) \sim\left(\begin{array}{cc}1 & v / c \\ v / c & 1\end{array}\right)$

$(+)$ Charge fixed (-) Charge moving to right (Negative current density $\overrightarrow{\mathbf{j}}(x, t)$)
$(+)$ Charge density is Less than (-) Charge density
observer has $q_{[+]}$
"test-charge"
Observer velocity is $-v$ relativg to
${ }^{+}+$line of charge (i)
negative (-)
(attractive to observer $\left.q_{[+]}\right)$

Relativistic effects on charge, current, and Maxwell Fields

Current density changes by Lorentz asynchrony Asynchronydueto off-diagonal sinh ρ (a $1^{\text {st }}$-order effect) in Lorentztranform : $\left(\begin{array}{ll}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right) \sim\left(\begin{array}{cc}1 & v / c \\ v / c & 1\end{array}\right)$
observer has $q_{[+]}$
"test-charge"

$(+)$ Charge fixed (-) Charge moving to right (Negative current density $\overrightarrow{\mathbf{j}}(x, t)$)
$(+)$ Charge density is Less than $(-)$ Charge density \quad (Negative $\rho(x, t)<0$)

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony
\rightarrow Magnetic B-field is relativistic sinh $\rho 1^{\text {st }}$ order-effect

Magnetic B-field is relativistic $\sinh \rho 1^{\text {st }}$ order-effect
(-)Trajactory (+|Trajectory

$\frac{\rho(-)}{\rho(+)}=\frac{(+) \text { charge separation }}{(-) \text { charge separation }}=\frac{x(+)+x(-)}{x(-)}$

$$
\frac{\rho(-)}{\rho(+)}=\frac{x(+)}{x(-)}+1=\frac{u v}{c^{2}}+1
$$

$$
\rho(+)-\rho(-)=\rho(+)\left(1-\frac{\rho(-)}{\rho(+)}\right)=-\frac{u v}{c^{2}} \rho(+)
$$

Unit square: $(\mathrm{u} / \mathrm{c}) / 1=\mathrm{x}(+) / \mathrm{y}$

$$
(\mathrm{v} / \mathrm{c}) / 1=\mathrm{y} / \mathrm{x}(-)
$$

$$
\frac{\rho(-)}{\rho(+)}=\frac{(+) \text { charge separation }}{(-) \text { charge separation }}=\frac{x(+)+x(-)}{x(-)}
$$

Using 4-vectors to EL Transform (charge-current) $=(c \rho, \mathbf{j})$
Unit square: $(\mathrm{u} / \mathrm{c}) / 1=\mathrm{x}(+) / \mathrm{y}$ $(\mathrm{v} / \mathrm{c}) / 1=\mathrm{y} / \mathrm{x}(-)$

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$
\begin{array}{ll}
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \rho}{r}\right], \quad \text { where: } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{Coul} .} & 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9} \\
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{r}\left(-\frac{u v}{c^{2}} \rho(+)\right)\right]=-\frac{2 q v \rho(+) u}{4 \pi \varepsilon_{0} c^{2} r}=-2 \times 10^{-7} \frac{I_{q} I_{\rho}}{r} & \begin{array}{l}
c^{2}=9 \cdot 10^{-16} \\
1 /\left(4 \pi \varepsilon_{0} c^{2}\right)=10^{-7}
\end{array}
\end{array}
$$

I see excess (+)
charge up there. Yuk!

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$
\begin{array}{ll}
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \rho}{r}\right], \quad \text { where: } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{Coul} .} & 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9} \\
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{r}\left(-\frac{u v}{c^{2}} \rho(+)\right)\right]=-\frac{2 q v \rho(+) u}{4 \pi \varepsilon_{0} c^{2} r}=-2 \times 10^{-7} \frac{I_{q} I_{\rho}}{r} & \begin{array}{l}
c^{2}=9 \cdot 10^{-16} \\
\end{array} 1 /\left(4 \pi \varepsilon_{0} c^{2}\right)=10^{-7}
\end{array}
$$

[^0]:

