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CHAPTER 6

THEORY AND APPLICATIONS
OF SYMMETRY REPRESENTATION
PRODUCTS (FINITE GROUPS)

So far we have studied the theory in which representations of symmetry can
be analyzed into sums (®) of irreducible representations (irreps) and have
seen how this helps to simplify certain physical problems. This chapter is
devoted to a special kind of product (®) of representations and the study of
its physical applications. Let us begin by listing some of the applications of
the product analysis which we will treat later in this chapter and elsewhere in
the book.

(i) We have seen how the Cartesian coordinates {xyz} or unit vectors

{£y2} are bases for one or more irreps of a symmetry group. For example, in
Section 4.2.A the vectors {£2} were shown to be a basis of 27w of O,.
Furthermore, the vectors {£9} are a basis of 9 of 2,, while 2 is a basis of
942, In Section 6.3 we shall see how product analysis makes similar assign-
ments for polynomials --- x2y --- of coordinates and for tensors - - - b %Y

- of arbitrary rank.

‘;>, ‘2‘>, ... that are partners in a

basis for a given irrep @* of a symmetry group are made by projection.
Section 6.4 shows how product analysis makes all possible tensor operators

(i) We have seen how base states

out of products |‘l’.‘><f | so that they are also partners of various irreps. Certain

properties of the matrix elements of these operators called selection rules are
derived and the Wigner-Eckart theorem is discussed.

(iii) We have seen how the first quantum excitations of vibrations in
molecules are described by a single excitation of a mode belonging to a

AA7
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444 THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATION PRODUCTS

definite irrep. Section 6.6 shows how overtone or combination-tone states
with two or more excitations are described by product analysis.

(iv) We have seen how the orbital states of a single electron in some
symmetry environment will belong to an irrep of the symmetry. Now we shall
see how two or more electrons orbiting in the same environment can be
described using product analysis. This particular application of product
analysis will be used to introduce its mathematical details in Sections 6.1 and
6.2.

6.1 TWO-PARTICLE STATES AND PRODUCTS
OF REPRESENTATIONS

In Section 4.3.A we discussed the model for the orbital states of a particle
tunneling between potential wells fixed at the vertices of a regular octahe-
dron. In this model there were six states |1), |2),..., and |6) corresponding
to orbitals more or less localized in wells 1, 2,..., and 6, respectively, as
shown in Figure 4.3.1(b). Then Figure 4.3.2(b) shows which combinations of
these states would be eigenstates according to O, symmetry.

The same model can be made to accommodate two orbiting particles.
Each basis of a two-particle system has the form |i, jz> = li)4|j)5. There
are 62 = 36 two-particle bases:

{11,1>,11,2),...,11,6),12,1),12,2), ..., 16,6)}. (6.1.1)

The wave functions for these base states are drawn schematically in Figure
6.1.1. The 4 and B particle waves are indicated by large and small circles,
respectively, in the figure. Each vector i, jz) = li)4]j)s denotes a state in
which the first particle (say particle A4) is in state i and the second one (say
particle B) is in state j.

One defines a scalar product between state vector |, ) = |¢)|¢) and
vector (i, j| = |i, ;> = (lid1i)T = (|| as follows:

L ilg,¢) = Gililgo gy = il Gl (6.1.2)

This quantity gives the amplitude for the system in state |¢, ) to have
particle A in state i and particle B in state j. The probability or intensity
I<i, j |4>,¢//>|2 of this coincidence is the product of the probabilities or
intensities |(i|$)|* and [{jly)|? for the separate events. This is consistent
with the axioms for quantum amplitudes given in Chapter 1. Two-particle
amplitudes of the form in Eq. (6.1.2) will obey the basic axioms 1-4 in
Chapter 1 and the orthonormality and completeness relations will hold:

<l,]|k,l> = 6ik6j11 (6138.)
Y Yli, iy, il = 1. (6.1.3b)
ioj
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446 THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATION PRODUCTS

However, if the two particles were identical electrons with the same spin,
the states of the form |j, j> would be ruled out by the famous principle of
Pauli. We shall discuss Pauli’s principle and its consequences later. Mean-
while, we may use the basis in Eq. (6.1.1) without modification if we suppose
the two particles are electrons in different spin states or they are different
types of particles altogether.

A. Noninteracting Particles

If we suppose that the two particles can orbit around the octahedron without
ever feeling each other’s presence, then the description of the resulting
symmetry analysis is simple. The symmetry operators are all combinations
(a,b) of the operators a and b for particles 4 and B, respectively, as
defined by the following:

(a,b)lk, 1) = (a,b)lk>|l) = alk)bll). (6.1.4a)
This defines a representation of the two-particle operators:

(i, jl(a,b)lk, 1) = {ilalk){jlb|l)
= a, By (6.1.4b)
The total symmetry group G of the two-particle system is just the outer

product of the individual symmetry groups which in this case are both O,
groups:

{(a,l)(a”l)} x{(l,b’)(l’b’)}
{...(a’b)...(a,b’)...(a"b)...(a”b’)...}‘
(6.1.5)

G =0 x0pF

It

This is because the two types of operators work independently through each
other. Any (a, 1) commutes with any (1, ) so that

(a,b)(a',b") = (ad',bb"). (6.1.6)

Therefore, the definition of direct product (Section 2.10) is correctly used in
Eq. (6.1.5).

Representations of G = O X O2 such as are indicated in Eq. (6.1.4) or
in Eq. (6.1.7) will be called DIRECT PRODUCTS (®) of the separate factor
group representations. We shall see that all irreps @%*(a, b) =2%a) ®
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TWO-PARTICLE STATES AND PRODUCTS OF REPRESENTATIONS 447

DP(b) of G can be made in this way:

a B\_ la\,|B
(@0)] l>“’k>b|1>
1 . o 18 B
- (e i>)(j§19f?<b) ,>)
= e « B
- £ Saspo)s b))
<‘: j (a,b) Z L;> =9,-%(i1)9ﬁ(b) = (2%(a) ®‘93(b))ij:kl=
(6.1.7b)
(2°(a) ®DF(b))ij.1s =ZPu(a, b). (6.1.7c)

This direct product (®) is sometimes called the TENSOR or KRONECKER
product of matrices.

One of the difficulties of using the direct product is getting used to the
double index notation. Actual construction of this product is quite easy, as
demonstrated by the following example:

V3

0o 0 -1 -7 5

nggEu(rz’iS) =9T18(r2) ®9E"(15) = 1 0 0] ® 5 21
0 -1 0 - 2

The second factor @ £« appears in blocks of the outer product multiplied by
corresponding components of the first factor & Ts,

—1 _B _1 _s 1 _h
0 2 2 2 _ 2 2
- 1 0 _h 1 1 _B 1
2 2 Z 2 2 2
-1 _¥ 1 _¥3 1 4
2 2 z 2 Z
! _ﬁ 1 0 _v/5 1 0 _\/5 1
2 2 = 2 S 2
- 1 _¥ _1 B
2 2 2 2 2
S N B O S B I
2 2 2 2 B3 2
1 V3
2 =
. . o1
7z 2 .
1 v
T2 77 ’ ’ 6.1.7
-l _ (6.1.7),
i 2
. . 1 V3
2 2
oL
5 2
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The double indices for the matrix components of this example are deployed
lexicographically, i.e., {11,12,...,21,22,...}, as shown in the following:

nglEzll 911:12 911:21 911:22 911:31 911:32
ng:ll 912:12 ‘912:21 912:22 912:31 ‘912:32
921:11 921:12 =921:21 921:22 921:31 921:32
922:11 922:12 =@'22:21 g22:22 922:31 =@'22:32
931:11 931:12 931:21 931:22 931:31 931:32
932:11 932:12 932:21 932:22 ‘932:31 =9'32:32

9T =909k =

The characters of direct products of irreps are just the products of the
characters, as seen in the following:

x“#(a,b)=TRACE 2°(a,b) = IZ i%‘iﬁ;mn(fhb)
m=1n=1
1« 1
- [ £ 2ano) Loao|
m= n=1
= x“(a)x*(b). (6.1.9)

It turns out that virtually all properties of a direct product group G =
04 x OF are derived by product analysis of the corresponding factor groups.
This is true for the operators in Eq. (6.1.4), irreps in Eq. (6.1.7), and
characters in Eq. (6.1.9).

The Hamiltonian operator for noninteracting particles is just the sum of
their two separate single-particle operators. Let us write this operator so it
indicates that each term operates exclusively on only one particle:

H=(H,1) + (1, Hy). (6.1.10)

The irrep basis states of the form * B\ are eigenstates of the noninteracting
i J

Hamiltonian if

CI’> and }’j > were eigenstates of H, and Hp, respectively:

a B _ a\|B
P

The energies of two noninteracting particles are simply added to give the
energy of the two-particle system.

One may combine the levels and states in Figure 4.3.2(b) as shown on the
left-hand side of Figure 6.1.2(a). This gives the level diagram of the noninter-

B

H C;>HBj>=(s°‘+sﬁ)

a B
l. j>. (6.1.11)
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SINGLE PARTICLE

LEVELS

PARTICLEB

Eg
€g = HB + sz

Tlu

> ® 1 6T1“=H

Alg

Atg _
ehT0=Hy a3,

TWO-PARTICLE LEVELS

(a) NO INTERACTION (b} WITH INTERACTION

r

Eg
/

/
Eg(Eg / __A2g

-

Eg®T1u e ——
S T2u
Eg(®)Alg Eg
Tlu
7/
//
e T2u
T1u Eg ///
_—
Tig

\\\
RN E
\ 4
\
\__Alg
Tlu Alg Tlu
Alg (¥ Eg Eg
Alg ® Tl T1u
Alg ®A1g__ Alg

Figure 6.1.2 Eigenlevels of octahedral two-particle system. (a) Two-particle levels
are labeled by irreps (D* ® DP) of cross-product symmetry G* X G? = 0, X O,.
(b) Interaction causes levels to split into levels labeled by irreps of

RIGID _ )RIGID
G - Oh .
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acting two-particle system. The levels have degeneracies [¢]# equal to the

dimension irreps of G = Oj! X OF. Note also that state ° lj> would have

the same energy as state \f ‘: if particles 4 and B were identical electrons.

This additional symmetry will be studied when we introduce the Pauli
principle. In the next section we explain the level splitting shown on the
extreme right-hand side of Figure 6.1.2.

B. Interacting Particles

Suppose we could gradually turn on a repulsive interaction between the two
particles orbiting in the octahedral potential such as the Coulomb potential
that would exist between two electrons. Mathematically, this can be de-
scribed by some perturbation operator IV added to the Hamiltonian in Eq.
(6.1.10).

A matrix element of the form (1, 1]V11,1), for example, would give the
expectation value of the repulsion energy for the state |1,1) in which two
particles are sharing the first potential well. This energy would be more than
for states like |1,3) or 11,2, in which the particles are not so close to each
other; ie., 1,11V, 1) = (1,3|V11,3)> > {1,2|V11,2). From this it follows
that most of the operators in G = 04 x OB = ---(a,b) - will not com-
mute with V or any Hamiltonian that contains V. Consider the operator
g = (1, R)), for example. If this commutes with V, then the following contra-
dictory relation follows:

,1iV1,1) = (1,1|gTVéI1,1) =(1,3|V11,3). (6.1.12)

However, all the octahedral sites are still equivalent, and V should have
the symmetry O,,. The symmetry operators that still commute with V are just
those which move the two particles rigidly together without changing the
distance between them, i.e., operators of the form (a, a). Call the resulting
group ORIGID:

O’I}IGID__:{(Ll)...(a’a)...(b’b)-'-}. (6.1.13)

Each of the irreducible product representations of the now-defunct sym-
metry G = Off X 07 will be, in general, only reducible representations of
the subgroup OR'C'®. The techniques of Chapter 3 can be used to reduce
them, and this will give the eigenvectors of the new Hamiltonian in the limit
of small V.

First, the character analysis will tell which irreps @7 of OF'C® are
contained in 2°#, that is, the frequency f7(2*F). Equations (3.5.11) and
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(6.1.9) yield the following frequency formula:

1 *
f1(2%) = 35 T “exy’ TRACE 2(g,5),

classes
4

1 o .
8 Z CngXgXé;- (6.1.14)

classes
-4

Substitution of the O, characters (4.1.16) for « = B = T,, yields the fre-
quencies f“ie = fE = fTis = fToc = 1. All other f” are zero. This means
that some transformation matrix % exists which effects the following reduc-
tion:

EloTnlu(g,8)8 =2"(g) 0D (g) @DT(g) ©DT(g). (6.1.15)

It is easy to check that the sum of the four characters add up to the product
character y 7y T

Ir IR IR I
1 1 1 1

h=1 r R* R I
xitie =1 1 1 1 1
xFe=2 -1 2 0 0 2
xhe=3 0 -1 1 -1 3 0 -1 1 -1
X =3 0 -1 -1 3 0 -1 -1 1
xiuxlu =9 0 1 1 9

0 1 1 1

For many cases one may find the correct combinations by trial and inspection
of characters in this way. This may be quicker than using the formula (6.1.14).

The appearance of the four irreps in the T;, X T,, product (6.1.15) means
that the (T, T,,) level in Figure 4.1.2 will split into four levels when the
interaction V' is present. The four levels labeled Ay, Eg, Ty, and T,, are
shown splitting away from (7),,7,,) in Figure 6.1.2(b). The form of the
cigenstates for these four levels is determined by columns of the % matrix.
Each splitting in Figure 6.1.2(b) corresponds to a different & matrix.

Let us see how to find the transformation matrix & that reduces a general
product 2% ® PP and, particularly, the one in Eq. (6.1.15). Following the
theory of Chapter 3, one applies the elementary operators P}, of H = ORGP
to the base states of O;' X Of. One obtains the following eigenstates:

« #) / VNP

= (I'/°H) Y. 27.(a)(a, a)

|,Z,(a®ﬁ)>sP,z,,

Z f>/\/Ngkf;B, (6.1.16a)
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where the effect of operator (a, a) is given by Eq. (6.1.7a) as

S

MEED R CE L ABE RO

a i=1j=1

(: ? >/V Nnyk()fﬁ H
(6.1.16b)

and where the normalization constant is the following:

P

mn

o a
Nnyklﬁ = < k ?

y §>=(n/OH)Zzzi(a)gfk(a)-@ﬁ(a)-
(6.1.16c)

The indices n, k, and [ are chosen to be the first combination which gives
nonzero N&. For example, let a = g =T,,, and y = T,,. Substituting
tetragonally defined irreps (4.2.14) into Eq. (6.1.16) gives N,y =
Ny = Nigy = Nip = 0, and Ny, = 5. [Note that Eq. (6.1.16) gives the same
results whether one sums over group O or O, = O X C,.] Now with n, k,
and [ fixed, one tries different j, i, and m in Eq. (4.1.16b). For this example
the following results are obtained:

Ty, LT T1> L\n T1>
T ® T - — u u e u u ,
1 ( lu 1u)> \/E o) 3 \/5 3 )
Ty 1, T 1|1, T >
T ® T - u u I u u ,
9 ( 1u 1u)> ‘/z 3 1 ‘/’2_ 1 3
Tlg 1 Tl Tl > Tl Tl >
T, ®T == " )y —| " . (6.1.17
3 ( lu 1u)> \/E 1 2 ﬁ 2 1 ( )

The coefficients in the foregoing example are called COUPLING COEF-
FICIENTS or CLEBSCH-GORDON COEFFICIENTS #*By_ They are de-

ijm
a B\,
i j/

1 1B « B
Twom)- T Temls £ 1

i=1j=1

fined in terms of the product states

They are transformation amplitudes connecting C: P

i

> to states |7(a X B))
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belonging to irrep 27:

Bl (I"/°G)L, 2,(8)25(8)ZE(g)

i 1 (a®p) )= = = = > .
m V(G L, D () De(2)Dh (g)

(6.1.18b)

o
By —
git])'(my_<i

The €357 are the components of the transformation matrix # in Eq. (6.1.15)
which reduces the product representation 2% X Z#. The C transformation
which reduces the example with « = T,, = B is shown in Eq. (6.1.19).
Equation (6.1.17) gives three of the columns of # and the other six are
derived similarly. The % matrix is the usual format for a table of coupling
coefficients as shown in Eq. (6.1.19¢):

(%?571)*91'??k1(R1’ R)EH =2,(R,)87, (6.1.19a)

1 .
. . _1
1 . .
. _1 .
&7 . . 1% =
. _1 .
1 . .
. . -1
1 .
1 V3
2 2
=9Eg(R )
V3 1 1
2 2
1 ’
- - =1 |=97«(R)
1
_1 . .
gng(Rl) = . . 1
. _1 .

(6.1.19b)
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where:
& =
Eg Eg Tlg Tlg Tlg T2g T2g TZg
T, ® Ty |A,] 1 2 1 2 3 1 2 3
Tlu T1H -1_ i _i
1 1|3 6 V2
. ) 1 1
V2 V2
) 3 1 1
V2 V2
5 . 1 1
V2 V2
) 5 1 1 1
VB V6 V2
2 3 ! !
V2 V2
3 . 1 1
V2 V2
5 ) 1 1
V2 V2
3 3 1 2
V3| V6
(6.1.190)

Note that the irreps (4.2.14), (4.2.15), and (4.2.19) have been used. The
coupling coefficients for the “kosher 7,” irreps (4.2.16) have slightly different
phases, as we will see in the following section. Note also that the transforma-
tion equations (6.1.17) or (6.1.19) only define the coupling coefficients &35
to within an overall phase that is a function of «, 8, and y. Any /?-column
section of a C matrix, such as in Eq. (6.1.19), can be multiplied overall by ¢

without changing the effect of the transformation #.

C. Subgroup Chain Labeling for Coupling Coefficients

The subgroup chain labeling described in Section 4.2.A is also useful for
deriving coupling coefficients. The straightforward projection method used in
the preceding section becomes quite laborious in some applications. Sub-
group structure can be used to divide and conquer many symmetry problems
involving large groups or complex representations. The numerical values of
coupling coefficients involving multidimensional representations depend on
which bases are chosen. We now derive coefficients for two different choices
belonging to subgroup chains (a) O > D, > D, and (b) O > D; > C,.

(a) Tetragonal (O o D, > D,) Coupling Coefficients Subgroup chain
calculations begin with the lowest link. Subgroup D, = {1, R?, R}, R} is the
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lowest link in the tetragonal chain described in Section 4.2.A(a). The lowest
link in all the chains is an Abelian group. The coupling coefficients for
one-dimensional Abelian irreps are just 1’s and (s, and they are very easy to
find. For example, the D, characters (4.1.43) yield the following ® -multipli-
cation table:

B= A, A, B, B,

DYe DB =| D4 DA DB DB
DA @ DB =| p22 pM pB: ph | (6.1.20)
D% o DB =| p& pB Dp4 ph
DB pB=| DB pB p4 pa

The combinations allowed by the table give unit coupling coefficients (viz.,
D42 ® DB = D5 implies that 425152 = 1), while all others are zero (viz.,
0 — %AzBlAI = gAzBlAz — gAzBlB1)_

The zero combinations can be climinated immediately from coupling
coefficients of the next higher subgroup link D,. The D, coupling coefficients
%A By %A 7.4, and €55 5 must vanish along with any combination of D,
labels not allowed by the table of (6.1.20). For example, in the outer product

of E bases {l - > gl > ‘E> = I Bi >} the D, coupling matrix % must perform
the reduction

2

¢'otegfe =gt oab ogtegh (6.1.21a)

according to D, characters (3.6.3) and the theory of the preceding section.
The D, irreps correlated with D, irreps A4,, B;, A,, and B, are 4,, 4,, A,,
and A,, respectively. Therefore the E ® E & matrix must have the following
form:

A, B, A, B, <« D, label
(EXE)
A, A, A, A, < D, label
E \|E
B, > B, > a c 0 0
E \|E
Bl > B2> 0 0 e g (6121b)
E \|E
A
E \E
B, > B, > b d 0 0
Impossible D, products are eliminated by writing zeros and the allowed ones
are indicated by unknowns a, b, ¢, ..., h. To solve for the unknowns we write
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the matrix equation (6.1.21) in the form

(2E(R) e ZE(R))E = €(2(R) o2%(R) 27

APPLICATIONS OF SYMMETRY REPRESENTATION PRODUCTS

:(R) © 2" (R)).

(6.1.21c)
Using the D, irreps (3.6.7) for one operator R outside of the D, subgroup
gives the following matrix equation:
(25(R) ®25(R)) ©
0o 0 0 1\{a ¢ 0 0
o o -1 offo 0 e 8
o -1 0 0}}0 0 f h
1 0 o O0/\p 4 0 O
#(2"(R) 2% (r) ®2%(R) ® 25:(R))
a ¢ 0 0}(1 0 0 0
= 0 0 ¢ gllo -1 0 0
0o 0 f h|lO 0 1 0j’
b d 0 0 0 0o 0 -1
b d 0 0 a -c¢ 0 0
0 0 —f -—h 0 0 e —8
= . 1.
0 0 —-e —8 0 0 f —h (6.1.22)
a ¢ 0 0 b —-d 0 0

This determines

b=a, c= —d,
By normalizing each column the
tained:
Al

E®E A

Bl Bl

B, B,

B, B

B,

—e,

B,
A,

the unknowns to within a normalization factor:
h=g.

desired coupling coefficient table is ob-

(6.1.23)
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Consider one more example involving a different D, product and &

matrix:

F'9F g =gE, (6.1.24)
This € matrix must have the form
¥ _ E E
k(E ®A,) = 31> Bz>’
E \|A
@ - BI>A2> 0 b, (6.1.25)
E \|A4,
B2>A2> a 0

according to (6.1.20). Solving Eq. (6.1.24) and (6.1.25) gives

e 8- ) o)

for the D, operator R. The resulting coupling coefficient table is shown in
the following, along with three others:

E E E FE E E
E®A E®B E®B
2 B, B, ! B, B, > B B,
B, A4, 0 -1 B 4 1 o B A4, 0 1|
B, A4, 1 0 B, A 0 -1 B, A4, 1 0
(6.1.26)

Now we are ready to analyze the highest link (O) in the O > D, > D,
chain. Let us rederive the T}, ® T, table of (6.1.19¢) using the Kosher irreps
labeled by this chain. The proper chain labels of O states are now repeated,
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following Egs. (4.2.11), (4.2.17), and (4.2.18):

T,\ |T,\ |T, T,\ |T,\ |T, E\ |E A\ (|4,
E \|E V|4, \W|E \,|E \,[B, \\!]4, ), |B, A, V414,
B, | |B,] |4,/ {|B,] |B,] |4,]]||4

(6.1.27a)

By combining this with the D, couplings [(6.1.23) and (6.1.26)], one may
deduce the structure of the T}, ® T, coupling matrix as follows:

A, E T, T,
T,®T, |4, Ay B, E E A, E E A,
A, A, Ay B, B, A, B, B, A,
E >E > : c ‘ 0 0 0 0 0 0
BB/ VI |V T
E\NE h k
B1> B2> 0 0 0 0 0 ﬁ 0 0 ﬁ
E \|4;
B1>A2> 0 0 0 0 —f 0 0 —i 0
ENE h k
0 0 0 0 -— —=
)5.) ’ ol B
ENE a c e
— e — 0 0 0 0 0 0
)| 7 | w
E \|4,
Bz>A2> 0 0 0 f 0 0 i 0 0
A, \|E
A2> Bl> 0 0 0 0 -8 0 0 —J 0
A \|E
A2> Bz> 0 0 0 g 0 0 J 0 0
AZ A2
A2>A2> b d 0 0 0 0 0 0 0
(6.1.27b)

The first, second, fourth, and fifth rows of the 7| ® T, table are copied from
the E ® E table of (6.1.23) for subgroup D,. The third and sixth rows, as well
as the seventh and eighth rows, follow from the £ ® A, (= A, ® E) table of
(6.1.26). Finally, the ninth row follows since 4, ® A, = A, according to Eq.
(6.1.20).

The unknown coeflicients a,b,...,k are derived in the same way as
before. To save space we shall write the ¥ matrix only once in the following
between the (Z”1(R,) ® 971(R,)) matrix (6.1.19b) on top and the (Z“(R,)
® 2E5(R) ® 2™(R) @ 2™(R)) ® 2™(R,))) matrix below. [Note that
2T(R,) differs from the nonkosher T, irrep given on the lower right-hand
side of Eq. (6.1.19b).]
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a/V2 |c/V2 e/V2 - - .
R T . . . . . . . . . h/\/2_ . . k/ﬁ
1 . . . . . . . . . . . _f . . _l .
-1 . . . . —h/2 |- k/\2
< ez {e2 —en2 | : .
-1 - . . . f i
1 - o-g —j
-1 : g j
1 b d 0 .
1
—172 =3 /2
-V3,2 172
1 - -
. . _1
1 .
-1 - .
1 .
(6.1.28)

Multiplying first and second factors and then the second and third matrices
gives the following matrix equation:

a/ﬁ c/‘/z_ e/‘/2_ . . . .
A A
b d 0 - .
. —g . _j . .
: kN2 | kN2
. . . _f . —i . .
a/V2 | c/V2 —e/V2 | -
0/1/2_ C E . . . .
S I hVZ | kA2
. f . . i
—h/2 | k2
. . . f —i
g J
. 14 . =]
b Cc —-FE -
(6.1.29)
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where C = —c/\/§ —ef3/V8, D= —c/V8 +e/3/V8, E= ~cV3/
V8 +e/\/§, F = —C\/g/\/g —e/\/g. The following equations for the

unknown constants result:

e=—cV3,
g=_f1
k=iV2,

a
b=

C
="
h=f2
j=i

(for A, column),

(for E columns),

(for T, columns),

(for T, columns).

A single undetermined constant is left for each irrep. This is determined up
to a phase by requiring normalized column vectors. Then the coupling

coefficient table is written:

A, | E Ty T,
A | A B, E E
T,eT, | 4, | 4 A, B, B, A, | B B, A,
B B 1 1 1
O I I
1 1
B [ _
2 ‘/5 ﬁ
A 1 1
2 ‘/E E
1 1
B B " Vi
B 1 1 1
I
p 1 1
z V2 V2
1 1
A B i 5
B 1 1
2 ‘/5. ﬁ
A ! 2 0
I R
(6.1.30)

The table agrees with the previously calculated (T, ® T,) coefficients
(6.1.19¢) in all but the second column from the right-hand side. The differ-
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T, > o
2
nonkosher and kosher bases, respectively.

In Appendix F all the O-group coupling coefficients are tabulated. The O,
coefficients follow immediately from these. One only has to remember that
even-even and odd-odd products are even (g ® g = u ® u = g), while odd-
even products are odd (g ® u = u ® g = u).

T,

ence in sign there is due to the difference in sign ( B
2

>) between

(b) Trigonal (O > D, > C,) Coupling Coefficients Products of the even
[(+), 4, A;, A, etc)] and odd [(-), B, 4,, A", etc.] irreps of C,-like groups
follow the usual odd-even ruies:

(6.1.31)

T W
Il
SRR N
PN

AR
B®

The irrep bases of D; = {1,r,,r},i,,i,, 15} are labeled

E\ |E\ |4;\ |4,
A b B b B 2 A 2

where the lower indices are irreps of subgroup C, = {1,i,}. Following the
procedures given in the preceding section one deduces the form of the
E ® E coupling coefficients:

A, A, E E
E®E A B A B
A A a 0 e O
4 B | o c 0 g =%. (6.1.32)
B A 0 d 0 h
B B | b 0O Ff O
The irrep matrix
1 V3
22
DE(r) =23%(r) =
(r1) (r) /3
22

is taken from Eq. (3.4.14) and used to solve for the unknown coupling
coefficient

DE(r)) 8DE(r)& = E(DH(r,) @272(r,) @25(r))). (6.1.33)
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This equation is represented as follows

1 V3 Vi 3
1 e e 1 a 0 e O
V3 1 3 V3
B |
V3 3 1 V3
T T3 3 |04
3 V3 V3 1
rEa N CE A
1 0 0 0
001 0 0
=% . Al (6.1.34)
00 =3 -7
V3 1
0 0 > )
Solving this equation and normalizing gives the coupling table:
A, A, E E
E®E A B A B
1 1
A A 7 0 7z 0
1 1
4 B | 0 3 0 | (6.1.35a)
1 1
B A4 0 7 0 7
1 1
B B 7 0 —7_2— 0
The E ® A, table follows similarly:
E E
E®A, A B
(6.1.35b)
A B |0 -1
B B |1 0
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The D, tables have very similar form to the D, tables. However, the
octahedral coupling coeflicients for the O > D; D C, chain are very different
in form from those of the O D D, D D, chain. For example, the 7, ® T,

table is given here:

E T2 Tl
T, T,| 4 1 2 1 2 3 1 2 3
L1 1 1 1 1
ARG R
1 1 1
b2 7% 5 7
1 1 1
b3 N R
- 1 1 1
% 5 7
s, | Ll RIS .
b oo B 1
SR R B 1 TR z
1 1 1
> "5 75 7z
1 1 1
32 I 7 7
1 2
33 F %
(6.1.36)

In this table the bases are labeled as follows according to O > D3 O C;:

“)-
(%)=
-
HE

T, T,
7. [

A

T, (Tl
E |-

B 3

The other trigonal coupling tables are given in Appendix F.

T2
L [F)
B
Tl
)|
B
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6.2 GENERAL CONCEPTS AND MATRIX RELATIONS
FOR COUPLING COEFFICIENTS

13

and irreps 2. These are based on important orthogonality and complete-
ness properties. We must review these before considering detailed applica-
tions of coupling theory.

There are some important algebraic relations between the ‘Zﬁ}xkﬁ‘/ coeflicients

A. Products Involving Invariants or Scalars

One irreducible representation called the SCALAR or INVARIANT irrep
29 exists for any group G = {g,g’,...}. It is defined to be unity for all
elements:

24(g)=9°%%g) =1 (forall g). (6.2.1)

It is labeled variously 4,, 4,,, A, 3, or (0) depending on what group is
being treated. The coupling coefficients for the product of the scalar with any
other irrep are obviously given by

#leP = 5285, = &P, (62.2)

This relation is so simple that we did not bother to write it in table form
before.

A somewhat more complicated problem involves representations whose
products produce scalars. In order to find which products will yield the
scalar, one may use Eq. (6.1.18b) with 27 set equal to 1:

gapo - (L/°CILl -Z5(8)2f(8)
. (1/0G)Zg1 'ka(g)gl’lg(g) .

(6.2.3)

By combining Eqs. (3.4.18) and (3.4.19) (see also Appendix G) one derives
the irrep orthogonality relation:

(1°/°G) L 25(8)2f" (g) = 578,84, (6.2.4)
8

Comparison with the preceding Eq. (6.2.3) shows that the only nonzero
coupling coefficients in Eq. (6.2.3) occur when the product of an irrep 2¢ is
formed with its complex conjugate @*" or with itself if it is real. The irreps
of finite groups fall into three categories with respect to complex conjugation.
These are listed in the following:

Type 1 Irrep @€ is real or else can be transformed to be real. Z*(g)* =
24(g).

Type 2 Irreps 9* =2 B* and 9P =9*" are a complex conjugate pair of
inequivalent irreps.

Type 3 Irrep 2 is always complex but equivalent to its conjugate & ar
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Irreps that can be transformed to either standing-wave or moving-wave
forms belong to type (1) The O, Oy, T,, and D, irreps are all of this type.
For type (1) irreps (2°°(g) =9%(g)), we have from Egs. (6.2.3) and (6.2.4)
the following formula for making scalars:

(1/°G)E, Z5(2) 2f(g)
B0 = /1 /] =4/1/1%8%Bs... (625
= o, o) o) ~ VT (629)

This checks with the results in Eq. (6.1.19¢), where the scalar of O symmetry
is conventionally labeled @° = g s,
Complex one-dimensional moving-wave irreps of groups C,,C,,and T,

groups belong to type (2). For type (2) one has the following formula, where
(DY =2(*"):

FoP0 = \[1/1% 55 (6.2.6)

This form holds for type (3) irreps, too. The spinor and ray representations
/2 9%, etc., all belong to type (2) or (3). The ones with real characters

X“ = x“ belong to type (3), and a transformation _# exists such that
g = 79 7.

B. Symmetry Relations

Notice in Eq. (6.1.1) that for coupling coefficients &% involving the product
of irrep T;, with itself, either

EHT =, (6.2.7a)
or
Gk = —Ex (6.2.7b)

for all i, j, k. This follows from a more detailed treatment of permutation
symmetry. Generally one says that 2" belongs to the SYMMETRIZED
SQUARE of 2¢ if Eq. (6.2.7a) holds or to the ANTISYMMETRIZED
SQUARE of 2* if Eq. (6.2.7b) holds.

Other symmetry relations involving unequal irreps such as the following
can be established to within a phase:

g = T, (6.2.8)
wpr = VI /I, (62.9)

(Note that for the foregoing, %]f‘,f’ would in general be meaningless.)
However, these relations depend upon your choice and convention for overall
phases, as we will discuss in detail in Chapter 7.
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C. Product Analysis with Repeated Irreps

For most of the point groups and many other symmetry groups, we will find
that reduction of any direct product will not yield any irreps 27 more than
once. These are called SIMPLY REDUCIBLE groups. There are groups that
are not so simple. Two crystal point groups T and T, are examples. For these
the three-dimensional 27 (i = u or g) appear twice in the product 27 x
27. For example, the T characters give the following product:

D XxGTe =G4+ P* + D" + 297, (6.2.10)

Whenever @ appears n times in the reduction of a product 2°¢ X9 B,
we will have n sets of coupling coefficients €357, 5872, ..., 267, Each set
can be made to give orthonormal sets of (y) bases:

1« B

Deep) - ¥ T et

i=1j=1

a B
l. j>. (6.2.11)

These coefficients will not be uniquely defined until something is done to
distinguish the n repeated states. For the two T, in (6.2.10) one may simply
reuse the %,/ and %772 coefficients of the octahedral supergroup. In
this case the repeating 7’s are distinguished by orthogonal irrep labels T,
and T,. However, a convenient “supergroup” may not always be available.
Indeed, a general treatment of multiplicities in products constitutes an
unsolved problem at present. Until this is solved one must sort and orthogo-
nalize repeated product bases arbitrarily.

D. Orthonormality and Completeness

Any set of coupling coefficients are components of a transformation matrix.
They are generally expected to be orthonormal and complete with respect to
the product basis { ‘; f > ;" g > ;Z fﬁ>} that is involved. Different prod-
uct bases are expected to be orthogonal, as stated by the following:

<(7)w ap \[ap
m i i
Je B

Y X (F50) (258007, (6.2.12a)

i=1j=1

m

I L
COPAM PVt — (Y)w
b - > X

i=1j=1\ M

(v’),wf>

The product bases are also expected to be complete, as stated by the
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following:

af
]

c'u‘;>=5ii'5n" =YX {‘, <aB

o ..
L y o m=1 y

(y)w><mw ?fj>
m m |1

17
=Y ¥ ¥ (8350) (7). (6.2.12b)

y @ m=1

The product reduction equations such as Eq. (6.1.19a) may be written in
the following general form:

o B 1« 1B
Y Y T Y (58) 25(8) D) FL = 80wz ().
i=1j=1k=11I=1

(6.2.13)

By applying Eq. (6.2.12b) twice, one obtains the inverse relation:

24 1
98(8)2P(8) = L L ¥ L g0(E3fM) 27, (g). (6:2.14)

y w m=1n=1

Finally, the orthogonality relation Eq. (6.2.4) yields an equation that is quite
analogous to Eq. (6.1.18), which was used previously to derive #257:

ijm

(1°/°G) Y. 95(2) 2P(8) Dpn(8) = LELEMe(g2EMe)" . (6.2.15)
b4 w

This is sometimes called the FACTORIZATION LEMMA. For most crystal
point groups, we may drop the sum (X,) over repeats. Also, the conjugate
(*) is not needed for real coefficients.

6.3 VECTORS AND TENSORS IN 3-SPACE

The knowledge of symmetry can systematically simplify the treatment of
vector and tensor quantities. We discuss how some procedures that work for
any spatial symmetry with examples in the symmetries of O,, C;,, and D,,.
Stress-strain tensor relations in solids will be treated in detail.

A. Symmetry-Defined Unit Vectors

As a first step one must define three unit vectors of a Cartesian coordinate
system and obtain a 3 X 3 representation 7” of the symmetry operators in
this basis which is called the VECTOR representation. It is convenient to
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define unit vectors along symmetry axes whenever possible. For example, one
choice for O, or D,, symmetry has the vectors £; lying on the tetragonal
axes and was shown in Figure 4.2.1(a). Figure 4.2.2(a) showed another choice
of basis centered on a trigonal axis. The latter vectors 0; are also a conve-
nient coordinate system in D, or C,, symmetry.

To find the vector representation of a symmetry operator g, we imagine
this operation moves the physical object with the unit vectors attached, as in
Figures 4.2.1(b) and 4.2.2(b). Then, since g is a symmetry operator, the
object must look as though it had not been moved at all. However, the unit
vectors will be moved to new places. The vector representation % is the
transformation matrix as defined by

#=g-4= L7(8)4. (63.1)
i

The second step is to establish relations between the vector representation
and certain irreps of the symmetry. In some cases a vector representation
may be an irrep as in the case of O, in Figure 4.2.1, where =27« In
other cases the vector representation may be equal to a direct sum of irreps
as in the case of D, in Figure 4.2.2, where "= 2 %« @ 9“2, In general, you
may have to transform the vector representation into an irrep or sum of
irreps, as would be the case if we used the tetragonal vectors in Figure 4.2.1
to represent the D,, symmetry operations in Figure 4.2.2 or vice versa.
Recall the transformation (4.2.31) between the tetragonal and trigonal bases.

In any case, the final result should be three unit vectors £;* with labels (%)
of the symmetry irrep. They should have the corresponding transformation
character,

2% =) 95(g)Ex (6.3.2)

For Oy x; vectors and D;, v; vectors we have the following:

2w =1, i =xfe=0,
flw=2g,, f=ib=10,,
ATe=3,  £l=gMh=p,

For some applications it is helpful to use the full subgroup chains 0, >
Dy, D Dy, or Oy D D3y O C,, to label the vectors £; or b;, respectively, as
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given in Eqgs. (4.2.23) or (4.2.27):

I, :0, T, I,
£, =%E, :Dy,, %,=%E,, R%;=3%A,, (6.3.3a)
By, : Dy, B,, Ay,
1,,:0, T, 1.,
D,=XE, 1Dy, 0,=XE,, 0;=%4y (6.3.3b)
A,:Cy, B, B,

B. Symmetry-Defined Unit Tensors

oo

Using coupling coeflicients it is easy to make unit vectors £ into complete
sets of unit tensors as follows:

Z Z‘éﬁj‘ﬁy (6.3.4)

According to the theory of coupling coefficients, these tensors must trans-
form according to the irreps which label them. First, the x;* transformation
(6.3.2) gives

= 2‘2%7,’3’“““’3
i
- LY L Tepanafi .
i j i
Then the coupling relations (6.2.12)-(6.2.14) give
7’-\‘r’ny= Z ZZ 7,x’\t xA]’
'
which is the desired transformation relation

T, = Z mm Lo (6.3.5)

for an irreducible or SYMMETRY-DEFINED tensor set {T7,T7,...}.
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For example, the (a ® B) = (T,, ® T,,) tetragonal O, coupling coefli-
cients (6.1.19¢) yield the “nonkosher” symmetry-defined unit tensors here:

P = (2,8, + 2,8, + 8383) V3, e = (R0, + £38,) /12,
TE = (2,2, + 3,8, — 20, 2) V6, TT* = (Raky + 2085)/V2,
TEe = (2,8, + £,4,) /12, Troe = (£,%, + £,8,) /72,
e = (2,2, — £,£,)/V2, The = (838, — £,£,)/V2,
Tre = (2,8, - £,%,)/V2 (6.3.6)

C. Symmetry-Defined Coordinates and Polynomials

In any of the foregoing tensors the vectors £; may be replaced by coordinates
x =g, y =1, and z =z, to give symmetry-defined polynomials provided
that the transformation character of the coordinates is defined correctly. One
way to do this is to let the =z; be coordinates of a field point r which is

unaffected by symmetry operations:
r=a,8 +a,%, + ;85 =2\ &) + %, + 2555, (6.3.7)

Substituting the vector transformation (6.3.1) in the foregoing gives the
following. In the last step the orthogonality of the " matrices is used:

3 3
g = L 7,(e e = L 7(8)e; (6.3.8)
j=1 j=1

Then the coordinates transform just like the base vectors. From Eq. (6.3.6)
we get the following quadratic polynomials which transform according to
definite irreps of O, (note that the antisymmetric product T}, is missing,
since it is zero):

phe = (x*+y?+2%)/V3,  pl==12yz,
pfe = (x> +y* = 22%)/V6, pix=12xz,
pFe=(—x*+y*)/V2 pi= =12y (63.9)

Continued application of coupling coefficients then makes a complete set of
cubic, quartic, or higher-degree polynomials for each irrep. These are tabu-

lated in Appendix F.
Polynomials made in this way are sometimes called POINT SYMMETRY

HARMONICS since any eigenfunction in the symmetry environment must be
a combination of only those harmonics belonging to a particular irrep (y).
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D. Symmetry-Defined Bulk Behavior in Solids

(a) Stress Tensor The word “tensor” comes from its application to the
study of internal tension or stress in solid bodies. Soon we will be dealing
with more abstract tensors in quantum mechanics, so it is instructive to
review the original application of these ideas.

Suppose some solid is weighted down with various forces and weights, and
these forces are felt at each point or atom within the solid. For any plane P
containing an atom, define a vector F(P) to be the force felt by the plane per
(infinitesimal) unit of area due to all the material on one side [Figure
6.3.1(a)l. F(P) is the vector average of all the forces transmitted by the
various springs or fibers that penetrate or touch a unit area of P. Now
imagine a single set of parallel fibers or springs all under uniform tension t or
compression —t [Figure 6.3.1(b)], per unit transverse area. The force on the
unit area just due to these fibers is proportional to the projection t - fi of t on
the unit normal fi on the chosen side:

F,(P) = tcos(t,7) = t(t- i)/t = (tt) - f/t.

F(P)

TENSION COMPRESSION

F =t n
It
Figure 6.3.1 Representing stress in a solid. (a) The effect of many fibers is repre-
sented by the sum F(p) of all the forces pulling on one side of an infinitesimal area.
(b) The force due to one set of fibers is expressed by the scalar product of a tensor
dyad tt and the unit surface normal.
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This equation simply counts the number of fibers which actually penetrate a
unit area with normal A, and multiplies this by ¢ = [t|. The quantity (tt) /¢ is
an elementary STRESS TENSOR. The total force F(P) is given by an
n-projected sum of these tensors for all the types of fibers present in the
solid:

F(P)=(#/t +tt/t' +---) -a=T-h. (6.3.10)

The T in Eq. (6.3.10) is the stress tensor which describes the tension per area
present in a small region of the solid. We see that T can be written as a
combination of elementary unit tensors £, £ ; or as a combination of any set of
symmetry-defined tensors such as the O, set T? in Eq. (6.3.6):

+ T3 x| + T R38, + Ty 835,
T=9%T4 + FETE + gETE
+ T T e + 7126 T os + T2 e
+ T el Ne + 7 sl + 5T e, (6.3.11)

In order to obtain a physical feeling for these components .7 1 Of 7, we
shall discuss their physical representations, which are shown in Figure 6.3.2.

First consider the Cartesian components .7;;. Components .7, i» 72 and
&5, are the components of the force F(j) in Figure 6.3.2(a):

F(j)=T- X = T8+ Tk, + Ty ks (6.3.12)

We see that F(j) is the force per unit area felt by the jth face of the cube due
to the outside world on the positive side of the £ ; axis. It is assumed that the
force F(j) is the same for all parallel planes in the neighborhood, so an equal
and opposite force —F(j) can be imagined tugging or pressing on the
opposite cube face as indicated by the dotted arrows in the figure.

Now the symmetry-defined components 7} tell how much of a particular
type of unit stress TAVZ is present. The common names of these symmetry-
defined stresses are written in Figure 6.3.2(b). We shall see shortly what is
the advantage of these coordinates over the ;> but for now we can see that
one set is easily found in terms of the other using the (T, ® T,,) coupling
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coeflicients:
T = L XG0T, (6.3.13a)
i
Ty= L L&y, (6.3.13b)
Y m

Note that the three torque components, i.e., the three components .7 o,
J;1, and 11 will have to be zero for any static or equilibrium stress. If the
torques are zero, then the remaining symmetry-defined stress tensors or any
combination of them are symmetric,

T,

ij

=,

Jji»

leaving just six independent stress tensor components.

(b) Strain Tensor A similar type of mathematics can be used to define
the deformation or STRAIN inside a body. Suppose each point r inside is
moved to some new point r + s(r). Strain is a measure of what is happening
to neighboring points r + dr around a given r. It tells how much the material
in the neighborhood is getting crushed or stretched.

Figure 6.3.3 shows that the vector dr between neighboring pointsﬂ is
transformed into Vs - dr in the limit of small dr. The derivative Vs = S is
called the STRAIN TENSOR:

o ds ds as
§S=Vs = a—x1x1 + a—xzxz + —
o 08 a8y R
S = -ax—lxlx1 + 5;)51)«:2 + 5;;)61)(?3

as, ds, ds,

3 A A 34 0 34 A
+ 7 aft PPREELE + PPRELER (6.3.14a)

BEFORE STRAIN: AFTER STRAIN:

§ir +dr)

S(r+dr) =50r) + ég-dr
=s{r)+ S-dr

Figure 6.3.3 Defining the strain tensor § = Vs. The strain causes each point r to be
moved to a new point r + s(r).
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A

Al A
ot ™ st-stet st=sf 1E
L 2 Y2 2
A A
1. ¢ E_ (E = E (3
sl=g xy%, + X%, +x3x3)/\/-3_ Sl —S1 (xyx4 * X Xy— 24X )N/ 6 S2 = Sz {xy%4 + X%, )A/2
a$
1

\
A

%,

S

M y--r
; :
]
i

[

Hi
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1 1 1 2 s‘2 2 83 sJ T 3
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,f’

T
PURE SHEARS S 2

Figure 6.3.4 Symmetry-defined strains and their common names. Rotation motion
SjTl is not considered to be a strain.

If s(r) = s is constant, then no strain exists (S = 0), and we have just a
uniform translation. If s(r) is linear in the coordinates #; of r, then S is a
constant tensor, and we say that a HOMOGENEQOUS STRAIN exists.

A homogeneous strain may be defined by the components .%;; = ds,/dx;
or by any complete set of symmetry-defined components %) in exactly the
same way that we defined stresses:

e

Fkk =L Y FTy. (6.3.14b)

R 3
S = Z ij

1j=1 y m

The mathematical form of TA,Z is the same as before. The physical meaning of
each term is different, as seen in Figure 6.3.4.
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It is conventional to ignore purely rotational displacement tensors §1T =
F(—%;%, + £,%5). These are generally not considered to be strains. Thus,
there are only six independent strain components.

E. Symmetry Theory of Tensor Relations (Elastic Constants)

We study now generalizations of Hooke’s law (F = —kx) for elastic solids in
which six stresses are linearly related to six strains. The linear relations may
involve either the standard Cartesian tensor components .7,; and %, and
elastic constants k,; ;. as follows:

3
Tni= 2 X ki, et (6.3.15a)

3
=1 k=1

J

or else symmetry-defined components and constants as follows:

Ty =3 Y k.72, (6.3.15b)
é n

At first sight it might appear that the 62 = 36 constants would be needed
in either equation. However, this number can be reduced by using
symmetry-defined components. For example, in the presence of O, symme-
try, we shall see that only three of the k2 are needed, namely, k1 = k4141,
k® = k{f = k5, and k"2 = k2" = kI3"2 = k1272 All others are zero!

Before treating examples, let us prove a general theorem about tensor
relations and symmetry. Let us start with a general tensor relation, Eq.
(6.3.16a), between two tensors .7, .. and ¥, .., where J and . have m
and n indices, respectively. Symmetry analysis isolates the independent
constants from the set of 3”*” constants k,;...,,.. in the tensor relation:

Tnijr = 20 Lkt Frg (6.3.16a)
k1

The idea is to first rewrite this relation using the symmetry-defined compo-
nents as follows:

w w ¢ ¢
T(y) = % 253 Lk(y) (8)F(5)- (6.3.16b)
m noom n n

One could do this whether the symmetry was present or not. However, the

w @ . .
new constants k(y)(s) assume a very simple form when the symmetry is

present, as proved in the following. First, let us first review the meaning of
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the group labeling. Each tensor is labeled by a subgroup chain - F >
G DH --- as follows:

¢: Nonsymmetry supergroup F label or index,
F,=F(y): Symmetry group G label, (6.3.17)
h:  Symmetry subgroup H label. .

For example, the strain tensors in Figure 6.3.4 may be labeled by the
tetragonal O, > D,, D D,, chain which was introduced in Chapter 4. The six
components may be labeled as follows according to this scheme for G = D,

Alg Eg Eg
Fhie = 7(Ay,), e =7(A1,), Fye =S (Byg),
Alg Alg A g
T,, T,, Ty
Flw = F(E,), Fle=-F(E,), Fls=9(4,,). (63.18)
Blg Bzg A2g

This scheme was introduced in Eq. (4.2.17). [Remember the slight but
terrible difference between “kosher” subgroup labeled components and the
Tap
“standard” T,, components wherein FTs = —(E,).] In the proof of the
By,
tensor theorem which follows the (middle) symmetry-group G label is en-
closed with parentheses. The upper nonsymmetry supergroup F label is
superfluous as long as there are no two independent .’ components with
the same (y). Note two (y) = (A,,) components exist for D,,, and they are
distinguished by the labels ¢ = A,, and E_, respectively, of the next higher
link (F = O, of the subgroup chain.
If the symmetry group is octahedral G = O, it may be convenient to
include the full rotational group F = Oj; in the subgroup chain (O; > O, D

D,;, -+ ) and label the strain tensors as follows:
0* 2% 27
ghu=(Ay),  gE=(E), ok=s5(E),
Alg Alg Blg
2* 2% 27

Fle=9(Tog),  Flu= —9(To),  5Fu=9(Ts) . (63.19)
Eg(l) Eg(z) A2

4
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Here the connection between J = 0% and 2* representations of O; and
second-order polynomials

(#2492 +2%) ~ (07); (222 = ¥2 = y2, V3 (x? — ), a9, x2, y2) ~ (24)

is used. Recall Egs. (5.6.15) and (6.3.9).

Tensor Theorem If physical properties of a solid having G symmetry are
described by the G-symmetry-defined tensor relation in Eq. (6.3.16b), then
there will be at most one independent nonzero constant for each distinct pair
of equal symmetry group labels (y) = (§) which appear on opposite sides of
the relation. These constants obey the following rules:

@ ¢ 0, itd#yorm#n,

k = w
(v)  (8) kO foreachm =n if § = v,
m n

and the relation assumes the following form:

w

¢
T (y) = Zk(””d:?(y) (6.3.20)
m 4 m

for each m.

Proof In the presence of symmetry, we may redefine our axes in the solid as
indicated in Figure 4.2.2 using any symmetry operator g, without changing

the values of the constants k(;;) (S) in the relation. Since the axes all end up

in equivalent positions with respect to the solid, the constants cannot be
different. However, the unit vectors and tensors will be transformed accord-
ing to their respective irreps as follows:

) ©w ¢ ¢
L2ym(8)T (v)” = ESZ %Zk(y) (8) L27.(8)(5) -
m ! n m n n

m n

Since this is true for all g in the group, we may substitute for g the
elementary operators P? using Dyl PE) = 87%5,,.5,,;, ie., Eq. (3.4.18).

m'jY mi>

Ji
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The resulting relations prove the theorem since each relation

Z ©w ¢ ¢
7 (a) = Lk(a)(a)F(a)
it i

is independent of the choice of subgroup indices i or j.

t' Equation (6.3.20) is very powerful, and it dictates strong requirements for

the k coeflicients. For example, if D,, symmetry is present in a crystalline
solid then only the following k& coeflicients survive in the stress-strain tetradic
relation:

(k(Dyp)y
A, E E T,

g g g

g TZg TZg

y(Alg) y(Alg) y(Blg) y(Eg) y(Eg) y(AZg)

Ay, Ay, Ay, By, B,, Ay,

T(Ay,) | k™ | g™

7 () | ko™ | g

- 9(By,) . . k(Big)

T(E,) . . . k(Eo

7(E) | - : : N e

T(Azg) . . . . . k(A20)

(6.3.21)
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In O, symmetry the constants are more restricted so that only three
independent constants are left out of the original 36:

<k(0h)> =
0 2* 2+ 2% 2% 2%
Y(Alg) Y(Eg) Y(Eg) y(ng) Y(TZg) Y(TZg)

Alg Alg Blg Eg(l) Eg(z) A2g

O+
f/_(Alg) kA1)
8

2+
Y(Eg) . k&
-4

2+
7(Eg) . . k(Ee)
&
2+
(Ts,) . . . kT2e)
Eg(l)
2+
y(ng) . . . . k(T2
Eg(z)
2+
g(Tyy) . . . . . kT2e)

L4

(6.3.22)

Note that if full rotational (Q,) symmetry is present, then the constants are
further restricted so that only two remain: k% = k119 and k2 = kT2¢), This
is the case for amorphous or sintered solids which are isotropic on the
average.

For lower-symmetry materials one expects a larger number of off-diagonal
k coefficients even if symmetry-defined tensors are used. Then it is helpful to
reduce the number of these coefficients by using energy considerations. If the
stresses and strains are CONSERVATIVE then the energy E may be written
as a function of some set of symmetry-defined strains (&%, <+ ) only.
Then one has

JoF
dE = —dY =
£ 5

- L 7,d%, (6.3.23a)
J
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where one defines the stresses by

oFE

(alarr (6.3.23b)

This definition is supposed to be valid even for large strains for which 7 is
not a linear function of .%#;’s. In any case small changes in the stress should
be related to small changes in the strains through the following linear
relation:

0T ’E
A9, = —d& =), — ! (6.3.24)
FxZ Y 05,0
The coeflicients of this relation are generalized k coefficients
9°E
k.. = (6.3.25)

—— =k,
17 ac%ax J

which will be constants only for small strains %, = d.%#; ~ 0. Otherwise they
are complicated functions of #’s. However, even then they satisfy the
RECIPROCITY RELATIONS k;; = k, if the stresses are conservative. This
reduces the number of off-diagonal k coefficients by one-half. Only six D,,
coeflicients in Eq. (6.3.21) are independent if reciprocity holds, since then
J A1 = f(A)EY

The orthonormality and completeness relations of any symmetry definition
make it easy to relate back and forth between Cartesian components and
constants k,, ; and the symmetry-defined quantities k()»®#. This is true
even without the presence of symmetry; however, the simplification of the
constants makes this transformation very convenient.

Consider, for example, some of the Cartesian components of the O,-sym-
metric elasticity relation:

Knioje = 2 2B Y Epmlk?. (6.3.26)

Yy m

Now only the symmetric coupling coefficients are used: (11" = €/117). We

do not deal with the antisymmetric &;2)'"t = —g 1"+ coefficients since

k” = kTt is not considered. This gives
khi,jk = kih,jk = khi,kj = kih,kj?

and leaves only 36 independent k; ;. From either (6.3.26) or the reciprocity
relation (6.3.25) one has

khi,jk = kjk,hi>
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leaving 21 independent components. By substituting the values of the cou-
pling coefficients from Egq. (6.1.19c) one obtains relations between Cartesian
k coefficients and the three independent octahedrally defined coefficients
kA, kE and kT2

ki =kp g =kyy 5=k /3 4+ 2kE/3,

kit =k s =Ko 3 =k*/3 —kE/3,

kipro=FKsi3= ky s =kT2/2 + kT /2 = k™2/2. (6.3.27)
In the last line we assume the rotational constant k7 is zero. The coupling
coefficients immediately give us all the relations between the Cartesian

components that are a result of symmetry. The inverse transformations are
sometimes useful, too:

2EDIDIDY Z%hTi%Tluycgji%lekhi,jk' (6.3.28)
hoij ok

For octahedral symmetry one has the following:

A _

kv =Ty 1y + 2kyy 4,
E _ _

k5 =ky 1 — ki g,

kT2 =2k, 0. (6.3.28),

In order to simplify the relations in Eq. (6.3.28), one may use the relations
derived in Eq. (6.3.27) to sort out the Cartesian components that were equal
to others or else zero.

We now review the relation between the O,-symmetry-defined elastic
constants k¥ and some of the elastic moduli commonly used in physics and
engineering.

(@) Bulk Modulus The bulk modulus B is defined in the following, where
AV/V is relative change in volume due to an addition of a uniform pressure
having force AF per area A:

AF/A = BAV/V. (6.3.29)
We make the correspondence between this equation of the symmetry-defined
relation .71 = k.41, According to Figure 6.3.2(b) the pressure is given
by the following:
AF/A = -~ /Y3,

According to Figure 6.3.4 the volume strain is given by the following, where it
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is assumed that the strain coordinate %! is small:

[0y’ - 21/¥3)’ - (20)’]

3 ~ -3z,
[24]

AV/V =
Combining the last two equations with 4 = k41,741 shows that k! is
three times the bulk modulus.

B=kM/3 = (ki1 + 2k 0)/3. (6.3.30)

(b) Shear Modulus Using the quantities labeled in Figure 6.3.5, we
define the shear modulus y as follows:

AF/A = pd/h,
AF/(2a)" = pd/2a. (6.3.31)

We recognize this to belong to one of the symmetry-defined relations
I T = kT2T2, Using Figures 6.3.2(b) and 6.3.4 for (T,) stress and strain
definitions, respectively, we obtain the following relations:

T2 = AF/(2a)°, #Ta/V2 =d/4.
Substituting these in Eq. (6.3.31), we find that k72 is twice the shear modulus:

p=kT2/2. (6.3.32)

AF "
AF E_:K____?__ﬁ ;__d C —ir—

(a) (b)

r
|
|
1
|
|
[
|

Figure 6.3.5 Defining shear of a cubical block. (a) Standard definition involves a
sideways motion d of the upper surface of the block with the base fixed. (b) A more
symmetrical picture of the same distortion shows that the corners each move a
distance d/4. Here the center of gravity and the diagonal axis of the block do not
move.
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(c) Young’s Modulus and Poisson’s Ratio 1If a pure tension T =
(F/A)%3%, is applied to the cube, we can expect the 3-axis to lengthen.
However, we may also expect a change along the transverse 1 and 2 axes
since this tensor is a combination of 74 and T} which affect these
dimensions:

T'= (F/A)%,%, = (F/A) (T4 V3 ~ 2TE/V6)
= 474 + FETE, (6.3.33)

We now find what the strain will be in terms of the symmetry-defined
constants k-t and k% using the following relations:

(F/A) V3 = 4 = kg —AF/A) V6 = TE = kESE
(6.3.34)

This yields the strain indicated in Figure 6.3.6, where the changes Aa . and
Aay of the longitudinal and transverse semiaxes are given by Eq. (6.3.35):

Aay/a =%/ /V3 = 25F /V6 = (F/A)(1/3k“" + 4/6kF),
Aay/a =% /V3 +PE/V6 = (F/A)(1/3k" = 2/6kF). (6.3.35)
Now, Young’s modulus Y and Poisson’s ratio o are defined in the

following. The definition of ¢ uses a negative sign since Aa . and Aa, always
turn out to have opposite signs:

Y= (F/A)/(Aa,/a)
=1/(1/3k™" + 2/3k%)

= 3kEk4 /(2K + kE), (6.3.36a)
o= —(Aar/a)(Aa,/a)
= —(1/3k™ — 1/3k%) /(1/3k 1 + 2/3k*)
= (k™" — k%) /(2k™ + kF). (6.3.36b)

Figure 6.3.6 General strain caused by pure
tension. Block clongates by 2Aq, while the
transverse dimensions shrink by 2Aa,.
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Solving for the k” gives the following:
k4 =Y/(1 - 20), kE=Y/(1+ 7). (6.3.37)

(d) Isotropic Solids In an isotropic material in which crystal order is
randomized or nonexistent, we found that k# = k2. This will happen in any
solid that has no preferential directions. This corresponds to the presence of
the infinite rotational symmetry O;. In order to visualize the fact that
k% = k™2 in this case, observe that the .~ strain in Figure 6.3.4 is the same
as the .72 strain rotated by 45° around the 3-axis. The same applies to the
corresponding stresses in Figure 6.3.2(b). If the 45° rotation is a symmetry
operation in addition to all the O,, operations, then we must have kZ = k2.
This is the case in isotropic solids, so there are only two constants which are
needed to describe their elastic properties. Combining Egs. (6.3.30), (6.3.32),
and (6.3.37) gives the following relations between them:

B=Y/3(1-20), u=Y/2(1+o0) (6.3.38)

(e) More Spring Constant Theory Consider a model of solid strontium
titanate SrTiO; as shown in Figure 6.3.7(a) with the interatomic nearest-
neighbor forces represented by three different springs. This rather simplified
rigid-ion model neglects the bending and long-range Coulomb forces as well
as the ion polarizabilities—all of which are considered in more sophisticated
shell models. However, we shall see that our model illustrates the group-the-
oretical techniques inherent in more complicated models and leads to proper
order of magnitudes for the elastic constants.

Let us compute the elastic constants k¥ in terms of the interatomic spring
constants j, k, and [ by imposing one of the symmetry-defined strains
belonging to irrep (y) and summing the forces per unit area on the center
plane in Figure 6.3.7(b) due to its nearest-neighbor atoms on one side. By

N\

L7 =

\ ]
\

X/

(a) )

Figure 6.3.7 (a) Model for strontium titanate SrTiO,. Three different springs used
for interatomic bonds. (b) One-half unit cell in Sr plane has area 2a4?%. Unit cell
contains one Ti atom and two O atoms [O(1) and O(2)].
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Figure 6.3.8 Atomic forces due to A, strain on (a) Ti atom, (b) O(1) atom, and (c)
0O(2) atom.

relating this force to the corresponding components of stress .7 Y, one
obtains elastic constant k” = .7 /Z". The central plane considered contains
one Ti atom and two O atoms per unit area 4a?, where a is half the lattice
parameter (2a = 3.9 X 1078 cm) or the distance between the Ti and O
atoms in this cubic lattice.

Now, an 4, strain gives rise to forces F(Ti), F(01), and F(02) in the plane
considered, as shown in Figure 6.3.8. Thus we have

|F(Ti)| +]F(01)] +|F(02)]

Th/3 = E , (6.3.39)
4a
where the various forces are computed in the following:
|F(Ti)| = F(Ti) = j#4a/y3,
[F(01)]| = F,(01) = (2k + 21)#ia /3,
|[F(02)] = Fi(02) = (2k + 21)7Ma /3. (6.3.40)

[Note that F,(02) may always be derived from F\(01) by interchanging k and
L.] From the foregoing two equations, we find

kA =g 24 = (j + 4k + A1) /4a. (6.3.41a)

Similar treatment involving the other two types of strain gives the elastic
constants k£ and k72 (we may choose any component of the symmetry type):

kP =(j+k+1)/4a, (6.3.41b)
k"2 = (2k + 21) /4a. (6.3.41c)

In our calculations, we could equally well have chosen a plane containing
strontium atoms with the same result.
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Now, it is interesting to observe that these three k” are not linearly
independent. In particular, two of the Cartesian elastic constants, k,, ,, and
k15 12, Will be equal for all k, j, and /. From Eq. (6.3.27), we find

kigu= (2k +j+ 21)/4a,
kn,zz = (k +1)/4a,

‘ kiy1="_(k+1)/4a. (6.3.42)

| If we include bending constants or “covalent” forces in our model in addition
to the central or “ionic” forces, then ky, 5, no longer equals &k, ,,.
Plotting the observed values of k; ,, versus k, ;, for various cubic solids
gives us some idea of which have ionic bonds and which have covalent bonds.
This is done in Figure 6.3.9. Note that NaCl and similar salts are very close to
the k,; ,, = ky, 1, line, with exception of AgCl and LiF. Most metals and
crystals like diamond are considerably removed from the center line.

I llllllll 1 |T]l|||| T TTTTTTI
10 |— £
& - O DIAMOND 3
E - —0.3 ]
£ o ]
Z —
© -
o Mg0.7 O OHo2
E .
S 16— 5107 OsiTiog 0.2 —
w - . -
E — Ge O.B(p 3
2 — LiF-0.7 OAu-13 ]
4 N — ]
(=] — —
e
i — OPb-15 —
Z Na C1 0.9
z 0= CsBro.9 /O Li-1.8 —
8 — Csl 0.9 OAgCI 1.0 -
= [ ONa- 17 .
! X B Rb Br 5.1 ]
’ IR B R NE T R R
' 0.1 1.0 10

Ky212 IN UNITS 10" DYNE/cm? (107! N/m?)

Figure 6.3.9 Plot of observed values of k,; 5, vs k,, |, for various cubic solids.
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Next to each point is written an “anisotropy” number A defined as
follows:

E T _
k= — k2 k11,11_k11,22 2k12,12

4 = =
(k™2/2) ki 12

(6.3.43)

The closer this is to zero, the more closely the solid will imitate an isotropic
material, as far as its bulk properties are concerned. Interestingly, diamond is
the most “isotropic.”

(f) Elasticity in C;, Symmetry For C,, one may use the trigonally
defined (O, D D,, O C,,) unit vectors shown in Figure 4.2.2: §, = £3 = £F,
0, =% =%£, and 9, =£' = £ Using C,, coupling coefficients (6.1.35a)
we can assemble the symmetry-defined unit tensors and use them to describe
stress and strain:

rotation
P e N
T T T1(3)1 T2(3)1 T1(3)z T§3)2 T2 T1(3)3 T2(3)3
1 1
it 2 2
1 1
12 2 2
1 /1
Uls 2 2
1 1
Uyl V3 2
1 1
UyUy 2 2
1 1
VU3 2 2
1 1
U3y E )
1 1
V0 . . . . . _ . . I
2 2 2
U3Us : 1

(6.3.44)
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In the foregoing table of tensors, we have separated those three tensors on
the right, which correspond to rotations from the others on the left. As usual,
elasticity theory makes no use of rotations.

Using the components of the tensors on the left side of the table and the
tensor theorem [Eq. (6.3.20)], we find the following elasticity relations will
occur in Cj, solids:

T = Mu ey 4 k(l)lzy(l)z’ ‘7”(’3)1 = k(3)11yr£l3)1 4 k(3)12yrﬁl3)z,
T D2 = J W2 gz k(l)zzy(l)z, yn(f)z = k(3)215ﬂ’$l3)1 4 k(3)22y’£,3)2’
m=1,2. (6.3.45)

Here the O, > D,, > C,, supergroup labeling has been ignored. The
repeated A, = (1) and E = (3) species have simply been tagged by numbers
(), and ().,

F. Symmetry-Defined Electric and Magnetic Fields

It is commonly said that an electric field is a vector while a magnetic field is a
pseudovector. It is instructive to find to which irreps of C,, they belong using
physical arguments. One asks what happens to an electric field E or a
magnetic field B under symmetry operations of C,,. To do a symmetry by
“thought experiment” operation, let us imagine that everything connected
with the physical object gets transformed including the source charges or
currents that make E or B. ) )

Consider C;, geometry and some electric or magnetic fields E; and B,
which point along the ; symmetry axis. Figure 6.3.10 shows what happens to

Lo
; (REFLECTION’
ELECTRICFIELDE,  ...AFTERr (ROTATION) .. AFTER, _.H_H_
BEFORE . .. ey =g 04Eg=E,
o, ) A
O,
o2 023 o2
Q Q Q
MAGNETIC FIELD B, . AFTERT
BEFORE... B, = By
d o
©
opgo G%G
Q Q

Figure 6.3.10 Effect of C;, symmetry operations on electric field E; and magnetic
field B, along symmetry axis. (a) E; and B; before symmetry operations. (b) After r.
(c) After 5.
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ELECTRIC FIELDE, ...AFTER ... AFTER 0

/®§q(i 12E,+

= 1+V/372E, [ 03E‘=E’
O man ’ D | G
D ? D S
’ Q&VQ : ; g
MAGNETIC FIELDB, ...AFTERr AFTER

s
OO 066 POO®

®
®
0] ® 3By = -B,
@
(O]

1B, =-1/2B, + V3/28, OOOE

4

®
ELECTRIC FIELDE, ...AFTER' AFTER o
),
SICEEES A OROXOJE
@ - -
T S Ji
B AOMONC) YE, =—\/3/2E,-1/26, QO © ©
MAGNETIC FIELD B, ...AFTER r . AFTER o,
®®
®

03B, =B,

©®
B, = —/3/28, -1/28B,
Figure 6.3.11 Effect of C;, symmetry operations on electric fields E,E, and mag-

netic fields BB, transverse to symmetry axis. (a) E,, B}, E, and B, before symmetry
operations. (b) After r. (c) After o.

® 00
O ®®
®
©
0)
IO OJIONO]
R

E, or B, after operations by r (120° rotations) and o5 (reflection). The idea
is to imagine what happens to sources or currents that give rise to B, or the
charges that give rise to E;. In Figure 6.3.10, reflection o5 reverses the
current loop and thereby reverses B. In Figure 6.3.11, we perform a similar
analysis for fields E; and B, in the transverse directions.

The unit electric fields E,, E,, and E3 transform just like the unit vectors
v; in Figure 4.2.2, and so the symmetry definition of them is as follows:

E, =E}=EF, E,=E}=Ef,  E,=E'=E". (6346)

The magnetic fields behave a little differently, as seen in the preceding
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figures. In Figure 6.3.10, we see that l§3 transforms according to irrep
P? =g 42 of C,,. In Figure 6.3.11, we see that some combinations of B, and
B, will serve as bases for the irrep 2> =2 ¥ of C,,. To find this combination
one applies the elementary operators.

34 1] 38 4328 3 A L3 A
PlzBl“a[ 3tBy + 5r°B; — 304B, + 30,B,

—_—

= %[_ %(_%é1 + %ﬁz) + %(_7é1 - %Bz)
_%(%31 + %éz) + %(% A1 - %BAz)]
= — éz,
P3B, =B,. (6.3.47)
This gives the correct symmetry definition of the three magnetic fields:

A

B,=B}=Bf, B,=-B}=-BE, B,=B>=B"% (6348)

Now one may define “external” fields E and B that are totally unaffected
by symmetry operations and write them in terms of the symmetry-defined
fields:

’

E= Y&k = Y. &'EY, B= Y ®BB,= Y BIB). (6.3.49)
Y, m Y, m Yy,m Yy, m

This defines components &) and %, which have the irrep transformation
properties which label them.

Magnetostriction and Electrostriction

Some solids respond to external electric fields by distorting or even shattering
into pieces. This effect is called ELECTROSTRICTION. Magnetic fields can
cause analogous MAGNETOSTRICTION effects.

From the symmetry of the crystal, you may quickly tell what is possible by
assuming a linear or tensor relation such as Eq. (6.3.50) between the field and
strain components where ¢;, and p; , are constants of electro- and
magnetostriction, respectively.

Fiy = L& (6.3.50a)
k

iy = Z,U«ij,k*@k- (6.3.50b)
k
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The situation becomes clearer if we use the symmetry-defined components
and the tensor theorem. The labeling of Eq. (6.3.44) is used here:

5/(1)1 = 8(1)1g1 — 8(1)15;3’

P2 = gl - 8(1)zg3,

y1(3)1 = 8(3)1g13 8(3)1g1’ y1(3)1 —_ M(3)1gl3 = _“(3)1$2’
y§3)1 = 8(3)1@@23 8(3)152’ y2(3)1 = “(3)1‘@23 = #(3)1€@1’
y1(3)z =B g13 = O &, y1(3)2 = “(3)2 gf = — #(3)2 Z,,

S = e8] = g, I =y = 4y, (63.51)

Note that each of the three electric fields El, E,, and E3 is capable of
inducing two kinds of strain described by four independent parameters in all.
However, the magnetic field 1§3 cannot cause any strain that is linear in B,
and only two parameters are needed to describe transverse strains. Further-
more, note that electric field £, can cause the strain #$ and .75, while
the magnetic field B, induces the strain — % or — %=, and similarly for
E, and l?l.

It is easy to prove that no linear striction effects can occur in cubic
symmetry O or O,. &; and %, can be shown to take the symmetry definitions
of Ty, and T, respectively, under O, symmetry:

& =&, B =B (6.3.52)

No .7 strain exists, and there is no .%7t¢ strain without rotations.

6.4 THEORY OF QUANTUM OPERATORS AND IRREDUCIBLE
TENSORS

A common approach to physical models involves the manipulation or varia-
tion of parameters in a model operator and equation of motion. One tries to
define and evaluate the most important parameters of a model in such a way
that the theory gives some insight into the behavior of the system being
studied. We have seen examples of parameters such as the spring constants
in models of molecular vibration (cf. NH,, UF, SF,, in Chapters 3 and 4 and
energy or tunneling coefficients in electronic orbital models.

Now we see how to tell exactly how many independent parameters are
possible in a given model from symmetry theory and how to systematically
enumerate and relate different systems of parameters. We shall do this by
reviewing the general structure of operators. This will include an introduc-
tion to transition operators and selection rules and the Wigner-Eckart
theorem.
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A. Symmetry-Defined Operators

The mathematics of quantum mechanics reviewed in Chapter 1 revolves
around sets of base vectors {|1),|2), - - - |n)} or {{11,(2l, - - - {(n|} and opera-
tors A, B, ... which transform these vectors.

As we observed in Chapter 1, all operators can be expressed as linear
combinations of “elementary” or “unit” operators e;; = |i){j| made from
outer products of bras and kets:

A

M

Y XA = X X w1l (6.4.1)
i=1j=1 R i=1j=1

This is true for any basis which is complete.
In particular this is true for any symmetry-defined basis

alla) la\ 1B\

1/|2 A 1 ’
where the basis vectors are made to be irrep bases for a group of unitary
symmetry operators G = {1, g, g’,...} as follows:

g z>= )é%i(g)

i=1

‘l’> (6.4.2)

Now consider the transformation of a unit operator Z><‘; ’:

0] )l =)o)

= f ¥
- T Taue|)[oto)?)
a><B
A AWEN

i=1j=1
8
X Yox(8)2f(g)*
i=1j=1
For real irreps [.Qj?(g) =9j?*(g)] this last equation takes the same form
as the transformation of a two-particle state. [Compare it with Eq. (6.1.7a)
with g = a = b.] Since most multidimensional point symmetry irreps can be
made real we shall assume 2 =2* for the following discussion.
In this case we can construct SYMMETRY-DEFINED UNIT OPERA-
TORS V) by summing with coupling coefficients as follows:

i

g =g

(6.4.3)

1« B

vi= ¥ T

i=1j=1

(6.4.4)
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According to the theory of Section 6.3.B V,} will transform as follows:

17

gvagt = Lo ()W) (6.4.5)
I=1

These operators are a complete set from which all operators can be made

if the ?><?
i f\J

be two or more independent operators for each irrep label (y), so it may be
necessary to distinguish between them in some way. We use (reluctantly)
another subscript and write V,{"». Any operator 4 must be a linear combina-
tion of the V,("e:

or, before that, the [1){1}],]1)¢2[,... are complete. There may

A=Y YA Ve (6.4.6)

Yy w m

Sometimes the V) are called IRREDUCIBLE TENSORIAL SETS or TEN-
SOR OPERATORS. Their stress tensor ancestors (recall Section 6.3) are
remembered in name only here.

(a) Invariant Operators Recall the Hamiltonian operators H for the
octahedral orbit model in Eq. (4.3.3). H must be a linear combination of
VM. where (y) are O, IR labels. In particular, it can only be combinations
of those which have y = 4,,, i.e., the invariant irrep since H is O, symmet-
ric (gHg" = H):

H =Y 7oy Aigo, (6.4.7)

w

Now the question is: How many independent invariant operators
Y A2 exist in that basis? That is exactly the number of parame-
ters #“11)e for the Hamiltonian.

According to Section 6.2.A [see Eq. (6.2.5)], just one invariant can be
made from a product 2¢ X Z* of real irreps for each a = g and none for
a # B. For the octahedral model we have a = 4,,, T},, and E_, so there are
three invariants and three independent parameters.

Let us construct the first rows of these matrices using Eq. (6.2.5) and the
eigenvectors from Eqs. (4.3.20), (4.3.22), (4.3.23), and (4.3.27):

V(AIE)IE|A1g><A1g| “’\% R S %' , (6.4.82)
3

i = Y TJI“><T;” /\/§<—)‘7% 10 0 0 o\ /V3, (6.4.8b)
j=1
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Eg Eg
J I\

In the discussion of this physical model two parameters were used: The
local energy (H) and the nearest-neighbor tunneling amplitude (—S§). A
third parameter exists since there are three invariants. In fact, we mentioned
a next-nearest-neighbor tunneling amplitude (—T7). The corresponding
Hamiltonian

and

1

11 1111 5 (6.4.8¢)

2
V(Alg)3 = Z

j=1

/2o

HolH -T -5 -§ -§ -S| - (6.4.9)

It is instructive to write H abstractedly in terms of V(41)«, This shows the
relations that exist between parameters and eigenvalues in this case:

H = g4y 4 eTlu‘/sTV(Alg)z + 8EgﬁV(Alg)3’

ete 4+ 3T 4 2688 g — 3T 4 2688 g1 — £Bp gA1s — gFp gA1e — gFe glie — gFe
6 6 6 6 6 6
(6.4.10)

Heo

If the £* were given by some experiment, then comparison of Egs. (6.4.9) and
(6.4.10) would immediately give the values of parameters H, S, and T.
This is a special example of a more general theorem.

Parameter Theorem The maximum number of independent parameters for
a Hermitian matrix or physical operator is exactly enough to determine all its

eigenvalues and all its eigenvectors that are not already fixed by symmetry.
This number n is given by

n=Y f(f*+1)/2 (6.4.11a)
«
for a Hermitian operator or matrix, and for an arbitrary operator by
n=Y (f9° (6.4.11b)
where f“ is the frequency of irrep (a) in the basis being considered.

Proof The number of independent invariant operators in any basis is
completely determined by the product analysis of the basis. Let f* be the

number of orthogonal sets of basecs
1 Q) (n ) ) )] "
a a | o a a a
{‘1> 2> 1a> %{ 1>’ 2> ““’l“> }-~’U1> "”}

that transform according to irrep (). Using these, we may construct exactly
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). C3)

a @
5 s
and a general invariant operator I must be expressible in terms of just these,

using (f*)* coefficients .73
— (@)1 (a),
I=Y ) %‘,fw PV @as,

o w

(f*)? invariants

1(1
V(a)umb = Z

j=1

VI

If I is Hermitian (7S5 = (#{2)*) then the number of parameters is
reduced to f*(f* + 1)/2. In this case, the .73’ determine the eigenvectors
not fixed by symmetry and vice versa.

The UF, SF;, ... molecular vibration models are examples of parameter
treatments. One obtains fair results using two or three parameters j, k, and
b by making physical pictures involving special arrangements of springs.
However, the real molecule is held together by electrons and electrostatic
forces instead of springs so it is a wonder that the spring model is even close.

It is instructive to derive the maximum number of parameters for any SF,
model that uses the same basis. From Eq. (6.4.11a) the SF, result is
1+1+3+1+1=7. Now one could go looking for other places to stick
four more springs in SF;, but this leads to an empty victory. There are better
ways to approach the problem. A generalization of the parameter analysis in
Egs. (6.4.9) and (6.4.10) will be employed later.

(b) Noninvariant Operators If a basis is n dimensional, there are n(n +
1)/2 independent Hermitian operators that transform the basis into itself,
The preceding section accounted for the invariant operators. Now, the other
operators must be labeled by noninvariant irreps if they are going to be
defined by symmetry. For example, the six-dimensional octahedron basis will
have 21 operators, 18 of which belong to some irrep besides 4,,.

Electric multipole operators are ¢xamples of noninvariant tensor opera-
tors. Suppose the effect of an electromagnetic wave on the energy of a charge
(q) orbiting at position x is given by

V =gqE(x,t) " x =q(Ex; + E;x, + E3x3)e’®*7 %0 (6.4.12)

where x,, x,, and x, are quantum position operators for the x, y, and z
coordinates. The effects of the magnetic field on the momentum of the
particle will be neglected here. Expanding the exponential gives the follow-
ing:

V=ge ™ L Ex(1+ik-x-3(k-x)°+ )

j
= qe_i“”( Y Ex;+iy, Y kExx; — 53 Y Y kkExxx, + - )
j i ij ok

(6.4.13)
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If the wavelength A = 27 /k is long compared to the excursion ¢ x;) of the
particle, then terms involving products of k and X; may be neglected This
leaves only the first terms of V such as

Vi = qe_i"’tijj, (6.4.14)

which transforms like coordinate x,, i.e., as T}, — (j). Such operators are
called ELECTRIC DIPOLE operators. The dipole operator VTlu expresses
the effect of a j-polarized electric wave of very long wavelength The
assumption of long wavelength corresponds to the DIPOLE APPROXIMA -
TION. Long ocean waves would make a raft bob up and down, but would
have no tendency to tip or bend it in the dipole approximation. The raft
could not detect the direction of slope and propagation or curvature of waves
that are much longer than it is.

Terms which tend to tip the raft are like the second terms in Eq. (6.4.13)
and are called QUADRUPOLE terms. The transformation behavior of X X;
operators are those of a second-rank tensor. The O,-defined second- rank
tensor operators belong to irreps Ay, E T,,, and T,,, as explained in
Section 6.3.B. The third-rank OCTAPOLE terms x,x;x, would belong to
Ay Ayys E,, Ty, and T,,, irreps of O,.

Now we see how to quickly evaluate the effect of various types of
irreducible tensor operators on a quantum system.

B. Wigner-Eckart Theorem and Transition Selection Rules

A powerful theorem relates tensor operator matrix elements for different
components or polarizations. First we prove and explain the theorem, and
then we apply it using the dipole moment in the octahedron as an example.
Wigner-Eckart Theorem If operator T* belongs to a set {reT15 -+ T2

which transform according to an irrep of symmetry group G ={1,g,¢’,...)
as follows:

818" = LT79,,(g)
l/

then the matrix elements between irrep bases will all be of the following

form:
Y
T
(1

where the %“’“”w are coupling coefficients and the constant (y| |T%| 1B, is
independent of the components i, j, or k.

f> = Z“f,j’,f(y’“"(yl 174 1B, (6.4.15a)
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Proof First insert the operator 1 = g'g in the matrix element and expand
the result according to the assumed transformation properties:

) )

= LI Lon(e)2i(s)9 w%;

o

g'gT g’s

Ty

13

B
e

One may sum over all group elements without affecting the left side, if we
divide by °G and use Eq. (6.2.15):
Z9€>
J

s} prplrozeneranomio) i)

al

The theorem is proved since the bracketed term is not a function of the
components.

Ta

- Za7£<m[<1/za>z £ Sest( ]

Ta

T 1B)w = [(1/1“)2 ) Z%,f;fi(,”w< B>l (6.4.15b)

The constants {y| |T*! |B8), in Eq. (6.4.15a) or (6.4.15b) are usually called
REDUCED MATRIX ELEMENTS. They are the “parameters” of the
a-tensor operators. For groups with nonsimply reducible products the repeti-
tion index (w) needs to be attached, and the matrix elements are combina-
tions of parameters belonging to different (w). However, for most of the
symmetry groups we will be studying (w) can be deleted from Egs. (6.4.15).
Then the matrix elements for different polarizations are all simply propor-
tional to one reduced matrix element {vy| |T%| |8) for each a transition

between manifold (..‘,llj?),.‘.} and L..,IZ),...}. The proportionality factors are

B > .
J
(ith) polarization component T;.

The Wigner-Eckart theorem provides a way to factor a matrix element
into a geometrical part and a physical part. The coupling coefficient is the
geometrical part and for it one only needs to know the group transformation
propertics of the states and transition operator. The reduced matrix element
is the physical part and to evaluate it one needs more detailed knowledge of
states and operator. The theorem allows one to still make certain predictions
when detailed physical knowledge is lacking.

just the coupling coefficients %ﬁ‘f’ in each transition

Z> induced by
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As an example, let us apply the Wigner-Eckart theorem to evaluate
electric-dipole (V;71«) transition rates between the A,,, T\,, and E, orbital

states of the octahedral tunneling eigenstates in Figure 4.3.2(b). The matrix
elements are given by

Y
k
v

2
The squares l< . VT lj >l of the matrix elements are proportional to the

V.l
i

'[;> = CLubr(y| |V T |B). (6.4.16)

probability of absorption of light or intensity of emission according to Fermi’s
Golden Rule. (This will be treated in Chapter 8 Section 6.)

The first thing to notice is that all dipole or (T,) transitions are FORBID-
DEN between the levels A,, and E,, since CJl+"*1# is identically zero. This
is an example of a SELECTION RULE. Remember that a product u ® g
always gives u states and never g. However, this particular matrix element
would be zero even if the transition operator was a magnetic dipole (V;712)
with even (g) parity since the product T; ® E does not contain A,. The next
possible avenue for an (E, <—>A1g) transition is by a quadrupole operator
(V;F¢). Note that (E, © E,) and (T, & T,,) transitions are electric-dipole
forbidden, also.

The (A4,, < T,,) and (T, < E,) transitions are electric-dipole allowed,
however. The Wigner-Eckart theorem gives the matrix elements for all
possibilities in terms of two reduced matrix elements {7,| |T,| |[E) and
(T,| 1T, |4,). All the combinations are given in the following. The 0,
coupling coefficients in the Appendix F.3.1d are used.

T 1 T
< 1V1T1E>= = 5T IT IE), < 1

1 2 v

1
f> = —3(TIT B,

T

S VO[T ) = @himle,

T T V3

N —<T11 IT,| 1ED, <21 v §> = — 5 (LIHTIED,

T1 Al

I

Vila4

(T 1T, 14,), <T21

1> = <T1| [Tll |A1>7

shot)-
et
shot) -«
i)
LEE

Tl A, ) = (T, T, 14,). (6.4.17)
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z OR 3-POLARIZATION I I

v oz l | |

X 1

S x(7) ) B
~ —_—
)
Tlu Tl
Tlu 1 1
AN 2 2

s
(2
w

~— FINAL LEVELS — I

A AL~ -
¥ W MG A

{a} LEVEL DIAGRAM (b} SPECTRAL NOMOGRAM
Figure 6.4.1 Intracluster transitions predicted by Wigner-Eckart theorem. (a) Level
diagram. Transitions are indicated by arrows drawn between levels. (b) Spectral
nomogram. Spectra are indicated by lines drawn at 45° from each intersection that
represents an allowed transition.

In the (T,, @ E,) transition one predicts an intensity ratio of
{1 /2|2 (V3 /2|2 = 1:3 between the (f“‘) and (f“’) levels, respectively,

using polarization 1 or 2 and a ratio of 1: 0 using polarization 3. In order for
a spectroscopist to observe such intensity ratios it would be necessary to
partially split the E, and T,, degeneracies as indicated on the left-hand side
of Figure 6.4.1. This could be done using some external perturbation such as
a weak Q field as discussed in Section 4.3.D. (Recall the splitting indicated
near the center of Figure 4.3.5.) It is very important to polarize or otherwise
prepare the octahedral system by some external means. It will not make any
difference which polarization component V|1, V1, or ¥/ causes the (T, <

Ty, , Ty, , Or Ty,
1 2 3

E g) transition if one cannot distinguish the three substates
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within the 7), manifold or the two substates

Elg> and Ezg> within the E
manifold. The detailed Wigner-Eckart intensity predictions are useless unless
the system is oriented somehow with respect to the polarization of the dipole
field causing the transition.

In case the system is polarized one would obtain a very different spectrum
from 3-polarized light than from 1- or 2-polarized light. This is indicated by
the 1, 2, and 3 bands of spectral lines shown in the upper portion of Figure
6.4.1. The lines are obtained from the levels according to geometrical nomo-
gram drawn below in the central portion of the figure. Here the final levels
are plotted along the x axis and are extended by lines parallel to the y axis.
The final levels are plotted along the y axis and extended by lines parallel to
the x axis. (This trick is useful even if the manifold of final levels is
completely different from the initial ones.) Whenever an initial level inter-
sects a final level of higher (lower) energy that represents a possible absorp-
tion (emission) transition. If the transition is allowed the spectral line is
located by a 45° line drawn upward and to the right from that point. The
parallel displacement of the 45° lines is proportional to the difference
between levels and hence models the spectrum.

In this way the (4,, > T},) and (T, — E,) absorption spectra are drawn
in Figure 6.4.1. The leftmost lines belong to the (A4,, — T,,) absorption. The
others belong to various allowed (T}, — E,) transitions with darker lines
indicating larger %if,i"TI“Eg coeflicients and greater intensity I where

4

T,, E » 2
1,.(].1 —>kg) ~ (FpuE BT IT,)) . (6.4.18)
Note that if the Tl“‘> and T2‘“> levels become degenerate then the 1- and

2-polarization spectral patterns become indistinguishable. Finally, if the Thu

level joins the other T, pair and the splitting of E, is zero then all three
polarizations look the same. Each spectrum will have two lines with intensity
ratios given by

(A, = T,,)/I(Ty, = E,) = KT 1AD /T ITIEY), (6.4.19)

and the Wigner-Eckart theorem predicts nothing of the detail. In the next
chapter there will be situations in which symmetry analysis can be used to
evaluate reduced matrix elements. However, the reduced matrix elements in
Eq. (6.4.19) are simply undetermined physical parameters in this example.
Note that individual intensities such as given by Eq. (6.4.18) may not agree
with the spectral experiment if too much splitting is present. As shown in
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Section 4.3.D a large Q splitting mixes the

E1g> and |A}g> states. When this
occurs one says that one line “borrows” intensity from another. The effect of
changing O on the 3-spectrum would be a change of relative intensity as well

as position. As the

Tlu
3

Elg> picked up more or less |4, the intensity of the

transition [

ig (modified) >} would depend on the square of the matrix

Eg + Cl{< Tlu
1 3

5<T1| |T1| |E> + a<T1| |T1| |A>’

clement

Tlu
3

Tlu

VTlu
? 3

V3T1u V3T1 u

Alg>

E
1g (modified)> = s<

where « is the mixing amplitude of the |4, and le|> =1 — |al® In this way
the two large induced dipole moments can interfere.

One should try to get a qualitative physical picture of the significance of a
matrix element whenever possible. For example, the fact that the pair of

E
states 1“’> and

T;> would have a large matrix element of the dipole
Tlu

E

v) el
charge displacement or dipole moment in the 3-direction as shown in Figure
6.4.2. Indeed, if the two states have different phases in time, say e'“%' and
e’/ this dipole moment will oscillate with angular frequency (w E,~ leu),
and radiate or absorb accordingly. In the following section we discuss the
significance of oscillating dipoles in some detail.

operator ¥,/ implies that their mixture o

> corresponds to large

Figure 6.4.2 Sketch of time behavior of wave function for

E T
8 > and | 1 >
1 3

mixture of
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6.5 CLASSICAL APPROACH TO OPTICAL RESONANCE
AND SELECTION RULES

We consider now the classical theory of resonance and its application to
optical spectroscopy. Resonance may very well be the single most important
phenomenon involved in the observation and study of our immediate physical
world. Without it we might all be blind, deaf, and dumb, since seeing,
hearing, and speaking all involve resonant transfer of energy containing
high-quality (i.e., coherent) signals and information. Most physical stimuli in
nature are very weak and need to be amplified in order to cause observable
responses. Resonance provides a way for a weak stimulus to cause a relatively
large response.

Spectroscopic lines or peaks all involve some form of resonance. To
understand many types of spectroscopy it is sufficient to know just the
classical theory of spectroscopic resonance as developed by Lorentz and
others in the late 1800s. In any case classical resonance and radiation theory
is a very important prerequisite to the understanding of semiclassical and
quantum theory of resonance, which will be taken up in Chapter 8, Section
8.6B. In view of the importance of classical resonance theory, it is surprising
how little coverage it receives in many physics or chemical physics texts,
particularily the beginning ones. Here we shall try to make up for this.

This section will include an introduction to concepts of polarization,
polarizability, susceptibility, absorption, and indices of refraction. A review of
some graphical aids such as phasors (first discussed in Sections 2.3.B, 2.6, and
2.7), Smith charts, and Feynman’s radiation lever will be introduced. Two
well-known forms of spectroscopy, (1) infrared or optical absorption, and (2)
Raman spectroscopy, will be discussed in this section. Physical interpreta-
tions of infrared and Raman selection rules will be given along with the
group-theoretical methods of derivation.

A. Introduction to the Effect of Light on Matter

The Lorentz theory was based on a simple model for an atom or molecule. In
this model electrons are imagined to be bound to more massive nuclei in such
a way that they behave like harmonic oscillators with certain natural frequen-
cies {wgwy -+ }. The small mass of the electron (u, = 9.1 X 1073! kg)
compared to that of the nuclei (a single proton has a mass of M, = 1836u, =
6m°uw,) means that electrons would usually respond more easxly to an
externally applied electric field than the nuclei. The electronic charge of
g=e= —16 X 107" coulomb is equal but opposite to that of the proton,
so that the electric forces F = gE would be of the same magnitude.

One should keep in mind how large is the so-called “tiny” charge of an
electron or proton. A mole of an element with atomic number Z(= 1 — 103)
has N,Z electrons where N, = 6.02 X 10% is Avogadro’s number. This
amounts to nearly —10°Z coulombs of electronic charge often confined to
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within a few cubic centimeters. According to Coulomb’s law the force
(F = qq' /(4meyr?)) or energy (V = qq' /(4me,yr)) between a pair of charges
of just 1 coulomb each separated by one meter is about nine billion newtons
or joules, respectively! (1/4me, = 9.0 X 10° Nm?/C?2.) This explains why so
much energy can arise if atomic ions of the same charge are formed with
separations of a few angstroms (r = 1 A =101 m) or (much worse!) if
nuclei split into parts that are separated by a few Fermis or femtometers
(r =1F = 10"% m). The atomic bomb is really an electric bomb!

Optical resonance provides a way to excite the negative or electronic part
of the enormous charge that resides in atoms and molecules. Many of the
hues we see in nature involve resonantly excited electrons in molecules that
reside in the objects as well as in our retinas. On the other hand, infrared or
microwave resonance allows one to “see” nuclear vibrational or rotational
excitations using other kinds of detectors.

The Lorentz model for resonance assumes that an electron’s spatial
coordinate x obeys a forced damped harmonic oscillator equation of the
form

x + 2Tk + wix = (q/R)E(r,t), (6.5.1)

where w, represents a natural oscillation frequency, I' is a phenomenological
decay constant, and the radiation stimulus is represented by the time-depen-
dent acceleration (g/u)E(r, t) of an electric field E on a charge g and mass
w. It will be shown in Section 8.4c that the Lorentz oscillator model agrees
with the quantum theory for small oscillations of x. It worked very well until
the laser was invented and oscillations with much greater amplitudes could
be excited.

In discussing the solutions of (6.5.1) it is helpful to consider a monochro-
matic stimulus, i.e., an E field oscillating at one frequency w,. It is also
convenient to represent oscillating quantities by complex numbers or phasors.
The stimulating field will be written

E(t) = Ege™"'"", (6.5.2)

One first considers the solutions to the zero-field or homogeneous equa-
tion (6.5.1) by substituting the trial expression

Xp = ae i@~ (6.5.3)
into (6.5.1) with (E = 0). Solving the resulting equation,
(—w? = 2iTw + 0})ae @9 =,
yields

w=—il + (0} - %)= —iT + o,
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and
xp = ae Tlemiert=®, (6.5.4)

This is called the transient part of the solution since the damping factor e It

will eventually kill it off if T > 0.
The other part of the solution is called the inhomogeneous or steady-state
response. Substituting

xg = Re wst=P) (6.5.52)
into (6.5.1) with (6.5.2) yields
Rei*(—w? — i2Tw, + w)e ™ = (q/p) Ege "™, (6.5.5b)

Solving this gives the complex response function

‘ (a/w)Eze™
Re'? = . 6.5.5
¢ w% - wf —i2Tw, ( ©)
The response function can be written in Cartesian (x + iy) form
. q/u) Eo 0y — w? a/r)Ey(2Tw,
ReiP—9) — (4/m) 02( 0 )2+i (a/n) 20( ) , (6.5.5d)
(w% - wf) + (2Tw,) (w(z) - wsz) + (2Tw,)
or in the original polar form, where
a/n)E
R=- ( - ) Eo v (6.5.5¢)
[(w(z, - wsz) + (2Tw,) ]
and
2Tw,
p = tan ! — 3 + ¢ (655f)
Wy — Wy

are the magnitudes and phase lags, respectively, of the response function
Re'®, The general complex solution takes the form

x(t) = x5(t) +x7(2)
= ge Tlg~Hwrt—a) 4 Re~iwsd—p) (6.5.6)
where the transient amplitude a and phase lag a depend upon the initial

conditions x = Re(x(0)) and v, = Re(*(0)). It should be remembered [recall
Section 2.3(B)] that only the real part (Re(x)) of the complex coordinate
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represents the real physical position. The same applies to complex velocity
and force.

Setting (+ = 0) in the real part of (6.5.6) and its derivative gives

Xy =acosa + Rcosp,

vg = a(wpsina — T'cos a) + Rw, sin p.
Solving for a and « gives the transient amplitude

a=(xy—Rcosp)/cos a

= —Rcos p/cos a (for xy = 0 = vy) (6.5.7)

and phase lag

= tan-! (vo — Rw, sin p) . r
(xg—Rcos ploy
w, sin p r

= tan~!| ———— 4+ — for x, = 0 = ). 5.
an [wrcosp wr} (for xy = 0 = v,) (6.5.8)

Figure 6.5.1 shows plots of the response (6.5.6) of an initially cold
oscillator (x, =0 =v,) to a (cos w,¢) stimulus turned on at ¢ = 0. The
oscillator parameters are I' = 0.5 s™!, wy = 107, and w, is set at (a) 8 m,
(b) 97, (c) 9.8, (d) 107, (e) 10.57, and (f) 12 7. The first six or so seconds
of each plot shows one or more “beats” (recall also Figure 2.3.2), which
occur with a frequency equal to the difference (wy — w,) /27 between the
interfering natural and stimulating frequencies. This interference is called
transient behavior and it is analogous to “quantum beats” which occur in
quantum excitations, as will be discussed in Chapter 8.

Lorentz theory is generally concerned with steady-state oscillator behavior
after the transient amplitude ae ~'* has died off. In Figure 6.5.1 e~ decays
to less than 5% (e ™% = 0.05) after ¢ = 6 s. Then the steady-state response x.,
which has the same frequency (w,) as the stimulus, is all that remains after
the natural frequency (w,) part dies away. The magnitude R and relative
phase p of the responding oscillator coordinate x s 18 of prime importance for
Lorentz theory.

In particular we know that the stimulating force transfers the maximum
power to the oscillator when the phase p of x s 15 90° behind the stimulus.
This was explained in Section 2.3.A. According to (6.5.5f) this occurs when
w; = g, i.e., when the stimulus is exactly in resonance with the oscillator.
This is the point where the real part of the response function (6.5.5d)
changes sign as shown in Figure 6.5.2(a) and the imaginary part (Figure
6.5.2(b)) is near its maximum value. For a stimulus frequency below reso-
nance (o, < w,) the response is almost in phase or only lagging slightly
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Figure 6.5.1 Time plots of stimulus and response of oscillator for various values of
the stimulus frequency. (a)-(c) Below resonance; (d) resonance; (e) and (f) above
resonance.
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Figure 6.5.1 Time plots of stimulus and response of oscillator for various values of
the stimulus frequency (Continued).
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Figure 6.5.2 Classical oscillator response function R(w). (a) Real part has a zero
value and maximum slope at resonance. (b) Imaginary part has maximum value at
resonance.

behind the stimulus (p = 0™). Above resonance (w, > w,) the response falls
almost completely out of phase (p = 1807). Only near resonance (0, = wy)
does the stimulus lead by the magic 90° and feed maximum power into the
oscillator, which promptly wastes it through some damping mechanism char-
acterized by the coefficient I'. (More about this shortly.)

For reasonably low values of I' (say I' < w,/10) it may be helpful to
display the response quantities using an approximation and a monogram
known as the Smith chart. The near-resonance approximation allows us to
write

o — ) = (0 — 0,) (0 + w,)

= (wO - ws)ZwO,

so that the response function (6.5.5¢) may be approximated by

. (a/r)E, S
Re? = - 6.5.9
T (0g—w, —iT)2w, A—il’ (6.5.92)

where we define
S =(q/2uwy) E, (6.5.9b)
as the stimulus strength and
A=w)— o, (6.5.9¢)
as the resonance detuning. Now the complex response can be written

sa
N Ve

Re’? = Rcos p + iRsinp = (6.5.10a)
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and its absolute square is a Lorentzian function of A:
R* = S%/(A* + T?). (6.5.10b)
Equating real and imaginary parts leads to the relation
R = (S/A)cos p = (B/T)sin p. (6.5.11)

From Figure 6.5.3 it is easy to see that the R phasor lies at the intersection of
two circles with diameters (S/A) and (S/T) placed along the real and
imaginary axes, respectively, and intersecting at origin. Note that for constant
I' and S the Re’? phasor would follow the T circle to the top as A — 0 and
p — m/2. For negative detuning (w; > w, or A < 0) it would continue into
the second quadrant as |R| passed its maximum value, and finally the phase
lag p would approach 180°. Graphs whose coordinates are (A, I') circles are
called SMITH CHARTS and are used for many different purposes. The
amplitude (6.5.9a) and Lorentzian function (6.5.10) will turn out to be
quantum resonance functions in Chapter 8, and the Smith constructions may
be used to help understand line shapes.

One should note that the Smith chart approximation (6.5.9) is completely
wrong for the classical response at low frequency. The (w, ~ 0) or DC
response given by (6.5.5¢),

Rpc = (a/nw)Ey, (6.5.12)

Im(Re"?)

=l
rd

r=0
Re(Re*)

PR
|
\

A =CONSTANT

Figure 6.5.3 Geometry of a Smith chart. A nomogram for displaying response |R|e’?
near resonance is based upon intersecting circles whose diameters are inversely
proportional to damping (I') and detuning (A).
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represents the displacement in equilibrium caused by a static or slowly
moving field. [See the left-hand side of Figure 6.5.2(a).] It is also wrong for
very high frequencies, since the correct R (6.5.5) vanishes as (1 /@?) not as

(1/w,).

B. Introduction to the Effect of Matter on Light

The displacement and separation or oscillation of electronic charge from the
nuclei gives rise to dipole moments and currents which affect Maxwell’s
equations and light propagation. In the Lorentz model the dipole moments
are taken to be directly proportional to the oscillator coordinate x, and the
volume polarization is

P = Np = Mgx (6.5.13)

for N dipoles per unit volume. This enters as an extra current term i —
Ngq(9x/dt) in Ampere’s equation,

JE JE  IP
VXB =y, 50;+l = g £0a~+a—t .

Using Faraday’s equation (VX E = —(3B/dt)) and the vector identity
V(V - E) — V2E = V X (V X E) one obtains the electric wave equation

a
V(V-E) - V’E = - —[V xB]

I’E  3’p
L0507 T 52

= —u, (6.5.14)

This can be simplified by relating volume dipole response to the E field using
(6.5.5) and (6.5.13) and writing

P = Nag)E = x¢,E (6.5.15a)

where the POLARIZABILITY (@) and VOLUME SUSCEPTIBILITY ( x)
are defined by

X =Na = (qu/,u,so)/(w(z) -0l — i2Tw,). (6.5.15b)

Dropping the V- E term (assuming equal positive and negative charge
density) in (6.5.14), one obtains the wave equation:
9’E

VZE = poeo(1 + X)(?t—z (6.5.16)
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The susceptibility x has the steady-state form if the stimulating electric
field has a steady oscillation such as the plane wave

E = E,eiksz o), (6.5.17)

Substituting this into the wave equation yields the following complex disper-
sion relation [henceforward we shall drop the subscript (s) from w or k]:

k* = poeo(1 + x)w? = (1 + x)w?/c?. (6.5.18)
The resulting wave phase velocity is
w/k=c/(1+ )" =c/el?, (6.5.19)

where the complex DIELECTRIC CONSTANT (g) and INDEX OF
REFRACTION (n) are defined by

n=¢"2=(1+yx)"" (6.5.20)

From (6.5.15b) one has the following expression for the dielectric constant:

e(w) =1+ (Ng?/ueg)(wf — “’2)] + i{ T'(Ng*/pe)w

(w% - w2)2 + 4T %0? (w(z) - w2)2 + 4T%p?

]. (6.5.21)

For zero damping (I' = 0) & and &!/? are positive and real, respectively,

everywhere except between the resonance frequency @ = w, and the fre-
quency w,.. The w, is called the CUTOFF FREQUENCY and is defined by

wi — 0? + Ng*/me, = 0

or

2w+ wl, (6.5.222)

where
w, = (Na/uso)”” (6.5.22b)

is called the PLASMA FREQUENCY. Inside the region w, < ® < w,_ the
value of ¢ is negative. Therefore, £'/? and k [recall Eq. (6.5.19)] are pure
imaginary. This means that the wave will not propagate along z since it is
damped according to e '*1>. For a free plasma where there is no mechanical
restoring force; i.e., w, vanishes. However, there is still a Coulomb electro-
static restoring force which gives the plasma a natural frequency of w p» and it
will therefore respond 180° out of phase to a field oscillating at w < o, and
tend to cancel the field.
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Figure 6.5.4 Real part of dielectric function for various values of damping T.

For charges bound to atoms, the wave can propagate unattenuated (in the
limit I' —» 0) with phase velocity c¢/n on either side of the cutoff region
between w, and w,. The phase velocity is less than the vacuum speed of light
(c =3 x 10® m/s) on one side (w < w,), and greater than ¢ on the other
side (w > w_). The group velocity dw /dk is less than ¢ on either side.

If damping T is nonzero, then & and £!/? are complex. Whenever the
wave propagates, it does so with an attenuation factor e ~!"™ ¥z, However, we
have seen that the attenuation or absorption due to the imaginary part of ¢ is
appreciable only for frequency w in the neighborhood (o — w,l < T') of the
resonance. Figure 6.5.4 shows the form of Re e(w) for different values of the
damping I'. The different curves overlap except near the resonance fre-
quency w.

(a) Polarization Mechanisms The polarizability of materials can be due
to three basic mechanisms which change the dipole moment. The three
categories are sketched in Figure 6.5.5.

The first mechanism involves the rotation of a molecule having a perma-
nent dipole moment. Detailed discussion of this phenomenon really requires
an extension of the quantum-mechanical treatment of Chapter 5, which will
be pursued again in Chapters 7 and 8. The resonant frequencies associated
with rotation are small, usually about 5-50 cm 1.

The second method for changing a dipole moment involves motion of the
ions, i.¢., the normal modes of vibration in a molecule or solid as indicated in
the figure. There will be a resonant frequency for each normal mode
generally between 100 and 1000 cm~!—although strong covalent molecules
like NH ; (recall Section 3.7) will resonate above 3000 cm ™",
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Figure 6.5.5 Classical sketch of three categories of response and dielectric behavior
for molecular media.

Finally, the third mechanism of dipole change involves the motion of the
electrons with respect to the nuclei. The resonant frequencies for this type of
motion will usually be around 10,000 cm™! or higher. Again, the details
concerning this type of resonance really require a quantum-mechanical
discussion, as seen later.

Nevertheless, in Figure 6.5.5 it is imagined that the entire spectrum of
some material could be understood by simply summing dielectric response
functions of the form in Eq. (6.5.21) for each “oscillator” or each normal
mode, electronic transition, etc., which the material system has. Although the
details of the frequency dependence of e(w), particularly near resonances,
require a quantum analysis, it turns out that a classical analysis is qualita-
tively a good one. In addition, it can give a semiquantitative estimate for
polarizability of a given molecule at a frequency that is not near resonance.

For example, if we want to estimate the electronic polarizability of atomic
hydrogen at low frequencies (w — 0) we may substitute the ultraviolet
ionization energy (13.6 eV) in units of frequency (w, = 2 X 10' rad/s) into
Eq. (6.5.15):

e’/me
a, ~ S 95 % 1079 m

(1)0_(1)
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Electronic mass (m = 9.11 X 1073 kg) charge (e = 1.60 x 10~ '° coulomb),
and electrostatic constant (e, = 8.84 X 107'2) are used.

To estimate the zero-frequency polarizability of a system of ions, suppose
we take an ionic mass of 30 amu (m = 5.0 X 10~2?° kg), the same charge as
above, and an infrared resonance frequency of w, = 9.4 X 10'* rad /s (500
cm 1) with (w — 0):

2
q*/me
)~ % = 6.6 X 1073 m?, (6.5.23)

wo_w

o

_ On the other hand, at optical frequencies (w = 3.7 X 10" rad/s ~ 5000
A), the polarizability of the same ionic system is negligible by comparison;
ie., @, ~ —4 X 10~* m?, while the electronic polarizability will be growing,
particularly if w is approaching an electronic resonance at w,.

Note that a good unit for polarizability is the cubic angstrom (1071 m)>3.
Indeed, the polarizability of something is proportional to its volume, as a
general rule. :

(b) Effect of Matter on Matter For dense materials such as solids, lig-
uids, and even high-pressure gases, the electric field E,,, affecting a given
molecule or atom may differ appreciably from the “applied” E ficld. In texts
on electromagnetism one finds the following expression for E,_,, in isotropic
materials and cubic solids:

1
Elocal =E+ 3—80P

If the polarizable atom or molecule responds to E,_,;, we have

1
P = E = E+ —P
X€0Local X&gp 360 )
or, solving for P,
€
P= LE,
1—-x/3

where y is the same susceptibility as before [Eq. (6.5.9)]. This changes the
dielectric constant ¢ defined by

D=c¢E=E+P/g

to the following:

e=(1+x/(1—-x/3)). (6.5.24)

Note that if y < 1, we may ignore these corrections.
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(c) Visualizing Radiation Coupling Using Feynman’s Lever The de-
tailed solutions of Newton’s and Maxwell’s equations for coupled particles
and em fields are complicated. However, for small numbers of particles there
is a graphical construction given in the Feynman Lectures (Section 11-21)
which is very instructive. It provides a way to tell exactly what the fields will
be around an arbitrarily moving charge.

Imagine that you are holding a charge and moving it back and forth. Let
the charge be attached to a ring which can slide on a long lever arm as shown
in Figure 6.5.6(a). Let the lever have a unit vector (—¢,) or pointer pointing
in the opposite direction of the lever r on the other side of its swivel point (0)
at origin. Feynman has shown that the E field at origin at time ¢ depends on
the position of the pointer € and lever r’ at a slightly earlier time (¢’ =
t — r/c). The time delay is just the time it would take a signal traveling at ¢
to propagate from r at ¢’ to origin at ¢. The E field is given by

E(0 q [ -¢ rd|-&l 14
1) = — + - tagale
( ) 41730 (r,)z c dt (r/)2 C2 dtZ[ er]
- Coulomb | induction " radiation (6 5 253)
term term term e

The first term is just the usual Coulomb field. The second term gives rise
to a magnetic induction field,

B(0,1) = (&, X E) /c, (6.5.25b)

at origin if the charge has velocity transverse to r. Finally, the third radiation
term contributes to E(0, ¢) and B(0, ¢) in (6.5.25) if the charge has accelera-
tion transverse to r. It is interesting to note that in some ways this term is
the reverse of Newton’s law. For Newton’s law one is given a field E or

ORIGIN OR OBSERVATION ;v
Vi (0} POINT / _
/ 0 . (== ——
‘GW 11(G
POINTER I swivEL el

—Cr i Q

ACCELERATED™

CHARGE q

(a)

r{o}

~~

4
@J . = AMPLITUDE
N
>

OF OSCILLATOR

(b)

Figure 6.5.6 Feynman’s lever. This construction provides a convenient way to visual-
ize the field due to an accelerated or moving charge.
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force F = gE and computes the double integral r = [[(dt*(q/u)E) of E to
obtain the particle’s position r in space. For the third term of (6.5.15a) one is
given the position r and computes E from the double derivative of €. Note
that the radiation term is the only significant term at large distances since it
has no (1/r')? factor to kill it off.

Feynman’s lever can tell you a number of things immediately. For exam-
ple, one can easily see that a charge rotating around in a circle gives rise to
circularly polarized radiation for observers along the axis of the circle. One
can also see that a uniform ring of charge gives no radiation no matter how
fast it rotates since all the charges in the ring yield canceling levers. We use
the lever now to derive the most common radiation problem: a single
oscillating charge giving electric dipole radiation.

As seen in Figure 6.5.6(b) a charge oscillating at an angle 6 to the radius
vector causes the pointer lever to oscillate with an amplitude (x/r)sin 6. The
unit vector is given by

~ AX .
—&,(t) = “k - i; sin e ™'
for r > x. The second derivative required for (6.5.25a) is
2

A L X ,
F(_é’(t)) = iw27 sin 8e ~'**,

and the resulting E field is

E(t) =1 _ (6.5.26)

,qoix sin @ [ ek
r b

dmeyc
where the retardation (wr/c = kr) has been put in the exponent.

From this one can find the total energy lost by a oscillating charge to
Poynting flux,

S ExB s |EI? _ q*w*x*sin® 6 cos’(kr — wt)
=E X =@ c=28
/l“LO r /I‘LO r 167T2C350 r2

, (6.5.27)

and derive the natural decay constant I, of a free oscillator. The surface
integral,

P(1)

[[dA - S = foz”d¢f0"der2 sin 615

2..4..2
qwXx 5 T i
= ————cos?(kr — wt)2 de sin® 6
1672c3e, (kr = wt) 7Tj(-)
PR
= ————~cos’(kr — wt) (6.5.28)

6mcie,
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is the total power being pumped into radiation at each instant. The time
average of the squared cosine factor is %, and this gives the average power
loss
q2w4x2
(P)y= ——F+— (6.5.29)

127c3,

We notice that (P) is proportional to the fourth power of frequency and
to the square of the amplitude x. Since the energy of a damped harmonic
oscillator is (mw?|x|*/2) its power loss by (6.5.4) is also proportional to x2;
ie.,

d
(Py=— E(mwzaze_zr’/b = 2I{mw?x%/2).

Comparing this to (6.5.29) one derives

q2w2

r (6.5.30)

127 c3eym

for the decay constant just due to radiation.

For an electron in an atom that oscillates at the 600 THz frequency of
green light for which @ = 3.77 X 10" rad - Hz one has I' = 4.4 x 107 s~ 1.
The atom’s energy will decay by 95% in time ¢t = 3/(2I') = 3.4 X 1078 s.
This is a typical atomic lifetime. It sounds short but that is enough time for
about 20 million oscillations! For a 6 THz infrared transition (w = 3.77 X
10"rad - Hz) the lifetime is 3.4 X 10™* s; still pretty short but enough for
two billion oscillations. In terms of heartbeats that is about as long as the
average human life. ~

Because more rapidly oscillating charges radiate more quickly, it follows
that higher-frequency stimulating radiation will be scattered more quickly by
oscillators they stimulate. This is why higher-frequency light is scattered more
in air. The scattering process which makes our sky blue is called Rayleigh
scattering, and we consider it in more detail now. The Rayleigh scenario goes
as follows. First an atomic oscillator responds according to (6.5.5a) and
(6.5.5¢) to incoming E field E,e’*?~“! with an amplitude

(2, 1) qE/ 1
’ w; — 0w’ = 2iTw

gitkz=wi+p) (6.5.31a)

i

(aE,/pwf)e =D (for o < wy). (6.5.31b)

The DC approximation (6.5.12) is given in the second line. Then the oscilla-
tor radiates or Rayleigh-scatters this energy at the rate (6.5.29)

. (65.32)

q%0*|x|? 7’0’ qE,/u

0y — 0> - 2iTw

(P

- 127c, N 127c,
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Scattering theorists like to factor this result in a funny way so that three types
of contributions are exposed:

(P) ! EZ <\ 8o’
= 2506 0 ke 47780m62 3|w% _ wz _ 21Fa)|2
Sw*

(0} — 0?)’ + 12T%

=[s]- [‘””‘czlassical] (6.5.33)

The first factor is Poynting energy flux per unit area. The second factor is
the so-called classical electronic cross-section mr3, . = 2.5 X 1072 m?,
which involves the classical electron radius g2 /(47e,mc?). (This is the radius
at which dipolar electronic coulomb energy equals the rest mass mc? of the
electron.) The third factor is a dimensionless frequency enhancement factor
for the Rayleigh cross-section, which is approximated by 8w*/3w{ when
o < wq. It indicates how an clectron can appear to “swell up” and scatter

more radiation when its oscillation amplitude is amplified.

(d) Four Points of the Response Phasor Using Feynman’s methods
one can visualize some of the mechanisms behind the Lorentz susceptibility
formula (6.5.15) and Figure 6.5.4. It is possible to see (1) how light gets
slowed down when its frequency w is below resonance (@ < w,), (2) how it
gets absorbed near resonance (w = w,), and (3) how it speeds up above
resonance (w > w,). It is also possible to understand a fourth case involving
light amplification by stimulated emission or LASER processes. These four
cases correspond to four values 0°, 90°, 180°, and 270°, respectively, for the
response phasor lag p. These four points of the phasor are as important to
modern spectroscopy as the four points of the compass are to navigation.
Figure 6.5.7 shows an incremental slab containing N dipoles per cubic
meter responding according to (6.5.31a) to the incoming radiation. We need
to find the electric field (z, — z) meters downstream at an observation point

3

r = DISTANCE BETWEEN
A RINGAND 2,

2 OBSERVATION
POINT

(Zo —~ Z) = DISTANCE
BETWEEN Z
AND CENTE&
OF SLAB

Figure 6.5.7 Incremental slab responding to plane-wave radiation.



williamharter
Stamp


CLASSICAL APPROACH TO OPTICAL RESONANCE AND SELECTION RULES 521

Zo- This would be the sum of the original stimulating field Eyelkz-zp-w]
plus all the extra little fields broadcast by the dipoles in the slab. Let us label
the extra response field by EX. The contribution dEX to ER due just to the
dipoles in the ring of volume 27 R dR dz in Figure 6.5.7 is

qo’x(z,t = r/c)
B dmecir

dE®(z,) N27wRdR dz

qwzlxlei (kz—wt)+p+wr/c)
= 3 N27RdRdz,
dareyccr

according to (6.5.26). Here we take x sin = x and include the retardation
wr/c in the exponent.

The figure shows that r> = R? + (2, — 2)2. If 7 is fixed at slab center
then 2rdr = 2R dR. This simplifies the integral over the ring radius R to give
the response generated at z,,

g iwr/c
ER(ZO,t) = Mei(kz—wtﬂ—p)j’R:deR\e
d1reyc ko .

2
Ndzqo®lx| ikz—wt+p) [~ ikr
——¢ dre

280C r=zp—z

Ndz gw?|x| etk [

ei(kz—wt+p)

6.5.34
2g,c? ik (6.5.34)

z9—z

Now we pull a well-known swindle and set ¢’** = (. This can be justified by
more careful analysis which shows how the distant oscillators cancel. The
result is

ER(ZO,I‘) = |ER|eitkz—wt+p),mi/2,ik(zg~z2)
= |ER|eitkzo=wt+ptm/2) (6.5.35a)
where

Ndz qw?|x|

EX| =
IET 2e0c%k

(6.5.35b)

The main result in (6.5.35a) is the extra phase lag of 7 /2 beyond that of the
response lag p. (The response phase lag is given by (6.5.5f).)

This result is used to draw the four cases in Figure 6.5.8. Each case shows
phasors for the stimulating E wave, the polarization wave of the responding
slab oscillators with phase lag p, the resulting downstream response gener-
ated wave E* with phase lag p + /2, and, finally, the sum wave E + ER
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CASE 1
STIMULUS 13, | X €S (STIMULUS)
FREQUENCY i
BELOW )
AESONANCE S oot LoostbosaPooo0@oo IS IN PHASE BUT SMALL
w<w, PRg— S R
& = € is 7/2 BEHIND
p=0
ER+ESis
NORMAL RETARDED
DISPERSION" IN PHASE
CASE 2 ’ -
; [
STIMULUS < \ A : z
FREQUENCY . ;
AT RESONANCE OSCILLATOR RESPONSE 1S
- 1S LARGE BUT 7/2 BEHIND
w=w, IN PHASE
PTA —
i ER is 7 OUT OF
PHASE
ER +ES s
ATTENUATED
“ABSORPTION" AND IN PHASE
CASE 3
sTiMuLus =

FREQUENCY
ABOVE

OSCILLATOR RESPONSE IS
RESONANCE w“‘Qm(?)m@%mQ“ SMALL AND 7 OUT OF PHASE

w>w, Q“mﬂnm%nwg——e—"“ ER is 1/2 AHEAD

p=x
. €R +ESis
V(a2 VI sovanceo
“ANOMALOUS [T N PHASE
DISPERSION” .
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w=w
Q
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p=— -
“LIGHT ER +ESis
AMPLIFICATION BY AMPLIFIED
STIMULATED AND IN PHASE
EMISSION OF
RADIATION"

Figure 6.5.8 The Four points for the response compass.

In normal dispersion (case 1) the oscillators are responding weakly but in
phase (p = 0). They broadcast a weak EZ signal which adds a small compo-
nent at 90° to the original E-field phasors and so the sum is a slightly
retarded wave of the same amplitude. This retardation accumulates arith-
metically or linearly from slab to slab and so it amounts to a reduction in
phase velocity.
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In case 2 the oscillators are resonating strongly and 90° behind the
stimulus (p = 90°). This means that the E¥ tends to attenuate the E field
since the extra 90° lag swings it around to be 180° out of phase. This
attenuation accumulates geometrically or exponentially from slab to slab
since the response in each slab is proportional to the total field coming from
the preceding one. This exponential decay of amplitude is sometimes stated
as Beer’s law. Note that the original E field is not simply eaten up. It keeps
going forever, but it stimulates traveling companions which are out of phase
with it. Destruction is accomplished through creation.

Just above resonance (w > w,) corresponds to anomalous dispersion as
shown in case 3 of Figure 6.5.8. Here the phase velocity exceeds that of light
in a vacuum. It should be noted that the plasma effects mentioned after Eq.
(6.5.22) are not accounted for by the thin slab model which ignores the
surface charges produced by dipoles on the edges. Such effects are important
in condensed matter but usually ignorable in the gas phase.

In case 4 of Figure 6.5.8 the oscillating dipoles are feeding energy into the
E field since they have negative phase lag p — 90° = 270°; i.e., they lead the
stimulating field by 90°. Consequently, the E field grows exponentially as in a
laser amplifier. It is interesting to note that classical Lorentz theory can
account for many laser effects. It is only necessary to replace the oscillator
number N by the difference N = N, — N, between the number N, of atoms
in the lower laser level ({) and the number N, of atoms in the upper level (u).
When N, exceeds N, this is called a population inversion and N in (6.5.15)
becomes negative as does the phase lag p. The resonance frequency w,, is the
quantum energy difference (E, — E;)/h in all these classical analyses. In
Chapter 8 we will see how the Lorentz model and phasor picture is general-
ized when we introduce the quantum phasor.

C. Two Types of Spectroscopy for Vibration Analysis

(a) Infrared Absorption Spectroscopy An experimental apparatus
which gives infrared spectra is sketched in Figure 6.5.9. The output of the

INFARED SOURCE ABSORBING SAMPLE

AY
1 Alw)
|
CHART | RECORDER

__________ e W

Figure 6.5.9 Infrared spectrometer.
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machine is the difference in intensity between the absorbed beam and a
reference beam as a function of the input frequency w.

As explained in the preceding sections, light is absorbed when its fre-
quency is near that of a resonance of some motion that gives an oscillating
dipole moment. For a given frequency, the absorption coefficient Im &
increases with the magnitude of the induced dipole moment P = agyE, but
vanishes if p is zero. For infrared frequencies, it is important to see what
dipole moments can arise from the motion of ions for a few simple examples
and to derive some general rules about them.

Suppose the atoms of UF (recall Section 4.4) are rigid ions, and the F
ions have charge qp while the U has charge gy- Then the dipole moment

vector is the vector sum of the charge positions r; with respect to the center
of charge at that position:

P=Ygr,. (6.5.36)

Now suppose the UF; octahedron is distorted according to the base state
T ) as pictured in Figure 6.5.10. (Recall Figure 4.4.36, which shows ¢ T

with amplitude 4.) Then the dipole components are, using Eq. (6.5.36),
=0, p,=0, p,=06q(MA) — q,(6mA).

Note that p, is proportional to the amplitude A4 of this distortion, and
that all components of the dipole vector are zero when UF; is the octahedral
equilibrium configuration. Furthermore, similar calculations show that the

dipole moments due to |4 1 g>, fng >, izf >, and Z> are all identically zero.

However, it is usually easier to tell by symmetry analysis which motions are
capable of giving a particular dipole moment component. This is done by

Figure 6.5.10 First-order infrared activ-
ity. This is an example of a vibrational
motion giving rise to a dipole moment.
The moment varies linearly with the nor-
mal coordinate, but also depends upon
the charges on the central ion and the six
octahedrally located ions.

+Z axis
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studying the expansion of symmetry-defined dipole components p), in terms
of the normal coordinates x*.

p;(...xtx )=[prz’(0)] +Z.xia

2,7
12 x;’x,@[ a'p’" (---0---)}---. (6.5.37)

2 iB,j

Symmetry definition of dipole components is the same as that of ordinary
vector components according to the definition given in Eq. (6.5.36). For O,
we have p, =plw, p,=phw, and p, =p{« For C;, we have p, = pM,
p, = pP, and p, = p%.

All the constant factors in the brackets in Eq. (6.5.37) are derived from the
equilibrium configuration (x* = 0) and therefore are invariant to symmetry
operations. One needs to find which of these constants or which combina-
tions of these constants are independent or nonzero. It is precisely the same
problem we solved when writing tensor relations in Section 6.3, only now we
have one such problem for each order N = 0,1,2,... in the expansion.

The zeroth-order problem is easy. Clearly, [p(---0---)] must vanish
unless there is a dipole component p” that is a scalar ( p*1). The O, vector
irrep T,, accounts for all three dipole components; none are scalar. There-
fore, nothing with O, symmetry has a permanent electric moment. On the
other hand, for C,, we have p, = p® = p“1; that is, the z component of the
dipole belongs to the scalar irrep. Therefore, NH; could have a dipole
moment along its z axis, and this is observed.

The first-order problem is also easy. In order to be invariant, the quantity
{opY /0xf¥(- -+ 0 - -+ )] must have a = y. This tells us whether it is possible
for a mode x“ to have an associated dipole moment. For UF;, which has O,
symmetry, this is possible only for &« = T,,. This is called an INFRARED
SELECTION RULE. Only the T;, modes of UF,; can be seen when the
spectrograph is tuned to their eigenfrequencies. All other modes are “first-
order infrared forbidden.” For C,, symmetry (viz., NH;) and (1) and (3) type
modes, which account for all NH, modes (recall Figures 3.7.2 and 3.7.3) are
infrared active. Only (2) type modes would be forbidden.

The second- and higher-order terms are a little more difficult to under-
stand. These will be needed to account for the variation of ionic charge with
interatomic separation. Generally, the dipole moment will not increase
linearly with x? forever. The only higher order terms that can be nonzero are
those which can make the vector irrep (y) through a Clebsch-Gordon
coupling. The quadratic terms must be of the form

pl = +k‘/(2‘é’"‘37x x ) + ooy (6.5.38)

ijm
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2nd ORDER INFRARED
ACTIVITY

T2 [

COMBINATION

Figure 6.5.11 Second-order infrared activity. This is an example of combination of
normal coordinates giving rise to dipole moment. It depends on the product of the
normal coordinates. It is also necessary that the charge difference between an
octahedral ion and the central ion should depend on the distance between them.

where
1 a%p?
kY= —Y geby| " _(...0...
2 lz;‘ wm [6x;" 6xf( )}

is independent of m.

In this way a particular combination of normal coordinates may give rise
to a dipole moment even though neither one of them could do it separately.
Consider, for example, the infrared inactive modes x> and x%¢ of UF,.
Since #uE«"w = —1 it may be possible for the combination of these two to
make a p,(p3™) dipole component. Indeed, from Figure 6.5.11 we may
visualize this possibility. It should be clear that this second-order dipole
moment depends on how much the charge on the F ions varies with their
distance from the U ion.

The frequencies associated with second- or higher-order products x{"xﬁ

may be the sums or difference | + w® + w? + --- | of the respective
eigenfrequencies and are called OVERTONES or COMBINATION TONES.
Understanding their detailed behavior requires quantum mechanics.

(b) Rayleigh and Raman Scattering We mentioned that the polarizabil-
ity of electrons by optical frequency radiation is much greater than that of
the vibrational modes. This is particularly so for larger molecules. Now we
will give a more detailed discussion of the polarizability of the electron
clouds around various arrangements of ions or atoms.

For objects more complicated than the simple charge-ball model it is
necessary to discuss other components of polarizability. The polarizability of
nonspherical charge clouds may vary with the direction of E, and the induced
dipole moment p may not point in the same direction as E.
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Figure 6.5.12 Electronic polarizability may be anisotropic.

For example, consider a long thin molecule with some electrons that can
move more easily along its z axis than in the x or y directions. An electric
field E applied at a random angle to the axis will produce a dipole vector
nearly parallel to the axis as shown in Figure 6.5.12.

In order to describe the general linear polarization, the simple relation
p = ag, is replaced by the following tensor relation:

p = g40 - E,
by Uy Oy Ay, Ex
Pyl =&0| @ @y, oy |{E, ] (6.5.39)
p; A,y a,y, ®;, Ez

The radiation arising from the oscillating dipole p induced by an oscillat-
ing E through a changing & is the RAYLEIGH AND RAMAN-
SCATTERED LIGHT. A basic experimental setup which may detect this is
sketched in Figure 6.5.13.

The vector of the E field coming to the collecting optics from a single
dipole p(¢) can be given by rewriting Feynman’s lever formulas (6.5.25) and
(6.5.26) as follows:

1 p(t —r/c) XE) XT |
E = 5 (B( /€) ) ek, (6.5.40)
dmeyC r

or if we assume p(¢ — rc¢) = p(+)e ", by

? p(+) X§) X ¢
2(( ) X 1) e'kr. (6.5.41)

E = —
4aeyc r

The energy flux S was given in (6.5.27).




528 THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATION PRODUCTS

FOCUSING SCATTERING
OPTICS SAMPLE
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SOURCE
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POLARIZERS ——
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Figure 6.5.13 Raman spectrometer.

The frequency spectrum, polarization, and intensity of scattered light
depends upon the incoming E field and the polarizability tensor & according
to the foregoing and Eq. (6.5.39). The most important effects come from the
changing of the & components as the scattering molecules expand and
contract while vibrating. One may express this dependence on atomic motion
by the following expansion of & in terms of normal coordinates:

da,,
auu(...xtq ...)=[auv(...0...)] + Zx;x[axq(...o...)]

a,l

! ayB st 0 6.5.42
+§szixj W( )| (6.5.42)

a,iB,j

For symmetry analysis it is more convenient to use the symmetry-defined
tensor components ay, instead of the Cartesian components «,,,

&= Y a,%,%, =Y alT2, (6.5.43)

u,v Y, m

just as was done for the stress or strain tensors. The expansion of each of
these,

Y
day,

a;yn(...xia ) =[a;/n(...0...)] +§x?[axa('“0“')]

1

! ] 0 6.5.44
+= 2 Y xix! W( )|, (6.5.44)

a,ifB,j

can be treated term by term using the same ideas that worked for the dipole
expansion in the preceding section.
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The first term, like all the coefficients in brackets evaluated at x = 0, is
invariant to symmetry operations. It can be nonzero only for the components
ay, for which (y) = (scalar). This is called the RAYLEIGH-SCATTERING
term. According to Egs. (6.5.39) and (6.5.41), it gives a dipole moment and
outgoing light with the same frequency as the incoming (laser) source. For O,
symmetry we have that [@?s(--- 0 - - - )] is the only nonzero component, and
so the Rayleigh polarizability tensor is a unit tensor 1. In this case the
Rayleigh polarization must be the same as that of the incoming light.

The second terms give what is called the FIRST-ORDER or FUNDA-
MENTAL RAMAN SCATTERING. Each oscillating normal coordinate

xf = xf ()€l +xf(=)eio (65.45)

gives the following contribution to the oscillating dipole:

p= L ayT} - Ee!
y,m

Z ..._,_[aa’y"(...o...)}

o
vom x|

X(xf(+)e@red 4 xx(—)el@ e )TY - E + ---. (6.5.46)

This depends on the constants in the brackets being nonzero for some irrep
(y). If for some (y), [(da,/dx)X ---0---)] is nonzero, then the spectro-
graph in Figure 6.5.13 may record a bump at frequency w — w® called the
a-STOKES LINE, and possibly another bump at w + w® called the «-
ANTI-STOKES LINE. However, if no tensor component «, exists such that

v = «, then the bracket constants must be zero for that mode ‘;‘ . In this

case we say that the spectral lines w + w* are RAMAN INACTIVE or
FORBIDDEN.

For example, there are three triply degenerate frequencies of UF, which
cannot show up in the ordinary Raman spectrum, namely, wCTfu, and the two
w’1« vibrations. To be Raman active, an O,, vibration mode x; must belong to

one of the ( ) irreps that are used to define a second-rank symmetric tensor

y
m
d, namely A,,, E,, or T,,.

Consider now the detailed form of some Raman-active modes. In Figure
6.5.14 we show how the expansion of the polarizability tensor gives various
contributions. We can visualize various effects in the drawings below.

The main idea is that if the molecule expands in some direction then the
polarizability for that direction increases. The symmetry analysis keeps track
of the precise ratios of the polarizability components for each case, and tells
which components must vanish. We have shown only one component of each
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POLARIZER

OUTPUT
POLARIZER

,// INTENSITY AT SPECTROMETER

~ -~
- Xgyr " Egur!

Figure 6.5.15 Geometry of raman polarization experiment.

Raman-active mode in the figure. You might find it instructive to look at
. E
some of the others, particularly ( ;). Note that the bracket constants such as

[9aLs/dx%s(---0--)] for the other components must equal those of the
first component. (Recall the tensor theorem.)

The second-order terms in Eq. (6.5.44) or any higher-order terms may be
treated in exactly the same way for the analogous expansion of the dipole
moment in the preceding section. The main difference here is that any mode
x® can contribute to the polarizability of a second-order term of the form
(x,Ca* ' x2xT*1). However, during one vibration period for the rise and fall
of x?, this contribution rises twice. Hence, these terms lead to spectral lines
of overtone Raman scattering with frequency o, = 20% In this way
inactive modes can be observed, although their contributions are usually
quite weak unless they are encouraged by stimulation or resonance tech-
niques.

Each of the different Raman processes have more or less distinctive forms
for their contribution to the polarizability tensor, as shown by the examples
in Figure 6.5.14. This means it is possible to distinguish one type of mode
from another by adjusting polarizations at the laser and at the slit in Figures
6.5.13 and 6.5.15. This is certainly true for a solid for which the crystal axis
remains fixed with respect to the experiment. However, it is also true for gas
and liquid molecules even though they are rotating.

Figure 6.5.15 shows how the output polarization will depend upon the
polarization of the input beam and the polarizability tensor &. This is derived
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in the following, where the proportionality constants in Eq. (6.5.41) are
deleted:
output amplitude ~ R, - Eqy ~ Ko - [(B X £) X #]
= Rou " B) (D" F) — (Rou " B) (£ - F)
- (iout ’ p)
~ = (Row " @ Ryp)- (6.5.47)

If you can ignore all but one type of symmetry-defined tensor T? in the
expansion of a, then you will observe the polarization dependence that is
peculiar to the y-type modes. For example, if only the T,, modes are excited,
and you only observe the light scattered with the o2« frequency shift, then
the output intensity is the square of the following output amplitude:

0 a «a
<iout a- iin >T2g = XouYourZow | 0 @« Yin |- (6'5'48)
a a 0]}z

By adjusting the polarization and beam angles between X,y and %, it is
possible to distinguish T,, resonances from others. The A,, resonances, for
example, have an isotropic polarization response since their @ tensor is
proportional to the unit matrix.

6.6 MULTIPLY EXCITED QUANTUM VIBRATION STATES

The quantum description of molecular vibrations was introduced in Section
4.4. That discussion contained a derivation of the eigenstate

. a}t" oL a8 "5'3...|...0...0...>
! i1

i

(6.6.1)

of the harmonic Hamiltonian: H = T, ;hw (al*a® + 11) where the quantum
numbers n{ = 1,2,... are the number of excitations of the mode of type

(‘l") [In solid-state physics one speaks of ny as the number of (‘;)

PHONONS.]

An introduction to the excited or mulfiphonon vibration spectrum was
given in Section 4.4.D. The first, second, third, ... excited states of a mode
belonging to a one-dimensional irrep (for example, o = 4, ¢ in XFy) are all
singly degenerate with energies Ey + n®hw,. This is just like the ordinary
one-dimensional oscillator spectrum. The excited states of a mode belonging
to a two-dimensional irrep (for example, a = E, in XF) have degeneracies
(2,3,4,...,n + 1) for levels E, + (ho,,2ho,,3he,,...,nhe,). A mode
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belonging to a triply degenerate irrep (for example, a = T}, T,,,, ..., €tc. in
XFg) has excited-state energies of E; + hw,, Ey + 2hw,, E, + 3ho,,...,
E, + nho,, with degeneracies 3,6,10,...,(n + 1)n + 2)/2, respectively.
This is the three-dimensional oscillator spectrum.

This can be generalized for any irrep dimension [*. The resulting degen-
eracies are the combination coefficients in Pascal’s triangle as given by Eq.
(4.4.64). Now Clebsch-Gordon coupling analysis can be used to discuss the
form of the wave functions and spectral splitting of multiphonon configura-
tions.

Anharmonicity Splitting

The large degeneracies of excited degenerate vibration modes come from a
harmonic Hamiltonian. However, for any molecular or solid complex, the
harmonic part is only the first of many terms in an approximation that must
have higher-order potentials in order to describe what happens when the
system is very excited. The L, ,(x{")* terms by themselves are the harmonic
oscillator potential, while any higher terms (x)%, (x#)?, ... are said to make
the oscillator ANHARMONIC.

Now, only those anharmonicities are permitted which have the same (G)
symmetry of the physical system. (The harmonic terms obviously have G
symmetry.) By systematically constructing all independent scalar polynomials,

iyiy) i3 iy

ajaycryasf | .. Sa,0 , Lajaya5 ., a
Y, gnergres I TS Fies 4 x{n, (6.6.2)
Jok,...

using G coupling coefficients, one will find all the independent anharmonic
terms of a given order. The final coupling (%,?:,"0) must give a scalar.

One effect of anharmonic terms will be the splitting of the degeneracy of
the multiply excited (overtone or combination tone) vibration levels. Con-
sider, for example, the six states of harmonic eigenvalue E, + 2th2“,

0 --- (2)Tz,, Q) = a;{.T2uaj:T2u|0 Q- 0>/\/§ (6.6.3)

in an O, system such as XF,. These belong to the 2v, level in Figure 4.4.8.
From these we can make states of definite O, symmetry using coupling
coefficients:

(2)T2u’3;> = Z?,TZuTzuya'lszua}'Tzulo R O>/‘/§ (664)

.o Lym

1,7
To first order, these will be eigenstates in the presence of anharmonic
potentials. Note that we obtain just six symmetrized-outer-product bases
Ay, E, (1 and 2), and T,, (1, 2, and 3) because of the commutation
symmetry ala’ = alal. By adjoining one more a}’2« factor, we see that 10
third-order states appear. The resulting anharmonic splittings are indicated
in Figure 6.6.1(a).
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Figure 6.6.1 Examples of multiple vibration levels. Harmonic and anharmonic eigen-
values are indicated. (a) Overtone levels. (b) Combination tone levels.

The combination-tone levels arise from the coupled products in the same
way, as seen in Figure 6.6.1(b). Note that the commutation symmetry
a*al® = alPal® does not eliminate any terms when a # 8.

To gain some appreciation of the complexity of overtone and combination
levels one should examine the level diagrams for SF;, UF;, and SiF, in
Figures 6.6.2(a—c) by R. S. McDowell and B. J. Krohn at Los Alamos. The
spectroscopy upon which they are based is described in some of the refer-
ences given at the end of Chapter 4 and in Chapter 7. The spectroscopic
notation for the fundamental levels discussed in Chapter 4 (recall Figures
445and44.6)is v, = A ,,v, = E,, v; = T, (high), v, = T, (low), vs = T,,,
and vg = T,,. The center of the figure is devoted to the v, overtone ladder
which provides a pathway for infrared laser dissociation of the molecule. The
need to investigate dissociation and apply it to isotope separation was the
driving force behind much of the initial high-resolution spectroscopy of UF,,
SF,, and related molecules. The overtone levels for UF, are shown for
comparison in Figure 6.6.2(b), and SiF, levels are displayed in Figure 6.6.2(c).
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Figure 6.6.2a Vibrational levels in SF, below 3000 cm ™", illustrating intramolecular
energy transfer in multiple photon excitation of the lower v, ladder. The level
energies are based on the »; and x;; constants of McDowell and Krohn. In the fourth
column the levels are labeled with the vibrational quantum numbers v,v,030,U50; In
the first three columns with v,v,0; (v, vs, and vg understood to be zero); and in the
last two columns with v,w504 (v, = v, = v3 = 0). The four levels marked with aster-
isks are (in order of decreasing energy) 010020,/010003, 100011 /001002 /020001,
001010,/100002, and 100010 ,/001001; also, in column six, 031 falls between 202 and
014. Anharmonic splittings of higher vibrational manifolds were arbitrarily assumed to
be 1 em~! between sublevels, except for 2v5 and 3v 5, for which the sublevel positions
of Patterson, Krohn, and Pine were used. Each sublevel was given a width of 12 cm !
to indicate rotational broadening. There are approximately 327 vibrational levels
between 0 and 3000 cm ™!, comprising about 5540 sublevels. Also shown are typical
near-resonant collisional pathways out of the v; ladder for which the centers of the
vibrational manifolds are detuned by less than 80 cm ™. (After R. S. McDowell and
B. J. Krohn, unpublished.)
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Figure 6.6.2b Vibrational energy levels of UF, below 3000 cm L. The level energies
are based on the v; and x,; constants of Adlridge et al., except that xz; = —0.7
cm~ L. The levels are labeled as in Figure 6.6.1. Anharmonic splittings were assumed
to be 1 cm~! between sublevels, except for the v, ladder, for which the sublevel
positions of Krohn et al., were used. Each sublevel was given a width of 12 em™! to
indicate rotational broadening. There are approximately 1015 vibrational levels be-
tween 0 and 2000 cm ~ ', comprising about 120,700 sublevels. For a given amount of v,
excitation, higher bending levels are more accessible for UF, than for SF,. (After
R. S. McDowell and B. J. Krohn, unpublished.)
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Figure 6.6.2c Vibrational energy levels of SiF, below 3200 cm ™', The level energies
are based on the »; and x;; constants of McDowell et al., and are labeled with the
vibrational quantum numbers v,v,v,;u,. The six levels marked with asterisks in column
three are (in order of decreasing energy) 2200,/1500,/1202, 1110,/0410/0112,
2001 /1301 /1003, 2100,/1400,/1102, 0310/0012, and 1300/1002. Anharmonic split-
tings were assumed to be 1 cm ! between sublevels, except for 2v5 and 35, for which
the sublevel positions of Patterson and Pine were used. Each sublevel was given a
width of 12 cm~! to indicate rotational broadening. There are approximately 185
vibrational levels between 0 and 3200 cm ™!, comprising about 2185 sublevels. (After

R. S. McDowell and B. J. Krohn, unpublished.)
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A desire to understand the general problem of intramolecular vibrational
energy redistribution (IVER) has stimulated research on vibrational overtone
and combination states of many molecules. In order to reduce the complexity
of the problem, many researchers have chosen to examine simpler molecules
and anharmonic vibrational models. Since diatomic molecules seem to be too
simple to show IVER effects one must consider triatomic molecules—such as
H,0, H,S, or O, or weakly bound triatomic clusters such as HFAr.

One of the most famous triatomic anharmonic vibrational potential mod-
els is the third-order C,, symmetric potential constructed from the two-vec-
tor normal coordinates {x = qF, y = g¥}. Using coupling coefficients for the
group C,, we have

V=Mx?-3xy?).

This is known as the Henon-Heiles potential function. Breaking the symme-
try to C, yields the Barbannis potential:

U= ax3 — 3uxy?.

This recovers the C,, symmetry when u = A. Some effects of nonlinear and
anharmonic potentials are discussed in Chapter 7 and references.

6.7 INTRODUCTION TO THEORY OF SYMMETRY STABILITY

So far it has been assumed that the Hamiltonian or equations of motion of
various systems had a certain symmetry. By making various models subject to
the symmetry constraint one could relate and predict various properties of
the systems which the models represent. However, such an approach cannot
give you much of a clue about how the symmetry came about in the first
place, i.c., why the electronic and electromagnetic forces hold some configu-
ration in a symmetric form. Now by relaxing the assumptions about these
Hamiltonians somewhat it is possible to gain a little insight into what forms
may or may not be stable under various conditions.

This involves an interaction between nuclear (or vibrational) and elec-
tronic motion which is called VIBRONIC motion. This section contains an
introduction to vibronic Hamiltonians and their symmetry properties. This
leads to the Jahn-Teller theory of symmetry stability.

A. Symmetry Analysis of Vibronic Hamiltonians

In the models of molecular electronic orbitals given in Chapters 2-5 and
later in Chapter 7 Section 7.6 some approximate electronic eigensolutions are
derived for electrons tunneling or orbiting around several fixed potential
wells. The potential wells represent the nuclei of a molecule, and so the
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electronic levels were derived for one fixed position of nuclei. On the other
hand, the models of nuclear motion in molecular vibrations were based on
the assumption of internuclear potential functions or “spring constants.” The
internuclear potential represents the combined effect of nuclear Coulomb
repulsion and electronic bonding energy. The bonding energy depends on the
eigenvalue of the electronic ground-state eigenfunction.

In Section 4.3.D various changes of energy or positions of octahedral
potentials were seen to shift or split the energy eigenvalues. (Recall Figures
4.3.5 and 4.3.7.) One can imagine that each electronic energy eigenvalue £

of a molecule is plotted as a function g”(--- x --+) of the nuclear
positions or normal coordinates x{. If the internuclear repulsion potential
Z(--- x2 --+) is added, there results an effective potential

V‘)’(...xia ...)=8'Y(...xia ...)+Z(...xlf’l ...)

for each electronic state. The BORN-OPPENHEIMER APPROXIMATION
amounts to picking just one of these effective potentials for the nuclear
vibration Hamiltonian. For molecules in their electronic ground states one
picks the ground state V'”. This is a good approximation as long as the
splitting between different V', V", ... is much greater than the fundamental
vibration energies resulting from each effective potential. In other words, a
single electronic level provides an effective nuclear potential as long as the
nuclei move slowly compared to the electrons.

Now it is clear that the Born-Oppenheimer approximation may break
down for any &” belonging to degenerate electronic levels or multidimen-
sional (I” > 1) irreps. The possibility of electronic degeneracy signals the
need for a vibration-electronic or vibronic Hamiltonian which strongly effects
the stability of the molecule. The question of stability is: “What values of x{

are stable local minima for V”(--- x ---)?” or more to the point: “Is a
stable minimum of VY(--- x? ---) found at the symmetry configuration
where x* = 0?7

To answer this, imagine that the total Hamiltonian H(---r, --- x§ --)

operator for the nuclei and electrons can be expanded in powers of the
nuclear coordinates x;.

€

H( 7 x,"‘ ) =H0(r)+ ZHia(r)x;x

+ Y H[aBlL(r)[xexP],, + +++. (6.7.1a)

Y. m

Here each H(r) operator factor is a function only of the electronic operators,
and we use a bracket notation to abbreviate the quadratic Clebsch-Gordon
combinations of nuclear coordinates:

[x°x?], = ¥ &ofrxexb. (6.7.1b)

iJ
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Higher-order (anharmonic) terms in this expansion will be important in
general, but, for now, we will only consider terms of second order or less.
The Hamiltonian H(---r---x---) being considered contains all the ki-

netic energy terms ( -+ - P2/2m, --- P2/2M,, - -+ ) for n, electrons and n,,
nuclei, all the Coulomb potentials of interaction between then 1 /e, —
rgl o 1/1xy = x| -+ 1/Ir, — xyl), and nuclear and electronic spin oper-

ators, too, if they are important.

Assuming the external environment is isotropic, such a Hamiltonian is
completely invariant to all rigid spatial rotations from the group O, discussed
in Chapter 5. Also, it is invariant to all ne!an!nNZ! -+ permutations of
identical particles. Together, this amounts to an enormous symmetry, in
general, which is larger than the ordinary molecular point symmetry G which
the nuclei will have if (x¥ = 0) is a stable minimum.

Indeed, there is more physical symmetry in fundamental descriptions of
nature than is readily apparent from most of the objects which we observe.
Hidden symmetry is a fascinating subject because it usually involves more
fundamental and simpler principles which explain complex spectral effects.
Elementary examples of hidden symmetry were introduced in connection
with spontaneous symmetry breaking in Section 4.3.C. The “global” symme-
try discussed there corresponds to hidden symmetry, while the “local”
symmetry corresponds here to the molecular point symmetry G of a stable
molecule. Most molecules become “frozen” into stable G-symmetric forms
and never get to realize the full freedom of their hidden symmetry.

It is important to establish some criteria for determining whether a
particular molecular symmetry G or a G-symmetric arrangement is stable.
To do this we imagine, again, putting the nuclei in a G-symmetric position
long enough for all the electrons to settle down into some ground-state
orbital that transforms according to irrep 27 of G. Then, using this assump-
tion of a (y) orbital, the fact that H(---r---,--- x* ---) has G symmetry
(at least!), and Eq. (6.7.1a), we may derive an energy submatrix for the
electronic substates |}, ):

Y Y Y Y
H
Gl Gletz)
Y Y Y Y
H N

) Gbfz) | 072
Since H(-+-r--+,--- x* ---) has G symmetry, we must have that the
purely electronic operator factors H?(r), H{aB]2(r),... transform as irre-

8

ducible tensorial operators with irrep labels (‘:), (n

), ..., respectively. That

is, each term in Eq. (6.7.1a) is a G scalar. This allows one to expand and
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evaluate each energy submatrix component using the Wigner-Eckart theo-
rem:

(o

Y N 4 Y Y ay o Y 8
]> <m'HAj>+(§<mlHi j>xi +8’Zn<m|H[aB]n

=& ylAllyy + Xeg{yllalydxy
a,i

y a 3 IR
j>[x *#1,

+ L& (yl[aBlallyd [ xxP], + - . (6.7.3)
8, n

B. The Jahn-Teller Theorem

Let us pick once again the example of the XF, molecule which we assumed
in Section 4.4 had O, symmetry. The normal cordinates were xIts, xFe xTi
(two kinds), xT2s, and x'2«, as shown in Figure 4.4.4.

Some possibilities for XF, electronic orbitals were briefly discussed in
Section 4.3. However, the approximate molecular orbital states |4, e |Eey

and

ilz> displayed in Figure 4.3.2 were made just for one electron shared

between the F atoms. In a more detailed analysis in later chapters involving
more electrons and more orbitals, it will be clear that all irreps can show up
as orbitals in general. So one must consider each possible (y) in Eq. (6.7.3).

Case 1. y =A,,, A, Ay,, or A,

ig»

Substituting y = 4, into Eq. (6.7.3), we find that most of the coupling
coefficients are zero. All linear terms except a = A,, are ruled out:

(AHIA,) = (A NA1A4,) + (A l1A4, 14, ) x4

+ (A Maald; A [ xex]e . (6.7.4)

Of the quadratic terms only 8 = A4,, or the harmonic terms
A a 2
[xaxa] g (1/‘/104) Z (x’q)
i=1

remain. The reduced matrix coefficients (A4 |[[aa]A4, ¢l4,> must now all be
positive in order for the molecule to be stable in a symmetric shape. Then the
molecule will alter its x“z coordinate until a minimum is reached for the
energy

E = (AN A 1A )2 + (AN Ay Ay Ayl A, (x40
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at equilibrium position
x415(0) = —<AXI|A1g[|Ax)/2<Axll[AlgAlg]AlgIIAX>.

However, this shift involves no reduction of symmetry, just a change of size
for the molecule.

Case2. y=E or E,

In the 2 X 2 energy matrix for an E electronic doublet, we find that two
motions x;* give possibly nonzero linear terms. These are the motions x s
and x s

1 O xAlg
(H) = (E|AIE) + CENAE)
0 1 0 x g

CENEJNE) | xfe —xEs
+ g 1 2
V2 .

[xExE]Alg 0

+CEINEE A IED | [xFx ]

CEMEEIBE) [ [x560)) ~[xer)t

6.7.5
V2 ety -emerpe) O
Extra quadratic terms show up, too; however, just the linear terms in x ng
are sufficient to spoil the O, symmetry in the ordinary sense. As we will see
in the following, the equilibrium position is not at xfg = 0 if the reduced
matrix element { E |E,IIE) is finite. Of course, this reduced matrix element
might turn out to be zero anyway, even though symmetry does not require it;
however, this is improbable.

Cased. y=T1,,, Ty, T

1g» 2g> or T2u

In the 3 X 3 energy matrix for any T electronic orbital we find that the
motions x s, x ng, and xiT 2¢ all are capable of giving nonzero linear terms, in
addition to some nonscalar quadratic terms. Again, we find that the equilib-
rium position is not necessarily ijs = 0 = x[2s. Of the Cases 1, 2, and 3 we
see that of all the electronic states, only the nondegenecrate ones (A) are
likely to yield an O, symmetric XY, molecule. This is the content of the
following theorem.

Jahn-Teller Theorem There will be at least one possible linear term involv-
ing a symmetry-breaking motion in the energy expansion for a degenerate
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electronic orbital, except for (a) the electronic spin degeneracy of 2 and (b)
the axial angular-momentum degeneracy of 2 for linear molecules.

The theorem was first proved by exhaustive study of each symmetry
structure possible with all possible molecular configurations: XY,, XY;,
XY,,..., X,Y,, and so on. Since then more elegant proofs have been devised.

C. Dynamic Jahn-Teller and Renner Effects

We now investigate the (y = E) case or Case 2 in more detail. Before
beginning, one should note that the E-case mathematics serves as a solution
for at least two distinct problems. It pertains to the stability of an O,-sym-
metric XF¢ molecule with an E, or E, orbital, but it also applies to the
triangular C;, molecule displayed in Figure 3.3.4. It may be a model for
ozone (O;). This coincidence happens because the coupling coefficients
involving the O,, irreps E,, A,,, and A4,, are precisely the same as those for
C,, irreps (3) = E, (2) = A,, and (1) = A,. This is fortunate because it is
easier to visualize the ozone molecule when trying to get a physical feeling
for the results.

Let us rewrite the matrix in Eq. (6.7.5) as follows:

X+ k(x% +x3) +r(xf —x3) —Jjx, + 2rx x,
(H) = . - 2, .2 2 _ .2
—jx, + 2rx,x, —jxy + k(x] +x3) = r(x{ —x3)

(6.7.6a)

by dropping the constant term and the irrep superscripts (x}E = xj), and by
letting ‘

j=(EIEIE)/V2 (6.7.6b)
be the coefficients of what are the JAHN-TELLER terms, by letting
r=(EIEE]EIE}/2 (6.7.6¢)
be the coefficients of what are called the RENNER terms, and by letting
k = (EI[EE]A,E) /V2 (6.7.6d)
be the coefficient of the HARMONIC terms. One can leave the harmonic

terms out of the matrix while diagonalizing since they just are proportional to
the unit matrix. In that case the secular equation is simply

2 — [(jx1 +r(xf— x%))z (e, - 2m1x2)2) ~0,
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and has the following solution:

5 1/2
A= i(jz(xl2 +x3) + 2jr(x] = 3x,x3) + r?(x} + x3) ) :

It is convenient to switch to polar coordinates in the normal-mode space,
where

xE = pcos ¢, x5 = psin ¢. (6.7.7)

The total energy eigenvalues (we add the harmonic term back now) have the
following form:

e,=kp® + (%7 + 2jrp>cos3¢ + r3p*) = kp? +jp  (for r = 0).
(6.7.8)

On the right we have eliminated the Renner terms.

We therefore find some rather curious potential-energy functions of the
normal coordinates x£, x£ or p, ¢, which are sketched in Figures 6.7.1a and
6.7.1b) for r = 0 and r > 0, respectively.

The electronic eigenstates can be expressed very nicely in terms of the
normal coordinate polar angle for the case r = 0

e = cos(/2)| %) - sin(a/2) £ ),

le_) = sin(¢/2)"f>+ cos(¢/2)‘1[23>. (6.7.9)

Xi

(a) Jahn-Teller Terms (b) Jahn-Teller and Renner Terms

Figure 6.7.1 Potential energy functions of the E-type coordinates. (a) Jahn-Teller
terms (r = 0). (b) Jahn-Teller and Renner terms (r > 0).
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Figure 6.7.2 Electronic state |e ) for various nuclear positions allowed by varying E
coordinates.

These are eigenvectors of the electronic matrix [Eq. (6.7.6a)] with » = 0:

jpcoséd  —jpsin

(H) = —jpsing —jpcos¢

+ kp?1.

In order to visualize this kind of eigenstate, one may imagine the ozone-
molecule motions of type (3) or E which were drawn in Figure 3.4.5. Figure
6.7.2 contains sketches of the form of the electronic eigenwave { - r--- |e_)
for several values of angle ¢. (We do not know the exact shapes without
solving a Schroédinger equation, but symmetry theory gives us a rough idea of
form, as explained in Section 2.12.) As we rotate the nuclear distortion
(xf =p, x5 = 0)into (xf = p cos ¢, xF = psin ¢) we see what happens to
the electronic wave as shown in Figure 6.7.2. Its progress can be traced by the
position of the nodal plane indicated by the dotted line.

One thing to notice is that the electronic wave rotates half as much as the
nuclear distortion. A complete rotation ¢ = 360° leaves the electronic wave
with a minus sign. In Section 5.7.A it was shown that such transformation
behavior corresponds to a RAY representation of the symmetry. Half-
integral spin states or the states of any two-state system will exhibit this sort
of double-valued behavior.

A similar sketch could be made for the electronic state |e, ). At ¢ = 0° it
would be the same as |e_) for ¢ = 180°. This gives another way to see the
multivalued structure. A cross-section of Figure 6.7.1(a) is shown in Figure
6.7.3(a). Note that by going from ¢ = 0° to ¢ = 180° via the valley, one

effectively jumps from the right parabola belonging to state \g > to the left

one belonging to orthogonal electronic state 11': . We have been describing

this function as consisting of a top sheet (¢, ) and a bottom sheet (¢_). This
description is probably more suitable, particularly if some perturbation like
spin-orbit separates the two sheets as indicated by dotted lines in Figure
6.7.3(b).

By looking again at the various nuclear distortions in Figure 6.7.2 we get
some idea what the meaning is of the minima in the (¢_) energy sheet at
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the £} + > sheet

"

v—
the El — > sheet

(b)

Figure 6.7.3 Different ways to label the cross-sections of the potential surfaces in
E
5 )

Figure (6.7.1a). (a) Parabolic potentials due to electronic states (’f) and
(b) Separate potential sheets due to excited (+) and ground (—) electronic states.

¢ = 60°, 180°, and 300° when the Renner coeflicient r is positive [see
Figure 6.7.1(b)] or at 0°, 120°, and 240° when r is negative. In particular, the
¢ =0° and ¢ = 120° distortions are pictured in Figure 6.7.2. An acute
isosceles triangle pointing in one of three directions is stable when r < 0. For
¢ = 60°, 180°, and 300° we find an obtuse isosceles triangle pointing away
from these directions.

It might appear that a model Hamiltonian with nonzero j and r terms
reduces the molecular symmetry to the Abelian C,, and splits all the
electronic and vibrational levels into singlets. This is not the case. Let us go
back to the beginning by first assuming j and r are zero. With only the scalar
harmonic (k) Hamiltonian one has essentially independent electronic and
vibration states. One can be rotated without affecting the other.

Suppose the electronic states and classical vibration coordinates being
considered transform according to E [or (3)] irreps as before. Then the
quantum vibration states transform according to B = A;; E; E A,;... for
excitation number N = 0; 1; 2;..., respectively, according to an accounting
explained in the preceding Section 6.6. The quantum states for the whole
molecule are then the products,

7
[ electron

E B\ _
ijl

J

p > : (6.7.10)
nuclei

as indicated on the left of Figure 6.7.4 [see columns (a) and (b)].

In the presence of any electron-vibration interaction represented by j, r,
or other terms, it is appropriate to couple the separate electronic and
vibrational states to make what are called VIBRONIC states:

Y = EBy
) -Tem
vibronic iJ

H >
1 /electronic| J

B> , (6.7.11)
nuclei
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VIBRONIC LEVELS

(a) Factors: (b} No {c) Weak (d) Large {j) (e) Large ) (P Large (j)
Electronic Vibrational Interaction Interaction small (r) r=0 large (r)
\\
TS ===
Ay /7 -
[E>|E> A A 7/ E -
n=2 E L s E2 /
A -I———_l——‘:: E\ Upper sheet (+)
E>|A =
S IR\ 5
n-1 [E>]E> . A s 2
et = N AY =R
RN VA 3 s
® =0, |E2IA> AR\ s 3
E N \\\\\ K
~ E (B
— \\\ \\ \ ¢ #
\ \\ A\ \ / \
AU YA Ay g W1 0
\ \\ [SAYAY ) 4 £ I
v LAY NS
v\ vy E e
A \\\
A \\\ E
WA —
VoY Ay ~Jooa
N A
AN \\ A2 e
A\ A 7 Al N
W E AN
\_E - -

Lower sheet (-)

Figure 6.7.4 Vibronic levels arising from the combinations of E-type vibrations with
E-type electronic orbitals.

which will, to first order, be eigenstates of the interaction operator. The
resulting levels shown in Figure 6.7.4(c) will keep their irrep labels ;/’ and

degeneracy no matter what r or j may be. The E levels will not split, and
each vibronic state can be mixed only with others which have the same irrep
labels.

Now let us consider the extreme case in which both r and j are large and
the nuclear coordinates are essentially “stuck’ near the the bottom of one of
the three “subvalleys” in Figure 6.7.1(b). The vibration frequency for oscilla-
tion in the radial (p) direction will be different (presumably higher) than that
for the angular (¢) direction. Therefore, each state should be singly degener-
ate. However, this description forces us to consider the corresponding (single)
states for each of the configurations in the other two valleys. We then have a
total degeneracy of 3 for each level as indicated in Figure 6.7.4(f).

Indeed, we may follow the levels as the constants are changed. For small
r, but large j, the angular bumps or saddle points will be reduced; so the
three species of vibrational states get mixed with a resulting tunneling and
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splitting of the triple degeneracy as indicated in Figure 6.7.4(d). This is
similar to the hindered rotation mechanics discussed in Section 2.12. [Recall
Figure 2.12.4(a).] This is a good example of spontaneous symmetry breaking.
With little or no tunneling the dynamic Jahn-Teller levels collapse into
Ay + E or E + A, clusters which belong to the O, 1 C;, or O, 1 C,, induced
representations. In the limit of no tunneling the molecule becomes “frozen”
into a local C, symmetry with an isosceles triangular shape. This is the static
Jahn-Teller limit, and the clusters are degenerate. Someone unaware of the
hidden C;, symmetry will treat the clusters as singlet levels,

For r = 0 the effective potential takes the shape shown in Figure 6.7.1(a).
Now a type of free rotation is possible with spectra of the form shown in
Figure 6.7.4(¢). One may derive a differential equation for the vibronic state
in this case and discuss the form of the wave function.

Consider a wave function of the form

Vu(orepd)=Corre e Ddu(p,¢) + (e le D0, 8),
(6.7.12)

where the electronic parts

("-r-'-|£_)=sin(¢/2)<~"r-“Hj>+cos(q§/2)("'r""§>,

Coovreele,) = cos(/2)( -1 lf>_sin(¢/z)<...r... Ig
follow from Eq. (6.7.9), and the nuclear parts
bxi(pd) = RE(p)e'™® (6.7.13)

are separated into a radial and angular part. The effective nuclear Hamilto-
nian is H = T + V, where the kinetic part is

Rl 92 14 1 o 6714
T=—-—|—S+—-——+——/|, 7.
and the potential part represents the effect of the electronic states:

" kp? + jp, actingon ¢™,

kp? —jp, actingon ¢.

The angular derivatives in the kinetic part lead to the terms which will mix up
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the states from the two energy sheets + and —:

92
3—¢7 crecc e (p,d)
92
_ W(Sindﬂ'”r”‘ Ilf>+cos¢<..-r... '§>)R;(P)ei1¢
= (=(P e e 4 (e e )Ry ()€,
92
W cereecle o (p, @)

= (_(12+ %)( cereec ey — (D ls_))R;f(p)e”‘”.

Using the electronic orthogonality {e,|e_) = 0, we derive the following

equations for the radial functions: ~

1[ 2 10 12+1% I

- - —— + — +kp2+jp R;(p) +IFR;(p) =EnR;,
p

2| ap® pap p
1 & 190 241 0?0l R .1R+ ER
|- - —— + + - " —1l— = .
2 ap2 pap pz p 1p n(p) 2P2 n(p) ntin
(6.7.15)
=)
sheets

g

._%

i

P

Figure 6.7.5 Effective potential energy surfaces for Jahn-Teller system with various
fixed values of vibrational angular momentum (I = 1, 2,.. ).
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The angular quantum number is restricted to half-integral values [ =
1/2,3/2,... so that wavefunction (6.7.12) will be single valued. [Recall the
behavior of the electronic part shown in Fig. (6.7.2)].

For low excited states, we may ignore the coupling terms in Eq. (6.7.15)
and obtain the separate solutions

V= (- |8_>R;(p)eil¢’ Pr=(--op--- |€+>R;(p)eil¢

for each energy sheet. (These are Born-Oppenheimer approximate solutions.)
Examples of the effective potentials which would give the R* functions are
plotted in Figure (6.7.5).

ADDITIONAL READING

A standard text on the tensor properties of crystals is by Nye.
1. F. Nye, Physical Properties of Crystals Clarendon, Oxford, 1957).

A short elementary introduction to crystal tensor analysis (without much group
theory) is the following:

D. R. Lovett, Tensor Properties of Crystals (Adam Hilger, Philadelphia, 1989).
An advanced text on crystalline optical properties is the following:

W. A. Wooster, Tensors and Group Theory for the Physical Properties of Crystals
(Clarendon, Oxford, 1973).

Modern nonlinear optics problems are treated in books by Yariv.

A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley, New York, 1984).
A. Yariv, Quantum Electronics (Wiley, New York, 1975).

A standard text on light scattering in solids is

M. Born and K. Huang, Dyrnamic Theory of Crystal Lattices Clarendon, Oxford,
1962).

A well-known work on infrared and Raman scattering complements the Herzberg
volumes cited earlier at the end of Chapter 3.

E. B. Wilson, J.C. Decius, and P.C. Cross, Molecular Vibrations: The Theory of
Infrared and Raman Spectra (McGraw-Hill, New York, 1955).

The following are some modern treatments of Raman scattering.

J. Lascombe and P.V. Huong, Raman Spectroscopy ( Linear and Nonlinear) (Wiley,
New York, 1982).

A. Weber (Ed.), Raman Spectroscopy of Gases and Liquids (Springer, Berlin, 1978).
G. L. Eesley, Coherent Raman Spectroscopy (Pergamon, Oxford, 1981).

The Jahn-Teller effect was first described in the following papers.

H. A. Jahn and E. Teller, “Stability of Polyatomic Molecules in Degenerate
Electronic States: 1. Orbital Degeneracy,” Proc. R. Soc. London Ser. A, 161, 220
(1937). “II. Spin Degeneracy,” Proc. R. Soc. London Ser. A, 164, 117 (1938).
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These were reprinted in the following volume (which is worth its weight in other
precious papers as well).

R. S. Knox and A. Gold, Symmetry in Solid State (W. A. Benjamin, New York,
1964).

The Jahn-Teller problem arises in the treatment of crystal fields and orbital
bonding which are the subject of the following well-known text. (See also end of
Chapter 7).

C. J. Ballhausen, Introduction to Ligand Field Theory (McGraw-Hill, New York,
1962).

The Herzberg volume III contains references and discussions of Jahn-Teller and
Renner effects.

PROBLEMS

6.1 Use the subgroup chain methods to help compute all the Clebsch-
Gordon (CG) coefficients for irreps labeled by subgroup chains:
(a) D, > C, (standing wave).
(b) D, > C, (moving wave).
(¢ D,0C,.
@ D,>C,

6.2 (a) Use the (D, o C,) Clebsch-Gordon coefficients (see Problem 6.1)
to construct all the possible irreducible tensorial sets of rank- 1
(vectors) and rank- 2 (tensors) that can be made from D, base
vectors X, ¥, and Z. (Let £ be along the triangular symmetry axis
and vertex, while Z is normal to plane.)

(b) Construct all the irreducible D; polynomials (trigonal harmonics)
of degree 1 and 2 using Cartesian coordinates £, 9, 2.

() Construct a third-degree scalar 4, (invariant) polynomial in x and
y. Write it in polar coordinates and sketch its level curves. (This is
called the Henon-Heiles potential function.)

(d) Do the same for a third-degree pseudoscalar A, polynomial in x
and y.

6.3 Recall the four fundamental vibrational levels and six states of the X

model in Chapter 3. From the ground state. ..

(a) Which could be excited by x-polarized electric dipole radiation
(E1,)?

(b) Which could be excited by z-polarized magnetic dipole radiation
(M1,)?

(¢) Which could be excited by xy-polarized electric quadrupole radia-
tion (E2, )?
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6.4
6.5

6.6
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Answer Problem 6.3 for the X, model.

The spectral diagrams for the (AlnguEg) level system in Figures
6.4.1(a) and 6.4.1(b) represent dipole transitions in the presence of a
small O, | D,, symmetry breaking. Redo these figures for a small
trigonal O, | D, symmetry breaking.

Write out the character table of D, and label group elements and
irreps using conventional A4, B, E, 1, 2, u, and g labels.

(a) Which irreps transform like polar vectors x, y, and z?

(b) Which irreps transform like axial vectors J, J, and J,?

(¢) Which irreps will belong to genuine vibrational fundamentals of a
hexagonal benzol-like X, radical. Account for all motions in
3-space which could have non-zero frequency.

(d) Answer (c) for the benzene molecule, and tell what size matrices
would show up in the classical symmetry vibration problem.

(e) Which modes in (d) are infrared-active? Raman-active?
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