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CHAPTER 8

SYMMETRY ANALYSIS

FOR SEMICLASSICAL AND QUANTUM
MECHANICS: DYNAMICS

WITH HIGH QUANTA

The classical world with all its detailed motion should in principle be
described in terms of basic quantum states. In practice, however, the detailed
correspondence between classical and quantum descriptions can be fairly
subtle and complex. In Chapters 3, 4 and 7 we considered some elementary
examples of classical spontaneous symmetry breaking. There, certain combi-
nations of eigenstates were shown to be represented by localized wave
packets that corresponded to systems being trapped into quasiclassical con-
figurations with lower symmetry. In this chapter some theory involving wave
packets and so-called coherent states will be developed in order to clarify the
connection between quantum and classical phenomena. The main application
of these theories will be to systems with high quantum numbers. The
resulting methodology is loosely referred to as SEMICLASSICAL mechanics.

As we have already noted in Chapters 5-7, states with high quanta
(particularly angular quanta with J greater than 5 or 10) can be very
complicated, and computations involving them can be extremely laborious.
Often this means that the problem is treated numerically and exact eigenso-
lutions are found by computer diagonalization. However, large-scale numeri-
cal solutions may not expose interesting physical phenomena or lead one
directly toward a better theoretical understanding. One should not be con-
tent to just have a computer experiment that parrots some laboratory spectra.

Furthermore, there should be much more to quantum mechanics than the
study of individual cigenstates. An eigenfunction is stationary in the sense
that only its overall phase (i, (t) = e 'E='/"y; (0)) is time dependent, while
its probability distribution (¥, ) is forever frozen. By studying individual
eigenstates you learn all the ways that a quantum system can play dead! Only
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by combining two or more eigenstates with different energy phase factors can
you get something to actually move. The rate of such motion is determined
by the energy differences (E,, — E,), that is, transition or “beat” frequencies
(w,,, = (E,, — E,)/h), as explained in Chapter 2, Sections 2.3.A and 2.3.B.
In fact, a single eigenstate is really unobservable. Only through combinations
of eigenstates or transitions between them can a quantum system exhibit
change or dynamics.

Classical mechanics, on the other hand, seems better equipped to describe
dynamics or motion. This is because one is better able to visualize how
classical objects move even if the equations of motion are difficult to solve
analytically. An important part of semiclassical mechanics is to provide ways
to visualize and understand quantum dynamics and to compare it to the
classical dynamics which approximates it in the limit of high quantum
numbers. We shall compare quantum and semiclassical theory for vibrational
and rotational dynamics. This will include applications to atomic and mole-
cular spectroscopy. Also, we shall introduce and compare quantum and
semiclassical theories of radiation which are fundamental to the theory of
spectroscopy in general.

-

8.1 CONTACT TRANSFORMATIONS, ACTIONS,
AND SEMICLASSICAL WAVE FRONTS

The principles involving the action functions are introduced and it is shown
how they enter the study of semiclassical dynamics. This treatment includes
ways to visualize action transformations geometrically.

A. Contact Transformations

Consider a curve y(x) in a two-dimensional coordinate space (x, y) as shown
in Figure 8.1.1(a). This curve may be related to another curve Y(X) in a
(generally) different space (X,Y) by what is called a CONTACT TRANS-
FORMATION. To define a contact transformation one ultimately requires
what is called a GENERATOR function S(x,y:X,Y). Then for a fixed
value of the generator [say S(x,y: X,Y) = 10] one generates a family of
curves in the (X,Y) space as shown in Figure 8.1.1. There is one curve
S(x;y;: X,Y) = 10 in the (X,Y) space for each point (x;, y;) on the curve
y(x). The envelope(s) or contacting curve(s) of this family comprise the
desired contact transformation(s) Y(X) for a particular value of the genera-
tor. (Here S = 10.) A schematic example of a family and its contact curve are
shown in Figure 8.1.1(b).

As we have said, each point (x, y(x)) is associated with a curve in (X,Y)
space. In addition we shall associate each point (x;, y(x,)) with the contact
point (X}, Y(X,)) where that curve is tangent to the family envelope Y(X).
The points (Xj, Y(Xj)) are the ones for which the value of S(x, y(x): X,Y)
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Y
Y(X)
(XpY(Xp) S(x2,y2,X.Y)=10
S(Xl,yl,X,Y)—"—lO
S(xg,¥0,X,Y)=10
¥ X X 4 Xy XX, \ X
(a) (b)

Figure 8.1.1 Geometry of a general contact transformation.

is least sensitive to a small change in x. From Figure 8.1.1(b) you can see that
a change of x causes the § = 10 curve to slide along the envelope. As the
new contact point slides a small distance away from the old contact point
(X, Y(X)), the latter is still practically on top of the new § = 10 curve; that
is, S does not change at first near the point (X, Y(X)). Therefore we find
these points by solving

aS(x,y(x):X,Y)

Jx X =x;

=0 (8.1.1a)

and

S(x,y(x):X,Y) = constant. (8.1.1b)

One should notice that a contact transformation goes either way; each point
(X;,Y(X})) generates a curve tangent to the y(x) curve at (x;, y(x,)). Then
the following equation would be applicable, too:

S(x,y: X,Y)

e ox = O (8.1.1c)

The LEGENDRE TRANSFORMATION is an example of a contact
transformation in which the transformed curve contacts or envelopes a family
of straight lines. In its simplest form each point (x;, y; = y(x;)) generates a
line Y=1x;X -y, in (X,Y) coordinates, ie., a line of slope x; and Y
intercept —y; as shown in Figure 8.1.2. This is equivalent to having the
generator relation

S(x,y:XY)=y+Y—-xX=0.
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y Y

y(x)
(X0~Y(Xo))
Xo X1 X2 x (%) 0 Xy X5 X
¥y
-y(xp)
(a) (b}

Figure 8.1.2 Geometry of a Legendre contact transformation.

From the derivative equations (8.1.1a) and (8.1.1¢) we find

as dy 812
a—; = U, = a, ( d. a)
as Yy
— =0, X ==, (8.1.2b)
X X
This is combined with the generator relation S = 0 or
Y=xX-y (8.1.2¢)

to yield the desired Legendre transformation.

One of the best known examples of a Legendre transformation is the
transformation between the Lagrangian function y(x)= L(4) and the
Hamiltonian function Y(X) = H(p). Here the independent variables are
velocity (x = ¢) and momentum (X = p). The transformation equations
(8.1.2a)—(8.1.2¢) yield the relations

oL 8.1.3
P = 535 ( ol a)
] oH 8.1.3b
17 (8:1.30)
and
H(p) =p4 - L, (8.1.3¢)

respectively. The slope ¢ of the contacting lines which are indicated in Figure
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L H

(Stope =py)

4 4 G q Lo
-L(qy)
-L(4p)

Figure 8.1.3 Geometry of Legendre transformation between Lagrangian and Hamil-
tonian functions.

8.1.3(b) will be shown to have an important interpretation in semiclassical
wave mechanics. Slope p is inversely proportional to a wave phase velocity,
and slope ¢ corresponds to a wave group velocity. [Given the single-particle
de Broglie relations H — Aw and p — hk this geometrical interpretation of
phase velocity (w/k) and group velocity (dw/dk) is an elementary conse-
quence of dispersion theory.]

;

B. Action Functions

An important application of contact transformations involves the transforma-
tion of a classical particle or system from one point [say (x = x4, y = y,,...)]
to another point [say (x =X, y =7Y,...)] which lies along its natural
trajectory of motion. The transformations which do this are called “active”
(as opposed to “passive”) transformations because they represent an actual
change of position rather than just a relabeling of coordinates or state
variables. The generators of these transformations are called ACTIONS.
(This might suggest that the generators of passive transformations should be
called “passions.”)

The development of the idea of action generators requires one to ask what
is so special about a particular classical trajectory or “natural path” followed
by a classical system. Part of the answer, as we shall show, is that the action
achieves an extreme value (in fact a locally minimum value) for a natural
path. Nearby paths must have greater action, but, more importantly, paths
which are very close to the natural one must have practically the same action.
The concept of a stationary action value for a natural path is a key to the
understanding of the action generators.

The first type of action function which we shall study is defined by the
following time integral of a Lagrangian L which we take to have no explicit
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Coordinat

/ V(O Tra;
¢ Space (=) ® TraJeCtOTiEs

Figure 8.1.4 A comparison of paths appropriate for Hamilton’s principle function
S

p*

time dependence:

Sp(ros to T, 1y) = [L(K(2), K(1)) dt. (8.1.4)
to

This is called HAMILTON’S PRINCIPLE FUNCTION since it is the subject
of Hamilton’s principle, which we shall discuss shortly. "This discussion
involves a comparison of the value of S, for two nearby paths r(¢) and
r(z) + 6r(z). Two such paths are sketched in Figure 8.1.4 for a two-dimen-
sional system with coordinates r = (x, y). The third dimension of the figure
is time.

Here we compare the action for curves whose end points are fixed in space
and time, i.e., 8r(¢,) = 0 = 8r(¢,). A range of positions, velocities, accelera-
tions, jerks, etc., will be considered, but total travel time is fixed. For a small
difference function ér(¢) one has

31 . .
Sp(Tos to: 715t ) paTHG +8r) = f L(r + or,7 + 8¥) dt
fo

"o o[ 0L L ,

= [ML(r,#ydi+ ["| = 8r + —— 8| di +0(5?)
ty t9 ér or

31

dL

= Sp(ros to:T1s b1 )paTre) T o ér

L)
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where an integration by parts was performed and 0(82) represents presum-
ably negligible terms of second or higher order in 8r. If (and only if) the path
r(¢) is adjusted so that the Lagrange equations [dL /or — d /dt(L /3t) = 0]
are always satisfied, then Hamilton’s principle

Sp(ros Lo ¥ iy t1)patac+sr = Sp(Fos 80 15 I )pATH() (8.1.6)

is satisfied to a precision of second order.
Another type of action which we shall consider here is defined by the
spatial integral

ry
Sy(ry:ir)) =f p - dr. (8.1.7)
To
This is known as HAMILTON’S CHARACTERISTIC FUNCTION or RE-
DUCED ACTION for reasons that will be mentioned later. Using the
Legendre transformation (8.1.3c) one can convert §;; to a time integral and
relate it to the action Sp. Using (8.1.3c) we have (with q = r)

Sy(reir,) = ft"p-fdt=jt”[H(p,r) + L(ri)] dr.  (8.1.8)

However, it is necessary to carefully define the time limits of integration.

It is convenient to let the time limits be determined by the natural motion
for a fixed value of the Hamiltonian: H = constant. (For Lagrangians with no
explicit time dependence, the Hamiltonian is a constant of motion.) We shall
use the notation S(r,:r,) to remind us that the travel times between r, and
r, are not fixed but depend upon how much energy ¢ = H is given. This
means that a comparison of path integrals will have to allow for a variation of
travel time (¢, — t,). If we fix H and let ¢, = 0 then we must expect ¢; to
have a different value ¢, + Ar for a different path as indicated in Figure
8.1.5. The H-fixed action for a modified path r(¢) + Ar(z) will be

Su(To:T1)pathr+4n

= [""[H + L + Ark + AB)] dr
0
= Ht, + ftlL(r + Ar, i + AF) dt + HAt +
0

ft‘+AtL(r + Ar,f + AF) dt
L
f oL . .
= Su(ro:T)patucn f — Af|dt + HAt + L(r,.f,) At
0 or
oL d (aL

t aL
= Su(ro:r1)pathir +f0 o d@r ;) Ardr + Y Ar(ty)

+ HAt + L At + 0(A?). (8.1.9)
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Coordinat® Space xy)

Figure 8.1.5 A comparison of paths appropriate for Hamilton’s characteristic func-
tion Sy.

Here we have again integrated by parts and let Ar(¢,) = 0. The value Ar(z,)
at the upper limit is obtained by solving the equation

r(t)

r(ty + At) + Ar(t, + Ar)

ar
=r(t) + 51 At + Ar(t)) + 0(4A%) (8.1.10)
n

i

for small Ar. (See Figure 8.1.5, which shows components of this equation.)
One then substitutes the result

ar
Ar = ——l At = —x(t)) At (8.1.11)
Iy
into (8.1.9). For natural paths r(z) this yields
. L | ,
Su(ro Ty )patrer+an = Su(To:F)patney + | L — Fral H | Ar +0(4%)
¢

= Su(ro:r)patucn + 0(4%), (8.1.12)

where (8%.3c) was used. This shows that the time-independent action S
reaches a§‘extreme value on natural paths.

Finally, let us consider the change in the action S, if we vary time and
position of the destination point by arbitrary amounts dt, and dr;, respec-
tively, but we “aim” the initial momenta so as to follow a natural path
r(t) + dr(¢) to this end point. (As usual let us keep the starting point r; and
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time 7, the same for both paths.) By following the same proc;edures that were
used in (8.1.9), we have

Sp(ro, toiry +dry, ty + dt)patucr+ar)

= [T+ ark 4 d) ar
I

aL
= S8p(Tos 1o 15 ) path) + GF dr(t;) + L(ryr;) dt + 0(d?).
(8.1.13)
Instead of (8.1.10) we need equations which include the arbitrarily chosen
dr,
r(t,) +dry=r(t, +dt)) +dr(t, +dt)),
r, +dry =r; +r;dt; +dr(s)),
dr(t,) =dr, — ¥ dt,. (8.1.14)
Substituting this result into (8.1.13) yields

Sp(rg,to:ry +dry,t; +dt)) — Sp(rg.tyir;, t)
=p(ty) ~dry + (L(rf) — p(t;) - £)dty,
dSp=p - dr, — Hdr,, (8.1.15a)

where the Legendre equations

p=; and H=p-i-L (8.1.15b)
r

from (8.1.3) are used. Note that the changes in S, due to changes in H are of
second order in dr, and dt, and are therefore neglected.

The differential form (8.1.15a) is called the POINCARE- CABFAN IN-
VARIANT. From it we derive two very important equations "

3Sp(rg, ty:ir,t)

r =p, 16a)
3Sp(rg, 1y, 1)
% = —H(p,r). 16b)

The combination of these two equations leads to the TIME-{@ID HPEN-
DENT HAMILTON-JACOBI equation for the principal action gdfes

38 38 ,
- a—t” = H(—” r). (8.1.17)

or’
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A related set of equations exists for determining the time-independent
action generator S;,. From (8.1.8) we have

t
Sp(re:ry) = (t;, — to)H + f, 'Ldt = (t; — ty)H + Sp(rg, ty:1, 1),
0

(8.1.18)

where we are assuming natural paths in all integrations. Also, the travel time
t, — t, depends on the chosen value of energy ¢ = H as before. (The initial
time ¢, may be chosen to be zero without loss of generality.) Now a variation
of the destination point r, to r; + dr, causes a change,

dS, = dt, H + dSp = p - dr,, (8.1.19)

in which time dependence is removed. (Hence, the name “reduced action” is
used for S;;.) This leads to the TIME-DEPENDENT HAMILTON-JACOBI

equations l < ‘
38y (ry:1) _ \ T

= D, (8.1.20a)
Sy

H(a—,r) = ¢ = constant. (8.1.20b)
r

C. Generators for Classical Trajectories and Wave Fronts

Let us consider some elementary solutions to the Hamilton-Jacobi equations.
Possibly the simplest case is the one treated at the beginning of sophomore
mechanics involving a massive body falling in a uniform gravitational field
(f = mg). Then the Hamiltonian is

e =H(p,r) = (1/2m)p - p — fy = (1/2m)(p} +p}) - fv, (8.1.21)
where we neglect the third spatial dimension. The HJ equation (8.1.20)
becomes

1/2 u)", (3a) 8.1.22
— ) + =] |-f=s 1.
arzm|(S2) + (5] | -5 - (8122)

This example allows a separation of variables S,(x, y) = 5,(x) + 5,(y) to
yield two ordinary differential equations:

ds,
dx

2 dS 2
)=sx, 1/2m(g;y—) —fy=e, (8.123)

(1/2m)(
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where the separated parts satisfy

Su( %0 Yo i X1, ¥1) =S.(x1) +5,(¥1), (8.1.23b)
e=¢g,+e¢, (8.1.23¢)

The solutions to the separate HJ equations are

= [2me,1*(x; — x0)

=miy(x, — Xg), (8.1.24a)
s, —(1/3mf)[2m(£ + fy)]3/2

= (m*/3f)] ¥ - %3] (8.1.24b)
where we use the definitions of momentum and velocity which apply to this

problem: R 'f *
p. = mi = [2mes] 2, (8.1.24¢)
= my = [2m(e, + /)] (8.1.24d)

The time-dependent action is given by
Sp=8y— €T (8.1.25)

according to (8.1.18), where the travel time is T = t, — ¢y, and € = H is the
total energy. We now write the action S, in various different forms in order
to exhibit its physical and mathematical properties using examples. To do thns
we will use the falling-body time-trajectory solutions,

X =xg+ 5T,y = ko, (8.1.26a)
vy, =yo +¥,T + (f/2m)T?, ¥, =yo + (f/m)T, (8.1.26b)

obtained by elementary means. (One should not get the impression that
action theory is a convenient way to compute specific trajectories. Rather it is
a way to analyze families of trajectories.)

By combining (8.1.23), (8.1.25) and the second lines of (8.1.26) we have

5 = mio(x = xg) + (m2/3) (50 + FT/m)" = 58] = (Gt + 598 = foT. A ]

2T3

3+ fTyg + fT?9 +

mT
(x; —x) + T

mx
0
Sp=—o

: ' L
> (8.1.27) |
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Solving for (%,, y,) in the first line of (8.1.26) leads to the standard form
for Sp:

*

2 2 23
m(x; — Xg) m(y; = ¥o) T [T
Sp(ry,0:1r,T) = 5T + 5T + —2-(y1 +y9) — vt
(8.1.28)

On the other hand, we may write S, as a function exclusively of time T and
initial conditions:

milT  myiT T3
>t + fTyy + fT?y, + m.(8.1.29)

Sp(ro,0:r(T), T)=

The latter could be obtained most easily by direct integration of the defini-
tion (8.1.4) of Sp. However, in so doing, one loses the crucial functional
dependence in (8.1.28), which makes S, a generator. It is instructive to
compare the partial and total time derivatives of Sp:

C e

38p(ry,0:1r,T)

= _H, (8.1.30a)
dSp(ry,0:r(T), T
»(ro dTl( 1 _ (8.1.30b)

which are expressions of the HJ equation (8.1.17) and the principle function
definitions, (8.1.4), respectively:

6SP m 2 2 f(y1+y0) f2T2

'577=—2_T_2‘[(x1"‘x0) + (31— 90)] + 2 “am -
(8.1.30a),

dS, mij  myj ’T?

—d—T’—’ - —2—0 + TO + foo + 20T + fm =L. (8.1.30b),

The consistency of the examples may be verified using solutions (8.1.26).
Finally, the following energy derivative formula is important:

38y

=T (8.1.31)

This follows from (8.1.25) and the fact that S, does not depend explicitly on
energy (8Sp/de = 0).

Examples involving curves with §,; = constant are shown in Figure 8.1.6.
The first figure, 8.1.6(a), shows a family of projectile trajectories with H =
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¢ = 128 J(oule) and F = —4 N(ewton). The corresponding generator curves
§;(0,0: x, y) = 50,100, 150,...,J - s) and so forth are shown superimposed ,
onto the trajectories in the second figure, 8.1.6(b). The curves with S, = 50
to S, =300, or so, are ovals with increasing radius. They are clearly
orthogonal to outgoing projectile trajectories in accordance with the equation

(8.1.19):

0=dSy=p - dr.

T
-7
, - 1L
R AR .
1 \\\\ IR
ol g . A
A P LN O\ - \
AT \‘\\\Q\} \\\\\y N
P DR
RO S A
Lo y LA k\\\

SH:3501, A
\S;/\\q C Y/ \’/X>g>
% 300 | [ S
450 ‘ 2N A
A 250 ‘///y/// // ~= —x N 1
\ 0o 200] 17 /DX K RS
150/]/7//7 Y e = RN 5
&0 100l A T T
i 2 EEe - , \
700 7 == [ g "~
. 809 i S
1000 .

A
&\ SR SN

(b)

Figure 8.1.6 Classical trajectory families and constant characteristics action curves.
(a) Isoenergetic family of trajectories. (b) Isoenergetic family of constant S, curves.
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For S, = 350 or higher the curves vaguely resemble the outline of a bat’s
head with two ears pointing at the parabolic caustic that marks the classical
turning points along the upper boundary of the trajectory region. The ears
should be pointed cusps with zero angle at the points. The plot is not precise
enough to show this for the first few bat’s heads.

The §;; curves can be regarded as wave fronts emerging from the original
point and propagating outward until they are reflected by the upper classical
turning boundary. The reflected S waves are orthogonal to downward travel-
ing trajectories. The time behavior of these S waves can be deduced by
defining them in terms of Hamilton’s principle action S, for constant H:

Sp(0,0:r,T) = §4(0:r) — HT = constant. (8.1.32)

Then a point r + dr having the same S, value at a later time would satisfy
the equation

Sp(0,0:r +dr, T +dT) — §p(0,0:r,T) =0=4dSp. (8.1.33)
For constant H = ¢ this becomes

dSp =0=4dS, — edT,
O=p-dr—edT. (8.1.34)

For dr chosen in the direction of the momentum vector p this gives the
S-wave phase velocity:

dirl _ = 8135
ﬁ_m. (.. )

In this simple example the p vector (p = mv = mr) points in the direction of
the particle velocity . This will not always be so. For a general Hamiltonian,
the coordinate velocity

. 0H
P=—
ap

has a different direction and magnitude than p. Note that the phase velocity
(8.1.35) varies inversely with the momentum and (in this case) particle
velocity. One can see in Figure 8.1.6(b) that the spacing between S-wave
fronts decreases as the corresponding particles pick up speed. Particle
velocity corresponds to group velocity in the wave picture, but one needs
more than a single energy ¢ (or frequency v = e/h) to observe it. The
connection between action “wave fronts” and quantum waves will be dis-
cussed shortly.
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It should be noted that the S-wave fronts do not generally have simple
analytic expressions, particularly when one requires constant energy. The
“bat’s head” wave fronts in Figure 8.1.6(b) may be obtained by solving cubic
equations derived from (8.1.24) and (8.1.25) at each point along a trajectory.
The S, equations (8.1.28) are deceptively simple equations for displaced
circles; however, that is not for constant energy. Correct T(e) dependence
leads again to cubic equations. So, even for this simple sophomore mechanics
problem the analytic treatment of action is difficult!

Since exact analytic action expressions are going to be difficult or impossi-
ble in most problems, one needs to try other approaches. A general num-
erical approach which turns out to be quite simple involves numerical
integration of the first-order Hamilton’s equations:

s 8.1.36

q—g, ( st a)
i o 8.1.36b
p= —a, (8.1.36b)
S,=L=pg—H. (8.1.36¢)

In this way an arbitrary Hamiltonian (even a time-dependent one) can be
converted into a family of trajectories and action surfaces. The desired
constant-S,, surfaces are contours of constant = (S, + Ht). In fact, this
technique for solving the HJ partial differential equation is known as “in-
tegration along characteristics.”” For this reason §, is also known as a
characteristic function or integral.

We will consider how the classical equations of motion may be used to find
multidimensional quantum eigenfunctions using coherent wave and wave-
packet propagation properties. Now we consider the elementary connection
between the S waves of the HJ equation and the ¢ waves of the Schrédinger
equation.

I

D. Semiclassical Approximation for Schrédinger Equation

We have seen that the action function S, behaves very much like a wave
phase function. It is instructive to study the substitution

W(r,t) = poe™r/t (8.1.37)

in Schrodinger’s equation:

a
i = Hy = [(1/2m)p? + V(r)]y

= —(K/2m) V2§ + V(1) .
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The result is (we drop the subscript , from the action)

EN . , a8 \?
—lﬁa = —y(hi/2m)V-S + ¢ (1/2m)(a) +V

hi/2 VZS—aSJrH » 8.1.38
(ti/2m) V'S = =+ H| r (8.1.38)

In a limit in which the left-hand term vanishes, the Schrédinger equation
reduces to the HJ equation (8.1.17). This is the semiclassical limit in which
hV3S < (VS)? =p? or

d’s dp 5
hw =hzx~ < p-.

By using the de Broglie relation p = Ak = h /A this becomes
dk
I k<k=2m/). (8.1.39)

This states that the wavelength should be small enough so that the percent-
age change of momentum over a wavelength is a negligible fraction.

E. Huygen’s Principle and Semiclassical Mechanics

The properties of envelope curves generated by contact transformations in
semiclassical mechanics are closely connected with Huygen’s principle of
enveloping wave crests in the study of optics. In both studies there are wave
fronts generated by functions S(r, : r) which depend upon extrema or station-
ary values of path integrals.

Consider a hypothetical action function S,(r,:r) which would generate
the curves (or surfaces) indicated in Figure 8.1.7; i.e., Sy(r,: r) = 10, 20, and
30 for fixed r,. Consider two points ry, and r}, on the S;(r,:r) = 10 wave
front. They both required an accumulation of (at least) 10 units of action S,
for a trajectory that started at their common point of origin r, with energy H
held fixed. From each of these points one might generate a new set of
constant action surfaces: Sy(r;y,r) = 10 around r,, and Sy(r},,r) =10
around r},. Points on these new curves represent a total expenditure of 20
units of action since departure from r,. But, on each of these intermediate
curves there is only one point (r,, and r),, respectively) for which at least 20
units of action is required to arrive there from r,. These are the contact
points of the intermediate curves with the larger S,(r,:r) = 20 curve. The
contact points lie on the natural trajectory through the intermediate points
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gﬂ(m:r)=30

Optimal path rg to rg
—————

Deviant path rg 10 rag

Figure 8.1.7 Comparison of paths and wave fronts for discussion of Huygen’s
principle. Paths which have locally extreme (i.e., minimal) values of S, will lead to
constructive interference and the formation of wave fronts which are envelopes of the
wavelets belonging to nonextreme paths.

r,, and rj,, respectively, since they correspond to extreme values of S,
according to the least-action principle.

To arrive at r,, by way of rj,, for example, would require more than
20 action units. Figure 8.1.7 indicates the value would be 30; i.e., Sy(ry:riy)
+ Sy(rio :ry) = 30. Only for trajectories which pass over or very near to
r = r;, will the action S,(r;:r,,) achieve this minimum stationary value of
20 units.

In wave optics the same sort of reasoning is applied, only the §;; function
is replaced by the optical travel-time function T(r,: r) -

T(ry:r) = frn ds,

Tg

(along optical path)

where n = n(r) is the local index of refraction. The function T is called the
INDICATRIX or “slowness” function, since the index n is inversely propor-
tional to optical phase velocity. According to Fermat’s principle, travel time
“T(r,:r) is minimum for an optical path. The reason for this is that only the
light near a stationary path will undergo constructive interference with other
waves following nearby paths. Light waves which take the “wrong paths”
interfere destructively; i.e., they “beat” each other to death!
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Similarly, there are “wrong paths” in classical mechanics, such as path
(roriory) in Figure 8.1.7. The right paths, such as path (ryr,yr,), satisfy
Newton’s, Lagrange’s, or Hamilton’s equations along their entire lengths and
thereby achieve locally minimum (and stationary) accumulations of the action
Sy This leads to an accumulation of the wave function due to constructive
interference. The resulting waves have crests which parallel the enveloping
constant action surfaces. (§;; = constant.)

The wavelike properties of action are one of the ingredients of the theory
for Feynman’s path integrals. The action functions are the phases of propa-
gators which can be time dependent as in the following:

<I‘1, t1|l‘o, t0> ~ eiSp(ro,tO:rl,tl)
or time independent with energy fixed as in the following:
(rylrg) = e'Sutrory),

Here (A|B) is the quantum probability amplitude for going from B to A4 as
introduced in Section 1.1. Note that the completeness relation for amplitudes
would require the following:

<l‘1|l‘0> — Z(rlll"><l”|ro> e~ ZeiSH(l'oir’)"'SH(r’i"l)

r r

= eiSH("Oﬂ'l).

This is an algebraic statement of Huygen’s principle as it applies to semiclas-
sical paths. It also represents the starting point for the Feynman path-
integral approach to quantum mechanics. This approach generally requires
sums over all paths between end points.

The technology required to perform sums over all possible paths has not
been developed to the point where it is generally applicable. For this reason
the Feynman-Huygen path-integral approach to quantum mechanics is not
used as much as it might be. However, for oscillating and rotating molecules
there appears to be some simple ways to circumvent some of the difficulties
associated with evaluating path sums. These new approaches involve the use
of wave-packet or coherent-wave states, and this is discussed in the following
sections.

8.2 COHERENT HARMONIC OSCILLATOR STATES

The eigenstates and ladder operators for a harmonic oscillator Hamiltonian
of the form

H=(1/2p)p* + (pw®/2)x* = h(a'a + }) (8.2.1)
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were derived in Section 4.4 for the case (w = 1). Excited eigenstates |n) may
be defined by

In) = (a")"10) /v ! (8.2.2)
in terms of action on a ground state |0) by the creation operator
a' = (pw/28)X(x - ip/uw). (8.2.3)

The destruction operators a = (a') and a' generate an algebra whose
representation in the |n) basis is defined by

atln) = vn + 1ln + 1), (8.2.4a)

aln) = vynln — 1), (8.2.4b)
and

Hln) = ho(n + 3)in). (8.2.5)

The ground-state wave function

(x10) = o(x) = (mw/mh)/ e terms
= Noe ™" (8.2.6)

has the indicated Gaussian form. Using operations (8.2.2) and (8.2.3) one can
generate from ¢, the other eigenfunctions

U(x) = No(2)""H(y)e ™" /¥n ! (8.2.7)

in terms of the well-known Hermite polynomials H,(y) where the rescaled
variable y = (uw/#)'/?x is used. [Recall Egs. (4.4.68)-(4.4.70).]

Now we consider other types of states or wave functions which can be
generated from |0) or #y(x). Throughout the preceding chapters we have
emphasized the use of states of the form g|0) or P#|0) generated by action
of group translation or projection operators on a localized state. Here this
will lead to the idea of the coherent state and theories of wave-packet
propagation.

The idea of translating the ground state is actually a quite natural one.
Upon encountering a pendulum, spring-mass system, or other harmonic
oscillator sitting quietly somewhere, most people would have the urge to
disturb it. Some might simply pull it off its equilibrium position and let it go,
while others more prone to violence might deliver an additional hefty
impulse of momentum. We now do the same using various operators on the
ground state [0).
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The operator which moves a wave function by x, units in the translation
or displacement operator defined by

D(xy) = e %00/9%) = g=ixor/h (8.2.8)
It performs the following functional translation:
D(xg)x(x) = e/ ™y (x)

1% ax? 3y
= —xo—| + (x3/20)—=| - (x3/30)=| + -+~
x(xo) Yogy o ( o/ )8x2 0 ( o/ )6x3 0

= x(x —x,). (8.2.9)

Similarly, the operator which boosts momentum by p, units is defined by
B(p,) = e'Po*/% (= e Po®/%P)y (8.2.10)
where the parenthetical expression is the momentum space representation.
When combining these operations one observes that they do not commute

and so the question arises: Should displacement or boost go first? A fair
settlement involves defining a symmetric combination as follows:

O(xg, py) = et/ MXpox=om), (8.2.11)
Then we use a special case of the Baker-Campbell-Hausdorf theorem
et = gAeBe 4. BY2 — oBpAplA. B2 (8.2.12)
which holds if
[A[A4,B]] =0=[B,[4,B]]. (8.2.13)
This shows that the Q operator can be factored either way:
O( x4, Do) = 4/ PPoxe(~1/Mx0pg=(xopo/28)x, P)
= ¢~*0P0/2'B(p Y D(x4) = €70/ D(xo)B( py). (8.2.14)

We can also factor this operator when x and p are expressed in terms of
(a, a") operators by solving (8.2.3) and its conjugate. We have

(%o, Po) = eiPola+aN/Qhpw) 2 —xo(a—aYuw /28)/?

P ¥ H] —af Tead
= %04 tafa _ , aoao/zeaoaeaoa, (82153.)
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where we define a phase space position number

ag = [x0 + ipo/(nw)](pw/20). (8.2.15b)

Also, the commutation relation [a, a’] = 1 was used.
Let us define by |a,) the state obtained by operating with Q(x,, py) on
the ground state |0):

|(10> = Q(xo,po)l()) = e_“xolz/ZeaoaT|0>
= e7al/2 Y (agat)"|0) /nt. (8.2.16)

Here only the creation operator exponential contributes since (a|0) = 0).
Using (8.2.2) one finds the expression

lagy = e /2 Y (arg) Iy /¥ L, (8.2.17)

which is the COHERENT or MINIMUM UNCERTAINTY wave-packet
state. This type of state was first considered by Schrédinger and later applied
and generalized by Schwinger, Glauber, and others. We consider its dynami-
cal properties as time evolves.

The time evolution operator

T(t,0) =e "/t (8.2.18)

produces solutions (Ix(¢2)> = T(¢, 0)|x(0))) to the time-dependent
Schrodinger equation (iz|y) = H|x ). The evolution of eigenstates is simple:

[n(1)) = T(1)ln(0)) = e~ 1/>n(0), (8.2.19)

that is, no change except for an overall phase factor whose angular frequency

is determined by the energy eigenvalue (8.2.5) and Planck’s law (w = E /h).

However, the evolution of a combination of eigenstates such as (8.2.17) may

be much more complicated because different frequencies interfere.
Applying the evolution operator to coherent state |a,) yields

T(t)la0> - e—|a0|2/2 Z(ao)"e_i“”(”+l/2)|n>/\/;l—!

| 2 o (8.2.200)
= g iwt/2paol" /2 Z(aoe'”"t) ln)/\/;'

n

This can be expressed in a simpler form:

T(t)lag) = e *la,), (8.2.20b)
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where the position number simply rotates with frequency o« in the complex
plane:

a, = age ', (8.2.20c)

It is instructive to regard the complex quantity «, as the POSITION PHA-
SOR. A phasor is a common visualization aid which was introduced in
Section 2.6 for discussing classical oscillation. Phasor space is the same as
phase space except that the momentum or p axis is scaled down, by a factor
(pw) so that all orbits are circular. It is pedagogically useful to regard the
complex a,-phasor vector as a clock’s sweep second hand which, according to
(8.2.20c), moves clockwise at the rate of w rad - Hz.

Therefore, the picture of an evolving coherent state is fairly simple:
Imagine a phase space wave packet centered on the tip of the phasor «, and
orbiting around the phase clock as in Figure 8.2.1. The uncertainty (ApXAx)
is the same for this state at all times as it is for the ground eigenstate, i.c., the
absolute minimum value allowed by Heigenberg’s relation:

(Ap)(Ax) = h/2.

The coherent or minimum uncertainty state is just the ground state pulled off
center in phase space.

Figure 8.2.1 Sketch of wave packet rotating in phase plane. Corresponding classical
phasor is indicated by vector a at the center of the phase plane distribution.
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In order to plot the coherent wave packet in coordinate x space one needs
the time-dependent translation operator in spatial form. Using the notation
O(a) = Q(x, p) the time transformation of Q is

TQ(aO)TJ’ = eaOT’faT+a?;TaTT — exp(aoe—imza+ + ageiwta)

- 0(a,), (8.2.21)

where the creation evolution is Ta'Tt = e ~*“’a". The classical phase compo-
nents

X, =Xxyco8 wt + ( po/pw)sin wt, (8.2.22a)
D, = D COS wt — Xopw sin wt (8.2.22b)
of phasor
; 172
a, =[x, +i(p/pw)|(po/2h) (8.2.22¢)

are determined through (8.2.15b) and (8.2.20c). These components are the
la,) expnectation values of position and momentum. This follows from the
action of (a) and (a') on |a,) using (8.2.4):

ala,) = a,la,, (8.2.23a)
(a,la" = a}{a,l. (8.2.23b)

Then one has

(axla,) = 2h/pw)*(a, +af)/2

=Xx,, (82243)
(a,lpla,) = Qpoh)*(a, — a¥)/2i
=D, (8.2.24b)

The expectation value for the energy is constant, but the classical and
quantum values differ slightly. The classical value is
E = (p,2/2,u,) + jpwix? = la,*he = lay|*he

(8.2.25)
= (a,ld'alaYho = (Mho,

where we note that average n is equal to ||’ The quantum expectation
value

E,={a|Hla,) = a,ld'a + jla,)ho
= Ey + ho/2 (8.2.26)
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is greater than E_ by the zero-point energy. The zero-point energy is the
energy of state |0), which is the only state which is both a coherent state
(a = 0) and an eigenstate (n = 0) for the harmonic oscillator.

We can now derive the coherent wave function as a function of time.
Combining (8.2.20) and (8.2.21), we have

Xao(x,t) = <X]T(t,0)|a0> = <x|Q(a,t)|0>e—iwt/2‘
Now rewriting Q using (8.2.14), we obtain

Xa( %) = €752 xIB( p,) D(x,)I0)e /2

£

— e—ix,p,/2h+ip,x/hD(xt)X0(x)e—iwt/Z’ (8227)

where (8.2.10) was used. Finally using (8.2.6) and (8.2.9), we get the coherent
wave-packet formula:

X X [) = eix,p,/Zh—iwt/Z{NOe~(;Lw/2h)(x—x,)2+ip,(x—x,)/h} (8 2 28)
a\ > . 2.

The real part (Re x,) and modulus (|y,|) of the coherent wave functions
are plotted in Figures 8.2.2(a) and 8.2.2(b). Ten snapshots are shown for
equal time intervals following the setting of classical initial conditions (x = x,,
p = 0). The x, value is chosen so that the classical energy E, = |ay|*hw is
exactly five quanta (5fiw) in Figure 8.2.2(b) and 20 quanta in Figure 8.2.2(a).
Note how the wave packet develops phase wrinkles inside a Gaussian
modulus envelope as time increases. The envelope follows a classical oscilla-
tor trajectory but does not change its shape. The wrinkles inside are simply a
measure of the momentum that packet has at each instant. It is interesting to
note that the packet develops a wrinkle long before it has moved even a
fraction of its length. This is because momentum and position grow linearly
and quadratically, respectively, with time.

Because of this “early wrinkling” the quantum overlap of the y (¢) packet
with the initial x,(0) function will vanish long before the packet has moved
out of its initial neighborhood. One might view the wave packet as moving
uniformly around the phasor clock in Figure 8.2.1, so that initially all its
motion is along the imaginary p axis of momentum.

The bracketed factor in the wave function (8.2.28) represents the Gaussian
packet with average momentum p,, and it is centered around position x,.
The phase factor outside the bracket can be shown to be consistent with
some fundamental views of quantum theory which are loosely referred to as
action integral formalism or Feynman path integrals, which is mentioned in
Section 8.3.
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Figure 8.2.2 Coherent state wave packets at various times during oscillation.
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According to these views one can associate each classical path with a
so-called propagator 8 of the form

9 = eiS/t, (8.2.29a)

where S, is the principal action function given by (8.1.4); that is,

Sp = fo ‘L, (8.2.29b)

and L is the Lagrangian function which is related to the Hamiltonian H for
the harmonic oscillator as follows:

dx
L=p*/2u ~ (ne’/2)x* =p— ~ H. (8.2.30)

If in the integral involving just px [the integral of L without the H term is
the “reduced action” S, given by (8.1.7)] one takes coherent state expecta-
tion values of x and p, then one has

Sy = f(;p, dx, = [[2n(E, - (no?/2)x2)]"” dx,

=x,p,/2lo + (E./w)sin"!

pw
V2RE x’)
KL 0
= (x,p, — XoDy)/2 + Et. (8.2.31)

Now by including the expected value of the H term (ie., E, = E, + hw/2)
the propagator becomes

g = 'SP/t = ei(xmrx(;po)/M—iwt/Z’ (8.2.32)

which agrees with the phase factor outside of (8.2.28) except for the initial
phase x,p,, which was set to zero.

8.3 COHERENT WAVE GENERATION OF EIGENFUNCTIONS

The coherent wave x,(x,?) is a combination of oscillator eigenfunctions
(x|n) = x, (%)

2]

Xo(%,8) = Y. cfxln)ye int1/Dui (8.3.1a)

n=0
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where the coefficients
c, = e (a)" /yn (8.3.1b)

follow from (8.2.17) and are amplitudes of a Poisson distribution. Examples
of this distribution are shown in Figure 8.3.1 for a variety of a values. These
are simple cases of what are called Frank-Condon overlap distributions in
vibrational spectroscopy. Each distribution peaks for the coefficient ¢, for
which n is nearest to |a|®. The width of each distribution is roughly
determined by

1/2 1/2

An = ((n?) = (n)) (83.2)

= lal = (n)'2,

= ((ala'aa’ala) — (ala’ala)?)

i.e., the square root of n. For values of n outside of this width the coefficients
C, decrease rapidly. Hence, it is well known that y, can be well approx1-
mated by a relatively small number (~ 2vn = 2|a|) of terms in its infinite
sum representation (8.3.1).

Until recently, it was not known that the “inverse” was true; that is, the
same small number of time snapshots of a propagating y(x,t) wave could
be combined to produce eigenfunctions y,. Since 1975 Heller, Davis, Tan-
nor, Deleon, and others have shown how to produce eigenfunctions in a
variety -of multidimensional potentials using this “inverse” idea. We consider
the derivation of these ideas in connection with the one-dimensional har-
monic oscillator.

The ideas are based upon an approximate but discrete Fourier inversion
of expansion (8.3.1a) in the following form:

tho1

Z Xa(x’ tp)ei(m+1/2)wz,,
1,=0 (8.3.3)

= Y eiup@hgimaty Nye (e /20X x —x Y —ip x—x)/ B

I

Cpl x|m)

This approximate expression (8.3.3) would be exact if the sum was replaced
by an integral ((1/7)/] dt), but here we are interested in showing that it is
still very accurate for just a small number N of order N ~ 4ym if we choose
la| = vm . For example, 10 terms (N = 10) or “snapshots” of y_e'®" with
la|> = 5 and a phase ¢(1) = (m + 1/2wt, for p=0,1,...,9 with m =5
are drawn one above the other in Figure 8.3.2(a). Their sum is shown below
in Figure 8.3.2(b) and it is seen to accurately reproduce the fifth excited
eigenfunction {x{5).

This inverse generation process might be described as an accumulation or
“painting” of an eigenfunction by an oscillating phased packet. The accumu-
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;L —

|a]® = 5.8 Coherent wave

(a)

1@-Term tyime sum

Exact wavefunction

(b}

Figure 8.3.2 (a) Phased snapshots of coherent state. (b) Sum of snapshots in part (a) i
yields approximate eigenfunction. i
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lation of the same packet (i.e., |a|® = 5) with a different phase (say one
corresponding to m = 4) approximates a different eigenfunction (say {x|4)).
In fact, one can try fractional m (say 4.75) in the phase, but such phases will
cause the wave to destructively interfere or beat itself to death as time goes
on. Only the integer values of m will continue to add constructively and to
accumulate more and more of a particular eigenfunction {x|m) period after
period. For integral m the phased packet is exactly\periodic so only one
period is needed. Any detuning of m from an integer leads to beating instead
of accumulation; that is, the amplitude behaves like an undamped oscillator
responding to a detuned force. We will come back to this idea of “tuning”
later on.

Let us consider what the error will be in the approximation (8.3.3) for
varying la|® and m. Consider a sum over N equally spaced time intervals
within one oscillator period (1 = 27 /w) of the form

Inoy o N-1
(1/N) T xal5:1,)e 1% = F e nlx)(1/N) X eln—mimess,
t,=0 n=0 t,=0
 (83.4a)
where
t,=2mp/N (p=0,1,2,...,N—1) (8.3.4b)

and (8.3.1a) was used. The sum on the extreme right-hand side of (8.3.4a) is a
geometrical series which appears repeatedly in theoretical optics and spec-
troscopy. Setting 6 = 27w(m — n)/N one has for this series the following:

N-1
S= ) e =(1+e? +e2 4 ... £ N-DOY (8.3.5)
p=0
or
eiSE _ ei5 + eiZ:S 4+ e +ei(N—l)5 + eiNS

Subtracting the two foregoing series and solving gives

3= (1-e™)/(1 - e?) =eN"19/2[sin( N5 /2)] /sin(6,/2)
= /N =Dmm=m/Nisin w(m — n)] /sin(w(m — n) /N). (8.3.6)

The 3 function is called the spectral function in Section 8.4B(b). Here it
determines the relative amounts of various eigenfunctions {#|x ) which would
show up in the wave-packet accumulation (8.3.4). If m is an integer then the
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following expression results:

2 = N[amn + ei(N_l)ﬂ(Bm,n+N i am,n—N)

+ei2(N_1)Tr(6m,n+2N i 6m,n-2N) + ] (837)
Substituting this into (8.3.4a) yields

In-1

(1/N) 2 xa(x,1,)em /20t
t,=0
= cm<m|x> + ei(N—l)‘rr(cm+N<m + Nlx) + cm_N(m — N|x>) 4 -
(8.3.8)

If N is large enough that ¢,, . nsCpnyon»---» CtC. are small compared to c,,,
then (8.3.3) is a good approximation of the mth eigenfunction. Figure 8.3.1
shows the magnitude of the first correction coefficient cs, ,, on the right-hand
side of (8.3.8) for (N = 10) and (m = |a|® = 5). The correction is a fraction

c1s/cs = [(5%/151) /(5 /5] = 0.0299 (8.3.9)

of the desired result, that is, about 3%. This is about the error that is
observed in Figure 8.3.2(b), and it shows up mostly at the turning points.
Adding two more terms (N = 12) would reduce the error to below 1%, and
this shows how rapidly the accumulation procedure converges.

The accumulation procedure may be generalized to generate eigenfunc-
tions for anharmonic potentials. In place of the wave packet in (8.3.3) or
(8.2.28), one may accumulate the following wave function:

x(x,t) = eisp/h{Ne—<uw/2h><x—x,>2+ip,<x—x,>/h} , (8.3.10a)

where x, and p, are determined by classical Newton’s or Hamilton’s equa-
tions for the potential. The classical values are used to compute the action
function

Sp= [Lat = ['p,ax, — [<xIHIx) di. (8.3.10b)

0 0 0
The Hamiltonian energy { y|H|x) is just the expectation value of H for wave
function (8.3.10a) at time ¢. Eigenfunctions will be obtained in an accumula-

tion of (ye™’) for those energies E, = fiw for which this quantity returns to
its original value after one period. This is equivalent to demanding that

S = [pdx,~ [(H)dt = 2mnh,

which corresponds to the Bohr-Sommerfeld quantization rule.

B
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A. Wave-Packet Propagation and Spectral Quantization

We describe here a semiclassical approximation which yields approximate
eigenfunctions as well as eigenvalues. The original spectral quantization
method was developed by De Leon and Heller for treating multidimensional
anharmonic vibrational potentials. After describing the basic method we shall
demonstrate an adaptation of it to rotational wave functions. The wave-packet
quantization methods often use a minimum unceriinty state |MU(q, p)) or
wave function ([MU(q, p)) which is localized around a certain point (g, p) in
classical phase space. In the original formulation of this problem for vibra-
tional mechanics, this state was chosen to be a (g, p) translation of an
oscillator ground state. In this case the corresponding wave function
{IMU(q, p)) is a translated complex Gaussian packet such as (8.2.28) but in
several dimensions.

The method uses classical equations of motion to derive the time evolution
of the phase variables ( p(¢), g(¢)). It starts with a judicious choice of initial
values (p(0), g(0)) which have a classical energy reasonably close to the
eigenvalues that are desired. Then a path propagation state

[®()) = IMU(q(2), p(1)))et/ M5O (8.3.11)

is obtained by numerically integrating the classical equations to obtain the
phase variables (g(1), p(¢)) and the classical action or Hamilton’s principle
function §:

$,(1) = ['Lai - [Ot(Zpiq'i—Ed) dr. (83.12)

Generally, one defines a classical translation operator CT which has the
effect of changing the (g, p) parameters of the wave packet to the correct
classical values for each time ¢:

IMU(a(t), p(1))) = CT(q(t), p(t) : q(0), p(0))|MU(g(0), p(0))).
, (8.3.13)

The same CT operator can be used to set the initial wave packet, as well. The
initial wave-packet expectation value of this operator, including the action
phase, is called the time autocorrelation function:

AC(t) = (MU(4(0), p(0))[MU(g(2), p(1)))et/MSu®>
=(W(0)[¥(1)). (8.3.14)

This function oscillates or “beats” each time the evolving wave packet
returns on a classical path that is close enough to overlap with the initial




718 SYMMETRY ANALYSIS FOR SEMICLASSICAL AND QUANTUM MECHANICS

packet. The energy Fourier transform of the autocorrelation FTAC(E) pro-
vides information which can be used to generate eigenfunctions. The values
E = Eg; which are peaks of the following transform function,

1 .
FTAC(E) = 77 [_TTdt e@/MEAC( 1), (8.3.15)

can be used to obtain an approximate semiclassical eigenfunction by a
Fourier integral of the propagation state:

1 .7 .
|Epr) = ﬁf_Tdte"/")E”‘l\If(t». (8.3.16)

Finally, the desired semiclassical energy is computed by an expectation value
of the quantum Hamiltonian:

Esc =<EFT|H|EFT>/<EFT|EFT>' (8.3.17)

This last step is necessary since, as we will see, the FTAC peaks
{Egr> Efy, ...} may differ slightly from the desired quantum energy values
{Esc, Escr-- - 1 -

One way to understand the wave-packet method is to study the conditions
which would cause (8.3.15) to have a peak or to make (8.3.16) keep accumu-
lating a stationary state over longer and longer integration times. Such a peak
or accumulation implies that E has been chosen so as to obtain a phase
coherence or constructive interference each time the evolving wave packet
returns to the neighborhood of the initial packet. This occurs when the action
for a closed path satisfies certain quantization conditions. In general, these
are the Einstein-Brillouin-Keller (EBK) quantization conditions applied to
Hamilton’s characteristic function S;; or “reduced action” given according to
(8.1.7) by

Sy=S,+Et=[pda. (8.3.18)
For a closed path the EBK quantization conditions are
¢p - dq = (n + a)2mh, (8.3.19)

where « is called the Maslov constant. In terms of the principle classical
action (8.1.8) this gives

Eger + 8, = (n)2mh, (8.3.20)

where 7 is a classical period (or quasiperiod) for a closed (or nearly closed)
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path and Eg is the desired semiclassical approximation to the energy. This
may be rewritten

Egrm + S8, =(n)27h, (8.3.21)
where Epp is a peak value in the FTAC (8.1.15). Let us write this as follows:
Eir = Eqc + 2mah/T. (8.3.22)

If the Maslov constant is not zero, then the value of E. is shifted from that
of Ey;. From (8.3.14) one sees that condition (8.3.21) makes the phase in
(8.3.15) or (8.3.16) come out to a multiple of 27 after classical period 7.

Hence the wave-packet method amounts to a numerical resonance or
spectroscopy experiment in which one finds stationary states by “tuning” E
to get a peak in (.3.15) and then “painting” the eigenfunction using (8.3.16).
The resulting eigenfunction consists of a sum of a series of MU packets set
out on a classical trajectory. The last step can be accomplished with a
relatively small number of time steps. It is also helpful to “tune” the initial
conditions (g(0), p(0)) in (8.3.13) to get the strongest peaks.

The rotational adaptation of wave-packet propagation involves a different
type of minimum uncertainty state, phase variables, and classical translation
operator. The latter is a rotation operator which affects the Euler angles
{aBvy}, and these angles are the rotational equivalent of phase variables.
Recall from Section 7.4 that the angles —8, and —vy are the RE surface
coordinates. The wave-packet propagation can be viewed as taking place on
the RE surface shown in Figure 7.4.1(b).

A form for the rotational wave packet is suggested by the discussion of
angular-momentum cones in Section 7.4. A choice for a rotational minimum
uncertainty wave packet is the wave function associated with the narrowest
angular-momentum cone; that is,

IMU(0, 0,0)) = l§> (8.3.23)

A good choice for an initial wave packet is one centered on some part of a
quantizing RE surface path. Assuming that the point (8 = 0, ¥ = 0) is the
center of an RE surface hill or valley, then the Kth quantizing path would be
near to the point (8, = —Oy, y, = 0}. A suitable initial wave packet is
therefore obtained by the following y rotation of initial state (23):

IMU(0, —8%,0)) = R(0, —OF,0)[7). (8.3.24)

(Negative Euler angles are used since the rotation is defined with respect to
the body fixed frame.) The choice of initial angles is usually not so critical,
but a good initial guess can reduce computational time somewhat.
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The classically propagating wave-packet state (8.3.11) has the following
form for the rotational problem:

(W (1)) = R(a(t), B(2), ¥(t))lDDexp[(i/m)S,(1)]. (8.3.25)

The Euler angles and the action are obtained by numerical solutions of
Hamilton’s equations:

5 oH oH
= 53, 5= T s =a,B,v, (8.3.26a)
and

, =L =1J,6+J8+Jy—E. (8.3.26b)

The initial conditions (a(0), B(0),y(0)) given by Eq. (8.3.24) may be used
along with §,(0) = 0 for the action.

The autocorrelation function is given in terms of the initial and final Euler
angles:

AC(t) =(FO () = {1[RI(2(0), 0, YODR(a(0). B(1). 7))
xexp[(i/h)S,(1)]- (8.3.27)

The rotation product is reduced and represented by a Wigner D function:

AC() = (1R (ay. 8,3)| ool (i/m5,(0)]
= D};(@, B, ¥,)exp[(i/R)S,(1)]. (8.3.28)

The group product rule and the D-function formula are given in Chapter 5.
An example of a rotor autocorrelation function and its Fourier transform
(8.3.15) are plotted in Figures 8.3.3(a) and 8.3.3(b), respectively. The beats
due to the returning wave packet are shown in Figure 8.3.3(a). A peak in the
transform at energy Epp(K = 8) has been singled out in Figure 8.3.3(b).

Each of the larger peaks Epr(K) indicates a possible eigensolution.
According to Egs. (8.3.16) and (8.3.24) the following state is an approximate
eigenstate associated with that peak:

1
|Eer(K)) = lim = [ di exp[(i/m)(Erx(K) +S,(0))]

XR(a(t),B(t),y(t))l§>. (8.3.29)
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Figure 8.3.3 Wave-packet autocorrelation function and Fourier transform for asym-
metric top. (a) Function AC(z) shows beats, (b) function FAC(w) has peaks which
correspond to possible eigenfunctions.

The representation of this state in the angular-momentum basis reduces to a
Fourier transform of D functions:

<§<,‘EFT(K)> - TIi_r)IL%f_TTdt exp[(i/h)(Eer(K) + S,(1))]

XDy (e(t), B(1),y(t)). (8.3.30)

It can be shown that the coefficients (8.3.30) are always real. The coefficients
for the example chosen in Figure 8.3.3(b) are the following:

K'= 10, 8, 6, 4, 2, 0,...
(K'|Epr(8) = 0.118, 0.929, —0.339, 0.075, —0.012, 0.001,... (8.3.31)

These are to be compared with the exact values for a localized state, which
are the following:

ap = 0.129,0.922, —0.347,0.106, —0.062,0.018,... . (8.3.32)

Finally, the semiclassical energy value for the wave-packet generated state
(8.3.31) is given according to (8.3.17):

Esc(K = 8) = (Epr(8)[H| Err(8)) /( Epr(8)| Exr(8)) = 53.134. (8.3.33)

This is to be compared with the quantum-mechanical values of 53.149 and
53.146 for the (K = 8) cluster. This completes an example of the most
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elementary “bare bones” wave-packet prcagation technique. More sophisti-
cated treatments give more accurate wave functions and energy values by
taking tunneling into account.

8.4 SEMICLASSICAL RADIATION THEORY FOR SPECTROSCOPY

The quantum theory of radiation and matter is absolutely necessary for an
accurate analysis of the most detailed spectroscopic effects. However, such an
analysis may be impractical for laser experiments which involve a large
number of radiation quanta. In that case semiclassical theory of radiation is
used to treat the radiation effects as classical perturbations of the quantum
states of matter.

This section contains a description of quantum excitations in atoms or
molecules due to classical radiation fields. This semiclassical approach will be
compared with the purely classical oscillator resonance approach, which was
discussed in Section 6.5. The concept of the oscillator strength of a quantum
transition may be clearly stated through such a comparison.

Semiclassical theory of radiation and matter is usually treated using
perturbation expansions. When the perturbations are only weakly resonant,
one or two terms of such expansions contain most of the relevant informa-
tion. Perturbation techniques are discussed at the end of this section. When
the laser is resonant with a particular transition between two levels the
perturbation approach is less convenient. Then one may use the two-level
atom semiclassical approach which is discussed in the following Section 8.5.
We will set the stage for a comparison of these approaches.

The first part of this section will be devoted to developing the classical
formulation of electromagnetic interactions with matter. This includes a
rather ticklish and still somewhat controversial question of A - p versus E - r
interaction Hamiltonians.

A. Lagrangians and Hamiltonians for Electromagnetic Interactions

The derivation of the Lagrangian and Hamiltonian equations for the interac-
tion of a particle or mass u with electric and magnetic fields E and B begins
with Newton’s equation and the electromagnetic force relations:

dv JA
ME=F=q[E+VXB]=q —V<I>—6—t+v><(V><A)

This expands to the following:

dv
ot

oA
= q[—V(I) - V(v A) - (v V)A]. (8.4.1a)
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Here the electric and magnetic fields are expressed in terms of scalar and
vector potential fields ® and A, respectively:

94
E=-V6-—, B=VxA (8.4.1b)

The total derivative of A experienced by the moving particle is

dA A VA 8.4
— = — + (v V)A. 4.
dt ot v-¥) ( )

Then the Lagrangian form of the force can be written as follows;

dv dA
F=u5=q—z—V(¢)—V'A),
dv d 9
FZME = EE(qQD—qv-A) -~ V(gP —gv-A). (84.3)

The Lagrangian function defined by
L=ulv:-v)/2—-(qdP —qgv-A) (8.4.4a)

then satisfies the Lagrangian form of Newton’s equations; that is,

—— - — =0 (8.4.4b)

The canonical form for the Hamiltonian function is found by Legendre
transformation of L:

al n
H=E(1'jpj—L=v- P - L (H= 5(v-v)+q¢), (8.4.5a)
H=(1/2u)(p — qA) - (p — qA) + q®, (8.4.5b)
H=p?/2u — (a/20)(Pp- A+ A-p)+ (¢°/2u)A - A+ qP. (8.4.5¢c)

Here the canonical momentum is defined by

aL

p= ™ = uv + gA. (8.4.5d)

The Hamiltonian expression in parentheses [Eq. (8.4.5a)] is quantitatively
correct but incorrect in form, since Hamiltonians are supposed to be func-
tions of coordinates q = r and momentum p, while Lagrangians are functions
of q and velocity dq/dt = v.
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In classical or semiclassical spectroscopic theory the radiation part of the
electromagnetic fields is described in terms of plane waves:
A =¢2lal)sin(k - r — wt + ¢), (8.4.6a)
0A
e E™ =¢8E,cos(k ' r — wt + ) (where E; = 2|alw),
(8.4.6b)
VTXA=B"=kXeéB,cos(kr — wt + ¢) (where B, = 2]alk).
(8.4.6c)

The wave vector k is transverse to the unit polarization vector é. This leads to
the well-known transverse gauge conditions:

V-E®=0=V-A. (8.4.7)

Since the standard quantum representation of the canonical momentum
operator is a gradient p = (A/i)V, p - A and A - p operators then have the
same effect:

P AU() = A pu(n). (848)

The time-dependent Schrédinger equation for a wave function ¥ (r) =
{r|y) using Hamiltonian (8.45¢) is

Lo [ ((B/)Y - qA)’
lhg —Hlp = 2/.,(,

+ V(r)|v. (8.4.9)

The potential V(r) includes the electrostatic potential g®(r) and any addi-
tional atomic or molecular effective potentials due to forces which are not a
direct result of electromagnetic fields. The Schrédinger equation expands to
the following form using (8.4.8):

sl [—#292/2p + V(r) — (a/p)A - (—hiV) + (¢2/2p)A - A]y.

d
at
(8.4.10)

It is necessary to distinguish canonical momentum p(«) [here represented
by (#/i)V] from particle momentum p(8), where

p(B) = p(a) —gA (8.4.11)

follows from (8.4.5d). Under certain conditions an alternative basis or picture
can be obtained in which the particle momentum is also the canonical
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momentum. One may use a boost transformation B of the form (8.2.10) to
subtract gA from p(a) as follows:

p(B) = Bp(a)B" = p(a) — qA, (8.4.12a)
where

B = elaAe/h, (8.4.12b)

This is possible only if A satisfies the conditions of the dipole approxima-
tion. These conditions require that the radiation wavelength 2 /k is long
compared to atomic dimensions so that one may assume a zero gradient of
A (VA = 0). Using the gradient representation of p(a) it is easy to verify the
boost transformation relations (8.4.12a) in the dipole approximation.

(a) Transformation between Pictures The boost transformation B may
be used to set up a new set of base states or a new “picture.” The old
a-picture basis { -+ |r), ---} of position states is boosted into the new
B-picture basis { - - - [r)g - -}, where the following relations hold:

Ir)g = Blrda,  |r)e = BTr)g,

(8.4.13)

g{rl =LrIBY,  Lrl =4(r|B.
Now a given state |¢) can be represented by an old a-picture wave function
¥*(r) = (rly) or a new B-picture wave function defined as follows (the
conventional script # denotes a representation of the abstract B operator):

YP(r) =g(rlgp) = LrIBTI¥)
=BY(r) = eIAT Mgy, (8.4.14a)
U(r) = BYP(r) = e MR (r). (8.4.14b)

This transformation is often treated as a gauge transformation; however, it
may help to picture it physically as a boost. Neither interpretation is empha-
sized in the original literature. Synder and Richards discuss the general
quantum transformation (8.4.14), while Goeppert-Mayer gave an equivalent
classical canonical transformation. These papers are mentioned at the end of
this chapter.

The first job of the boost operator . is to reduce the momentum factors
(p(a) — gA) = —(hiV + qA) in the kinetic term of the a-picture Schrédinger
equation (8.4.9) to simple gradients:

(p(a@) — qA)Y* = Bp(a) B BY? = Bp(a)yP,
(p(a) — qA)’y* = Bp(a) ",
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Here (8.4.11) and (8.4.14) were used. The potential term in (8.4.9) is un-
changed since % commutes with all coordinate operators (Z is a function of
coordinates only):

V(r)g® = V(r)®yP =BV (r)¢*.

However, the time derivative does not commute with if dA/dt # 0:

e a
— ih— igA-r/h,. B
lh—at lhat [e U ]
P 9A
— plgAx/h|ih —_ B
e [zh ot q( Y r)d/ }

This gives the following time derivative:

P PP
ih =F|ih— + gE™ - ry?|.
i v [l " gE ri l

In the last line the vector potential relation (8.4.6b) was used. Assembling
the transformed pieces of the a equation yields a new Schrédinger equation
in the B picture:

B
ih;ﬁ—t =[-8V /2p + V(1) — gE™ - r|yP. (8.4.15)

The transformation which gives the new equation is called a change of
“picture” rather than just a change of basis. This terminology serves as a
reminder that the transformation operator B = elaAN /1 i apn explicit func-
tion of time through the vector potential. Nevertheless, the usual rules given
in Chapter 1 relate representations of operators. For example, the coordinate
representation of p(B) in the new B picture is equal to that of p(«) in the old
« picture according to (8.4.12) and (8.4.13):

s p(B)r)s =u(r'|1B'p(B) BIr)a = r'p(@)lr)..  (8.4.16)

In other words, if p(a) is represented by (#/i)V in the old picture then the
same (#/i)V will represent p(B) in the new picture. Now let us see how a
change of picture affects the interaction part of the Hamiltonian.

It is a common practice to write Hamiltonians in the two Schrodinger
equations (8.4.10) and (8.4.15) as a sum of a zeroth-order part H, and an
interaction H:

H() = Ho(u) + H(p) (n=aorf). (8417
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The interaction term for the « picture obviously has a different form than
that of the B picture:

Hi(a) =m(q/m)A - p(a) + (g°/21n)A - A, (8.4.18a)
H/(B) = —qE™ -, (8.4.18b)

but the zeroth-order term has the same form in either picture:

Hy(a) = p(a)’/2u + V(r), (8.4.19)
Hy(B) = p(B)* /21 + V(r). (8.4.19b)

If the (a, B) labeling is deleted (as it almost always is), the two H,, operators
appear to be identical. Indeed, their corresponding representations are
identical because of (8.4.16). Add to this the fact that the coordinate
operators are the same in each picture and you have what may be one of the
worst traps in theoretical physics! In extreme cases the unfortunate victims of
this trap will fail to distinguish two different pictures and proceed to equate
Hy(a) to Hy(p) and H,(a) to H,(B).

The B picture seems to be the most nearly foolproof picture because it
allows canonical momentum and particle momentum to be one and the same
thing (p = p(B) — (h/i)V). Therefore, eigenstates |n)z and eigenfunctions
dP(r) =(rln)g of HypB) behave “normally” when perturbed by H,(B). (We
shall consider examples shortly.) A stationary state such as the ground state
|0>s of an oscillator potential has zero expectation value for the particle
momentum (z<0|p(B)|0)s = 0).

In the « picture, on the other hand, the corresponding oscillator ground
eigenstate [0), of Hy(a) would have zero canonical momentum
(,(0|p(a)|0), = 0). This means that the particle momentum expectation
would be (0|p(8)10), = —gA according to (8.4.11a). This is consistent with
the basis transformation definition in (8.4.13) which takes the following form:

10)a = BT|0)g = e A"/ #|0),. (8.4.20)

Hence, the state |0), is a coherent state with momentum —gA relative to the
|0>5 state according to the definitions in Section 8.2.

(b) An Attempt to Visualize and Compare A - p and E - r Pictures
The B picture has a lot to recommend it. It seems that the interaction
Hamiltonian (—gE - r) is simpler than the expression [—(g/u)A - p +
(g?/21)A - A] needed in the « picture. Also the particle momentum is the
canonical p in the B picture. One wonders if one should not abandon the «
picture altogether.

However, it should be remembered that the 8 picture is only valid under
the conditions of the dipole approximation, and that it was derived, after all,
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from the a picture. If one ever intends to accurately describe quantum optics
involving higher multipole transitions, then the a picture will have to be the
starting point. Furthermore, one can show that particle momentum can be
canonical only in the dipole approximation.

Hence, it may be useful to understand the « and B pictures better,
perhaps to even have a picture of the two pictures. Such a picture is
attempted in Figures 8.4.1(a) and 8.4.1(b). We emphasize that this graphical
portrayal is more of a caricature or mnemonic than a real picture. It should
be used with caution. It is based upon a literal interpretation of the B
transformation [(8.4.13) and (8.4.14)] as a boost which may be objectionable
to some.

The B picture which is shown in Figure 8.4.1(b) is just a simple sketch of a
slowly oscillating E field perturbing a particle in a fixed oscillator potential
V(r). The « picture depicted in Figure 8.4.1(a) shows an atomic potential
well VV(r) attached to reference frame boosted to velocity gA/u so that the
particle fixed in this frame would have momentum gA.

The idea is that p(8) = p(a) — ¢A is always equal to the particle momen-
tum relative to the frame in which the potential V(r) is fixed and p(a) is the
momentum in the a-picture frame literally. The @ picture has no manifest
electric force; the effect of E™ is accomplished by the inertial force associ-
ated with an accelerated frame. The 8 picture is analogous to a martini olive
being stirred; in the a picture the same excitation is accomplished by shaking
the glass.

Visualizing base states |r)g = Blr), or |n)s = Bln), in these pictures
may also be instructive. States |r)s or |n)g are represented by a delta
function or wave packet, respectively, fixed relative to the potential V(r),
while |r), = BT|r)z or |n), = B'|n)g are always boosted oppositely to the
motion of the V(r) frame so that it remains fixed in the « picture. It appears
that the |n)g states will be more convenient for describing perturbations
between levels in the potential V(r) since it will not be necessary to
“unboost” the initial and final eigenstates.

It is important to note that a boost in momentum does not immediately
imply a translation in particle coordinate, since the two variables are inde-
pendent. In fact the coordinate expectations are the same in either picture,
since B and r commute:

Lnleln), =g(nlrin)g. (8.4.21)

This shows that the classical coordinate excursions indicated in Figure
8.4.1(a) are misleading; somehow one needs to picture boost without transla-
tion! However, this fact does not invalidate this visual aid for most laser-atom
excitations because the actual translations would be so very tiny. The classical
translation of the E frame relative to the A frame would be

R(r) = f(q/u)A dt = (q/n)(E,/w?)cos(¢ — wt)e,. (8.4.22)
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This is less than one nuclear radius (i.e., about 2 X 10~ '* m) for atomic
" electronic transitions (g = 1.6 X 101 C, u = 9.1 X 107! kg, w = 10%) in a
laser field of one million volts per meter.

B. Semiclassical Radiation Perturbation Theory

Perturbation theory gives solutions to the Schrédinger equation:

d
ih—|(1)) = (Ho + H)|4(1)), (8.4.23)

in terms of a basis of eigensolutions |[N) of the Hamiltonian H, when the
coupling perturbation H, is zero. The desired solution for nonzero coupling
is given by

[W(1)) = Xen(t)e ™~INY, (8.4.24)
N

where the |[N) and #w, are (supposedly) known eigenvectors and eigenval-
ues of uncoupled or zeroth-order Hamiltonian H,:

HyIN) = hwyIN). (8.4.25)

The desired coefficients c,(¢) are constants unless the perturbation H, is
nonzero. If H, is comparatively small, as it must be for standard perturbation
theory to work, then the rate of change of ¢,(¢) will be small compared to
frequencies w, associated with the excited states. The coefficient of [N ) is
written ¢y(#)e ¥ so that the unknowns c¢,(¢) serve as amplitude modula-
tion functions rather than whole amplitudes. The c,(z) modulation will
change due to interaction H, and not due to H, alone.

(a) Perturbation Expansion To derive the cy(t) time dependence we
take the time derivative of (8.4.24):

] ) dc 4
in— (1)) = ¥ [ hoycye ™MINY + ih—e~iont|NY|. (8.4.26)
at N at
The factor /4 was included so it is easy to compare this with the Schrédinger
time equation (8.4.23) using the eigenequation (8.4.25):

a
iha—[t[f(t» = (Hy+ H,) Y cppe ' | M)
t M

= Y (hoycpe M M) + cpye M H,IM)). (8.4.27)
M
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A comparison shows that the right-hand summation terms for (8.4.26) and
(8.4.27) are equal:

dc . .
Ziha—tNe"“’N'IN> = Y ¢, e M H M. (8.4.28)
N M

Using orthogonality ({ N|N') = 8,,-) we see how the time derivative of the
amplitude modulation function depends on H, as follows:

dc )
ih— = Y ¢, ein=omt{ N|H,|M)
a4

= Yo Vam- (8.4.29)
M

Here it is convenient to define

Vir = €™ (N|H,|M ), (8.4.30a)
where
Wy = Oy — Wyy- (8.4.30b)

If two or more coefficients ¢,, and ¢, are nonzero the state |(¢)) in
(8.4.24) will be nonstationary; that is, it will change rapidly even if H, is zero
and the cp’s are constant. The change depends on relative phases, i.e.,
differences like wp,, = @y — @y, Which are the “beat” frequencies of the
nonstationary state. In order to most easily see the effect of the perturbation
H, we shall choose the initial state to be a single stationary eigenstate
[(0)> = |B). This means that the modulation coefficients at ¢ = 0 are given
by the following “zeroth approximation”:

Q= 8,z (8.4.31)

To calculate the first approximation this is substituted into the equation
(8.4.29) of motion as follows:

Then the first approximation to the solution to this equation will be

1 .
(1) = by + jo dt, Vag(t,). (8.4.32)
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By repeating the substitution into (8.4.29) we obtain the second approxima-
tion, the third, and so forth.

1 t 1 t t
cQ(t) = dpp + l;j‘; dt \Vyg(t;) + (ih)2 Z[O dr, VNM(tZ)fOzdtl Vus(t1),
M

1 t t 3
(1) = (1) + —= L L [ dis Vi (13) [ dty Vigage (1) [t Vigop(1).
(ih)" p M 70 0 0
(8.4.33)
The first approximation (8.4.32) becomes
W 1 . .
cP(1) = 8yp + Efo dt, e’~e''(N|H,|B). (8.4.34)

Here we will use the B picture and the E - r interaction (8.4.18b) for a
monochromatic plane wave (8.4.6) of angular frequency w:

(N|H,|B)

—qE - {N|r|B) = —qE,cos(wt — ¢)ryg

—iwt _ iwa*eiwt)rNB- (84353)

—q(iwae

The amplitude and phase of the electric field are given by the following
definitions

E, = 2lalw, (8.4.35b)
a = —ilale'®. (8.4.35¢)

The dipole expectation value depends on the matrix element of the position
operator projected onto the electric polarization vector &:

Inserting these values into (8.4.34) yields the following amplitudes:

'np gt o )
cP(t) =8y + qu;) dt,( —wae' e 4 g¥ellonsteli)

r (ei(wNB—w)t — 1)
(1) = 5y + qﬁz[iwa.—_ -

iwa* (ei(wNB+w)t _ 1)
h b

Wyp — @ wypg +

(1) = dyp +

(wyg—w)t __ Hoygtw)t __ 1
qryglalo [ei"’(e 1) +e—i¢(e ) .

Wng — W wyg + @

(8.4.36)
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(b) Spectral Function The amplitude (8.4.36) is rewritten as follows

arysEy

[¢S(A~, 1) + e7™S(A%,1)]  (8.437)
in terms of the spectral amplitude function
S(A.7) = [(die™ = (2/A)e™ sin(z0/2)  (8.438a)
0

and angular frequency detuning parameters

AT=wyp — o, (8.4.38b)
At=wyp + o. (8.4.38¢)

It is important to visualize the spectral function since it appears repeatedly in
spectroscopy and optics. S(A, 7) is the DC (w = 0) component of a running
Fourier transform of e’ from t = 0to ¢t = 7.

The probability or spectral intensity function |S|? is given by

|S(A,7)|* = (4/8)sin?(rA /2). (8.4.39)

This is plotted in Figure 8.4.2 as a function of the detuning (A) and time
interval (7). The spectral intensity becomes more and more strongly peaked
around the detuning origin (A = 0) as time () increases. The frequency
integral of the spectral intensity function grows linearly with time:

[ dals(a, = 4" dAsin’(rA/2) /8 = 2mr.  (8.4.40)

This is the basis for the so-called “golden rule” of constant transition rates
which is discussed later. Meanwhile, the central peak height grows quadrati-
cally with time.

150, 7)|* = 72. (8.4.41)

The sidebands or fringe peaks on either side grow in a similar fashion but are
much smaller. The largest sidebands are located at approximately A =
+ 37 /7 on either side of the central peak. Their height is about 0.0452 or
less than 5% of the central peak. Concentric hyperbolas in the (A, 7) plane
are the loci of alternating zeros and sideband peaks. The zeros nearest the
central peak fall on the hyperbola

A= +27/7
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Figure 8.4.2 (Stereoptic pair) Spectral intensity function |S(A,r)|* plotted versus
the detuning parameter A (A < 0 is left and A > 0 is right) and elapsed time 7
(7 increases coming toward the observer).

or
(hA)(7) = £2mh = +h. (8.4.42)

This can be viewed as a restatement of Heisenberg’s uncertainty relation
between the energy detuning range (#A) and the time interval (7) allowed for
a given transition. One finds most of the probability within the bounds
defined by the first hyperbola.

The interpretation of the semiclassical transition amplitude is complicated
by the fact that it contains two spectral functions. The first function peaks
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when A™=0 or
® =N =0y — wg. (8.4.43)

This peak would correspond to an absorption process in which the electron
was stimulated at a precise angular frequency w to jump from beginning state
|B) to a higher state |N). The probability for this jump varies with time r
and frequency w according to |c{P(¢)|%. A good approximation to ¢(¢) for
 — wyp involves just the first spectral function in (8.4.37):
2 q er |2E 5
ICI(\})(t) I = 2];:2 > IS(wNB - w, t) I(zAbsorption: ©=wnp)* (84443)
On the other hand, if the final state |N ) lies below the beginning state |B),
then the second term would be the main contribution to an emission
probability which would then have the same approximate form:
2 2"‘ |2E z

’d\l)( I) { = q+22£ I S(wNB + w, t) I(ZEmission: W= —wyp). (8444b)

A prominent feature of the probability function in Figure 8.4.2 are the
wiggles or “beats” which occur at the difference frequency A = wyz —  or
(A = w + wpy) for fixed nonzero detuning A. This may remind you of the
response of an undamped classical oscillator of frequency wy = |wygl driven
at frequency w; = . The classical equations derived in Section 6.5 [see
Egs. (6.5.5)-(6.6.8)] give the complex position function x(¢) for an undamped
(I' = 0) initially stationary (x, = 0 = v,) oscillator of frequency w, which
experiences a stimulating force E,q cos(w,t — ¢). For ¢ = 0, the square of
the position is approximately proportional to the square of the spectral
function.

|2 =|(a/m) Eg(e™™ — e=i) /(w} — ?) [}
=14(a/m) B[ sin?[t(wg — 0,) /2] /(0F - w?)}
=[gEy/2nwo )| S(wy — oy, 1) .

In the last step the near-resonance approximation (wy = w,) is used. The
exact classical result for all frequencies and for arbitrary E-field phase (¢)
follows from (6.5.5)-(6.5.8):

Re x(r) = (qEo/n)

€S $(cos w,t — cos wyt) + sin G(sin w,t — (w,/w,)sin wyt)

@2 — o

(8.4.45)




736 SYMMETRY ANALYSIS FOR SEMICLASSICAL AND QUANTUM MECHANICS

(c) Oscillator Strength and Quantum Response An excellent test of
semiclassical perturbation theory is a rederivation of the classical response
(8.4.45) using a quantum oscillator basis. It can also be used to check E - r
and A - p perturbation schemes. In order to rederive the classical behavior
exactly it will be necessary to include both the resonant and nonresonant
spectral function terms in the expression (8.4.37) for the amplitudes ¢ (¢) of
the stimulated state. From (8.4.24) and (8.4.31) this state is

(o) =e (1B + T emowien(n)IF)),
F+B

and the expectation value of position is

(Plxlg) = Y e iorsickx ., + Y, e "@rble x 0,.
F%B F'£B

Here we assume zero ground-state position expectation (xz5 = (B|x|B) =
0), and we neglect second-order excited state contributions (cicp{Fix|F') =
0). For the harmonic oscillator states these contributions are exactly zero.
From (8.4.36) the expectation value becomes

(lxlg) =2Re Y, e "“mcpxpy

F+B
= (2glalo/h)Re Y regXpy
F+#B
y [eid’(e_iwt _ e—inBt)(wFB + w) + e—idz(eimt _ e—inBt)(wFB _ w)]
wrp — ©°

(8.4.46)

If the position is measured along the E field so rpz = x5, then (8.4.35) gives

Wlxlgy = Y, (qEOIxBFIZ/h[ZwFB oS ¢(cos wt — COS wypgt)
F+B

+sin ¢(2wpp sin wt — 2w sin wppt)] /(i — 07).

This may be rearranged to correspond to the form of the classical position
response (8.4.45) with w, = wpp and w, = w:

2wpplx Izu qF,
(Wlxly) = % {—hf—}——"
F#B K
cos p(cos wt — cos wppt) + sin P(sin wt — (w/wpp)sin wept)
wJZFB - *
= Z fFBxclassical' (84473)

F+B
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The leftover factors are called the transition oscillator strengths

frp = 20pglx /. (8.4.47b)

For the harmonic oscillator states {|B) = |0), |F) = 11, |F') = 2),...}
only the first oscillator-strength term is nonzero.

Xpp = (Flx|B) = (nla" + alO)[h/2pw00]"? = 8, [/ 200,,5]"

For this case the expectation value is precisely the classical one given in
(8.4.45) since only the first oscillator strength is unity:

fuo = 0,1 (8.4.48)
It should be noted that a naive replacement of the (gE - r) perturbation
(8.4.18b) with the equivalent (gA - p/w) perturbation (8.4.18a) would not

give the correct oscillator response. The momentum operator is related to
position as follows:

[Hy,x] = [p% x] /20 = tp/ui, (8.4.49)
and the p-matrix elements are then derived as follows:
Pnp = (NIpIB) = wi(FI|[Hy, xIBY /1 = pioypxp. (8.4.50)
The matrix element which would replace (8.4.35a) would be

(NIH,|B)

—qA - (NIpIB)/u = —q(2lalu)sin(k * r — wt — ¢) py,
= _q(ae—imt + a*ei“”)pNB/lL

= —q(ioyzae ™" + Iwxpa*e™ ) xyp. (8.4.51)

The relative phase of these terms differs from (8.4.35a) and when Wy * o
they differ in amplitude, as well. Naive replacement will not work; the entire
picture needs to be transformed, as discussed in Section 8.3. However, the
squares of each item in (8.4.51) are equal to corresponding squares for
(8.4.35a) at the point w = w,. This fact alone is sometimes used to “demon-
strate” simple equality of A - p and E - r perturbations. This sets a trap into
which many students fall.

An important spectroscopic principle involves the distribution of oscillator
strengths among the quantum transitions. The harmonic oscillator transitions
are peculiar in that the strength f,, of the (1 « 0) transition is unity while
fno is zero for n # 1. In other atomic potentials the strengths fr, could all
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be nonzero but their sum is unity as shown in the following:
ZfFB = ZszB<B|xlF><F|x|B>IJ«h
F F
= Y 2% BIx|F){FIp|B) /hi
F

= 2 Blxp|B)/hi = —2(Blpx|B) /hi = 1.

The commutation [x, p] = # and momentum matrix element (8.4.50) were
used here. This is the Thomas-Reiche-Kuhn relation for atomic oscillator
strengths associated with the motion of a single electron.

The foregoing discussion provides a quantum mechanical foundation for
the classical Lorentz model for atomic oscillator response. However, it is
based upon first-order perturbation approximations (8.4.36) and (8.4.37). It
was noted that the spectral function increases quadratically with time at
resonance [recall Eq. (8.4.41)]. Eventually such an approximation yields a
probability |c F|2 greater than one. We now derive an improved theory for an
atomic oscillator that is strongly driven by an electric field whose frequency w
is close to the resonant frequency w,; of the atomic oscillator. This is the
two-level atom approximation which is discussed next.

8.5 TWO-LEVEL SYSTEM APPROXIMATION

The Hamiltonian for a two-level model of ammonia (NH;) inversion was
introduced in Section 2.12. A representation (2.12.34) of this Hamiltonian
was given using base states {|up), |dn)}. There |up) corresponded the N
atom being “up” along the direction of a positive z-axial E field, and |dn)
corresponded to the N atom localized against the field. Symmetry-defined
eigenvectors of the zero-fiecld Hamiltonian were denoted by {| + ), | — )}
and given in terms of |up) and |dn) by (2.12.32), which is repeated in the
following using a modified notation:

11> =1 +) = (lup) + |dn)) /V2, (8.5.1a)
12) = | =) = (lup) — Ildn}) /v2. (8.5.1b)

Let us compare the representation of the Hamiltonian in each of these two
bases:

(+1HI+) (+IH -)\ [(H-S -pE
(= 1Hl+) <—|H|—>)_(—pE H+s|] (852)
(up|Hlup) Cup|Hldn)\ (H-pE  -S§
(<dn|Hlup> <dn|H|dn>) _( -s  H+pg| &32)
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The change of basis from {|up), |dn)} to {| + ), | — >} causes the tunnel-
ing parameter () or zero-field energy splitting (2.5) to change places with the
electric field potential energy parameter ( pE) in the matrix. The states | + )
and | — ) are approximate eigenvectors when the electric field energy ( pE)
is small compared to tunneling (S) since the latter is on the diagonal of the
{1 + 5,1 — >} representation. For large fields the {lup),|dn)} bases are
preferred since it is pE which resides on the diagonal in this representation.
The effects of strong versus weak constant electric fields are diagrammed in
Figure 2.12.8 and these effects are known as the elementary DC-Stark effects.

This section is devoted to so-called AC-Stark effects, which are due to
resonant oscillatory electric fields. The methods of analysis were first applied
to nuclear magnetic resonance (NMR) experiments by Rabi, Ramsey, and
Schwinger. The analogy between spin resonance and resonance of an arbi-
trary two-level system was pointed out shortly afterwards by Feynman,
Vernon, and Hellwarth. These references were mentioned at the end of
Chapter 7. The ammonia inversion maser was one of the first examples of
coherent stimulated transitions and a forerunner to modern laser technology.
The first part of the following describes the analogy and its geometrical
interpretation.

A. Two-State Schrodinger Equations

The Schrédinger equation in the {|1), |2)} basis uses the Hamiltonian (8.5.2)
as follows:

i ¥\ (H—-S —pE
Yo v,] |\ —-pE H+S

i:) (8.5.3a)

The long-wavelength (dipole) approximation for an oscillating electric field
interaction energy is given by (—gE - r), where r is the displacement of
effective charge ¢q. If the E and r are only in the z direction then the
parameter pE is given in terms of the following matrix element:

—pE/h = —(2|qE, z|1)/h = r cos(2t)

(r/2)(e™" M 4 1), (8.5.3b)

Il

Here the constant r is proportional to the interaction strength
r= —pE,(0)/h, (8.5.3¢)
where the constant

p =q{2lz|1) (8.5.3d)

is the transition dipole moment measured along the C, symmetry axis (z) of
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NH, which connects the two equilibrium positions for the N atom. The
parameters are all expressed in units of # in order to simplify the notation
for the Schrodinger equation as much as possible:

£ r ) _
P (/,1 _2_ E(e_lnt + ezﬂt) ‘/’1
i =1 | . (8.5.4a)
l/l2 E(ez.().t + e—z.().t) 7 1/12
It is also convenient to reset the energy zero (H = 0) and let
e= —2S/h (8.5.4b)

be the difference between zero-field atomic or molecular levels 1 and 2 in
angular frequency units. (Note that level 1 is below level 2 if S > 0 or £ < 0.)

For many applications one may drop either the positive or else the
negative frequency component of the interaction (2|E - r|1) to obtain the
following:

&
=
I

r R

5 Ee—tﬂt (//1

AR . . (8.5.5)
I Eel g -5 U,

This is the equation we will discuss first. It contains a complex interaction
term (r/2)e’* which exactly models a certain type of rotating NMR excita-
tion field as explained in the following. For the analogous NH; excitation it is
only an approximation, albeit a very good one.

B. Spin and Crank Vector Visualization of Two-State Hamiltonian

Either equation (8.5.4) or (8.5.5) can be visualized more easily by appealing
to the three-dimensional (R(3)) picture of the two-state (SU(2)) system. To
do this one may calculate the position of the Hamiltonian crank vector w
indicated in Figure 7.5.3. [See also Eq. (7.5.5).] The result is a crank which
flops around at laser angular frequency () in addition to its usual cranking at
angular frequency w. The Cartesian crank components are as follows for the
Hamiltonian in (8.5.5):

w,=2ReH, w,=2ImH, w,=H),—H,

= r cos (¢ = rsin (¢ =e. (8.5.6)
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If the real Hamiltonian in (8.5.4) is used, then the following crank compo-
nents result:

w, = 2rcos ¢, w, =0, w, =&. (8.5.7)

In the latter case only the w, component oscillates, but with twice the
amplitude. In the former case given by (8.5.6) the & vector traces out an
inverted cone of altitude ¢ and radius r. One may imagine the tail of the
vector fixed at origin and its tip rotating at angular velocity ) counterclock-
wise around a horizontal circle of radius r. The base circle of the cone is
centered at a point on the w. axis at ¢ units above origin.

The well-known interaction between a magnetic moment m = g§ and field
B is given by the elementary nuclear magnetic resonance Hamiltonian which
describes precession of the moment or spin vector. The coefficient g is the
gyromagnetic ratio between the spin and moment of a particle:

Hyy =m-B=gS-B. (8.5.8)

We have seen that any Hamiltonian of the form w - S causes S to precess at
angular velocity |w| around vector w. So for NMR theory the crank or w
vector is in the direction of the B field:

® = gB. (8.5.9)

In principle, the B field can be aimed in any direction in space and made to
follow an arbitrary curve. For example, it could follow the circle prescribed
by (8.5.6). If vectors w and B are stationary or moving very slowly (Q ~ 0) the
spin vector S precesses around w as shown in Figure 7.5.3b. For greater ()
values (particularly for Q ~ ¢) the spin vector S may not be able to keep up.
Then there is more complicated spin resonance motion which we will
describe shortly. For much higher values (Q > ¢) the S vector will simply
process around the average value of .

In the NH; two-level model the direction of the analogous w vector
depends on the relative amounts of the real and imaginary parts of the
interaction matrix element H,, = (2|gE - r|1). Normally, the matrix cle-
ment H,, is real and then only x and z components of w are nonzero. We
need to remember that the three-dimensional quasispin space shown in
Figure 7.5.1(b3) is a fiction. Its components should be labeled {A4, B, C}
instead of {x, y, z} as they were in Figure 7.5.1(b2) to avoid confusion with
ordinary 3-space. The electric-dipole moment or position expectation vector
{p,> = q{z) is assumed to lie along the electric field direction which is
along the molecular z axis, and so this motion is constrained to one spatial
dimension. So, how does one interpret the three dimensions of the spin vec-
tors S?
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The spin vector A or x component S, = {J,) turns out to be proportional
to the position or dipole moment expectation value:

(z) = lzly) = (PFAL + 93 Q21 z(1DY + (2)9,)
= i, 11z12) + ¢3¢, (212] 1)
= (11z|2)2 Re ¢ i,.

From Figure 7.5.2 it follows that
(z) = 2(1lz]2)8,.

For zero ficld the C, symmetry of the NH; model demands that the position
matrix element {1|z|2) is real and that diagonal elements are zero (1|z|1) =
0 = (2|z|2).

Furthermore, in the absence of electric field perturbation, the time deriva-
tive of position turns out to be proportional to S, = (J, ). Using (8.5.5) we
have the following:

d . . . .
22> = U0, + 63 + uiy + 03y

It

<11z|z>i§(wwz — R+ U, — UE)

—<11z[2)e2 Im ¢ ¢p,.
Then from Figure 7.5.2, we deduce
(2) = —2&(11z12)8,.

The components S, and S, of the S vector form a “shadow” on the
horizontal plane, as indicated in Figure 7.4.2. We have just shown that this
shadow vector can be visualized as phasor components (z, dz/dt) for the
atomic oscillator. (The minus sign on {z) indicates the natural phasor
direction is clockwise in the S, and S, plane for ¢ > 0.)

We recall from Section 8.4B(c) that a classical phasor picture of an atomic
oscillator is valid if the perturbing field is weak and () is far enough from
resonance to keep the responding phasor oscillations small. Then the S
vector oscillates very near to the §, axis and §, does not change much. Now
we see what happens to this picture as () approaches a resonant value. Near
resonance there will be a change of the third component (S,) of the spin
vector as the first two “phasor” components grow larger with the resonance.
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C. Rotating-Wave Solutions

The time-dependent Schrodinger equation (8.5.5) is characterized by a crank
vector @ in (8.5.6) whose direction rotates counterclockwise with angular
frequency () around the S. axis (or J, axis; here we shall use § and J
interchangeably to denote spin coordinates). A rotational transformation in
the opposite direction is defined as follows:

[WR) = R7(0.0. = Qo)) = M ]y). (8.5.10)

It can be applied to the Hamiltonian in (8.5.5) to stop this rotation in its
tracks. The result is the following Hamiltonian:

H® = RY(0,0, Qt) HR(0,0, Q1),

whose representation is calculated as follows:

(HR)= 2! /2 0 l e re 10\ [ g—iQe/2 0
0 e~ iQ/2 ] 2\ it 0 ei/2 ]’

— £

(HR) = l('S ’). (8.5.11)

2\r —¢

Note that the resulting H® is the same except for the off-diagonal compo-
nents which now are constant. The rotation of the crank has been stopped. If
we use the rotating R basis the Hamiltonian will be a constant matrix.

However, there is a small price to pay for using this constant Hamiltonian.
The time dependence of the transformation adds a —€)J, term to the new
Schrédinger equation as calculated in the following. Recall that a “change of
picture” usually comes with an extra term. In this case, at least, the term is
constant:

li|(/IR> (iieiﬂtlz)lw> +ei9t]z(ii|¢>)
at at at

—QJ, Ry + R'HI|y)

Il

(—QJ, + RTHR)Iy ™)
d :
or ia—t1¢R> = HR|yR),  where H¥ = (-QJ, + R'HR). (8.5.12)

So finally, the resulting equation for amplitudes

¢ = GIRYy)  (7=1,2)
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in the new rotating picture with basis {R|1), R|2)} is the following:

R e—Q r &
F] ‘!’1 ) 5 ¢’1
i— = (8.5.13a)
at| o r Q—¢ R
Z 5 > || ¥
In the rotating picture the crank vector w is motionless:
@, =2ReH}] ©,=2ImHE o, =HE -HE
=r =0 =e—Q0=A. (85.13b)

However, the direction and length of o depends on the angular frequency
detuning parameter which is the difference A = ¢ — ) between the two-level
splitting (¢) and the angular frequency (Q) of the stimulating laser.
According to (8.5.13b) the w vector is nearly aligned to the positive z axis
for high positive detuning (A > r). This case is shown in Figure 8.5.1(a).
Then as the driving frequency € approaches the resonant frequency ¢, the ©
vector becomes shorter and approaches the x axis as shown in Figures
8.5.1(b) and 8.5.1(c). The precessional motion of a spin vector S which started

ND«e Q<e Q=€

r —

i
i
!
1
+
i
'
t

(a) (b)

Figure 8.5.1 Motion in rotating frame of quasi-spin vector § around Hamiltonian «
vector. (a) Off-resonance. Rotations or “beats” are rapid and of small amplitude.
Angular beat frequency w = VA® + r? is nearly equal to the detuning (& = A = () —
e). (b) Approaching resonance. Rotations or beats slow down and increase their
amplitude. Angular beat frequency approaches Rabi frequency w — r. (c) Resonance.
Beats have maximum amplitude and minimum frequency w = r.
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out “up” along the z axis takes place on a greater and greater circle as the
detuning decreases. Since w grows shorter as A decreases, the precessional
frequency |w| decreases. It reaches a minimum value of r (rad/s) at the
resonance point (A = 0) as shown in Figure 8.5.1(c). [Recall that r is the
interaction strength in angular units given by (8.5.3¢).] This minimum angular
frequency (r) of the resonant motion is known as the RABI frequency, and it
is the frequency with which the spin “up” is carried into spin “down” and
back again in the resonant case depicted by Figure 8.5.1(c). Note that the
Rabi frequency is proportional to the field-dipole interaction energy accord-
ing to (8.5.3d). It is a remarkable property of the atomic oscillator that its
beat frequency on resonance is proportional to the driving field. (Recall that
the beat frequency of a classical oscillator simply equals the detuning
A =g — ) which depends on the stimulus frequency ) and not on its
amplitude. Also, the classical beat frequency goes to zero at resonance.)

The precessional frequency w = [w| due to an off-resonant driving field
approaches the detuning value A as A increases. The magnitude of o from
(8.5.13) is

o=V + 7. (8.5.14)

For large detuning (A > r) this approaches the usual harmonic oscillator
beat frequency (A = ¢ — ) and is independent of the field strength. The
spin vector expectation value executes small and rapid circles in the rotating
frame as shown in Figure 8.5.1(a). This corresponds to a beating motion in
the lab frame of the oscillator variable (x). Remember that the rotating
frame is revolving around the lab z axis at rate ). The beat amplitude is
approximately proportional to r (and hence to the field strength) for high A,
and again this corresponds to the classical driven oscillator.

The precessional motion indicated in Figures 8.5.1(a) and 8.5.1(b) is
studied in detail in the series of photos shown in Figure 5.3.5. While the
rotational axis vector  is constant, the FEuler phase angles « or y excite a
galloping motion that becomes more pronounced as A decreases and the
crank axis becomes horizontal. At exactly resonance values (A = 0) the Euler
phase angles freeze while the population angle 8 turns at the Rabi fre-
quency. The Euler angles can be derived by applying the axis-angle represen-
tation (5.5.1) for an axis vector o = (r,0, A) which has zero azimuthal angle
(¢ = 0) and polar angle # = tan™(r/A). The precession of the spin-up state
|1 is then given in the rotating picture as follows:

(¢5(:)) ~ (cos(wt/2) - icosGsin(wt/Z))

Ry | —isin 0 sin( w?/2)

| cos(wt/2) — i(A/w)sin(wt/2)
B —i(r/w)sin(wt/2)

). (8.5.152)
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Here the polar angle @ is given in terms of the angular frequencies r and w:

sinf =r/w, (8.5.15b)
cosf =A/w. (8.5.15¢)

Now let us undo the rotational transformation (8.5.10) or (8.5.11) which we
used to get to the rotating frame. The amplitudes in the original lab picture
have different phases but the same magnitudes:

Pi(t) = e M2,
Wy(t) = e/ 24R(1). (8.5.16)

Hence, the probability for a transition from the initial lab state |1) to a final
state |2) is given by the square of the 2-component of (8.5.15a):

() =19a(0) " = [2/0?]sin?(wt/2)
= [r2/(A% + r?)]sin (VA2 + 12 /2). (8.5.17)

For large detuning (A > r) this probability agrees with the first-order
perturbation result given by (8.4.44):

leo() P = (r2/A%) sin2(tA/2) = (r2/4)|S(A,0)[F (for A > r).
(8.5.18)

Here the Rabi angular frequency is given again by (8.5.3¢):
Irl = |pE/Al =[qE(1lz]2)|/A.

The probability |c2|2 for the two-level transition is plotted in Figure 8.5.2
using the same format as the plot of the clementary spectral function in
Figure 8.4.2.

The main difference between Figures 8.4.2 and 8.5.2 are found near the
resonance line (A = 0). The elementary spectral probability (8.5.18) is un-
bounded along A = 0 and will eventually exceed the physical limit of unit
probability. However, the exact result (8.5.17) is bounded by unity and its
value at resonance (A = 0) oscillates between unity and zero. It is interesting
to note that a perfectly resonant stimulus will actually yield zero transition
probability at the end of each Rabi period (rgap = 27 /7). The spectrum at
the end of the first period is indicated by the nearest set of peaks drawn in
Figure 8.5.2. The huge peak in the approximate spectral function (Figure
8.4.2) has been replaced by a spectral valley and the neighboring peaks have
been beefed up and pulled in toward A = 0.
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Figure 8.5.2 (Stereoptic pair) Two-level atomic transition probability plotted versus
the detuning parameter A (A < 0 is left and A > 0 is right) and elapsed time r
(r increases coming toward the observer). This is to be compared with approximate
probability plotted in Fig. 8.4.2.

In and around the neighborhood between A = +r both the approximate
quantum theory and the classical phasor picture of the Lorentz model fail.
The two-level dipole moment cannot exceed the fixed value of p = g{2|z|1)
and therefore cannot grow indefinitely like the classical oscillator without
involving more quantum levels. The maximum dipole expectation value is
achieved the first time the spin vector is driven to the equator of the spin
sphere, that is, when B = +7/2 in Eq. (7.4.2) and the states |1) and |2)
have equal probabilities. This will happen when the crank polar angle 6 in
Eq. (8.5.15) exceeds 7 /4, and this occurs when |A| is less than the Rabi
frequency |r|. When the spin vector is horizontal the transition moment is
“saturated.” Any further excitation or increase in §, actually causes the
{SxSy} phasor to shrink. Then the system enters the extraordinary regime of
“population inversion” in which the excited state |2) has greater probability
than the initial state |1). From this discussion one should appreciate how the
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infinite phasor plane of the Lorentz model has been replaced by a finite
sphere. Atomic phasor space is round!

The spectral envelope of the two-level response curve given by (8.5.17) is
the following Lorentzian function:

P(A) = r3/(A? + r?),

The half-maximum values of P(A) are A = +r. This means that the width of
the envelope equals the Rabi frequency which is proportional to the ampli-
tude of the driving field and to the induced dipole transition moment. This
increase in spectral width due to increased pumping is an elementary
example of what is known as laser POWER BROADENING. The extra
Fourier sidebands are due to the Rabi oscillation which turns the transition
on and off at a rate which depends on the field amplitude and detuning.

D. Bloch-Siegert Corrections

An exact solution for the precessing crank Hamiltonian is given by
Egs. (8.5.5) and (8.5.6). However, this is only an approximate solution to the
original Hamiltonian in Eq. (8.5.4b) for which the crank vector oscillates in
the x direction only. If we apply the same clockwise rotation operator
defined by (8.5.10) the resulting Hamiltonian matrix is not constant. Instead
of (8.5.11), we get

£ r + reit

ety L] (85.19)

1
H® = R'(0,0, ) HR(0,0,01) = >

Then the time term —QJ, in (85.12) is included and the resulting
Schrodinger equation is the following:

R e —Q 1 2iQ1 R
PRRA > 5(’4‘ re”0) 1| ¥
15 . =11 o et Q . . (8.5.20)
U2 E(re +7) — U

The off-diagonal terms ((r/2)e *?**") which oscillate at twice the driving
frequency are neglected in the so-called rotating-wave approximation. Then
the resulting equation is the same as (8.5.13a). The crank vector for the exact
Hamiltonian consists of the usual static vector (r,0,& — Q) [recall
Eq. (8.5.13b)] added to another vector of length » which is rotating counter-
clockwise at angular frequency 2{) in the xy plane. The total crank vector is
given by the following:

w, =r+rcos2Qt, w, = rsin2Q¢, w,=¢~ 0. (8521)
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If we had applied the counterclockwise rotation operator R instead of RY
we get the same Schrédinger equation as (8.5.20) except everywhere ) is
replaced by —{. The resulting Hamiltonian corresponds now to a different
static crank vector (7,0, £ + () added to another vector of length r which is
rotating clock wise in the xy plane at angular frequency 2().

In either case the precessional motion generated by the static part of the
crank vector may be perturbed by the rotating r vector. The perturbation will
be maximal when the r-vector rotation is synchronized with the precession,
The static part of the crank given in (8.5.21) generates a precession angular

rate of
/ 2
Weratic = i r2 + (8 - Q) .

Resonance may occur when this is matched by the r-vector rate:

]1/2

—20=~[(e - Q)% +r2 (8.5.22)

In the counterclockwise frame the same reasoning gives a similar relation:
1/2
20 = +[(s + Q)" +r2] . (8.5.23)

Either of the two preceding equations yield the same magnitudes for the
resonant {} values; only the sign is different. Rearranging the second equa-
tion gives

302 - 260 — (r*+ &%) =0, (8.5.24)
and the possible solutions are
Q= (e £ [462 + 3r217%) /3. (8.5.25)

For relatively small Rabi frequency (r < ¢) the radical may be expanded to
give

[462 + 3r2)"" = 26 + 3r2/4e + -+ - .
Then the possible resonances are given approximately as follows:

Q, = (1 + (r2/4¢%)), (8.5.26a)
0, = —e(d + (r2/46%). (8.5.26b)

The first result is only slightly shifted from the RWA value (Q = ¢ or
A = 0). The shifting fraction

5 = r2/4e? (8.5.27)
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is called the Bloch-Siegert shift. For optical laser-induced transitions- the
Rabi rate is typically r = 10! Hz. This is small compared to the opical
frequency which is typically ¢ = 10'® Hz. This gives a typical shift ratio of
r2/4e? = 0.25 X 10~ '2, which, until recently, would be considered unobserv-
able. However, if the Rabi rate is significantly increased or if lower-frequency
transitions are probed then the RWA predictions must be corrected.

The second solution (8.5.26b) lies at approximately one-third of the
primary resonance frequency. This subharmonic resonance is not a strong
effect when r is relatively small, but it may lead to interesting effects in other
situations.

E. Damping and the Bloch Equations

So far we have considered only the ideal pure states of the pumped two-level
system. Now a brief introduction to the real-world effects of decay and noise
will be given. This is important for any study of spectroscopy, since rarely, if
ever, are these effects totally negligible. In fact, radiative decay and other
“damping” mechanisms are so strong that they completely obscured the Rabi
two-level optical transition effects until after the laser was invented. Earlier
nuclear magnetic spin resonance (NMR) experiments were the first to exhibit
two-level oscillation and damping effects, since radiative decay is very small
at radio or microwave frequencies. The Bloch theory described below was
developed first for NMR phenomenology.

(a) Time Behavior of the Density Matrix Statistical treatment of quan-
tum ensembles rely on the density operator p introduced in Section 1.3.B.
For a pure state |¥) the density operator is simply p = [ ){¢]|. For an
ensemble of systems in various states, p will be a weighted sum of such terms.

A representation of a density operator provides a compact way to record
the components of the quasispin or Stokes-vector expectation values. For the
general pure state vector represented in Figure 7.5.2 the density matrix is the
following:

AEYTI) (1P H(P]2) Vi, YW,
(p) = =
QXTI  Q2|¥)VP|2) VI, VI,
cos? 3 e~ sin — cos 5
_ 5 . (8.5.28)
I i o ta2
e’ sin = cos = sin’ =
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The density matrix may be expanded in terms of the Pauli matrices,

i1 o cosasinf (g 1

<p>:5(0 1)+ 2 (1 0)
sinesinB (g _—; cos B (4 0
+——2_(i 0)+ 5 (0 _1). (8529)

The coefficients of this expansion include the expected spin vector compo-
nents which were given in terms of Euler angles in Figure 7.5.2 (note that
overall phase angle y disappears):

p=31+S,0 +S,0 +8S,0,

p=S1+8" 0. (8.5.30)

In general, the quantities S; = Trace(pa;) (i = x, y, z) will be the ensemble
summed expectation values for the respective components, and S, will be the
total population of the two levels together throughout the ensemble. Then
the summed spin vector magnitude |S| may be less than S;. Incoherent or
unpolarized ensembles have a zero value for the summed spin vector (S = 0).

The time derivative of a pure state density operator is given using the
Schrédinger equation:

Cap (ol ‘ <yl
= HIW)(¥| — |W)X¥IH = [H, p]. (8.5.31)

The Pauli spinor expansion in Eq. (7.5.4) relates the Hamiltonian to its crank
vector @ and overall phase rate w, (recall, also, Figure 7.5.3):

H=o0,+o0-0. (8.5.32)
Substituting the Pauli expansions for H and p into (8.5.31) yields

3S
i—o=[(w a)(S 0) = (5 0)(w0)]/2

—i[exS] "o, (8.5.33)

where the Pauli identity (o - Ao * B) + A+ B =i (A X B) has been used.
The pure state Bloch equation is then given:

aS

— =0 XS. 5.34
—=wXx$ (8.5.34)
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This is consistent with the picture of the crank vector w causing the spm
vector S to precess as shown in Figure 7.5.3(b).

(b) Bloch Equations The usual generalization of the Bloch equation to
an ensemble involves the addition of phenomenological damping terms as
follows. Let us write

S
(j?_t =wXS - [yZ(S - 5.(0))e, + 72( ) (O))e +74(S, - Sz(o))ez]
(8.5.35a)

where
v2=1/T,, vi=1T, (8.5.35b)

relate transverse and longitudinal decay rates vy, and y, to transverse and
longitudinal lifetimes T, and T, respectively. The quantities S,(0) (i = x, y, z)
are the equilibrium values to which the spin vector components tend to
decay. Generally, they are ground state values: §,(0) = 0 = §,(0), and S,(0)
=1/2.

The Boltzman population factors for an equilibrated two-level system
appear on the diagonal of the density matrix,

(py = (e—em 0 )Z-l, (8.5.36)

0 e 2P
Here the Boltzman factor varies inversely with temperature
B =1/kT, (8.5.37)
and the partition function
Z=e 1B 4 g2 (8.5.38)

depends on energies ¢, and ¢, of the two levels. The average value of the
transverse spin components for this system are zero (S,(0) = 0 = S (0)) while
the longitudinal or z component is the following:

le®h—g 228 11 —e %

1
= —T = — = —
<Sz(0)> 2 race(pa'z) 2 8—51[3 + e~92[3 21+ e—sﬂ

Here the two-level energy interval ¢ = €, — &, is assumed positive. For high
temperatures (g8 — 0) the z-component approaches zero. For low tempera-
tures (¢B > 1) the z component approaches its maximum value (S,(0) =

1/2).
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E. Dressed Eigenstates

In the rotating frame there are two directions in which the spin vector may
be placed and will remain fixed while under the influence of the RWA
Hamiltonian. These directions are along and against the o axis of the crank
vector defined by (8.5.13b). The states associated with these spin vectors are
called the dressed eigenstates. They are simply the eigenstates of the RWA
matrix H® which appears in (8.5.13a). [H¥ is simply H® plus the picture
changing term —(J, as given by Eq. (8.5.12).]

A r
HF = f _2 A (8.5.39)
2 2

The crank axis is tipped by angle 6 = tan™'(r/A) toward the rotating X,
axis. Hence you can construct dressed eigenstates by simply rotating the spin
“up” and “down” states |1)* and [2)* by 6 around the Y, axis. The
transformation matrix is [from Egs. (5.4.30) or (7.5.2)]

]
cos —sin —
<RD> = </eflﬂJ:'?g — 2 = (R<1|1>D R<1|2>D

8.5.40
Ry R<2:2>D) ( )

COS —

| 1| @

)
2

It is important to remember that the Y, axis is rotating around the Z = Z,
axis with angular frequency equal to the laser stimulus frequency (). The
dressed eigenstates are given in terms of the rotating bases as follows:

0 0
11)” = R,(0.6.0)[1)% = cos EIDR + sin §|2>R,
. ) . 6 . 0 .
12)” = Ry(01.6.0)[2)" = —sin 1" + cos 21" (8.5.41)

We check that this transformation diagonalizes matrix { Hg ).

0 0 A r 6 .8
cos ¢ sin — - - COS — —Ssin —
(RLHRR,) = 2 2|2 2 2 2
b D 6 6 r —-A 0 ]
—sin 5 cOs 5 E —2- sin 5 Cos E
@ 0
-1 (8.5.42)
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Here w is given by (8.5.15) in terms of r, A, and 6. This can be rewritten in
terms of JP which is the dressed z component.

RLHRR, = wJP. (8.5.42)

The dressed-state amplitudes follow from (8.5.41):
D _D R ¥ o R 3 4 R
v =) ="(1IRL1Y) = cos —yf + sin —u ',
D _D R 0 i 9 &
yP =PQlyy =%(2IR}|¢) = —sin 51{11 + cos sz. (8.5.44)

(a) The AC Stark Shifts The two angular frequencies ¢ and Q are
fundamental to the theory of two-level resonance. The first frequency ¢ is the
frequency of the unperturbed atomic oscillator which is the energy difference
of the two unperturbed levels divided by #. [Recall Eq. (8.5.4b).] The second
frequency (2 is that of the stimulating laser. It is helpful to regard these as
the unperturbed frequency levels for the atom and laser, respectively, and the
frequency center of gravity is the average value (¢ + Q) /2. Now we shall see
how the dressed eigenlevels are shifted from the unperturbed values & or ()
if the laser-atom coupling parameter (or Rabi frequency) r is nonzero. The
corresponding shifts are called AC-Stark shifts.

If the average value (¢ + )/2 is added to each of the dressed elgenval-
ues (£ w/2) then one obtains the following:

e+ w w—c+Q o — A o
R TR R L s
e+ o w—e+Q w—A4 o
=20t 02 a0 T ssas)

where 6/2 is defined to be the AC-Stark shift with § given by the first of the
following:

5=58(A)=w—A=(A+r2)"7 -4, (8.5.45¢)
§=8(A)=w+A=(A+r1)"" +A. (8.5.45d)

Here, A = ¢ — Q is the previously defined detuning parameter. When the
detuning is negative the “alternate” AC-Stark shift ' may be more conve-
nient to use. When the stimulus (2 is much greater than resonance frequency
e then —A > r and &’ will be a small shift while 6 will approach —2A.

The shift 8 /2 is defined in analogy to the zero-frequency (Q) = 0) shifts or
DC-Stark shifts §(¢):

8(e) =Ve* +r? —e. (8.5.46a)




TWO-LEVEL SYSTEM APPROXIMATION 755

A plot of DC-Stark levels versus the field coupling parameter r was given in
i Figure 2.12.8 for fixed two-level energy e. The shift 8(g)/2 is the difference
between the hyperbola and electric field energy asymptotes. The difference is
small when the field energy r is large compared to the unperturbed two-level
energy €.

By analogy, a plot of dressed AC-Stark levels (8.5.452) is showr in Figure
8.5.3, only now it is made versus the detuning parameter A for fixed r and &.
Again, the shift 8())/2 represents the spacing between hyperbolic eigen-
levels and their respective asymptotes. The DC shifts are indicated above the
(2 = 0) point on the left-hand side of the Figure 8.5.3. These shifts grow into

Atom-Laser
Energy
(Angular frequncy units)
AC e+ )12
DC Stark
Stark Shift
Shift s(ay2
o(e)/2
) ,
""" A A Rabi
) Splitting
Detuning — 21
Dressed A=e-Q— Q-3(4)2
Atom i
Splitting ®
Bare ) : A =w-A
Atom
Splitting o(A) =VA? + 12
€ A=e-Q
e=1.0
s 7e Laser Angular
A=e A=0 Frequency
Q=0 Q=¢ or
8(e)2 Detuning A

Figure 8.5.3 AC Stark shifts and energy levels for the two-state system. Levels and
shifts are plotted as functions of the stimulating laser frequency () or detuning
parameter A = Q — ¢ from DC (Q = 0) to above resonance (Q > ¢).
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larger and larger AC-Stark shifts as the laser frequency increases, and they
equal 6(0)/2 = r/2 at resonance. The increasing shift of the excited-state
hyperbola above the ¢ asymptote corresponds to an increasing component of
the ground state in the dressed excited state. Similarly, the ground dressed
state takes on more of the excited-state character as the lower hyperbola
veers away from the () asymptote and approaches the horizontal ¢ asymp-
tote.

To provide a quantitative geometrical interpretation of the mixing let us
consider a picture of the quantities A, 8, w, and r in Figure 8.5.4. This is a
more detailed representation of the crank diagram in Figure 8.5.1, which
shows how to visualize the relevant variables w and § as A approaches zero.
The diagram is based upon the definitions § = w — A, > = A? + r2, and the
relation

824+ rt=(0—AY +r2=28+2r> - 20A
=20w(w — A) = 2w, (8.5.46b)

and the relations (8.5.15b) and (8.5.15¢) involving angle 6. We construct three
mutually tangent circles of radii 8, A, and §'. The center of the & and &'
circles lie at the tip of the w vector, while the A circle is centered at the
origin and base of w. (Recall 8 + A = w =& — A.) This yields a right
triangle with altitude 8, base r, hypotenuse /(28w), and angle 6/2, as
indicated in Figure 8.5.4(a). According to the dressing or diagonalizing
transformation (8.5.40) the components of the dressed eigenstates relative to
the rotating frame are proportional to the base and altitude, respectively, of
this triangle. The state belonging to the lower hyperbola has the following
amplitudes in the {|1)%, |2)*} basis:

r

(7]
2 V26w
(7]
2

Cos

1P - = 5 | (8.5.47)

sin —

V20w

while the upper hyperbola belongs to the following orthogonal set of compo-
nents:

Y -5
—Ssin — .
2 V2
2)° - = | Y20 (8.5.48)
COS

0
2 V26w

On the left-hand side of Figure 8.5.2 the upper hyperbola is shifted by a
small amount ((w — A)/2 = 8 /2) above the & asymptote and a large amount

R
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Figure 8.5.4 Geometry of w vector in rotating frame for four values of detuning
parameter A and fixed Rabi frequency r. This is a detailed version of Figure 8.5.1
which shows the magnitudes of the AC Stark shifts (6 and &) and the dressed
eigenstate amplitudes (V28w and v28'w ). (a) Below resonance (A = 1.2). (b) Ap-
proaching resonance (A = 0.2). (¢) Just above resonance (A = 0.2). (d) Above reso-
nance (A = —1.2).
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Figure 8.5.4 (Continued).
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((w + A)/2 = §'/2) above the ) asymptote. The ¢ asymptote is horizontal
while the ) asymptote has unit slope in the figure. At the resonance point
() = &), the detuning parameter A changes sign. Then the shift (w — A)/2
= §/2 becomes much larger and approaches A while the shift (0 + A)/2 =
&' /2 becomes smaller as the upper hyperbola moves close to the ) asymp-
tote.

Meanwhile (for Q > ¢), the lower hyperbola moves away from the
asymptote. The corresponding lower dressed eigenstate represented by
(8.5.47) changes from mostly ground state [1)* (§ < r) to mostly excited
state |2)% (8 > r) as detuning A varies from positive to negative values. If A
is varied slowly enough, and if damping is negligible, then this process can be
used to excite two-level systems to nearly 100% inversion. When this happens
the systems are said to adiabatically follow the detuning. The angle between
the spin vector and the instantaneous crank vector is nearly invariant to slow
changes in r or A.

The Schrédinger equation for describing the adiabatic following of a
dressed state is derived now. First, the derivative of any dressed state is as
follows:

Ay X
ar

d IR},
i—RLlH =i—=
at bl¥) at

[ Y* + Rbi (8.5.49)

Suppose we let the rate d# /dt be a measure of the change of detuning. Then
the time derivative of the dressing transformation (8.5.40) is the following:

dRY, et .
—2 = — —6JER},.
"ot at y—D

The derivative of the rotating-wave ket is repeated from Eq. (8.5.12):
iy = H¥ )R
at '
Finally, (8.5.43) and the definition (8.5.44) of dressed kets give the following:
0 R ; R : R
i RLIY" = —6JFRL1w)" + RLHE R, R [)".

This amounts to a contest between a y® angular velocity of —d#/dt and a
zP angular velocity of @ around the crank:

d .
i5|¢>D = (—6IR + wIP)ly”. (8.5.50)
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When the condition d@/dt < w holds it may be possible for the spin vector
to follow the crank vector adiabatically. However, this condition is neither
necessary nor sufficient for following.

(b) Dressed Bloch Equations The Bloch equations (8.5.35) in the
dressed state basis are obtained by applying a y rotation by angle 8 to the
density operator in the rotating wave basis. This y rotation is represented in
the vector basis by a standard Cartesian 3 x 3 matrix {x]|x) = e - e},
where

D

D . .R
e X

el ef=cosd, el-ef=0, el -ef=—sind, etc.

x y
Applying this matrix and its inverse to T'® in the rotating wave basis
{eR, eR eR} gives the following transformed damping matrix expressed in the

x> Cy»
dressed basis {e?, e, e?

yrvz 1
cos§ 0 —sin@)|Y2 ~ cos§ 0 siné
arPY=1 o0 1 0 VA 0 1 0
sinf 0 cos#d . - yy)\—sin® 0 cos#b
y,c0820 + y;sin8 0 —(y; — y,)cos 8 sin b
= 0 Y2 0
—(y, — yy)cos8sin® 0  y,cos?f + y,sin’ 6

The effective crank vector for constant detuning A = & —  has only an e?
component,

o = we?,
where according to equation (8.5.15¢)
A

cos 0’

If the detuning is changing, the crank vector also has an ef component
according to Eq. (8.5.50),

= el — faP
w = we; — fe.

The dressed Bloch equations (8.5.35) then become the following:

SP = —wSP — 6SP — (v, cos? 0 + v, sin” §)(SP — $7(0))
+(y; — v,)cos 8sin §(S2 — $2(0)),

wS? - ‘Yz(SyD - SyD(O)),

6SP + (v, — v,)cos Osin 6(SP — SP(0))

— (v, sin? 8 + y, cos® 0)(S? — $7(0)).

X

. L.
o <U
Il If
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These are the equations that replace the Lorentz forced damped oscillator
model for atomic spectral transitions. Many texts have been written describ-
ing the nature of their solutions as it applies to laser dynamics and quantum
electronics.

8.6 QUANTUM ELECTROMAGNETIC FIELDS AND TRANSITIONS

The fully quantum-mechanical treatment of electromagnetic spectral transi-
tions will be given now. It begins by converting the classical em field
equations to harmonic oscillator equations for which the quantun; states are
well known.

A linearly polarized plane wave was described by the classical vector
potential (8.4.6) as follows:

A =e2lalsin(k - r — 0t + ¢). (8.6.1a)

This gives the following em fields (we neglect the nonradiative or static field
E=-Vd)

JA
E= —— B=VXA
ot
=e Ejcos(k-r—wt+ ¢) = (k X e;)Bycos(k - r — ot + ¢).

(8.6.1b)

The electric E-polarization vector at zero phase is along unit vector e;:
Eje, = 2lalwe,. (8.6.1c)

At the same time the magnetic B-polarization vector is along a unit vector
b, = e,, which is orthogonal to e; and wave vector k:

Bob, = By(k X e;) = e,2|alw/c (where k = w/c). (8.6.1d)

In preparation for a quantum-mechanical theory we shall rewrite the
vector potential A as follows:

A=a; e ®TT90 4 gf e R 0D, (8.6.2a)
where the complex phasor amplitude a = a, , is given by

a,q = —ila, le'*x1. (8.6.2b)

This will be made to give classical canonical phase-space coordinate of the
field and, eventually, the quantum field operators.

It is instructive to calculate the magnitude of the phasor for one quantum
of em action. In other words, we need the magnitude of the vector potential
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for a wave which contains one “photon” in a cavity of volume V. The time
averaged em field energy (U )V for a plane wave in volume V follows using
(cos?* wt) = %

€ 1
(U)W={—E-E+—B:-B)V
2 2upg

2

&€ a
=V 704|a|2w2 + 42—'% (cos’(k * r — ot + ¢))
= 2eq0?lal*V = 2(k?/u,)lal’V. (8.6.3)

By equating this to Planck’s quantum ({U )V = iw) we derive

ho h
la| = ‘/ m = 1/ el =A (for one photon). (8.6.4)

This is the “photon unit” of quantum field A. Note that it is an inverse root
function of frequency which in turn is proportional to the magnitude k of
wave vector k through the vacuum dispersion relation w = ck = k/ \/po¢, .

A. Electromagnetic Fields and Operators

To completely describe an electromagnetic field in a box or “cavity” we need
one phasor term like (8.6.2) for every possible value of k and for each choice
e, or e, of polarization orthogonal to k. The complete expression for the
classical A is a sum over the possible modes:

A=Y [(aklel + ay,e,)el® e 4 c.c.]
k

2
=y Y [akaeaei(""_‘"’) + a;"‘aeae‘i(""'“”)]. (8.6.5a)
k a=1

Here the k vector satisfies box boundary conditions

2
kﬁ=nﬁf (ng=1,2,...,j, B=x,y,2), (8.6.5b)

where L is the length of any side of the box. The classical electric field is

E = ia, we, e® T _ jg* ge e idkrmenf 8.6.5¢
ko a ka a
k «
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The magnetic field is

B=Y Y [ia, kbe® ) —ig, kb e 0] (8.6.5d)
kK a

where unit vector b, = k X e_/k is orthogonal to k and e,.
(a) Classical Phasor Energy Relations The classical Hamiltonian fol-

lows from an integral over volume ¥V of the energy density in (8.6.3). The
electric contribution is

U O T
UV = 5 fd rE-E, (8.6.6a)
where

E-E=) Z(iak,a,w’ea,ei("""“’") +c.c.) - (iay we, e 9D 4 c.c.)
Ko ka

iK' +K) r—i(e +w)t

/ -
E E [ aklarakawwear eae
Ka' ka
— K . i
aik(’a'ata , e, e,e kK +Kk)-r+i(e +o)t
7 ! _ .- L.
at’a'aka ’ ea, . eae’(k k) r—i(o —w)t

taypal wwe, - e e KWW o], (8.6.6b)

This simplifies if we use wave and polarization normalization conditions:

a aa®

fd3r edror— 5. WV and e, -e, =38,
The result is
gV . .
Uy =Y > [ZIaMIZw2 —a*, af o — a_kaakawze'z”‘”]. (8.6.7)
ka

The magnetic energy Ugl’ = [d®r B - B/2u, has the same form as (8.6.6) if
we do the following substitutions

£ 1
E_)B,_—O——‘)_’wea_)kbaEkxea"‘o,ea'_)k,balzk/xeal'
2 2pg

After integration the cross terms have the opposite sign as they did in
(8.6.6b). We get 8, _, kk’ = —k?in the B - B integral instead of 8, _,we =
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w* which arose in the E - E integral. The magnetic energy is

V _ .
UgV=1Y —I-L [ZIakalzk2 + a*, af kZe* e + a,kaakakze_z“‘”]
ka 0

- &V 2 2 * * 2 Diwt 2, —2iwt
Y 5 2la, ) 0? + at af 0% + a_ a, 0% . (8.6.8)
ka

In the second line of the foregoing we use the dispersion relation for light:
w? = c?k? =k*/(peq)- (8.6.9)

The change of sign makes the electric cross-terms cancel the magnetic ones.
The sum of electric and magnetic energies [(8.6.7) and (8.6.8)] is then just a
sum of elementary mode energy density values (8.6.3). That simple formula is
all we need!

UV = (Ug + Up)V = ¥ 2¢,0%a,,|°V. (8.6.10)
ka

Each mode labeled k and polarization « is described by a classical
complex phasor variable a,,. The real and imaginary parts of this variable
can be treated as classical position  and momentum P of an oscillator as
described in Chapter 7. [Recall (7.5.9) and (7.5.10).]

(b) Classical Field Oscillator Variables Let us factor the phasor ex-
pression for field energy as follows:

UV = ¥ 26V 0%a 0y, = 3 5[20yeV (als — ialm)| 202V (aks + iaim)]
ka ko

= Z%[kaa - iPktx][kaa + iPka]
ka

= ) 3(Pi, + 00%,)- (8.6.11)
ka

Note that frequency o = w(k) is a function of k. The canonical phase space
variables are

Oia = 2/egV aRs = VeV (ay, + at,), (8.6.12a)
Py, = 2wyfegV ayy = wyegV (ay, — i) /i (8.6.12b)

The inverse of the foregoing gives the original phasor variables and their
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conjugates in terms of P’s and Q’s:

1
Ay, = AL + ia™ = W(Qka + Py, /@), (8.6.13a)
1
a:a = aﬁz - iallirg = (Qka - iPka/w)' (8613b)
2yelV

The cavity energy L'V in (8.6.11) shall be the classical electromagnetic
field Hamiltonian H = H(Q. P). H describes a set of independent harmonic
oscillators. To obtain a quantum field theory we make these into quantum
oscillators. The situation is very similar to the molecular vibration problem in
which a set of classical normal modes were “quantized” in Chapter 4.

(c) Quantum Field Operators Oscillator ladder operations a and a’ were
defined in (4.4.50) in terms of coordinate and momentum operators. For each
em mode (k, «) this definition translates to the following:

7]
a,, = % (Qua + P /@), (8.6.14a)

w
ke = 1/ 57 (Qua = 1Pya/), (8.6.14b)

where boldface notation Q,, and P, indicates the quantum operators that
correspond to the classical phase variables Q,, and P, , respectively.

By comparing (8.6.14) with (8.6.13) we note that the ladder operators are
proportional to whatever operator would correspond to the classical phasor
amplitude. So with correspondences @, — Q,, and P,, — P, we have
the phasor correspondence relations:

ak=

1 . 1 .
a W(Qka + lPka/w) - W(Qka + lPka/w)

1 [ 2h h
B 2YeV ¥ w Hea = 2eq0V s

W(Qka ~ iPy,/w) = W(Qka — P, /o)

1 [ 2h + h :
2 EOV © Ay, = m Ay, (8615)

k
aka

The proportionality or scale factor (8.6.15) turns out to be the quantum
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amplitude derived in (8.6.4). Note that coordinate and momentum operators
are observables and are self-conjugate (Q = Q" and P = P7). The phasor
operator a is a complex combination of observables and therefore is not
self-conjugate.

The oscillator Hamiltonian operator for the quantum field is the same
form as (4.4.52), namely,

H = Y ho(al,a,, + 3)- (8.6.16)
Ka ’

This is the same for the classical energy (8.5.10) or (8.6.11) except for the
extra hw/2 terms which are each mode’s quantum zero-point energy. The
eigenvalues of the number operator a},a,, are the number n,, of photons
in mode (k, @). The creation or destruction operators a}, and a,, raise or
lower the photon number:

a“.nk’a"“>= /nka+1|“'nka+1.“nk’a"”>’
Ayl My M ) = Vel e = 1 My ),
b My My ) = Vi T LI Ry Mg 1),

ak,a,| S Ry, Ay ey = /nk,a,l Ryt Ny — 1---).
(8.6.17)

a’;m| R

Again, these relations are the same as before. [See (4.4.62).] Here each
additional quanta contributes an increase in A amplitude equal to the scale
factor \/h/2¢,wV in the correspondence relation (8.6.15).

The quantum A-field operator corresponding to the classical field (8.6.5a)
is found by replacing a,, and af, according to (8.6.15):

h
20V

A-T

ka

[ayq e,e® 0 + al e e Ten] (8.6.18)

The time dependence of the ladder operators is determined by the operator
equations: ihO = [H, O] [recall (8.5.3D}:

ihéka = [H’aka] lha.‘i&a = [H’ a‘;(a]

- _ - \
= —hwa,, = hwal,.

Here we use the afa form (8.6.16) of the field Hamiltonian and the
standard commutation relation (4.4.51) which is repeated in the following
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[recall also (4.4.53):
[k ala]| = 8y 1Bu o1 (8.6.19)

According to the foregoing a equations the ladder operators have the
following time-dependent phases:

aka = aka(o)eiwr‘ Ayy = ala(o)e—iwt'
The phases cancel time factors in (8.6.18) to give a time-independent field
operators

h .
- a0 + al (0)e ™ "]e,.  (8.6.20a)

A _ i
g\/ 2eqwV

The electric and magnetic quantum field operators follow:

h
20V

E= Z [—iwa, (0)e* " + iwal, (0)e ™ e, (8.6.20b)

B=Y 7 [ika,,(0)e™ ™ — ikal (0)e ™ "]b,.  (8.6.20c)
ka

When atoms are much smaller than the wavelength (A = 27 /k) of the

radiation, the fields can be simplified by the dipole approximation ¢’*'F = 1.

A= Z [aye +iwal,]e, = 2 — Quatar (8:6.20d)

26‘ wV

E= Z

250 lw[aJ{m -ale, = Z oV P..€,, (8.6.20¢)

h

2gq0V

ik[a,, — aj,|b (8.6.20f)

a*

B=)
ka

Note also the simple connection between the approximate A and E and the
canonical field coordinates Q,, and momenta P, which follows from (8.6.14).

B. Electromagnetic Quantum States and Transitions

Consider an atom coupled to an clectromagnetic cavity. Suppose this system
starts in a state in which the atomic state is [s) and all the photon numbers
ny, are definitely known. We consider some of the possible final states and
their probabilities as a function of time.
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The states of the whole system at the start and finish will be labeled |S)
and |F), respectively. The starting state |S) is a ket-ket product of atomic
|s) and radiation | -+ - n}, - ny, ") states:

1Sy = Iyl == S, = Ay e ).
The final state is written in a similar way:
\Fy=If>] - ”ia ”La' cee ),

One may picture the states by imagining atomic and electromagnetic levels
as sketched in Figure 8.6.1. A typical transition which conserves energy (more
or less) can be imagined as going from the state on one side of the figure to
the other. There we imagine that the atom jumps up from level |s) to [f)
while simultaneously a mode number jumps down one level. This is an
atomic absorption process. (The atom appears to swallow a photon.) If this is
reversed, or if the atom jumps down from level |s) to |f') while a mode
number jumps up the process is called an emission. (The atom appears to
spit out a photon.) As we will see these two processes are usually the most
likely ones.

The derivation of the probabilities for quantum field atomic transitions of
the type shown in Figure 8.6.1 are given now. This derivation uses the
first-order perturbation formula, because we only need to create or destroy
one photon:

1 .
(1) = 0 + G [t e CEIIS)

1
= bps + o-S(wps, )CFIH||S). (8.6.21a)
12
—_ pa— ]
—_g —5 __g —5
:ié —7— :ié —7 —
8 —s5 —3 __, 8 —s —a _,
¢t g e — ;4 P
i @ J— 3 .
— i —2 ., t i —> . T
X g xR |
—.—s —0 =———0 ——0 -—0 —l—_g —_0 —0 —90 0
Atomic Levels Field Mode Levels Atomic Levels Field Mode Levels
Starting State | S ) Final State | F )

Figure 8.6.1 Atom-field energy levels for initial and final states in an atomic
absorption process involving a single photon from a resonant electromagnetic field
mode.
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Here the spectral function is the following:

S(A, 1) = 261872

in(tA/2
&IA/—). (8.6.21b)

[Recall (8.4.34) and (8.4.38) and discussion of Figure 8.4.2.] The detuning
parameter A must include the difference of both the atomic and radiation
energy:

A=wrs=wp —wg= wy+ Z(nﬁa + %)wk} — [ws + Z(nfm + %)wk .
ka ko

(8.6.22)

For the absorption process depicted in Figure 8.6.1 the mode number has
gone down one step for the (ka) mode (n{, = n, — 1) while the atom went
up. All other quanta stayed the same, so the detuning is

A=wf—ws—wk=wfs—wk.

Here zero detuning corresponds to picking a mode whose frequency Wy
matches the atomic transition frequency wg,. This is similar to the semiclassi-
cal definition of absorption resonance. Compare (8.4.38b) with the foregoing
A equation.

Now we see some important differences between quantum field theory
calculations and semiclassical ones. For one thing, if you really insist on
counting every photon, then the absorption and emission processes become
clearly separated.

(a) Single-Mode Atomic Dipole Transitions The first-order S to F
transition probability |c.|* obtained from (8.6.21) is (assuming S # F)
,sin*(tA/2)

W- (8.6.23)

P = cyl*> =|<FIH,IS)|
FeS

We now evaluate the matrix element of the interaction operator (8.4.18b):

[ A
H =gE r =~ — ‘wal,  — i ‘r. (8.6.24
I q Q§ ZEO(L)V [lwaka lwaka]ea r ( )

The quantized E field (8.6.20b) is used with the dipole approximation
e'’*'* = 1. The matrix element consists of a field part followed by the usual
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atomic matrix element:

<F|H1|S>=‘IZ[<"' ”ﬁa |ia§ml ”ia>—<"‘ ’l{a |iaka| "fm>]
ka

X

2eoV e, {flrls).

The field part of this matrix element is quite selective. If more than one
mode changes its photon number the whole thing is zero. (Recall that
{nln') =3,,.) The only possible nonzero elements occur when a single
mode goes up or down by exactly one photon. The two possible types of
nonzero matrix elements are listed in the following:

h
CFIH,IS) = =i + 1 + 0]y 5= ae, -ty
0

if all nf = n* except nf, = ni, + 1
(1 PHOTON EMISSION)

h
= [0+i\/a] ﬁ/qea-rﬁ,

if all nf = n* except nf, = nj, — 1
(1 PHOTON ABSORPTION)
= 0, otherwise. (8.6.25)

The field matrix elements follow from (8.6.17) and the atomic dipole expecta-
tion value is denoted by rj; = {(flrls).

If matrix element (8.6.25) allows any transition between |S) and |F) it will
be an emission or an absorption but not both. If it allows one then the
probability for the other is zero. This is very different from the semiclassical
transition amplitude (8.4.37) in which both processes would simultaneously
have nonvanishing probability. The semiclassical amplitude is a sum of a
resonant and a nonresonant spectral function. The quantum amplitude
(8.6.21) has only one spectral function in the ¢, expression. Strict photon
counting prevents absorption from interfering with emission.

(b) Muitimode Atomic Dipole Transitions Supposc that we accept (or
are forced to accept) any of a set of possible final states going from
[FY)=1If) - ng, — 1+ ng, ') in which mode (k, &) lost a photon to
|F'y = |fyl -+ ng, " Ay — 1 -+ in which mode (K, a') lost a photon.
In each case the atom jumps up from state |s) to state |f ) but now we let it
accept a photon from different cavity modes. It is only necessary that the
donor modes have nonzero photon number and a frequency w that is close
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enough to the atomic transition frequency w, = w;— @, so the spectral
function |S|? gives a measurable value.
The total probability for the atomic f « s transition will be a sum of

probabilities fc¢ F|2 + o+ lcFll2 as though the contribution of each mode is
distinct:
ko Ko’ sin?(1A/2)
P =lcp >+ +lepl? = Tlepl* = ¥ CHD|®. (8.6.26)

fes ka ka hZ(A/z)?

Since we are effectively counting the photons from each mode the amplitudes
Cp...cp have random relative phases and interference between them 1s
washed out. Hence the total probability is the sum of thelr squares ZICFI
instead of the more complicated square of the sum |Tc|%. (Recall discussion
in Chapter 1, Section 1.1: Axiom 4.)

The sum over mode wave vector k can be converted to an integral over
k = |k| or over mode frequency @ = ck. According to (8.6.5b) the k sum is a
sum over integer values of photon number n, = k L/27=1,2,..., or

An An An
= An An An.= [dk —= [dk,— [dk —=
% L L LAnAn, An. / "Akx/ yAky[ Ak,

n n

x v

L. . .
- (; ) [k, [dk, [ak_.
Here the sum is converted to an integral over Cartesian k components using

A LAk A LAk A 1 LAk
e O e i v

This sum can then be converted to a polar coordinate integral in k space:

L\’ v . v . 2
- (2_7;) [ak - (zw)3fdﬂkfk~dk = (2—77_)3fd¢kfd0ksm0kfk dk,

k
(8.6.27)

where (¢, 8,) are azimuth and polar angles of k, dQ}, is the incremental
solid angle in k space, and ¥ = L* is the cavity volume. This reduces the
probability sum (8.6.26) to an integral over solid angle and k or w = ck:

P, = Z(—zw—ffdﬂkf:kzdklcﬂz /dﬂ/ dwlcFI

Qk/d w_331n2(tA/2)
¢ h2(A/2)

—[CHD (8.6.28)
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Now we approximate the integral of the spectral function |S(A, HI1* by
assuming that time ¢ is large enough that |S|* becomes very narrow. (Recall
Figure 8.4.2.) Then most of the probability comes from the neighborhood
around zero detuning (A = 0). We may set w = w;, and put all other
functions of frequency outside the integral:

sin®(tA/s)

(1)2 2 r*
Ja0ugasICHOT [ do w8727

| 4
P,_.= —
f ; (217)3

The area under the spectral function is simply the elapsed time multiplied
by 27 as was noted before equation (8.4.40).

Vo

kaH,HZZWt (8.6.29)

P, = Z/dﬂ

The peak of the spectral function at A = 0 goes up quadratically with time,
but the area only increases linearly. This is because the width of the peak
decreases linearly with time according to the uncertainty relation (8.4.42). As
a result the time derivative or rate R, = Pf(_s of the transition probability
is a constant in this approximation. This is known as the Fermi golden rule of
constant transition rates. We write this as

2
Ry, =L [dQup(wg)[KHD[ 7, (8.6.30a)

where the spectral density of modes p(w) is defined here:

Vw?

= —. 8.6.30b
(277)303 ( )

p(w)

The absorption dipole matrix element (8.6.25) gives the following rate if
the photon number in near-resonant modes is ny, = n:

R Vo? 27 ho
fes —-n(277)3c3 h* 2e,V

»’ q2 2 2
- he? d7e, fko(|e1 “rplt + le, - I.fSl )

The polarization sum and integral is simplified by using the vector relation

QZZfko|ea ) rfslz

Ir|>=le, -l + le, - r|* + Ik - rl?.
1 2
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If we let the induced dipole r = t be along the polar z axis then k - =
Irfslcos 6,. The sum and integral is then easily evaluated:

Zfdﬂklea : rfsl2 = fko(Iel . rfsbz + le, - l‘f5|2 + k- rfsl2 — k- rfslz)

—fdQ (1- cos™ 8, )rfs fd(bfdﬁsm ¢9lrfx|2 Irfslz.

The resulting absorption rate is

40° ¢? 5
(absorption) = n4 = N33 yr —lrl” = B. (8.6.31)

f‘_S

The corresponding emission rate is the same form except that a factor
(n + 1) replaces n in the matrix element (8.6.25):

R, _ (emission) = (n + 1)4A =4 + B. (8.6.32a)

The first term is the famous Einstein A4 coefficient, which is the spontaneous
decay rate of an excited atom in a vacuum (n = 0):
4o g-

2
: 8.6.32b
T 3k 4= gG' rr ( )

The second term is the Einstein B coefficient which is the decay rate induced
by the presence of n resonant photons:

40’ g2

3hct 4me,

B=nA=n Ir,, |2 (8.6.32¢)

B is the only contribution to the absorption rate (8.6.31) since spontaneous
excitation is impossible in this approximation.

(c) “Impotence” of Photon Number States We noted that the first-
order transition amplitude ¢’ in (8.6.21) could only have an absorption term
or ¢lse an emission term but not both. This is because the quantum field
transition matrix element (8.6.25) cannot be nonzero for both processes at
once. We also noted that the semiclassical transition amplitude (8.4.36) does
have terms from both processes. In fact, the derivation of resonant excitation
of the oscillator expectation value {x) depends upon the precise interference
between these two terms to reproduce the classical result. [Recall comparison
of (8.4.45) and (8.4.47).]

The calculation of the atomic position expectation value (¥|x|¥) using
quantum field number states is quite different and so are the results. The
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perturbed atom-field state is

W) = |8) + X e rsic,|F),
F#S

where the first-order approximation to the amplitude is
1 . )
o = 8ys + — ['dt, ers(FIH,IS),
ih /g

according to the basic time-dependent perturbation formulas (8.4.34). The
matrix element is given by matrix elements (8.6.25) between the initial state
lS> = |s>atom|nia e niv(’a’>ﬁeld and final state |F> = ]f>atom|n£a
nﬁla&ﬁeld. The atom part only requires that the induced dipole moment
qry, = {flr|s)q be nonzero. The field part is more restrictive; it requires that
exactly one mode gain or lose a single photon. The result is a perturbed state
of the form

1T = 18) = Isdlns, - nlw) + di(Ff e — 1+ Hlg) + -+
+di () )nye - Bgw — 1) + -+
+de (NI + 1 ng) + -
Fde (O InL, - A + 1)+ -+,

where the transition amplitude to a higher state [f) due to absorption from
mode (k, ) is

—iwgpt

¢ .
ia(f) = h j;)dtl eltlAwkvnka ea ) l‘f'S (A = wa - wk)7

and the transition amplitude to a lower state |f') due to emission from mode

(k, @) is

e—impt

lia(fl) = h j;)tdtl eitlAwkvnka +1 €q” rf's (A = wf'S + wk);

and w, is the scale factor (8.6.4) times frequency w and charge q.

h
2eqwV

Wia = @x4

If |s) is the atomic ground state the emission terms with d° amplitudes are
nonexistent. However, there may be several atomic states |f), |f’),... which
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can be reached by near-resonant absorption. The same goes for state reached
by emission if |s) is an excited state.

Now the expectation value (W |x|¥) can be evaluated. We write the bra
and ket on the left and top, respectively, of the box in the following, and we
collect the scalar products inside:

(Plx|¥) =

IsXInge ) +di lfdlng, — 1)+ -
(e = sl | (slxlsd{D) + d@ (slx[FY0) + -
Fdiclmg = 1o Il |+ flels)0) + 1dg, X flxlf X1y + -+ .

The sum includes only one field mode and one higher atomic state |f). This
is enough to see that all the results must be zero if the atomic states have
definite parity ((slx|s) = 0 = ( flx|f)). The orthogonality ((n,|n, — 1) = 0)
of the photon states kills the possibility of any contribution from the induced
moment matrix elements (slx|f) or { flx|s), however large they may be,

So photon number states are “impotent”; they cannot create a coherent
excitation of an atom. This is consistent with the idea that classical phase is
completely uncertain or random for a field oscillator eigenstate which has
probability distributed more or less evenly over its phase space. To have a
well-defined phase we need a nonstationary coherent oscillator state IakB)
for a mode (k, B) instead of a stationary cigenstate |7, 5> This will give a
wave packet in (QkB,PkB) phase space or (A,E) space which may have
well-defined phase as shown in the next section.

Photon number states may be “impotent” but they are not powerless.
They can create large fluctuations in expectation (W[x?|¥) even though
(¥lx|¥) is identically zero. From the foregoing calculation we get the
following:

CPII) = Gslalsd + 2, ey + . (8.6.33)

The expectation of x? is proportional to the photon intensity ny,. the square
IrfSI2 of the atomic induced moment, and the mean square x for the final
state |f ).

(d) Coherent Radiation States A much better description of a laser-cav-
ity mode includes the nonstationary coherent or wave packet states lay g
According to (8.2.17) these may be defined as follows in terms of photon
number states lnk3> for a single-cavity mode (k, B):

layg) = e lowal”/2 Y (ip) ™m0 - -) / /T, (8.6.34)

Ngg
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The complex parameter ag is the field phasor expectation value and the
quasieigenvalues of the ladder operators:

akglak3> = akﬁiak5>, <Olkﬁ|a1;(ﬂ = <ak3|a;‘:3. (8635)

Recall (8.2.23) and (8.2.24). We assume here that only the (k, B) mode is
excited and all others are in their ground or vacuum states.

The A-field expectation value should equal the classical expression (8.6.2a)
which began this section:

[ h
<akB|Alakg> = W [(ak[giak3|ak5> + <akﬁ|alg|akﬁ>]eﬁ

h

- 2gq0V [akﬁ * atﬁ]eﬁ

= [akBe”“‘" + aﬁﬁei“’]eﬁ.

In the last line is the classical value. Note that the dipole approximation
¢%'T = 1 is used here. The a has the necessary e *“’ time dependence noted
in (8.2.20c). This gives the nonstationary phase packet motion described by
(8.2.22). The relation between o and the classical amplitude a involves the
phasor and the quantum scale (8.6.4):

iout 2eqwV
— —iw
Qg = dyg€ K 7 .

The a, expectation value of the —gE - r interaction in a coherent state
then becomes equal to the classical value quoted in (8.4.35a):

<akBlH1|akB> = —iwkqeﬁ . r(akﬁe—iwl _ a*eiwt).

It has the positive and negative frequency parts needed to coherently excite
an atom.

This might lead you to believe that a coherent quantum field can repro-
duce the effect on an atom of a classical wave. Indeed, for very high «, and
short enough time the effect of the two are nearly the same. However,
eventually the coherent wave produces dephasing and rephasing effects
which are quite remarkable. These coherent decays and “revivals” are
discussed in works listed at the end of this chapter and are the subject of
much ongoing research.
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8.7 SPECTRA OF ATOM IN LASER CAVITY

When the atom interacts strongly or resonantly with an electromagnetic field
the distinction between the field and the atom is blurred. Observer and the
observed become a single entity that is more than just a sum of its parts. It is
as though the atom had become part of a molecule in which the excited levels
involve excitation of all the constituent parts.

An atom interacting strongly with a single mode of a simple cavity is
described by what is called the Jaynes-Cummings model. Here we will give a
brief qualitative sketch of states and levels of this model. This is an important
model! for beginning to understand spectroscopic effects of strong laser fields.
It is also a simple solvable example of an atom interacting with something
that has a multitude of states. This is the kind of problem one encounters
when atomic motions go together to make a molecular rotation or vibration
spectrum.

A. Jaynes-Cummings Hamiltonian

In a static electric field the two-level atomic system Hamiltonian has the
following representation (8.5.2b) in the basis of atomic eigenstates:

_ 10 1 0)_ (0 1)_ _
= H| )+5(0 _1) pE(1 O)—fnf+&5 PEa,.
(8.7.1a)

Generally the electric field-dipole factor pE is folded into the Rabi coeffi-
cient

r= —pE,/h. (8.7.1b)

In an oscillating electric field the Hamiltonian is transformed into rotat-
ing-wave form (8.5.13), which is now rewritten:

A r A r
_ 21 0 o 1y_2 r
Hgw = 2(0 _1) + 2(1 0) 20'Z+ 7% (8.7.2a)

Here the detuning factor

A=e—-Q (8.7.2b)

is the difference between the atomic transition angular frequency ¢ and the
angular frequency () of the stimulating laser.

In preparation for using a quantum field we need to separate the atomic
and radiative contributions to the Hamiltonian. In the following the terms
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which involve the laser frequency  have been collected into one term which
is labeled Hygq4:

_00_€+9(10) 1 0}, {0 1
HRW_Q(O 1) 7 o 1 “(0 0)+§(1 0)

= Hfield + Hatom + Hinteraction'

In the Jaynes-Cummings model the classical electric field is replaced by an
expression using its quantized form. However, only one mode of the field is
considered and only the dipole terms (8.6.20e) are used. We shall drop the
unit matrix term. The resulting Hamiltonian is as follows:

Hyc = Hgeq + H,

atom

+ H,

interaction >

€ g
Hy. = Qa'a + 5(0'2 +1) + iE(aT — a)o,, (8.7.3a)

Q. q{2lz|1 —
E=V 2ey  a (8.7.3)

is the Rabi factor that would correspond to a one-photon laser field. [Recall
(8.6.4).] The field amplitude for an N-photon field is proportional to VYN, so
we have the following relation between the semiclassical and quantum
interaction constant:

where the coefficient

r=gV/N. (8.7.3¢c)

We let a,, = a since only one laser cavity mode ka of frequency () = w is
being considered. By expressing o, in terms of spinor raising and lowering
operators, o, = (o, + o_), this becomes

€ 4
Hyc = Qa'a + E(O'z +1) + ia(aJr —a)(o.+ o). (8.7.4)

A final approximation to the model keeps only the interaction term a'o_ in

which a photon is created while the atom drops from the upper (1) level 2 to
the lower () level 1 and the term ao . in which the reverse process occurs:

€ -4
Hyoy = Qa'a + 5(02 +1) + iE(aTO'_— ac.). (8.7.5)
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z7 =3 zpply the Hamiltonian (8.7.5) in turn to the radiation-atom product
stzzz: with N = 0,1,2,... photons which we label {]|0)]|),
G U DI, 1221 L0, 12011, ... ). The following sequence of state
--:-s7armation equations results:
g
HiemlO1L) = (0- Q2+ 0)I0)] 1) + iE(O - 0),
g
Hyeyl011) = (0-Q +£)I0)11) + ii(mm 1 =0),
g
Hyeu DI = (1- @+ 0)IDIL) +i2(0 = V110y1 1)),
4
Hie DI = (1-Q + &)1 +i§(\/fl2>|l> - 0),
g
Hyeml2D14) = (2- @+ 0)[2)[1) +i-(0 - V211 11)),
4
Hiul11) = 2+ @+ )21 +i5(BIDI1) - 0), (8.76)

It is 2asv to see that an infinite series of two-by-two matrices results in this
representation of Hyqy:

0Ol 10>1 1) 1L Iy 1200 -

o . 0-Q+0 .
. —igy1
0f¢* . 0-Q+e¢
gyl
Al ’gz 1040
_; \/f
(| : : : 1-Q+e¢ ’i .
igyV2
QI > 2-0+0
(8.7.7)
The general form of each two-by-two matrix is the following:
IN - DI L) NI
—igVN
<hJCM>= <N— 1|<J,| (N-l)Q-F& ——E— (878)
ig/N
(NICH - NOQ 40
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In the classical limit of large N the two-by-two matrix begins to look
something like the semiclassical matrix (8.7.2a). We can write the two-by-two
part of the Hamiltonian as follows:

o= 0=03 )+ 0(g 8)ly §) - 52 )

=((N=—1ﬂ)+ EZS))(l 0)+-8;s)(é _?)4—5gz{2 ‘5) | |

“(v-nas )G 250 950 )

(8.7.9)

The Rabi factor r = g¥N for N photons is recovered. The factor of (i) is due
to our choice of phase for the field operators.

No essential physics is changed if we use the following modified Hamilto-
nian in which this phase is absorbed:

€ -4
Hjcy = Qad'a + 5(0’2 +1) + E(a*a_+ ao,).

Then we can apply the semiclassical dressed eigensolutions (8.5.41)-(8.5.46)
to the following real two-by-two matrices:

IN=DIL>  INIT

/N A L
g —_—
, N-1 N-1)Q + D 2
- 0
g\/lv 2

(NI{1] 5 NG

A r

e+ Q P b
=[(N-1)Q+ 1+ 8.7.10

r —-A

2 2

These matrices have the same eigenvectors as the semiclassical matrices. The
only difference is that the Rabi factor r depends upon photon number N and
there is a pair of levels for all N greater than zero. The eigenvalues are the
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same. 100. except for the unit matrix term which yields a ladder of doublet
cigenvalues. We examine this ladder of levels now.

B. Jaynes-Cummings Eigensolutions

An attempt to picture the dressed eigenlevels is made in Figure 8.7.1. A
column containing stacks of energy levels is shown for each of three cases of
detuning: (a) laser tuned below atomic transition (A > 0); (b) at resonance
(A = 0), and (c) laser tuned higher (A < 0). Recall that the detuning parame-
teris A =¢ — Q.

Two stacks of horizontal lines on each side of the (a), (b), and (c) columns
in Figure 8.7.1 indicate what the levels would be without any interaction
between atom and field (r = gY¥N = 0). An N-photon level in which the atom
is in the first [1) = | 1) or second |2) = || ) state is labeled |1, N) or
|2, N'), respectively. Each of these levels for N > 0 is connected to a pair of
lines in the center of the column that are shifted up and down by +68 /2. The
quantity & is the AC-Stark shift discussed in Section 8.5 (recall Eq. (8.5.45¢)).
The shifted lines are the “dressed” eigenlevels with the interaction turned on
(r = g/N > 0). The lines that connect the shorter lines to the zero-field
levels indicate the relative the greater of the two amplitudes (sin8/2 or
cos 0 /2) of the zero-field states in each the dressed eigenstates correspond-
ing to that level. Recall Egs. (8.5.47) and (8.5.48).

Below resonance (A > 0) the Hamiltonian rotation vector  makes an
acute angle (8 < 7/2) with the z-axis. The lower dressed eigenstate |1°N +
1, N) indicated at the top left-hand side of Figure 8.7.1 is mostly composed
of the atom-field product state |1, N + 1) while the higher dressed state
2PN + 1, N) is mostly composed of |2, N ).

As the detuning approaches resonance (A = 0) the zero-field levels get
lined up, the AC-shifts reach their maximum, and the rotation angle 6
approaches 7 /2. One may use the diagrams from Section 8.5.E to quantify
the variation. However, caution should be used since the Rabi parameter
r = gVN is here a function of N. In other words, the Rabi parameter which
was a constant in the semiclassical theory is now dependent upon what level
you are on. It increases with the laser mode electric field amplitude, which is
proportional to the root VN of the photon number.

At resonance (A = 0) the rotation angle is 8 = 7 /2. Then the Hamilto-
nian rotation vector @ makes an angle of = /2 with the z-axis and has its
minimum magnitude of |w| = r, which is the Rabi frequency. This was
shown in Figure 8.5.1c. The resonance values for the dressed eigenstate
amplitudes are sin8/2 = 1/v2 and cos 8/2 = 1/ V2. This corresponds to
50-50 mixtures of the atom-field product states |1, N + 1) and |2, N) in the
dressed 2igenstates |1°N + 1, N) and 2PN + 1, N ).

Above rzscnance (A < 0) the Hamiltonian rotation vector w makes an
obtuse angle - > = /2) with the z-axis. Now the lower dressed eigenstate
[1PN + 1, N = =-s:lv composed of |2, N) while the upper dressed state
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Figure 8.7.1 Level structure of 2-level atom and 1-mode cavity showing elementary
transition processes of fluorescence, Rayleigh scattering, and three-photon coherent
Stokes-Raman scattering (CSRS). Transitions are between levels belonging to dressed
eigenstates.
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2PN — 1. N is mostly composed of |1, N + 1), as shown in the upper
right-hand side of the figure.

C. Transitions in the Jaynes-Cummings Model

The diagram of levels in Figure 8.7.1 involves just one ; = mode
interacting with the two-level atom. We have ignored all the other field mode
levels such as were sketched in Figure 8.6.1. We have just concentrated on
loading photons into one laser cavity mode whose frequency 2, =  is being
tuned close to the value & = w; — w, of the atomic transition.

However, if these other modes are off-resonance by enough or only have
one or two photons, one can treat them using perturbation theory as was
discussed in Section 8.6.B. Transition rates between the dressed states of a
laser driven atom can be derived using the Fermi golden rule (8.6.30).

Some of the commonly observed transitions are indicated by vertical
arrows in the Figure 8.7.1. The strongest transitions involved the so-called
RAYLEIGH SCATTERING processes such as (1.N + 1) —» |1, N) for
N=0,1,2,... or 22N> > 2.N—1 for N=1,2,..., where only the
photon number changes and the system emits one of its laser-mode photons
into an external mode of the same frequency ), . These transitions yield light
with the frequency of the laser just like classical Rayleigh scattered light
discussed in Section 6.5.B.

The other transitions are more complicated. One called FLUORES-
CENCE is a transition between dressed states which involve fundamental
transitions such as 2, N) - |1, N) or |2, N — 1) - |1, N — 1). The latter
is the major part of the transition indicated by an ), arrow in the upper
left-hand side of the figure since the initial (upper) dressed state |[2°N, N —
1) is mostly composed of |2, N — 1) and |1°N, N — 1) is mostly composed
of |1, N — 1) in the final (lower) dressed state.

The fluorescence transition angular frequency is the difference between
the initial and final dressed eigenlevels connected by the Q. arrow. The
initial and final eigenvalues are

eP(2,N,N—-1)=NQ, + A +6/2,

2(ILN-1,N-2)=(N-1Q, —5/2.
The difference is the fluorescence transition frequency,

Qp=Q, +A+8=0Q; + VA’ + 2. 8.7.11
F L L

For small values of the Rabi factor (r < A) or large detuning (A > r) this
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becomes
Q.- 0, +A=g, r <A, (8.7.12)

which is the atomic transition frequency. This transition drops the atom from
its upper state |2) to its lower state |1) but takes no photons out of the cavity
mode since N stays constant. It emits one photon into an external mode of
frequency Q.

Another transition called the three-photon process or COHERENT
STOKES RAMAN SCATTERING (CSRS) is a transition between dressed
states which mostly involves transitions of the type [1, N) — |2, N — 27. The
latter is the major part of the transition indicated by an {2, arrow in the
upper left-hand side of the figure since the initial (upper) dressed state
[1PN,N — 1) is mostly composed of |1, N, and [2°N — 1, N — 2) is mostly
composed of |2, N — 2) in the final (lower) dressed state.

The CSRS transition angular frequency is the difference between the
initial and final dressed eigenlevels connected by the (), arrow. The initial
and final eigenvalues are

¢P(1,N,N —1) =NQ, —5/2,
P(LN-—1,N-2)=(N-1)Q, +A-35/2.

The difference is the CSRS transition frequency.

Q= Qegps = Q@ —A—8=0, - VA +r? (8.7.13)

For small values of the Rabi factor (r < A) or large detuning (r < A) this
becomes

Q= Qers = O, —A=2Q, -6, r<4, (8714

which is the difference between two laser photons and the atomic transition
frequency. This transition raises the atom from its lower state |1) to its
upper state |2). It also takes two photons out of the cavity mode since N de-
creases by two. It emits one photon into an external mode of frequency (25
which is approximately the difference between 20 and the atomic transition
frequency e.

A direct transition of frequency = VA® + r* = A between [1°PN,N — 1)
and |2PN — 1, N — 2) is forbidden by C, parity. However, in a system that
does not have C, symmetry it would be possible to have such a transition as
is indicated by the small vertical arrow near the bottom of Figure 8.7.1(a).

The three allowed transitions account for three main spectral components
that may be observed coming out of the sides of a laser atom cavity. It
consists of a strong Rayleigh line at Q; = Q and two sidebands Q and Q,
as shown in Figure 8.7.2. The triple-pronged spectral line is called the
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3-Photon CSRS  Rayleigh Scattering Fluorescence
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Figure 8.7.2 Structure of the Mollow spectrum and its elementary processes of

fluorescence, Rayleigh scattering, and three-photon coherent Stokes-Raman scatter-
ing (CSRS).

MOLLOW LINE SHAPE. One sideband is centered at Q, = Q + w which
is approximately {) + A far from resonance, and the other is at O, = Q — o,
which is approximately ) — A.

Near resonance at A = 0 the sidebands will follow AC Stark shift hyper-
bolic paths given by (8.7.11) and (8.7.13) rather than simply collapsing upon
Q at A =0. The hyperbolic curves in the semiclassical level diagram in
Figure 8.5.3 are approximate traces of the spectral sidebands for variable
detuning A around resonance. At resonance (A = 0) there will still be
two sidebands but now they will be located at  + r, where r is the
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Rabi parameter. In general, the sidebands are located at ) + w, where
w = VA? + r? = A is the frequency of the Rabi precession or crank rotation
shown in Section 8.5.

The sidebands correspond roughly to fluorescence and CSRS processes,
respectively. With positive detuning (¢ — Q = A > 0) the upper sideband
Qr=Q+0=0Q+A) is due (mostly) to fluorescence while the lower
sideband (Q; = Q — w = Q — A) is due (mostly) to the three-photon CSRS
process. Above resonance the detuning parameter reverses sign (e — Q = A
< 0) and the order is reversed. At resonance (A = 0) it is not possible to
distinguish the two processes since the initial states |1, N) and |2, N — 1)
are mixed 50-50 and so are the final states |1, N — 1) and [2, N — 2).

Below resonance (A > 0) the Q5 photon from the CSRS process has
lower frequency than the (2 photon from fluorescence. It also must come
earlier in time. The CSRS process pumps the atom from its lower state-1 into
its excited state-2. Only then can it emit a fluorescence photon which puts it
back into its ground state. Above resonance (A < 0) the Q; photon from the
CSRS process has higher frequency than the €}, photon from fluorescence.
Then it is the higher frequency sideband that comes earlier. These time
correlations have been observed.

This concludes our introduction to the recent fundamental developments
in laser spectroscopy. Many details have been left out of this discussion and
many new effects will soon be discovered as this new set of tools becomes
more widely used. Perhaps the most important development so far lies in the
way we are coming to think about the observed object (atom or molecule)
and the observer’s tool (radiation). In modern laser spectroscopy the distinc-
tion between the observer and the observed has practically disappeared, and
the atom-radiation-cavity becomes a single quantum object.
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S. Y. Lep and E. J. Heller, J. Chem. Phys., 71, 4777 (1979); J. Chem. Phys., 76,
3035 (1982).

D. J. Tannor and E. J. Heller, J. Chem. Phys., 77, 202 (1982).

N. Deleon and E. J. Heller, J. Chem. Phys., 78, 4005 (1983); J. Chem. Phys., 81,
5957 (1984).

M. B. Blanco and E. J. Heller, J. Chem. Phys., 83, 1143 (1985).
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An early paper on action quantization which uses color graphics to approximate
quantum wave fronts is

M. J. Davis and E. J. Heller, J. Chem. Phys., 75, 3916 (1981).

The computer program Color U(2) mentioned at the end of Chapter 7 uses color
quantization and color animation to show the dynamics of quantum wave fronts.
The idea of wave-packet coherent states can be traced back to Schrédinger.

E. Schrodinger, Naturwissenschaften, 14, 664 (1926).

Their introduction in quantum optics is probably due to Glauber.
R. J. Glauber, Phys. Rev., 131, 2766 (1963).

Other approaches to semiclassical quantization are found in the following papers
(this is by no means an exhaustive list of this large and growing field):

L. C. Percival, Adv. Chem. Phys., 36, 1 (1977).

D. W. Noid, M. L. Kosykowski, and R. A. Marcus, Ann. Rev. Phys. Chem., 32, 267
(1981).

S. A. Rice, Adv. Chem. Phys., 471, 117 (1981).

W. Eastes and R. A. Marcus. J. Chem. Phys.. 61, 4301 (1974).

D. W. Noid and R. A. Marcus. J. Chem. Phys.. 62. 2119 (1975).

L. C. Percival and N. Pomphreyv. Mol. Phvs.. 31. 97 (1976).

S. Chapman, B. C. Garrett, and W. H. Miller. J. Chem. Phys., 64, 502 (1976).
K. S. Sorbie and N. C. Handy, Mol. Phys.. 33. 1319 (1977).

C. Jaffe and W. P. Reinhardt, J. Chem. Phys.. 71, 1862 (1979).

R. T. Swim and J. B. Delos, J. Chem. Phys., 71, 1706 (1979).

R. B. Shirts and W. P. Reinhardt, J. Chem. Phys., 77, 5204 (1982).
C. C. Martens and G. S. Ezra, J. Chem. Phys., 86, 279 (19875).

C. W. Eaker and G. C. Shatz, J. Chem. Phys., 81, 2394 (1984).

W. H. Miller, J. Chem. Phys., 81, 3573 (1984).

References to the original EBK quantization are as follows:
A. Einstein, Dent. Ges. Berlin Verh., 19, 9 /10 (1917).

M. L. Brillouin, J. Phys. Paris (Ser. 6), 7, 353 (1926).

J. B. Keller, Ann. Phys. (N.Y.), 4, 180 (1958).

F. Reiche, The Quantum Theory, (Methuen, London, 1922).

A good modern reference to classical, semiclassical, and quantum theory of
radiation for spectroscopy is the following:

C. Cohen-Tannoudji, J. Dupont-Roc, and G. Grynberg, Photons and Atoms (Wiley
Interscience, New York, 1989).
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This discusses the A « P versus E - r perturbations and the Power-Zienau-Wolley
transformation. A simplified discussion and other references are in the following

paper:

E. A. Power and T. Thirunamachandran, Ann. J. Phys., 46, 370 (1976).

An early paper which gave a classical transformation between E - r and A - p
Hamiltonians is by Marie Goeppert-Mayer:

M. Goeppert-Mayer, Ann. Physik (Lpzg.), 9, 273 (1931).

The first paper to give a quantum mechanical transformation of E - rto A - p is by
Richards. H. S. Synder is credited in the paper.

P. L. Richards, Phys. Rev., 73, 254 (1948).

A restricted version of this transformation for the case of a magnetic field constant
in space and time appears in the following paper:

W. E. Lamb, Phys. Rev. 85, 259 (1952).

It was used again in the same restricted context by the following authors:

B. R. Johnson, J. O. Hirschfelder, and K. H. Yang, Rev. Mod. Phys., 55, 109
(1983).

Another discussion of the problem is in the following paper:

J. R. Ackerhalt and P. W. Milonni, J. Opt. Soc. Am., B11, 116 (1984).

For an example of some of the confusion surrounding the A - p interaction see the
following paper: i

D. H. Kobe, Phys. Reuv. Lett., 40, 538 (1978).

Some modern treatments of laser-atom lineshape and two-level atom models are
listed below. The first papers are seminal ones by B. R. Mollow:

B. R. Mollow, Phys. Rev., 188, 1969 (1969); Phys. Rev. A, 2, 76 (1969); Phys. Rev.
A, 12, 1919 (1969); Phys. Rer. A, 13, 758 (1969).

A discussion which uses the two-level quasi-spin is by Courtens and Szoke:

E. Courtens and A. Szike, Phys. Rev. A, 15, 1588 Q977).

The two-level atom is presented as a generalization to classical resonance in the
following text:

L. Alien and J. H. Eberly, Optical Resonance and Two-Level Atoms (Wiley
Interscience, New York, 1975).

Applications of radiation theory to laser dynamics is the subject of the following
book, which also relates the classical Lorentz model to modern theony:

P. W. Milonni and J. H. Eberly, Lasers (Wiley Interscience. New York. 1938).

Recent developments of the problem of an isalated zrom-cavity svsiem are based
upon the Jaynes-Cummings model.

E. T. Jaynes and F. W. Cummings. Proc. JEEFE. 813G iund,
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The phenomenon of “collapse™ and “revival” of Jaynes-Cummings solutions is
discussed in the following: :

J. H. Eberly, N. B. Narozhny. and J. J. Sanchez-Mondragon, Phys. Rev. Lett., 44,
1323 (1980).

H.J. Yoo, J. J. Sanchez-Mondragon. and J. H. Eberly, Phys. Rep., 118, 259 (1985).

Recent discoveries have been made about the behavior of the Bloch vector during
collapse and revival.

J. Gea-Banacloche, Phys. Rev. Lert., 65. 3385 (1990); Phys. Rev. A, 44, 5913
(1991); Optical. Commun., 88, 531 (1992).

Much of the future work on atoms or molecules in cavities will use so-called driven
Jaynes-Cummings models. Some discussions of these have just been published.

P. Alsing and H. J. Carmichael, Quantum Optics, 3, 13 (1991).
P. Alsing, D. S. Guo and H. J. Carmichael, Phys. Rer. A, 45, 5135 (1992).

Time correlations between parts of the reasonance spectrum are described in the
following paper.

A. Aspect, G. Roger, S. Reynaud, J. Dalibard, and C. Cohen-Tannoudji, Phys.
Rev. Letters, 45, 617 (1980).
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