5 REPRESENTATIONS OF CONTINUOUS ROTATION
GROUPS AND APPLICATIONS

5.1 Basic Theory of Orthogonal Groups O, and O, / 316

5.2 Representations of R,, O, and Related Symmetry
Groups / 321

5.3 Parameters of Ry / 524

Book page numbers

A. Euler Angles (afy) / 324

B. Darboux or w-Axis Angles [¢0w] / 330

C. Hamilton’s Rules and the Rotation Slide Rule / 333
5.4 Irreducible Representations of R, and O, / 338

A. Generators and Infinitesimal Rotations / 338

B. Physical Interpretation of Generators / 342

C. Irreps of Angular-Momentum and Generator
Operators / 345

D. Irreducible Representations of Rotation
Operators / 348

5.5 Some Applications of R, Representations / 353

A. @'/2.Spinor Representations and Hamilton’s
Turns / 353

B. Spin+ Polarization Experiments / 357
C. Symmetry Analysis of Quantum Rotors / 362

D. Spherical Harmonics and Rotational Wave
Functions / 373 I

E. Explicit Relations for Rotation Operdtors
and Generators / 377

5.6 Rotational Level Splitting in Finite Symmetry / 382
Cubic Symmetry Correlations O5 D O, / 383
Cubic Eigenstates and Wave Functions / 386
Multipole Functions and Polynomials / 392
Multipole Expansions / 394

Level Splitting for Molecular Rotors / 396

. R, o D Correlations and Level Splitting / 400

- 5.7 Half—Integer J-Level Splitting in Finite Symmetry / 404

TmUO®p

”}U A. Ray Representations of D, / 404

B. Ray Representations of Other D, Groups / 411
C. Ray Representations of Octahedral Symmetry / 413

—; = I I U 5.8 Some Higher Continuous Symmetries: R, and U, / 415

A. The Coulomb Symmetry / 415

= J I ’]U B. Harmonic Oscillator Symmetry / 426

Appendix E. Derivation of Angular-Momentum
Representations / 434

Additional Reading / 437
Problems / 438

- W, (. Harter - Wiley (1903}

I]IIIIL'I|I|L"i lilrh".'ll'.ll'.l.'ll".'. [)".'II:'.II'.IL"i. ard h|ll.'i.'|.|lil‘ii.'lil|l".'

Chapier



williamharter
Stamp

williamharter
Stamp

williamharter
Stamp

williamharter
Stamp


CHAPTER 5

REPRESENTATIONS OF CONTINUOUS
ROTATION GROUPS
AND APPLICATIONS

We consider now the symmetry of a vacuum occupied by a single point or a
perfect sphere. This symmetry is higher than all the point symmetries
discussed earlier since it contains all their symmetry operations along with an
infinite number more. A rotation about any axis through the point of origin,
by any angle 1.0001°, 19°, or whatever, is now a symmetry operation. So is
inversion or any reflection. The resulting symmetry group is called the
three-dimensional ORTHOGONAL GROUP O,.

The theory of the orthogonal groups O, and O; in two and three
dimensions is known to physicists as ANGULAR-MOMENTUM CALCU-
LUS. This will be the main topic of this chapter. To mathematicians O, and
O, are two fundamental examples of LIE (pronounced Lee) groups, which
are named after mathematician Sophus Lie. This chapter also contains a
brief introduction to other important Lie groups including O,, and the
UNITARY GROUPS U, and Us.

Lie groups appear to be very different from the finite or discrete symmetry
groups which have been discussed so far. In the place of group tables and
tables of representations for finite group algebras there will be analytic
functions which give the same information for Lie groups. However, it is
possible to find finite subalgebras called LIE ALGEBRAS which help one to
analyze Lie groups and their representations. Then some of the algebraic
methods developed in the preceding chapters can be used again.

One of the important applications of the R, Lie-group representations
involves the theory of the free quantum rotor and the hindered quantum
rotor. The theory of hindered quantum rotors is related to crystal field
splitting. This theory is a generalization of the Bohr orbital level splitting

315




316 REPRESENTATIONS OF CONTINUOUS ROTATION GROUPS AND APPLICATIONS

treated in Section 2.12 or 3.6, and it is introduced in Section 5.6. This is a
very important part of the theoretical spectroscopy which is discussed in later
chapters.

5.1 BASIC THEORY OF ORTHOGONAL GROUPS O, AND O,

The group O, consists of all real linear transformations of n-dimensional
vectors which leave all vector lengths and angles between all pairs of vectors
unchanged. For example, consider the set of all 3 X 3 orthogonal transforma-
tion matrices:

ﬁll é,IZ ﬁl:&
@’ = ﬁﬂ ﬁzz @23 . (51.1)
ﬁ31 ﬁ32 @33

Suppose that their action on column vectors

Wy 0
w=lu,|, v = ey {,... (5.1.2)
s U3

gives new or transformed vectors:

“,3 n Gn Oupllwn ”’1 G Cn Ou||n

“,2 = |0y On Ixl|u], ‘*'2 =|Cn n EGpllv,],

“',3 O3 Oz O3 \us ""3 Ty O3 O\
(5.1.3)

weu=u-u, wev=u-u, Voo =0 e, (5.1.4)
This implies the following for arbitrary u, or vl

3

I~

j=

3
‘Z’ké}l) by = 2 Uy 0,
1 n=1

In particular, setting u; = 8, and v; = §;, one finds the following constraint
on the & matrices:

)y OOy = 0y (5.1.5)
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This equation implies that the columns of each # matrix must be three

mutually orthogonal column vectors of unit length. It also implies that the
transpose &7 of the matrix & must be the inverse of #:

eTe=1=00". (5.1.6)

Note that if the columns of any finite square matrix are components of
mutually orthogonal vectors, then the same must be true of the rows:

e

ki@ = Ok (5.1.7)
1

Il

J

Equations (5.1.5) and (5.1.7) are special cases of the orthogonal and com-
pleteness relations discussed in Section 1.2.B(b). [Compare with Egs. (1.2.19)
and (1.2.20).]

One may imagine that these operations & transform physical objects in
space. Physical objects are composed of particles whose position vectors
w, v,uw,... get moved by &, as indicated in Figure 5.1.1.

After an orthogonal transformation all the particles in the object will end
up having the same interparticle distances, since all scalar products stay the
same. While thinking of this one might conclude that #, is the set of all rigid
rotations. In fact &; does contain all rotations in a subgroup labeled Rj.
However, this accounts for only half of O,. The other half consists of
discontinuous or IMPROPER transformations such as INVERSION ([1)
through a point [see Figure 5.1.1(b)] or combinations of I with rotations. The
improper transformations change left-handed objects into right-handed ones
and vice versa. It is casy to snap a left-handed surgeon’s glove into a
right-handed one, but if you try the same transformation on most objects you
will break or tear them.

In Section 2.11 we introduced another example of an improper transfor-
mation in O, represented by a matrix having only +1 on its diagonal:

1 0 0
o, (0 1 0
0 0 -1

This transformation is inversion through a plane (the xy or 12 plane is used
here) or REFLECTION. A related transformation,

-1 0 0
i,=0,1— 0 -1 0},
0 0 1

could be called inversion through an axis. (The z or 3 axis is used here.)
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OPERATION + POSITION = TRANSFORMED POSITION

(@)
ROTATIONS R

(®)
INVERSION 1

-1 0 O
< 0 -1 0>o
0 0 1

(©
ROTATIONS — INVERSIONS
0=ReI=1R

<<O)>.

Figure 5.1.1 Action of orthogonal transformations on a unit vector triad. (a) Rota-
tions are proper operations. (b) Inversion or (c) rotation inversions are improper
operations.

However, it is actually quite proper, since it is just a 180° rotation around the
z axis. To check the propriety of a general orthogonal transformation matrix,
one may evaluate its determinant. The determinant gives the volume spanned
by the transformed unit vectors aE; = @’ij:

1, if & is proper,

-1, if @ is improper. (5-1.8)

oAU
deté’=m'1'a:'2><m3={
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")

(b)

Figure 5.1.2 (a) Early Cal Tech experiment on parity and time reversal. (b) Later
experiment.

You might try to determine whether proper or improper operations have
been applied in Figures 5.1.2.

Note that O, and R, are not Abelian groups; that is, a general pair of
elements will not necessarily commute (@&’ # @'#). However, the inversion
operator I is seen to commute with all elements in &;. This allows us to
express @5 as an OUTER PRODUCT R; X C; of the rotation group R,
with the finite group C; = {1, I} as depicted in Figure 5.1.3. (The formal
definition of the outer product was given in Section 2.10.) This allows one to
obtain the representations of O, directly from products of those of R, and
C,.

Let us consider briefly the mathematical definition of the two-dimensional
orthogonal group O,. The four components of 2 X 2 orthogonal matrices a;

obey Eqgs. (5.1.5). Of these, the following three are independent:
Gufn + In0, =1, (5.1.92)
IO+ Opty =1, (5.1.9b)

@\ Oy + O @y, = 0. (5.1.9¢)

|
%\
|
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O3= Ry xG; ’
=Ryx (1) 1 R R (Proper)

1 IR IR’ (Improper)

C

N
Figure 5.1.3 Diagram of orthogonal group O,. O, is an outer product of rotation
group R; and the cyclic (C,-like) inversion group C,.

This leaves only one undetermined variable or parameter. Equation (5.1.9a)
suggests that we set &, = cos ¢ and ¢&,, = sin¢$. Then we see that the
following two types of solutions to the orthogonal equations are possible:

o= (Cosd’ _Sin¢), (5.1.10a)

sin ¢ cos ¢

o (cos¢ sin ¢

sin¢g —cosd¢

cos¢p —sind (1 0
(sinqb COS¢)(O _1). (5.1.10b)

The first matrix has det & = +1 and corresponds to a proper rotation by
angle ¢, while the second matrix has det @' = —1 and corresponds to an
improper inversion or reflection through the 1 axis, followed by a rotation of
angle ¢. (The second transformation is equal to a single reflection through a
line with slope angle ¢ /2.)

From this it is clear that the group R, of proper rotations is a subgroup of
0,, and that R, is Abelian. However, the reflections such as (é _?) do not

commute with elements of R,, and so it is not possible to express O, as an
outer product involving R,. Furthermore, O, is not Abelian. Note, also, that
the improper two-dimensional reflection ((1] 7‘1)) could be accomplished by a
proper three-dimensional rotation about the 1 axis.

Similar reasoning can be applied to any of the orthogonal Lie groups O,.
For example, each of the n? real components @;; of O, can assume any
values that satisfy the orthogonality equations,

3
Y60 =8, Jk=12,..,n. (5.1.11)
i=1

Of these, exactly n(n + 1)/2 are independent (j > k = 1,2,...,n). This
implies that only n? — n(n + 1)/2 = n(n — 1)/2 independent parameters
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are needed to define all elements of O,:

0,= 0,,0,,0;5,04,05,04 -,
number of parameters =n{n —-1)/2=0, 1, 3, 6, 10,15
(5.1.12)

(Note that O, contains only two elements. No continuous parameters are
needed.) In general, R, and O, have the same number of parameters since
they differ only by the inclusion of discrete parity or inversion operations.

5.2 REPRESENTATIONS OF R,, O,, AND RELATED
SYMMETRY GROUPS

Two-dimensional rotational symmetry R, is the limiting case of C, symmetry
when n approaches infinity. Let the angle of rotation (0 < ¢ < 27) be the
single parameter of R,. For C,, ¢ was restricted to integral multiples of
27 /n. C, symmetry was discussed in Sections 2.7 and 2.12.

The irreps of R, are obtained from those of C, by taking the limit n — .
They are given by

D™(¢) = e, (5.2.1)

where all integers m =0, + 1, + 2,...,x are allowed now. In the case of
C,, these integers had been restricted by Eq. (2.7.2) so as to give only the nth
roots of unity. (Recall also Figure 2.7.2.)

Section 2.1.7 contains a discussion of the physical significance of the irreps
in terms of waves. The case m = |m| (positive) corresponds to an angular
wave with m crests running around the circle in the counterclockwise
direction, while m = — |m| (negative) corresponds to the same wave running
in the clockwise direction.

If the full O, symmetry is present, these two wave states | + m) and
| — m) must have the same frequency or phase velocity. This follows since
one is the (improper) reflection of the other. We may therefore combine
them to make cosine (|c,,») and sine (]s,,)) standing waves which are also
stationary states or normal modes:

) =(+m)+1-m)/V2, s, =(=|+m)+]|—-m))/iv2.
(5.2.2)
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Then the resulting representation of the proper rotations is

S~ S -

_1_ imd 0 i L
vz |l )
_.i_ 0 —ime _1_ - L
2 ‘ vz 2
cos m¢p  —sin mae
=27($). (5.2.3)
sin ma cos mo

This is the real irrep 2™ of O, rotations for m > 1. These O, irreps are
listed in the following on the left-hand side. Two of the most commonly used
irrep notations are given. The equivalent complex moving-wave representa-
tions are given below the table for the standing-wave ones.

Irrep Standing-Wave Representations
notations z-Axis Rotation ¢ x-Plane Reflection {
A, 3t | m=0 | 2¥(@=1 D (1) =1
A, 37 0 ¥ (d) =1 D (1)= -1
I _|cose —sin ¢ o _{1 0
E, n 1 Z (¢)_(sin¢ cos ¢ 770 0 -1
A _ [ cos2¢ —sin2¢ A _[1 0
E, A 2 2 (¢)_(sin2¢> cos2¢ 280 =1y 1
® _ [cos3e —sin3¢ @ _[1 0
E, @ 3 | 2% (sin3¢ c0s 3¢ 77O =1y 1
Moving-Wave Representations
z-Axis Rotation ¢ x-Plane Reflection
A, St | m=0 |23 (@=1 D (1) =1
A, 37 0 D ()= -1 DI ()= -1
id
neay— [ € 0 Meay_ (0 1
E, 1m | %1 | D (¢)—(0 e_i¢) D'(1) (1 0)
2i¢
A _{€ 0 A _(0 1
E, & | #2 | D (¢)-( o S o= (7
3i¢
PO K4 0 oy _ (0 1
Eoo | 3 | D (¢)—( N p*@ - (9 §)

(5.2.4)
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(@) C_ VSymmetry (b) D_, Symmetry

Figure 5.2.1 Examples of objects with (a) C,,, symmetry, and (b) D,,, symmetry.

rrorr

z-Axial Transverse Inversion Mirror plane
5 Rotation 7A-Rotation . Rotation Reflection
Identity by ¥ inzy- plane Inversion by v thru zy - plane
Doy 1 R(Y00) R(—ymy) T IR(Y00) R(-yry)

A=zl 1 1 1 1 1
A=21 1 1 -1 -1 -1 1
Age=Xg| 1 1 -1 1 1 -1
Ap=2y| 1 1 1 -1 -1 -1

Eig=Il| 2 2cosy 0 2 2cosy 0
Ej=Il| 2 2cosy 0 -2 -2cosvy 0
Epe=Ag| 2 2cos2y O 2 2cos2y 0
Ep=Ay| 2 2cos2y 0 -2 -2cos2y 0

E3,=®, 2 2cos3y O 2 2cos3y 0

Figure 5.2.2 Classes and characters of D,;, molecular symmetry. Operations are
indicated by their effect on a diatomic (X,) molecule. The notation [ R(«00), etc.] for
Euler angles will be explained in Section 5.3.
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The spatial symmetry isomorphic to O, is known as C,,. It is the limiting
case of C,, as n — =, and is the symmetry of a right circular cone or of a
diatomic or linear molecule composed of different nuclei. [See Figure 5.2.1(a).]
Another related spatial symmetry is

D, =C, XCi~0,XC,. (5.2.5)

This includes all the O, ~ C,, operations as well as all of them in combina-
tion with the 3-space inversion I. D,, is the spatial symmetry of a right
circular cylinder or a homonuclear diatomic or linear molecule. [See Figure
5.2.1(b)]. The irreps of D, follow directly from the products of C,, and C;
irreps. The standard subscript notation is used to tell whether a given irrep
base is even (g) or odd (u) under the inversion operation I. The D,, irrep
characters are given for the archetypical operations which are shown above
the table in Figure 5.2.2. The parametric notation R(e, 8,v) is explained in
the following section.

5.3 PARAMETERS OF R,

Equation (5.1.12) shows that R, has three parameters. There are many ways
to choose these parameters. The following is a discussion of two different
choices which indicates the advantages of each.

A. Euler Angles (aBy)

Probably the most common choices for parameters are the EULER AN-
GLES a, B, and y. The goniometer in Figure 5.3.1 defines the rotational
position state |aBy) of a ball and its {X, y, z} axes by angles a, 8, and y on
three dials. The « dial and B dial define the azimuth and polar angles,
respectively, of the Z axis. The a and B Euler angles can serve as polar
coordinates ¢ = o and 8 = B for a radius vector 7 = Z in the Z direction.
However, the similarity between Euler angles and spatial coordinates ends
there. The third (y) Euler angle gives the twist of the {XyZ} system about the
Z axis.

It is important to note that generally each rotational position state |aBy)
of the ball in Figure 5.3.1 has two possible Euler angle settings; i.e.,

laBy) = la + 180°, =B,y + 180°) (5.3.1)

The settings {@ = 50°, B = 60°, y = 70°} and {a = —130°, B = —60°,
y = —110°} are shown in Figures 5.3.1(b) and 5.3.1(c), respectively. They put
the {%, 7, Z} axes in the same position relative to the lab {xyz} system. One
may choose to ignore this double-valuedness by restricting 8 by the relation

0° < B < 180° (53.2)
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Euler Angular Position Coordinates
Z

NI

>l

Euler Angle Dial
Euler Angle Dial , " B

(Polar Coordinate)

('Twist' Coordinate)

Euler Angle Dial

o
(Azimuthal Coordinate)

Figure 5.3.1 Definition of Euler angles as rotation position coordinates (Photos by
Vincent Malette and Joanie Geiser.)
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(b) Position State |o3y) = | 50° 60° 70°)

(c) Position State |offy) = | —130° —60° —110°)

Figure 5.3.1 (Continued).
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(d) Original State |[afy)=10°0°0°=|1)

Figure 5.3.1 (Continued).

to positive angles. However, we shall see that the double-valuedness is an
unavoidable part of any rotational coordinate system. It will turn out that an
electron spin polarization state changes phase when the angles {a, 8, y}
change from the values in Figure 5.3.1(b) to those in Figure 5.3.1(c). So in
some sense the two positions really are different even if they look the same to
the classically trained eye.

As in Chapters 24, it is necessary to define how a rotational position state
laBy? is obtained by group operations R(aBvy) acting upon an initial unro-
tated state |1) = |000); i.e.,

laBy? = R(aBy)I1).

To do this, imagine that the [X, ¥, Z] axes and ball are suspended at the
center of a transparent shell as indicated in Figure 5.3.2. Suppose this shell
supports two sliding cranks, which are fitted with suction cups, and capable of
being moved parallel to the laboratory y and z axes, respectively.
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Lab Based Operations 7-Crank does
operations
R(c00) or R(00Y)

y-Crank does
operation

R(0PO)

Figure 5.3.2 Laboratory definition of rotation operators R(a00) and R(0B0). All
rotations of the body can be achieved by successively working two cranks attached to a
shell fixed in the laboratory. The z crank performs rotations R(a00) or R(00y). The y
crank performs rotations R(0B0).

One way to obtain the rotational position defined by «, B, and y is
through the following operational steps

First step: [This is labeled R(007)]: Attach Z crank, turn it counterclock-
wise by angle y, and then detach it.

Second step: [This is labeled R(0B0)]: Attach y crank, turn it counterclock-
wise by angle B8, and then detach it.

Third step:  [This is labeled R(a00)}: Attach Z crank, turn it counterclock-
wise by angle «, and then detach it.

It is conventional to write this sequence of rotations in the following way:
R(aBy) = R(a00)R(0BO)R(00y). (53.3)
Then there is the following relation:
laBy) = R(aBy)|000> = R(a00) R(0B0)R(00¥)I000)  (5.3.4)

between states and operators. As usual, the rightmost operator in a group
product acts first. This sequence of rotations is shown in Figure 5.5.11 on
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Body Based Operations

§-Crank does
operation

Z-Crank does
operations
R(-000) or R(00-y)

Figure 5.3.3 Body definition of rotation operators R(«00) and R(080). All rotations
of the outer (lab) shell can be achieved by working successively two cranks attached to
the body. The Z crank performs rotations R(a00) or R(00y). The y crank performs
rotations R(0B0).

page 379. Note that the a and vy angles are redundant when 8 = 0. In the
initial orientation state |1) = |000) of Figure 5.3.1(d) the a and y dials are
parallel and coaxial. Hence, one may write

R(a00) = R(00a) = R(a + v,0,a — y)

for arbitrary a and .

Consider another way to define the relative orientation of the [xyz] and
[xyz] axes. Suppose someone on the rotating object can attach cranks to the
inside of the spherical shell as indicated in Figure 5.3.3. Using the internal
cranks according to the following steps also yields the |aBvy) orientation
state such as was shown first in Figure 5.3.1(a).

First step: [Labeled R(—a00)]: Attach z crank, turn it clockwise by
angle «, and then detach it.

Second step: [Labeled R(0 — B0)]: Attach ¥ crank, turn it clockwise by
angle B, and then detach it.

Third step: [Labeled R(00 — y)]: Attach Z crank, turn it clockwise by
angle vy, and then detach it.
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Let us denote this sequence of operations as follows:
— -1 — — —
(R(aBy))™" = R(00 — y)R(0 - p0) R(~a00)

= (R(00y)) ' (R(0B0)) ' (R(a00))
— (R(a00) R(0BO)R(00v)) ",

-1

or, more simply, as
R(aBy) = R(«00) R(0B0)R(00y). (5.3.5)

This defines another set of rotation operators E(aﬁy) with the same group
structure as the R(apBvy) in Eq. (5.3.3). However, the R and R are not the
same operators by any means. In fact, any pair R(aBy) and R(a/B'y") will
always commute; i.c.,

R(aBy)R(«/B') = R(/B'y)R(aBy). (5.3.6)

(Remember, pairs of different R do not commute, neither do different R
unless the angles «, 8, and vy equal 180° or 0°.)

One may imagine that the operators R(aB7y) move the laboratory system.
If you like to be dramatic you could say the R(aBy) move the entire
surrounding universe. However, let us assume that the only thing that counts
here is the relative state of orientation of the object relative to the lab axes.
Then we must accept the relation

laBy) = R(aBv)000) = R™*(aBy)I000). (53.7)

This says that the effect of moving the object one way must be indistinguish-
able from that of moving the rest of the universe the opposite or inverse way.

The application of lab- and body-defined rotation operators to the theory
of quantum rotors is introduced in Section 5.5.C. The explicit matrix repre-
sentation and operator construction of the rotations and their generators is
discussed in Section 5.5.E. Here we are giving their abstract definitions and
properties.

B. Darboux or w-Axis Angles [$0w]

No matter how many rotations are applied, there will always be a line of
points in a rotated object that end up exactly where they were initially. In
other words, any rotation can be done by just one crank axis provided it can
be properly positioned. The geometer Darboux developed the idea of a
movable axial or rotation vector w. Therefore it is appropriate to name the
angles involved in the related parametrization accordingly.
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Axis-Angle R[$Om] Operator

Axis-Angle Dial
o
(Angle of Crank Rotation)

Axis-Angle Scale
Cl

(w—Axis Polar Angle)

Axis-Angle Scale
¢

(e—Axis Azimuth)

Figure 5.3.4 Defining axis or Darboux angles R[¢0w]. Rotation operation R[¢6w]
is defined by the angle @ of rotation and the direction of the axis of rotation given by
angles ¢ and 8 of azimuth and polar declination, respectively. (Photo by Vincent
Malette and Joanie Geiser.)

Darboux angles [¢8w] are defined operationally using the device pictured
in Figure 5.3.4. First one sets the rotation axis or w crank according to polar
angle 6 and azimuth angle ¢. Then one attaches the w crank to the object,
turns it counterclockwise by rotation angle w, and detaches the crank. The
setting (¢ = 80°, # = 33.69°] of the axis angles followed by a rotation by
o = 128.68° = 129° corresponds to the rotation operator Rl¢pfw] =
R[80°, 34°,129°]. (Note that we shall use square brackets [w] to distinguish
Darboux angles from Euler angles.) Application of this operator to the initial
state |1) = |000) happens to yield the position state

la = 50°, B = 60°, y = 70°) = R[80°,34°,129°]|0,0,0>, (5.3.8)

of Figure 5.3.1(a). This is shown in the sequence of Figures 5.3.5(a)-5.3.5(c).
We shall derive later the algebraic relations which exist between the Darboux
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Operator: R[¢ 8 w] =
R{80° 33.69° 60°]

Position State:
lop) = Ri$ 6 wli1) =

| 15.7° 32.20° 35.7%)

(h) o = 420°
Operator: R[§ 6 a] =
[R[80° 33.69° 420°)

Position State: ion State:

g
lofiy) = RI9 6 wlll) =

1 195.7° 3227 215.7%) 3 1 230° —60° 250°)

Figure 5.3.5 Sequence of rotations R[¢p8w] = R[80° 33.69° w]. Sequence repeats
only after w = 47 or 720°. Postion state |aBy) = |50° 50° 70°) is obtained after
rotating by angle o = 128.68° as shown in part (¢). Continued rotation through
another 360° [as shown in parts (d) through (i)] yields another position state
| —130° —60° —110°) with different Euler Angles but the same orientation of coordi-
nates. Note that the difference (y — @) is a constant (20°) throughout. (Photos by
Vincent Malette and Joanie Geiser.)

or axis angles [¢pfw] and the Euler angles (¢B7y). In the meantime note that
the sequence in Figures 5.3.5(d)-5.3.5(1) shows a continuation of the w
rotation by another 360°. This yields the alternative Euler-angle settings of
state

la = —130°, B = —60°, y = —110°) = R[80°,34°,489°]1000), (5.3.9)

which was first shown in Figure 5.3.1(c). The goniometer and crank demon-
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(e) © = 240°
Operator: R{¢ 6 @] =
R[80° 33.69° 240°}

Fosition Stat
lofy) = R[0 8 wfil) =

| 114.8° 57.4° 134.8%

(k) 0= 600°
Operator: R[¢ 6 ) =
R[80° 33.69° 600°]

| 260° ~67.4° 280°)

Figure 5.3.5 (Continued).

strate the double-valued nature of three-dimensional rotations. It also shows
the complimentary relation between Euler angles and Darboux angles. Euler
angles are convenient for labeling rotational states, while Darboux angles are
more convenient for labeling rotational operators. Indeed, all the operators
in Chapters 2—4 were defined by direction of axis and angle of rotation.

Therefore it is important to derive the mathematical relations between the
two types of parameters. First we shall study a geometrical relation based
upon Hamilton’s rules in Section 5.3.C. Then in Section 5.5 an algebraic
relation based upon representations of spin- 1 will be given.

C. Hamilton’s Rules and the Rotational Slide Rule

Hamilton’s rules, as derived in the Section 3.1.B are used to find the product
of two rotations R[w] and R[w'] according to the following steps. First one
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Figure 5.3.6 Rotational slide rule. (a) Lower scale, (b) upper scale.

constructs the great circle arcs perpendicular to w and ', respectively, on
the unit sphere. Then one draws circle vectors along each arc of length w/2
and ' /2, respectively, and pointed in the directions of rotation so that the
head of the arrow of the first rotation touches the tail of the arrow of the
second rotation. Finally, one finds the great circle arc between the tail of
the first arrow and the head of the second. The resulting vector-sum arrow
defines the desired product rotation.
Figure 5.3.6 shows the slide rule that permits one to carry out the
spherical vector addition accurately. The upper scale should be printed on a
transparent plastic and fastened so its center rotates over the center of the

lower scale. The scales are designed to facilitate group products and Euler
(aBvy) to Darboux [¢#0w] conversion.
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Figure 5.3.6 (Continued).

To compute a product of two rotations R[$p6w] and R[¢'0'w’'] one first
draws the arcs of the respective rotations onto the upper scale. An arc is
drawn by setting the desired ¢ in the “¢ window” (see top of lower scale)
and tracing the desired (6, w) arc onto the upper scale using the 6 and w
scales of the lower scale. It is necessary to first find the intersection of the
[#6] arc with the [¢'#'] arc. Then one counts back w degrees along the [¢$8]
arc to mark the tail of the first vector, and counts forward «' degrees along
the [¢'0'] arc to mark the head of the second vector. The w scale is used for
each counting. Finally the slide rule is turned until the head and tail points
lie along a @ line. (Interpolation may be necessary.) Then the desired answer
¢" in the product R[¢"6"0"] = R[¢'0'w’' IRIPpBw] is read in the ¢ window,
while 8” and «” are shown by their respective scales.
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The upper slide-rule scale is a stereographic projection of the northern
hemisphere of a globe, while the lower scale is the same projection of half of
the western hemisphere. The structure of rotations as described by Hamilton
makes it possible to do all products on just half of a sphere. A rotation for
which w is less than 180° corresponds to an arc of less than 90°. Any rotation
with @ between 180° and 360° can be replaced by a rotation that goes the
other way by angle —(360° — w) and has an arc of —(180° — w/2), which
again is less then 90°. Whenever this conversion is made while operating on
electron wave functions, it is necessary to multiply the result by (—1), as we
will prove later:

R[w — 27 - -], for integral spin,
Rlw: -] = 3.1
[o-] —R[w — 27 - -], for half-integral spin. (5:3.10)

So anytime there appears an arc vector that extends over the edge of the
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Figure 5.3.7 Setting the rotational slide rule. (a) Darboux or axis angles. (b) Euler
angles.
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Figure 5.3.7 (Continued).

slide rule, we simply replace it by one of length (360° — w)/2 going the other
way.

Figure (5.3.7) shows how the slide rule may be used to convert back and
forth between Euler angles (aBvy) and axis angles [¢8w] in the equation

R(aBy) = R[¢0w] = R[w].

Figure 5.3.7(b) shows a given rotation R[w] reduced by two vector sums into
the product R{«00)R(0B0)R(00y) = R(aBy) given by Eq. (5.3.3). The scales
of the slide rule have been designed so that these products can be done
without drawing arrows. To obtain the position shown in Figure 5.3.7(b) one
must move the upper scale so that the angle between the meridian passing
through the tail of R{w] and the + 8 scale is bisected by the center (8) line of
the lower scale. The “tail scales” or T scales indicated in Figure 5.3.7(b)
make this easy. One simply reads the angle of R[w]’s tail using the T scale.

Then one finds this number on the T’ scale, and sets it over the center line as
shown in Figure 5.3.7(b). This converts an R[¢$8w] operator to the equal
R(apBy) operator. The inverse is done by reversing the procedure. Different
choices for three inputs from the six angles a, 8, vy, ¢, 8, and w can be used
to calculate the three remaining unknown angles.

Algebraic relations between the Euler and Darboux angles will be derived
in Section 5.5.A. These are used in Chapter 7 to help analyze optical
polarization and two-dimensional oscillator mechanics.
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Then one finds this number on the T’ scale, and sets it over the center line as
shown in Figure 5.3.7(b). This converts an R[¢68w] operator to the equal
R(apBy) operator. The inverse is done by reversing the procedure. Different
choices for three inputs from the six angles «, 8, v, ¢, 6, and » can be used
to calculate the three remaining unknown angles.

Algebraic relations between the Euler and Darboux angles will be derived
in Section 5.5.A. These are used in Chapter 7 to help analyze optical
polarization and two-dimensional oscillator mechanics.

5.4 IRREDUCIBLE REPRESENTATIONS OF R, AND O,

This section contains derivations of the all-important &’/ matrices or irre-
ducible representations of R,. Starting with simple rotation vector algebra
we will introduce matrix operators which generate rotation matrices. The
connection with the quantum theory of angular momentum will be made.
(The elementary angular-momentum relations are reviewed in Appendix E.)
Finally, a formula for the irrep &’ is given.

A. Generators and Infinitesimal Rotations

Consider a rotation R - u of a vector u by a very small (preferably infinitesi-
mal) angle §w around some axis defined by vector §m = dw®. This is shown
by Figure 5.4.1. In vector notation one may write this transformation as

R[¢86w] -u=u+ 8w Xu. (54.1)

.
Y

AX/o

3]
\?\\\wxﬁ=8w(&3xﬁ)

\\\
AN

Rl¢86w] u=u+8oxu

Figure 54.1 Small or infinitesimal rotation R[¢$8w]. The rotation moves vector u
into vector R[¢8w]u.
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This is represented in Cartesian coordinates by

u, u, dw,u, —dw,u,
R p060w]|u, | = |u, | + | dw,u, —dw,u, |, (5.4.2)
u, u, dw,u, —dw,u,

where the components of 8w are

dw,=0dwcos¢sinf, dw,=dwsingsind, and bw, = dwcosf.
(54.3)

We may expand Eq. (5.4.2) into matrix form:

s
1 S u,|. (54.4)

u,

The preceding equation is independent of the u;. Hence a matrix equation
holds:

Z[p06w] =1+ 60,2, + 60,7, + 60,7, (5.4.5a)

Here the matrices

(5.4.5b)

are the representations of the R, GENERATORS. The idea of this name is
that you may generate any rotation in R from them.

For example, in order to perform a z-axis rotation by a finite angle w, you
may take the following limit as éw = w,/n — 0:

n wz "
R[00w,] = lim (#[0w,/n])" = lim (1+ —fz) — e (5.4.6)
n—w n—w n

It is then an easy matter to evaluate e“:%- using the spectral decomposition

methods derived in Section 1.2. First the eigenvalues ¢, of G, are found by
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solving the secular equation:

- -1
det|l@, —ell =det| 1 —¢ . |=e'+e=0
. . —¢
Substitution of the eigenvalues {¢, = i, ¢, = —i, &5 = 0} into the spectral

decomposition give Z[00w,].

3
‘%,[OO(‘)Z] = ewz.?z = Z emzs,n (gz - gkl) /1_[ (81 - Ek)’
k+1 k1

=1

0 -1 0\[i -1 0
1 o0 ot i o0
[000,] = e t0__ 0 0J10 0 i

(i — 0) (i + i)

(—i -1 0) 0 -1 0)
1 —i 0Jf1 0 0
+pmiwi L O 0 i/\0 0 0
(—i—1) (~i—0)
-i -1 0)(1’ -1 0)
1 —-i o)1 i 0
Lot 0 0 —i/\0 0 i
(0 —1) (0+19)
172 i/2 0 172 —i/2 0 0 0 0
=e“:| —i/2 172 0| +e™:{is2 172 0l+{0 0 0
0 0 0 0 0 0 0 0 1
cosw, —sinw, O
=|sinw, cosw, O (54.7)
0 0 1

This is the standard z-rotation matrix represented in a Cartesian {xyz} basis.
The spectral decomposition used to derive it will be used again in Section
5.4.D to find more general types of R, representations. The idea is to use a
representation of the generators to make the corresponding representation of
any rotation in Rj.

There are some important properties of the generators which are useful in
the construction of their representations. Note first that even rotations by
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very small angles do not commute. Consider the following rotation:

R = e—siy . e—s?X . e—e.?y . esfx
( rotation by (—&) ) ( rotation by (—¢) ) ( rotation by () ) ( rotation by (&) )

around y axis around x axis

around y axis around x axis

(5.4.8)

Let us expand this by assuming ¢ ~ 3 radian and keeping only the lowest-
order terms.

&2 £?
R - (1—sfy+ S5 ~)(1—s?x+ —z2. .

82
(1 + e, + ??yz‘ )

2
82
X 1+s?x+??x2- )
82
=1+¢%, +6°%,5, ~°8} - 79,2, + 7?3
82
+eg, - ezgx?y -~ Ezgyz + ??yz
82
- £%, +6°8,9 + 7?3
82
—e%, + 7?j+

Cancellation of ¢ terms leaves only e2-and-higher order terms:
Z=1-(8,8,-%,Z)+ - =1- e[Z.8]+ . (549)

From the generator matrices given by Eq. (5.4.5b) we evaluate the commuta-
tor

[2..%,] =%.. (5.4.10)

This shows that R given by Eq. (5.4.8) is a small clockwise (negative) rotation
by angle £ ~ 3 around the z axis. (This neglects an error of order £3.) The
rotation (5.4.8) is shown graphically in Figure 5.4.2.

The other commutation relations are cyclic permutations of the first one,
and can be interpreted equivalently:

[£,.2.] -2, [%.8]=¢2,. (5.4.11)

These relations define what is called the LIE ALGEBRA of R,. They are a




342 REPRESENTATIONS OF CONTINUQUS ROTATION GROUPS AND APPLICATIONS

AFTER 15t ROTATION
AFTER 2nd ROTATION BY ¢ AROUND x AXIS

BY ¢ AROUND y AXIS

AFTER 4th ROTATION

FINISH: oy _c AROUND y AXIS

AFTER 3rd ROTATION
BY —¢ AROUND x AXIS

Figure 5.4.2 Effect of commutator operator R = ¢ ®re¢ *0x¢°Cr¢*Cx for ¢ = 1/3.
Path of a vector which starts along the y axis is traced. (Note: The paths indicated by
arrows are not Hamilton arcs.)

finite code for the structure of the infinite group R;. The relations will be
used to generate the irreducible representations, coupling coefficients, and
other things connected with R;.

B. Physical Interpretation of Generators

For rotations around the z axis Eq. (5.4.5) gives
F(8a00) = 1 + 8ag, (5.4.12)

for a rotation by infinitesimal angle 5a. We use Euler parameters from now
on unless otherwise stated. Rewriting this equation in terms of corresponding
abstract quantum operators R, 1, and G, gives

R(8a00) = 1 + 8aG,. (5.4.13)

Let us consider the effect of this rotation on an abstract position state |xyz)
of a particle located at point (xyz). We want the particle to be rotated to the
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WAVEFUNCTION;
X (xyz) = < xyzly >

X

STATE Ixyz> STATE Ix >

ROTATED STATE Ixyz®>=R (5000} ixyz> ROTATED STATE ix® > = R(5 0 0)Ix >
R{5a 0 0)ixyz> = Ix-y a, ytuba, 2>

(a) ()

Figure 5.43 Effect of infinitesimal rotation operator R(«00) on quantum states.
(a) Localized state has Dirac-delta wave function centered at one point. (b) General
state has arbitrary wave function x(xyz) = {xyzlx).

new point (x — yda, y + xda, z) as shown in Figure 5.4.3(a):

R(6a00)|xyz) = [x — yda,y + xba, z). (5.4.14)

We also want the rotation operator to be unitary so that RY(§a00) =
R(-68a00), or

(R(8a00)xyz))" = (Ix — yda, y + xda, 2))"
(xyz|R(—8a00) = (x — yda, y + xda, z|. (5.4.15)

This in turn implies that the wave function ¢(xyz) = {xyz|¢) of a general
quantum state [¢) transforms into the following wave function:

' (xyz) = (xyz|R(8a00)|y)
=<{x +yba,y — xda, z|§y)
=y¢(x +yda,y —xda, z). (5.4.16)

The rotated point and the rotated wave function are sketched in Figure 5.4.3.
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One may expand the rotated wave function into a Taylor series:

: o iy
W (z) = d(xpz) +yo-da = x5;5a

= [1 - da
ay ax

a a
x— —y—)]d/(xyz) + o (5.4.17)

Now from elementary quantum mechanics the coordinate representation
of the quantum operators for x and y components of momentum are given
by p, = (#/i)d/éx and p, — (h/i)d/dy; ie.,

9 d
Czlpl) = (/i) —Cozldd, - Kwzipy ) = (h/i)5<xyzw/>.

This in turn gives the following representation of the z component of angular
momentum J = r X p:

d
Gzl M) = (xyzlap, — yp lg) = h/i( )L/f(xyz). (5.4.18)

X@ - ya
Comparison of Egs. (5.4.13), (5.4.17), and (5.4.18) shows that the R,
generators must be the angular-momentum operators divided by the constant

@ih):

oal,
(xyz|R(8a00)|) = (xyz|1 + 8aG,ly) = (xyz|1 + - [,
This holds for all components:
G, =1J,/ih, G, =17, /ih, G, =1,/ih. (5.4.19)

The following commutation relations:

[7,,0,] =ind,, [, 0] =itd,, [J

x vy z

I =ikd, (5.4.20)

follow from Eqgs. (5.4.10) and (5.4.11). They also follow directly from the
commutation relations of x and p. (x,, p,] = i#3,,.)

If rotations are symmetry operators for a Hamiltonian H then the genera-
tors must commute with H, too. This implies that each angular-momentum
operator may be diagonalized simultaneously with H. A very important
consequence of rotational symmetry is the CONSERVATION OF ANGU-
LAR MOMENTUM. The relation between conservation and symmetry can
be understood physically. If an object has no “lumps” which ruin its spherical
symmetry, then there can be no “bumps” which alter the angular momen-
tum.
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C. Irreps of Angular-Momentum and Generator Operators

The following abstract relations hold between angular-momentum operators

and the@r eigenstates "n> forj=0,1,1,... and [m| <.
AR > = mh.,’n > (5.4.21)
J? riz>5 (12472 +172) r{l>=j(j+ )4 rfn> (5.4.22)
I, rJn>E (J, +il,) ;1>= VG —my(j+m+ 1)h‘mi 1>, (5.4.23a)
J_ r2>5 (J.—d,) ,’n>= VU +m)(j—m+ 1)h‘mj_ 1>' (5.4.23b)

These are derived in Appendix E and later in this section.
The quantum numbers m and j define the z component and total angular
momentum, respectively, of the eigenstates. For each allowed value of j

there are 2j + 1 partner states
J J
j _ 2 sty _] b

(AUEN)

which are a basis of an irreducible representation &7 of the Lie algebra of
generators. By rewriting Egs. (5.4.23) we obtain representations of the
angular-momentum operators:

Jo=(J,+T)/2, 1=~ J.)/2. (5.4.24)

The angular-momentum representations are given here:

. . . 5m,m : i
D) = <,jl J, ;1>= T“h\/(; —m)(j +m + 1)
+ m’;‘lh\/(j +m)(j—m+1), (54.25a)
i j i 8m'm+1 N -
grit’m(‘,y) = <n]1/ Jy ,]n>= 2 h\/(f - m)(] +m+ l)
Sm’m—l
- m(j+m)(j—m+1), (54.25b)
Doom(J2) = <rfl J. ;1>= Bpmmh. (5.4.25¢)

The following are some numerical examples of the irreps (in units of #).
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. ‘\ ] *
_z-Component of J : < 92 Uncertainty Angles:
J J -
JZ|m>=m|m> coserjn= m/VIJ+D)

Magnitude of J :

2
I Y =saenl 1)

Figure 5.4.4 Angular-momentum vector cones for quantum states l§>, ’ ,i 1>,

J
1—z>'
the lowest |m| have the highest uncertainty in the J, and J, components.

.. . Note that uncertainty angle 8,, increases (J,) = m decreases. States with

In order to gain a physical interpretation of Egs. (5.4.21)—(5.4.25) one may
imagine that the classical picture of an angular-momentum vector is replaced
by a cone as shown in Figure 5.4.4. One represents the angular momentum of

each state ’ ”" > by a cone centered on the z axis with altitude m# according to
Eq. (5.4.21) and a slant height of y/j(j + 1) # according to Eq. (5.4.22).

Since neither J, nor J, commute with J, or with each other, one cannot
find a state which is an eigenvector of more than one of these operators.
Having chosen J, to be diagonal one expects some uncertainty in the values
of J, and J,. This uncertainty is indicated roughly by the cone base in Figure
5.4.4, A more quantitative description of the uncertainty in the transverse J,
and J, components is contained in Section 5.5.B.

It was necessary to choose one J generator to be diagonal in order to
complete the irrep derivation. The choice is analogous to that which we
encountered in the derivation of C;, irreps. There a particular generator of
an Abelian subgroup (viz., o3 of C,, or else r of C,;) was chosen to be
diagonal. Such choices are needed to provide a subgroup labeling chain as
explained in Chapter 4. For the rotation group R; the most commonly
chosen labeling chain is simply R; D R,, where R, is generated by J,. Then

the quantum numbers j and m in the bases 'L serve as irrep labels for R,

and R,, respectively. Together, they label each base vector of the rotation
group representations.
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D. Irreducible Representations of Rotation Operators

Let us represent rotated states R(aBy)

;, > by cone drawings such as the one

of R(OBO)| ’{1 > in Figure 5.4.4. A rotated state can be written as a combination
of the original 2j + 1 unrotated partner states:

R(an)l,’,;> =X ,fl ><n’1 |R(an)\,f1 > (5.4.26)

m

The coeflicients
D Rapr)) = (]| RG@B)|] ) = hapy) (5427

are the irreducible representations (irreps) which will be derived now. The
derivation uses the irreps 27(J) of the generators and Eq. (5.3.3), (5.4.6),
and (5.4.19). The latter are summarized as follows:

R(aBy) = R(«00)R(0BO)R(00y) = e’/ ehly/ihe¥l:/ih  (5.4.28)

The (j = 0) irrep is trivial since the generators are represented by zero on
the left-hand side of Eq. (5.4.28):

2% apy) = 1. (5.4.29)

This is called the SCALAR or INVARIANT irrep of R;.

The (j = 3) irrep involves two diagonal matrices for the « and y angles
and one nondiagonal matrix for the 8 rotation around the y axis. The latter
can be evaluated by spectral decomposition as was done in Eq. (5.4.7):

5(1/2 0 ) E(O ~i/2) 1(1/2 0 )

91/2(“B7) — ei 0 —1/2 ei i/2 0 ei 0 -1/2
ez 0 \[cosB/2 —sinB/2)[e~v/2
L 0o ezflsinB/2  cosB/2f\ 0 @ e/2
3 (e‘i(“+“/)/zcos B/2 —e H@™V/2gin B/Z)

) ) 5.4.30
e “="/2gin /2 e @tM/2 cos B /2 ( )

This is called the SPINOR or FUNDAMENTAL irrep of R;. Strictly
speaking, however, 2'/? is not a representation of R;. Note that the product
of 180° rotations is represented by

—im /2 —imr /2 —
2V2(w00)2"/*(mw00) = (e 0 ig/z)(e 0 ig/z) = ( ! 0)'
e e
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In other words, if you walk completely around, or rotate by 360° any spin
state, its phase will come out negative! For half-integral j one has the
following:

P/ (R)Z'(R)

wRR!Qj(RR’), (5.4.32)
where

wRRr = i 1
Such representations of are called PROJECTIVE or RAY REPRESENTA-

TIONS of R;. More details of these will be discussed in Section 5.7.
The (j = 1) irrep may be calculated in the same manner:

) 1+ cosfB —sin B 1 —cosB )
e ™ . . e~y
2 ﬁ 2
sin 8 —sin 8
DNapy) = |- r - —\/2_ cos B T : o] (54.33)
. 1—rcospB sin 8 1 +cosp )
ela — e“)’
2 ‘/2_ 2

This is called the VECTOR or DIPOLE representation. It is equivalent to
the # representation of Eq. (5.4.7). If R[00w,] is diagonalized then 9 (w,00)
results. The bases for # are the vector components {x, y, z}, but the bases
for @' are the circular vector components {—(x + iy), z,(x — iy)} by in-
specting the columns (or rows) of the projection matrices in Eq. (5.4.7).

The (j = 2) and (j = 2) irreps for the nondiagonal #(080) rotation are
232(080)

cos® g —v3 cos? g sin g V3 cos g sin? g —sin® 3
V3 cos? g sin g cos> g — 2cos g sin? g sin® §2cos2 g sin g V3 cos g sin? g
) 3 cos g sin? g —sin® g + 2cos? g sin 7 cos? g — 2cos g sin® g -3 cos? g sin g
sin® B V3 cos g sin? g V3 cos? g sin g cos? g
22(0B0) (5.4.34)

(

(

1+ cosp 2 1 +cospy | 3 - 1+cosBy | 1—cospB 2
( 2 ) ( 2 )smB \/g sin” 8 ( 3 )smB ( 2 )

1 1 3 1- 1-
+;08B)sinﬂ ( +§OSB)(2<>OSB—1) 7‘/5 sin B cos B ( ;OSB)(ZCOSB'Fl) —( ;Osﬁ)sinﬁ

37A2 ? BCOSZB—I —3— 3—.2
3 sin“ B 2 sin Bcos B —2— 2 sin B cos B § sin“ 3

1+cosp 1—-cosB 3_ 1+cospB 1+cosB
> )sinﬁ ( )(Zcosﬁ + 1) 7 sin B cos B ( )(2005[3 - 1) —( 2 )sinB

2 2

1—cosB 2 1—cosBy . 3 s 1+cospy | 1+cosp 2
( > ) ( 3 )smB g sin“ B ( 2 )smB ( > )

(5.4.35)
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Irrep @72 is called the TENSOR or QUADRUPOLE representations. These
names will be explained in later sections. '

For the j = 2, 2, or higher it is convenient to derive a general formula for
the irreps. An elegant construction due to Schwinger gives the general
formula. Schwinger’s construction identifies the angular-momentum states
with creation operators of a two-dimensional oscillator. The spin- % states are
defined by

i=1/2

a’ |00) = m=1,2

1/2
>, a’, 100) = ‘_1§2>, (5.4.36)

where the a operators satisfy the oscillator commutation relations
a..atl =681
[ is ¥j ijts

which were given in Eqgs. (4.4.51). The angular-momentum operators defined
by

J=dla,, J =(d}a, —d\a,)/2, J,=d%a, (5437)
then satisfy their commutation relations as well:
[/, ], )= +J,.

(Here we are using units for which # = 1.) The general angular-momentum
state is defined by

’r]n> - (aTT )nT(aTi)MIO(»/(nT !nl !)1/2
= |"T”¢>’ (5.4.38)
where

n,=j+m, j=(nT+nl)/2,
n,=j—m, m=(n,—n;)/2. (5.4.38b)

According to Eq. (4.4.62) the angular-momentum lowering operator has the
j >:

J—'n];>=“T¢aT|”T”L> = [(n)(n, +1)]

following effect on

i, =1, + 1), (5.4.39)

This is an elegant rederivation of the familiar result in Eq. (5.4.23b).

J
m-—1

J_”];’> ={(j+m)(i—-m+1)]"
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Similarly, a formula for D/ can be derived from 2!/, Let us rewrite Eq.
(5.4.30) as

1/2 1/2 1/2
R(Oﬁ())'lj2> = COos B/ZI 1;2> + sin 3/2' _1§2>,

1/2 1/2 1/2
_1§2> = —sin 8/2 1§2> + cos ,B/ZI _1;2>, (5.4.40)

then as an operator equation.

R(0B0)

R(0B0)a", = a¥ = cos /24", + sin B/2at,,

"
a
A

R(0B0)a', = a' = —sin /24", + cos B/2a',. (5.4.41)

This will yield the transformation properties of the general state:

. (aT')'H'” (aT')j~n
R(OBO)| ] ) - Ll )
1 j+n
N VG +n)(j - n)! (cos B/2a", + sin B/2a,)

X (—sin /24", + cos B/2a’, )’ ~"100). (5.4.42)
Expanding the binomials yields a polynomial in creation operators:

R(OBO)’ ’11 >

1 1,2
(j + n)! B .\(. B V!
X[; nGinohr (cos E”TT) (sm Eaﬁ) }
(- m! BN BT
X[%k!(j-‘n—k)!(_SIHEaTT) (cos Ea’l) J|00>
1 1,2
z[(f+n)!(j—n)3]

Jon—k+l Jtn—l+k . '
cos E) (sin —2-) (a% )l+ (a', )ZI‘I_k

NG +n =D —n—k)! 100>.

X Z%(—l)"(

I}

(5.4.43)
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By making the substitutions
j+m=Il+k, j—m=2j—-1-k, [=j+m-—k,

one recovers the recognizable form of Eq. (5.4.24).

j>= [__1#]/
n G+ ) —n)!

2j+m—-n—2k B n—m+2k jem i—m
(cosg—) (sin~) (aTT ) (aTL )
| T (- :
G+m=k)(n—m+k)kI(j—n—k)!

Lmk

100>

2j+m—n-2k n—m+2k
k\/m m(G — n)I( + m)!(j — m)! (cosg) (sing)
LD Gam—k)ln—m+ kK —n —k)!

I
el ag

(at) "(a) " 100). (5.4.44)

TG myG - my!

Identification of the factor in brackets in the foregoing with the transforma-
tion matrix 27 in the following completes its derivation:

R(OBO)} / > - ;9:;,,(030){ J >

Addition of the factors e ‘@™ and e ™" gives the complete formula for all R,

representations in the ”" > bases:

; VG +m)(G = m)I(j +m)!(J = n)!
an(aﬁ’)’)= Z(_ ) (]+m k)'k'(]—n—k)‘(n—m+k)'

k=0

2j+m—n—2k n—m+2k
Xe_i(ma+"7)(cos —g—) (Sin E) . (5445)

2

Since the orthogonal group O is the outer product R; X C; it is a simple
matter to obtain its irreps from those of its factor groups R; and C,. Two
classes of irreps arise; an even-parity class 27" and an odd-parity class & =
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They are defined as follows:

2'*(R) =2/(R), 2'*(IR) =2’(R),
2'7(R) =2(R), 2'"(IR) = -Z'(R). (5.4.46)

All group irreps defined so far are unitary matrices by construction. The
2(aBy) matrices are unitary since the operators R(afBy) are unitary:

R (aBy) = (eajz/iheﬁjy/ihesz/ih)T — et/ ihg=Bly/ihy =], /i
=R(-a—-B-vy)= R‘l(aBy).

In the preceding we use the fact that the J operators are self-conjugate or
Hermitian (J; = J;") operators. Finally, we have

D aBy) =D}, (—a — B — ).
5.5 SOME APPLICATIONS OF R, REPRESENTATIONS

Much of the remainder of this book will be devoted to applications of
the 2/-matrix representations of the rotation group R;. However, there are
some important elementary applications which are useful for familiarizing
oneself with the properties of the 27 matrices. These will be discussed now.

A. 2'/2.8pinor Representations and Hamilton’s Turns

Hamilton’s rules for spherical vector addition of rotations were introduced in
Section 3.1.B and again in Section 5.3.C. It is instructive to see how they are
derived from spinor representations. Indeed, the spinor representations are
closely related to Hamilton’s quarternion or “hypercomplex” numbers.

In order to rederive Hamilton’s rules using spinors we shall need the
spinor representation in terms of Darboux or axis angles [¢0w]. We already
have irreps of z rotations R(a00) and y rotations R(0B0) in Eq. (5.4.30) for
the Euler parametrization. Therefore, all that is needed is to express the w
rotation R[¢$0w] around axis [¢6] in terms of R($00), R(000), and R(w00).
In other words, we need to find how the o rotation can be done using just y
and z cranks in Figure 5.3.2.

The R[¢0w] rotation may be done using only the y and z cranks by
performing the following steps. First, one moves the @ contact point so it lies
under the z crank. This is accomplished by zeroing the azimuth ¢ with z
crank R(—¢00), and then zeroing the polar angle 6 with y crank RO — 60).
Then the  rotation can be done by z crank R(0w0). Finally, one returns the
w-contact point to its original position using the reverse and inverse operator
sequence R(¢$00)R(060). The desired product of the five operations is

R[$68w] = R($00) R(060) R(00) R(0 — §0) R( — $00).
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The spinor representation of this product is

DV ] =
. 0 2] ; ] 2] .
ei¢/2 ¢ cos— —sin= | |e i*/? cos— sin— | [e'®/?
« 2 2 . 2
. ] : 7] 7]
0 e /2] | sin— cos — e /21| —sin= cos— e~ i®/?
2 2 2 2
® L@ X . Lo R L w
cosz—icosesmg fsmqbsmesmi—icosqbsmesm—
= . . e . L w w [
smqbsm@sm;—zcos¢sm05m7 cos—+icososin5

(5.5.1)

By equating the components of 2/’ [¢pfw] to those of @'/*(aBy) in
Eq. (5.4.30) one obtains relations between Euler and Darboux angles:

cos[(a + v)/2]cos B/2 = cos w/2, (5.5.2a)
sin[(a + v)/2]cos B/2 = sin /2 cos 8, (5.5.2b)
cos[(y — @) /2]sin B/2 = sin w/2sin B sin ¢, (5.5.2¢)
sin[(y — @) /2]sin B/2 = sin w/2sin 6 cos ¢. (5.5.2d)

Hamilton, and more recently, Cayley and Klein showed how to expand
P9V?$bw] into QUATERNIONS g, or PAULI SPINORS g, defined by

g, =i, =il ] quoEi(O ), g =ie =il Y
Sty o) BEENG o) ETETHe q)

2i9V2( ), =2igV%(1), =2igV?(]).
x y r4
(5.5.3)

Il

[Note that quaternion g, is proportional to the irrep 2'/2(J,) in
Eqgs. (5.5.12).] The desired expansion is

@f1 0 L@ . 0 1
172 = — _ —
2Y?[pbw] = cos > (0 1) i sin > [cos ¢ sin 0(1 0)

. . 0 —i 1 0
+s1nd>sm0(l. O)+cost9(0 _1)]. (55.4)

In operator notation this is

w . . w A~ A
cos 51 — isin —Z—[mxox + @,0, + &)Zaz] (5.5.5a)

Rl¢fw]

w w
= cos 51 — isin E[w-c], (5.5.5b)




SOME APPLICATIONS OF A; REPRESENTATIONS 355
where
®, = Cos ¢ sin 8, w, =sin¢sin b, w,=cosf (5.5.5¢c)

are the Cartesian components of the unit vector aloﬁg the e-crank axis. This
expansion allows one to write a closed-form expression for group products
such as

!

' ) ) )
R[¢'00 |R[¢0w] = |cos ?1 — isin 76)’ . o)(cos 51 —isin—é& - o)

2
' 1] o 1] o
= cos 5 cos 51 — i[cos > sin 5&) + cos 5 sin 76)’] o
)
— sin —-sin 5(&) co)(® o). (5.5.6)

The third term in the foregoing can be reduced by the Pauli identity
(A-e)(B-o)=A-B+i(AXB): 0. (5.5.7)

The identity is easily proved by writing out each Pauli spinor component o,
o, and o, as defined in Eq. (5.5.3). The result is the desired product

R[¢'0/ |R[$0w] = R[¢"0"e"], (5.5.8)

where

w" ) "
R[¢"0"0"] = cos 71 — isin 7&)” ‘o (55.9)
and
" o' w )
€0 —= = €08 —- €0s — — sin — sin 5«3’ C @, (5.5.10a)
o o o v o 0w
@" sin - = cos —sin @ + cos - sin 76)’ + sin — sin 56)’ X ®.

(5.5.10b)

This can be regarded as the principal structure equation for the two-dimen-
sional UNIMODULAR UNITARY group SU, as well as R;. The group of
all matrices of the form given in Eq. (5.4.16) or (5.5.1) is the same as that of
all unitary (U' = U~") and unimodular (det U = 1) two-by-two matrices. The
structure equations are the ones which the slide rule described in Section
5.3.C is designed to solve using Hamilton’s construction.

To show that Hamilton’s construction is the same as the structure equa-
tions (5.5.10) one needs to analyze the spherical trigonometry. Consider a
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w(13)

w = w(23)7

Figure 5.5.1 Hamilton arcs associated
with rotation axes w = w(12), v = w(23),
and o” = w(13).

spherical triangle defined by three unit normal vectors (1), ¥(2), and ¥(3), as
shown in Figure 5.5.1. Let rotation axes w = w(12) and o' = ©(23) have their
directions defined by

9(1) X 9(2) = sin(12)d,  ¥(2) X ¥(3) = sin(23)&,

where (ij) is the arc length or angle between ¥(i) and ¥#(j). By definition we
can write ¥(2) as

¥(2) = cos(12)¥(1) + sin(12)@ X ¥(1), (5.5.11)
and similarly for ¥(3):

V(3) = cos(23)¥(2) + sin(23)a@’ X ¥(2). (5.5.12)
Substituting the expression for ¥(2) gives

¥(3) = cos(23)cos(12)9(1) + [cos(23)sin(12)& + sin(23)cos(12)&'] X ¥(1)
+ sin(23)sin(12) &’ X (& X ¥(1)). (5.5.13)

The third term above can be reduced by using cross-product identities:

& X (@ X (1)) = (&« 9(1))b — (& - @)¥(1),
(@ X &) X 9(1) = (& - 9(1))b — (& - 9(1))d
= (& - 9(1))é.

Subtracting the identities gives

& X (@ X 9(1)) — (& X &) X 9(1) = —(& - d)¥(1).
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The resulting expression for @' X (& X #(1)) can be substituted into the one
for ¥(3). There results an equation

¥(3) = cos(13)¥(1) + sin(13)@" X ¥(1), (5.5.14)
where
cos(13) = cos(23)cos(12) — sin(23)sin(12)@’ - &, (5.5.15a)
and
@" sin(13) = cos(23)sin(12) & + cos(12)sin(23)&’ + sin(23)sin(12)&' X &.

(5.5.15b)

The form of the vector equations matches the principal structure equations
(5.5.10) provided one makes the half-angle identifications

(12) =w/2, (23)=w/2, (13)=a"/2.  (5.5.16)

This completes the vector-based proof of Hamilton’s construction.

B. Spin4 Polarization Experiments

The matrix 29Y%(a = 7/2, B =0, y = 0) is the example of transformation
matrix 9 which was introduced in Eq. (1.1.3). In general, 2, (aBy) gives
the amplitude for a particle or system in a rotated state R(aBy)l.), to

choose the state ‘ n’i > if it is somehow forced to make a choice between

all the |{,1>. In Chapter 1 thought experiments involving (j = %) states were
sketched. The amplitudes 2,,,,, = {m'|m) between states

1/2 113 93 1/2 _ e« 123
{‘1/2>= [1) = [“up >,\_1/2>— 12) = |“down”)

and rotated states {R(7/2,0,0)[1) = |1}, R(7/2,0,0)|2) = |2')} were in-
troduced.

Figure 5.5.2 depicts a similar thought experiment involving (j = 2) states
or particles. It begins with states R(aBy)|3) represented by tipped cones
emerging from a B-tipped analyzer drawn on the left. We suppose that these
are all forced by an untipped analyzer to choose one of the untipped states
13, 13, 180, 123D, or | 3). The amplitude for choosing channel m’ or state
12, is then 22,(080). The & functions from Eq. (5.4.35) are plotted with a
broken line at the right of Figure. 5.5.2 for each m'. The intensity or
probability |.9,,2,1|2 is the solid curve. Note that 100% of the particles would
choose the | _3) channel when B = . This is right, since |7) turned upside
down must be the same as | _3) to within a phase factor.

It is interesting to try to get some feeling for the behavior & functions.
Consider a (j = 6) basis. The cone pictures of all the base states are drawn in
Figure 5.5.3(a).
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R (0'60° 0) Ij>

Figure 5.5.4 Vector geometry in classical limit for large J > 104, Uncertainty of l§>
state is negligible in the classical limit.

Consider the rotated state R(0 60° 0)|¢) shown in Figure 5.5.3(b). Let us
compare the amplitudes for it to choose the unrotated states belonging to
cones that lie inside the projection of its cone, namely, |3) to 9%, to those
that lie outside. For classical angular momentum the z component of a 60°
rotated angular-momentum vector of length j is m’ = jcos60° as shown in
Figure 5.5.4, simple classical vector rules apply for angular-momentum states
for which the |})-cone apex angle

Bcone = 2005‘1[1'/\/(;‘(1' + 1)] ~cos'[j/(i+1/2)] (5.5.17)

is small enough to consider the cone as a vector. Even the high value of
j = 10* gives 6., = 1.15°. For j = 10° we have 6, = 0.115°. This should
be regarded as an approximate lower bound to classical angular-momentum
theory.

For lesser j one must settle for a series of quantum amplitudes given by &
functions in Eq. (5.4.45). The exact values of 295,(0 60° 0) are plotted in
Figure 5.5.3(c). Note that the amplitudes seem to form a smooth lump
around the inside components. However, the amplitudes are nonzero outside
the projection of the R(0 60° 0)|%) cone.

Figure 5.5.5 shows a whole series of plots of 2,2, (080) as a function of '
for various fixed constants 8 and m. In the first column each plot has
m’ = 20 =j. This gives a Gaussian-like lump similar to Figure 5.5.3(c) for
,i, > = am’m')

For the other columns we set m' = (j — 1), (j — 2), and (j — 3). One
observes a lump with one, two, and three nodes, respectively. For g8 > 30°
these lumps resemble oscillator wave functions. Their “classical turning
points” or points of inflection occur at the projections of the cone edges.

This curious discrete wave behavior occurs for other angular-moment

quantities such as coupling and recoupling coefficients. Ponzano and Regge
[1968] and Shulten and Gordon [1975] have given a theory for this behavior in

B # 0. (For B = 0 the lump collapses into a single spike since < ’:' ,
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20

N %ﬁ) . . .
%% me20 ’\} m= 19 [\! 18 N =17
[‘ZO>E ™ ‘ ™ ™ v

Figure 5.5.5 Rotation amplitudes, probabilities, and cone geometry for J = 20. In
each subdiagram the amplitudes DB (080) are plotted as a function of m’ for fixed
B = 0°,30° 60° and 90° and fixed m = 20, 19, 18, and 17. The squared amplitudes or
probabilities are plotted above each subdiagram.

coupling coefficients. They have derived one-dimensional potential wells
which give wavelike solutions which approximate the discrete waves closely.

Finally it is interesting to note that the first moment or the J, expectation
value,

M ;;RT(OBO)JZR(OBO)I{;»
J

L w2, (080)[, (5.5.18)

m=-j




362  REPRESENTATIONS OF CONTINUOUS ROTATION GROUPS AND APPLICATIONS
of the probability distribution |2/ |? gives the classic;al value M’ = m cos B.
(This will be proved in Chapter 7.) The squares |97|? of the & amplitudes
are plotted above each & graph in Figure 5.5.5.

C. Symmetry Analysis of Quantum Rotors

Chapters 1-3 contained a development the basic ideas of symmetry analysis.
The mathematics is summarized by the following. A group ¥ ={--- R+ - R’
- - } of operators can have each element written

R = Z Y Y9, (R)P., (5.5.19)

in terms of irrep components 7. and a complete set of elementary
projection operators

. v "
Prim = o_zgrim(R)R’ (5520)
g R

where [’ is the dimension of irrep 27, and the sum is over all group
operators. °% is the number of operators in &. Elementary projectors satisfy
orthonormality relations

P} Pl =878

mn* m'n nm'

P, (5.5.21)

and a completeness relation,
v
1= ZP,{lm. (5.5.22)
Jj m

For the groups R;, O;, and SU, the formulas are the same except that the
group sum (1/°%)X, is replaced by an integral over Euler angles:

. _ 5 2 2 ™ . 2ar _ —
(1/°2)Y. =1 - (1/8% )[O daj;or_#smﬁdﬂfo dy = 1= [d(apy).

The integral over « and B (or y and B) is analogous to a spherical polar area
integral over ¢ and #, respectively. As explained in Section 5.3.A, Euler
angles @ and B play the roles of azimuthal and polar angles in the laboratory
coordinate frame while y and B play the same roles in the body frame. For
R; the range of B is 0 to m, for SU, it is —# to 7. A rigorous derivation of
the Euler integral involves the theory of invariant group measure which is
beyond the scope of this text. The integral formula for the R; (0 < 8 < 7) or
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SU, (-7 < Bw) projection operator is

P, = (2j + 1) [d(aBy) Fi,(aBy)R(aBY), (5.5.23)

where I/ = (2j + 1) is the dimension of the irreps 27. (See Appendix G.)

The application of P operators in the quantum theory of molecular
rotation is analogous to the applications discussed in Chapters 1-4. One
begins with a starting position state |1) = |000) in which a rigid molecular
body has its body coordinates {¥yZ} lined up with the lab coordinates {xyz}.
Then the P operators are applied to this state to give symmetry-defined
states -

) = PL,1000)/(2) + 1)"/
= [d(aBy) @] (aBy)(2] + 1)/*R(aBy)|000). (5.5.24)

The states |/,,) have definite R transformation properties as well as some
simple physical properties which will be discussed shortly. Each |7,,,) state is
a linear combination of rotational position states

laBy) = R(aBy)I000)

multiplied by amplitudes
ra( @By) =25, (aBy)V20 + 1. (5.5.25)

The amplitude r},,(aBy) is called the QUANTUM ROTOR WAVE FUNC-
TION. Its absolute square Iri (aBy)|? gives the probability that a molecular
rotor in state |,,,) would end up in rotational position state |aBy) if it was
somehow forced to choose from all Euler angles. We shall sometimes write
the r amplitude as

rin(aBy) = (aBylinn) = (000IR*(aBy)lhn). (5.5.26)

The orthogonality of the r and 2 functions follows from that of the P
operators. Rewriting Eq. (3.4.18) gives

D (Phn) = 878,108, (5.5.27)

mm’

Inserting Eq. (5.5.23) gives @ orthogonality relations

(2] + 1)/d(aB‘Y)gr]r;(aBY)@rﬁ'n’(aBY) = Sjjramm’snnU (5528)
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as well as r orthogonality. (2 orthogonality is discussed in Appendix G.)
Jd(aBY) i (@BY) i (aBY) = 878 S - (5.5.29)

Let us consider now the transformation properties of the ]f,,,,} states under
the laboratory-based rotation operators R(aBy) or body-based rotation
operators R(apvy). This will include discussion of the corresponding genera-
tors {J,J,J,} and {J;J;J}, respectively. The transformation rules will follow
more or less directly from the elementary left- and right-hand multiplication

formulas: -
R(aBY) P, = L Din(@BY) Py, (5.5.30a)
"

Pri;nR(aﬁY) = Zgr{n’(aBY)Pr{m" (5530b)

The left- and right-handed formulas are verified by replacing R using
Eq. (5.5.19) and then using orthogonality relations (5.5.21). Recall a similar
derivation of Eq. (3.3.14).

The left-handed formula gives the standard laboratory transformation of
state |,,,> in Eq. (5.5.24):

R(aBy)lL.) = R(aBy)P., 1000 /2] + 1
= Y. Dim(aBy) PL,1000) /12j + 1,

R(aBY)nn) = L Dyl @BY)in)- (5.5.31)

Note that only the left m subindices of the state are involved. Using the
lab-based rotation-generator relations

R(aBy) = R(«00) R(080) R(00y)
= o2/ ihgBl, /iyl /ih (5.5.32)

one can rederive the effect of lab J operators from infinitesimal rotations
such as

R(5a00) = 1 — idal,/h, (5.5.33a)
R(08B0) = 1 — i8BJ, /h. (5.5.33b)
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For example, one obtains
(1 = idad )hpny = ¥ Dy (1 — i8], iwn)
p”

= Z[.oz,{,,m(l) — i8a Dl (T ) lhen).  (5.5.34)

Using the representations <,,,(1) =38,, and 2,,.(J,) =25, mh from
Eq. (5.5.12¢) one obtains

J,

j >=hm’j > (5.5.35a)
mn mn

The lab operators J, and J, are treated similarly:

. fh ol
h .
+500G+ 1) =m(m = 1)) 1n>, (5.5.35b)
. —ih .
yinn>=7l(j(j+l)“m(m+1))l/zin—1n>

J

ih 12
+E(1(1+1)—m(m—1)) -

1, > (5.5.35¢)

The transformation derivations for the body operators R(af7y) and their
generators are only slightly more complicated:

E(aﬁy)|fnn> = R(aBy)P.,1000)/v/2j + 1 (5.5.36)
= P. R(aBy)000)/y2j + 1 (5.5.37)
= P/, RT(aBy)I000)/y/2j + 1. (5.5.38)

Here the commutation (5.3.6) between a body operator R and the lab-based
P operator is used to give Eq. (5.5.37). Then we use initial state relation
(5.3.7) between R and inverse R~! = R of lab rotations. Finally, the right
multiplication formula (5.5.30b) gives the body-operator transformation rules:

R(aBy)lim) = L2/ (aBy)PLA000/y2] + 1,  (5.5.39)

R(aBy)lmn) = EZ(aBy) . (5.5.40)
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Note that the right-hand » indices are involved in the body-based transfor-
mation. The n index is analogous to the local symmetry index discussed in
Section 3.4.A. Indeed, one can think of the general quantum rotor states as
bases of the regular representation of Rj.

The body-based angular-momentum operators J; and jy are related to R
through relations such as

R(aBy) = R(«00) R(0B0) R(007)
— eIz /hoBT; /ig YT/ ih, (5.5.41)
In particular, an infinitesimal Z rotation is
R(008y) = 1 — i8yJ,/h.
Substituting this into Eq. (5.3.35) and (5.5.40) gives
R(008y)lmn) = X 27, (R(008%))lnn),
n

(1 = i8yL,/MWin) = L Dh(1 = i8yL, /1))

Using the definitions of unitarity (2, =2/) and identity 2/,(1) = 5, ,, we
obtain

J

JoN_ _
Zmn> ;

The minus sign arises from the conjugation (*):

J P (7%
- > 5 (JF). (5.5.42)

DT (idy],) = —iDI(8yTF).
The irrep formula (5.4.25¢) gives the result

J. £nn>= —nh

J
mn

z

>. (5.5.43)

The minus sign for the body-based angular-momentum components is
regarded as a nuisance. It can be traced right back to the lab-body relation
(5.3.7). Obviously, any body residents would report that the laboratory was
whirling around with a rotational sense opposite to the sense of rotation of
the body measured in the lab. Jahn [1938] chose to eliminate the minus sign
by introducing REVERSED angular momentum operators

Jo=-JT., J,=-I, JL=-I. (5.5.44)

x y y
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This definition leads to the following body-based equations:

L\Lﬂ -l P ;
7l N2l , T ) Iy
i = nh , Ca) el g TN (5.5.45a)
mn mn d N
lh \_}vx\" ! .
J - (i _ i/21)
I5 mn> 2(1(]+1) n(n+1)) mn+l>
—ﬁ( ( +1)—n(n - 1)) (5.5.45b)
2 Ay mn-—1/ e
1 >=f'-(j(j+1)—n(n+1))1/”
*Imn 2 mn + 1

h .
+50G+ 1) —n(n - 1))"? fnn

_ 1>. (5.5.45¢)

These results complement the lab-based equations (5.5.35).
A physical interpretation of the J; equation is shown partly by Figure
5.5.6. One may regard the {J,) = nh as the Z component of lab-based

angular momentum on the body Z axis. Note that the same |in n> state will
also have a definite z component {J,) = m# of angular momentum on the

Figure 5.5.6 Laboratory and body compo-
nents of rotational momentum.
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laboratory z axis. Since J, and J, commute they may share the eigenstate
J
mn >

The price one pays for reversing the momenta comes in the form of
negative commutation relations:

[Je: J5] = —ind, (5.5.46)

between body-component operators. The raising and lowering operators are
interchanged, also:

(J; +il;) fnn>= r(j(j + 1) = n(n - 1)) inn ~ 1>, (5.5.47a)
(7, — iJy) {nn>= h(i(j + 1) = n(n + 1)) {nn . 1>. (5.5.47b)

This follows from the body-based equations (5.5.45b) and (5.5.45¢) for the 11; ) >
states.

Using the same equations it is easy to show that the states ‘iﬂ n> are
eigenstates of the spherical quantum rotor Hamiltonian,

Hsphere = (J)Z/Q’I = B(")2
(5.5.48)
= B(J2 + 12 +J2),
where I is the rotational inertia, and

B=1/21

is called the rotational constant. The energy-level spectrum of the spherical
rotor is given by the eigenvalues

Ef=<f H
mn

sphere

J _ 2
mn> j(j + 1)#’B. (5.5.49)
The spectrum consists of j levels with a spacing of

E, - E,_, = 2#°Bj, (5.5.50)

as shown on the left-hand side of Figure 5.5.7.
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1,9,25,49,... for j=0,1,2,3,..., respectively, in the spherical quantum
rotor level spectrum.
The states in n> are also eigenvectors of the cylindrical or symmetric

quantum rotor Hamiltonian:
Hyp = (J2+J2) /21, 5 + J2/21,
= (2 + 12+ 02) 20 + I2[(172L) — (1 /21, ;)]
=B(J)’ +J}C - B}. (5.5.51a)
Here the constant
» L ;=1,=1,=1/2B (5.5.51b)

is the transverse moment of inertia for a cylindrical object, and I, = 1/2C is

the axial inertia. If the rotor is a PROLATE symmetric or football-shaped

object, then I; <I; ;. We shall consider this case. In the opposite case
(I; > I;) one has an OBLATE symmetric or discus-shaped rotor.

The prolate symmetric rotor spectrum depends on total momentum quan-

tum number j, the body component #, and the molecular constants B and C:

El = <f H,

mn

sym.

J
mn

>=j(j + 1)#°B + n’#*(C — B). (5.5.52)

For the prolate rotor the constant (C — B) is positive and so the high-|n|
levels have higher energy, as shown in the left-hand central column of Figure
5.5.7. The levels for |n| = 0,1,2,3,4 are labeled 3,11, A, ®, T, ... according
to a tradition that grew out of atomic spectroscopy. In atomic spectroscopy,
transitions to j = 0,1,2,3,4, are labeled s, p,d, f, g,..., which stand for
“sharp,” “principal,” “diffuse,” “fine,” “goodness-knows-what,” etc. (There-
after the labeling is alphabetical except that the letter j is deleted so as not to
confuse it with the quantum number j.)

Note that the letters 3,1, A,... appear as an alternative labeling for
irreps of C,, symmetry in Eq. (5.2.4) and D, , symmetry in Figure 5.2.1. A
prolate rotor has D, , D C,, body symmetry and so it is appropriate to label
its energy levels with the C, , irreps. In later discussions we will consider the
inversion and reflection symmetry labels as well. For now we note that a
rotor which is invariant to reflections through any plane containing its z axis
must have degenerate +n and —n levels for n > 1.

An asymmetric rotor has a Hamiltonian of the form

H,ym = J2/21, + 192/21,? +J2/21,

= AJ2 + BJ2 + CJ2. (5.5.53)
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Figure 5.5.7 Hamiltonians, energy levels, and symmetry groups of various quantum
rotor systems.

Each j level of the spherical rotor for j > 0 is degenerate with a degener- ‘
acy of (2j + 1)%. In elementary quantum theory one learns that atomic levels

of angular momentum j have degeneracy (2j + 1) corresponding to (2j + 1)
states "’n > for each magnetic quantum number m =j,j — 1,..., —j + 1, and

—j. For the quantum rotor the z component m ranges over the same values.
However, for each m value there are (2j + 1) more n values n =j,j —
1,..., —j of the body Z component. This gives a total degeneracy of
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For this the body symmetry is reduced to D, or D,,, i.e., 180° rotation
reflections around the X, ¥, and Z body axes. This symmetry is Abelian and
has only one-dimensional irreps. Therefore no degeneracy between states
belonging to different body labeling can be expected. The representations of

H..  inthe ‘ ) > basis is found using Eq. (5.5.45):

J
asym. m
mn

A+B
= hz[(—;—)(j(j +1) —n?) + an]

asym.

)
mn

A-B '
+ hz(_4—)[(j Fn DG+ DG =G = DIV 2>
+h2( ; )[(j+n)(j+n—1)(j—n+1)(j—n+2)]1/2j >
mn — 2
(5.5.54)

Clearly, eigenvector combinations of in n> for fixed m and various n,n + 2,

n + 4,... are needed to diagonalize (H,,,, ». This problem will be discussed
in later chapters. Note, however, that the components of (Hasym) reproduce
those of (H,,, ) for A = B and (H,,) for A =B = C.

So far we have seen what happens when the body symmetry is reduced
from spherical R, symmetry to R, = C, symmetry of the cylindrical rotor (if
we count reflections, then H,, has O, ~ C,, symmetry), and finally to a
finite D, symmetry. The n degeneracy becomes more and more split until
finally there is none. However, we have not yet reduced the lab symmetry and
until we do, the (2j + 1)-fold m-degeneracy will remain for each (j, n) level.
Body-based operators J, J;, and J; have no effect on the m labels. A simple

example of the effect of a lab-based operator is the Hamiltonian
H, =B(J) +gl,. (5.5.55)

The perturbation gJ, is a simplified model for the ZEEMAN effect on a
rotor of an external uniform magnetic field along the z axis of the laboratory.
The constant g is called the gyromagnetic ratio for the rotor. The level
spectrum of the Zeeman Hamiltonian is given by
Ej = <f H
m mn

z

J
mn

> = Bj(j + 1)A* + gmh. (5.5.56)

Each j level gets split into 2j + 1 parts as shown in Figure 5.5.7 on the
right-hand side. The magnetic field reduces the lab symmetry from spherical
R, symmetry of a vacuum to R, = C, symmetry of the field axis. The
magnetic quantum numbers m are R, irrep labels for the split levels.
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A more symmetric example of a lab-based perturbation is given by

H, + B(J)* + uJ?. (5.5.57)

Here uJ? is a very simplified model for a STARK effect on a rotor of an
external uniform electric field along the z axis. An electric field has a higher
C., ~ O, symmetry since reflections through any plane parallel to the E
field leaves it unchanged. Hence a degeneracy between +m levels will exist
in the level spectrum:

J
mn

Ef, = <fnn Hy >= Bi(j + 1)A* + pm?h?. (5.5.58)

Hamiltonian Hy is the laboratory analogy for the body Hamiltonian H,,
of the symmetric rotor. H reduces the lab symmetry from R; to R,, while
the other reduces the body symmetry in the same way. You may realize now
that there are two sides to any quantum rotor story: an inside and an outside.
Two commuting sets of symmetry operators will exist for each rotor Hamilto-
nian H. The first set will be a subgroup MB c OLI*B of lab operators
{--- R(aBy),..., IR(aBy),...}, which commute with H. The nature of
subgroup M™*® will depend on the laboratory situation and the symmetry or
shape of the external fields being applied. The second set will be a subgroup
NBODY  §BODY 4 hody operators {...R(aBy),.. , IR(aBy),...}, which
commute with H. The nature of N2°PY depends on molecular structure and

the internal symmetry or shape of the rotor. The whole rotor symmetry may
be written

GROTOR _ pfLAB 5 {BODY (5.5.59)

since the two subgroups M and N are independent and mutually commuting.
For example, a spherical rotor in a field-free laboratory environment is said
to have O, X O3 symmetry, while symmetric and asymmetric rotors have
0, X 02 and O, X D2 symmetry, respectively, in the same environment. In
the presence of a laboratory electric field the spherical rotor has O2 X O3
symmetry, while the symmetric and asymmetric rotors have O, X 02 and
0, X D2 symmetry, respectively. In later chapters we will consider tetrahe-
dral rotors in free space of symmetry O; X Td as well as rotors in various
external fields with symmetry O, X T, Ry, X Ty, D, X T,, and so forth. Any
of some thousand combinations (M X N) of point groups are possible rotor
symmetries which are subgroups of O; X 53. (With just the crystal point
symmetries there are 322 = 1024 different combinations.) The problem of

correlating R; and Oj; irreps with point symmetry subgroups is treated in
Section 5.6.
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D. Spherical Harmonics and Rotational Wave Functions

Some quantum rotors have a very simple internal structure. An orbiting
electron is one example. A rotating diatomic molecule is another. For each of
these examples a single vector Z determines the orientation of the body. The
radius vector r for the electron or the internuclear position vector r; — r, for
a linear molecular rotor define the rotational position of these bodies. The
position vectors have polar coordinates of azimuth (¢) and polar angle ()
which can be identified with the first two Euler angles, respectively.

a=¢, p=29. (5.5.60)

The third Euler angle (y) is superfluous since a rotation R(007y) of a vector
around its own direction should have no effect. Here we ignore any internal
structure of the nuclei or the electron whose positions are defined by a Z
vector. The particles are imagined to be points.

These arguments lead to a LOCAL SYMMETRY condition for pointlike
rotors:

R(007)/000) = [000) (5.5.61)

This condition is analogous to similar conditions discussed in Chapter 4. It
leads to the conclusion that

J _ pJ . 1/2
lmn> PJ1000) /(2] + 1) (5.5.62)

will vanish for linear rotors unless n = 0. By substituting the condition into
the projection we dertve

J _ pi . 172
‘mn> P., R(00y)/000) /(2] + 1)

— —inyj
e > (5.5.63)

which is true for all y only if n = 0.

Note also that a linear rotor or orbiting electron has vanishing rotational
inertia I, around the radius z vector. The energy values (5.5.52) go to infinity
for such a rotor for all nonzero n. On the right-hand side of Figure 5.5.7 only
the n = 0 levels are drawn.
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With n = 0 the @ functions simplify considerably. Rewriting the central
(n = 0) column of the 2 and 272" matrices using (5.4.33) and (5.4.35)
yields the following:

_etsing (m=1)
V2
Dro(aBy) = |- cos B -, (m=0) (5.5.642)
e “sin 3
V2 ' (m=-1)

E e+2ia Sin2B . R (m = 2)
» 8
3 =1
- Ee”“sinﬂcosﬂ - (m=1)

23 _
SFuepn = |- - LT =0

3
‘/Ee_"“sinBcosB - (m=—1)
V ie‘z"“ sin® 8 -
8 (m=-2)

(5.5.64b)

If you are familiar with the SPHERICAL HARMONICS Y,/ from elemen-
tary quantum mechanics, then you will recognize them here. In fact they are
special cases of the rotor wave functions for n = 0:

rio(aBy) =2i(aBy)(2i + 1)/ = VA Yi(Ba).  (5.5.65)

Note that body quantum number »n and the third Euler angle are not present
in a linear rotor wave function.

It is important to summarize several of the roles which the & matrix
functions play. For the physicist they are wave functions as stated in
Eqgs. (5.5.25) and (5.5.26):

)
mn

= {aBylin)s (5.5.66)

1/2

ri(aBy) =25 (aBy)(2j + 1)7" = (000|R*(By)
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but they are mainly rotation representations, i.e., the representation of a

product R'(aBy)R($0w) is the product of the representations as stated
here:

2} (R'(aBy)R($0w)) = z;g,im,(R*(aBy))@,{;,n(R(¢0w)). (5.5.67)

Taking the complex conjugate yields

25 (R (aBy)R($00)) = LD}y, R(2BY)) D, R($00)).
Using the notation of Eq. (5.5.66) one derives

<000|RT(¢aw)R(apy)‘{m>= ZQ,{,,,,(R(aBy))(OOOIRT(qSGw)i{n,n >
(5.5.68)

which simplifies to the following form:

@00lR(eBy)| ] ) = Thnlapr) (600]],,). (5569

m

This agrees with the left transformation formula (5.5.31) if the bra {$bew| is
dropped.

A special case of this transformation formula for n» = 0 involves the Y
functions:

Yi'(06) = L 2jim(aBy) Y (88). (5.5.70a)
Here the function
Yi'(8¢) = (46 - IR(aﬁy)‘an> (5.5.70b)

is a spherical harmonic wave function of a rotated state R(aBy)lfn > The

rotated harmonic is schematically represented by lobes of a wave function
centered on the {xyz} axes in Figure 5._5.8. The wave function Y,] looks the
same in the rotated {XyZ} axes as Y, looks in the lab axes {xyz}. Y is
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vl 06 = 30! i vl 00)

eelees oo soo sossncnce

]
)\\

V.

Figure 5.5.8 Transformation between
rotated harmonic Y/ and unrotated

wave functions. Lobes of the wave are
represented by level surfaces: Y/(6¢) X
= constant.

sketched by dotted lines in the figure. The real or imaginary parts of Y/(6¢)
will have 2m lobes and 2m nodes in the interval {0 < ¢ < 27}. This can be
derived from its z-rotation properties or by inspecting the standard formula:

(2j + (G -m) "
4 (j+ m)!

Yi(84) = (-1 "e™*P"(cos 8). (5.5.71)

The P;” are the well-known associated Legendre functions. The fact that
(2j + 1) different functions {Y/,Y/_,,...,Y? } should combine in Eq. (5.5.70a)
to make a rotated version is a wonderful thing indeed. The role of &
functions as transformation coefficients for harmonics is important, and it is
probably their best-known role.

If one sets m = 0 the resulting harmonic has no azimuthal dependence. Y}
wave functions have cylindrical or azimuthal symmetry as schematized in
Figure 5.5.9. Y{ is a function only of its local polar angle 8,

_ 2j +1\'?
Yi(6 ) =( ypm ) PY(cos 9), (5.5.72)

where Pjo(cos #) is a standard Legendre function. The rotated harmonic y*
in Figure 5.5.9 is a function only of the polar angle ® with respect to the
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Figure 5.5.9 Azimuthally symmetric
rotated harmonic Yd'. Angles shown are
used in the addition theorem.

tipped Z axis. Substituting this into the Y transformation (5.5.70) yields

Y§'(64) = L @lo(aB -)Yi(69), (5.5.73)
2j + 1\? 12
0 = 7* j
( yo ) P?(cos @) = §(2j 1 Y, (Ba)Yi(0¢), (5.5.74)

where Eq. (5.5.65) was used, also. This yields the very important ADDITION
THEOREM

P(cos @) =

i
T m;_eri;*(Ba)er;(ch) (5.5.75)

for spherical harmonics. However, a better name for this might have been the
multiplication theorem, since it follows directly from the R; group multiplica-
tion relation (5.5.67).

E. Explicit Relations for Rotation Operators and Generators

(a) Laboratory- and Body-Defined Polar Coordinates The Euler-angle
device introduced in Figure 5.3.1 is redrawn in Figure 5.5.10 to include
labeling which will aid in the discussion of explicit representations of coordi-
nate rotations. The device consists of four rigid parts or frames, and each
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LAB VIEW BODY VIEW

BODY X
ZENITH

X, X8 Polar Co-ordinates
of BODY ZENITH
= (a,8)

Polar Co-ordinates

of LAB ZENITH

= (=y,-8)

X
a

BODY ZENITH
Z=%

A
< ~
R .‘\0‘\ A
PR3 + ~
P X FRAME N ~.
g N ~

Figure 5.5.10 Mechanical definition of Euler coordinates for rotational mechanics.
Laboratory and body views of the body and lab zeniths are shown in respective insets.
(See also Figures 5.3.1 and 5.3.4.) [Reprinted from W. G. Harter and C. W. Patterson,
J. Chem. Phys., 80, 4260 (1984).]

frame defines a coordinate axis and is supporting or supported by other
frames. There is a lab (x,x, x,) frame supporting an (x| x,x%) frame which in
turn supports an (x{x%x%) frame which finally supports the body (¥,%,%)
frame. Each of the frames is connected to its neighbor (or neighbors) in the
sequence by pivots or bearings. Each bearing has an indicator and dial which
displays one of the three Euler angles (a, 8, v). By defining Euler angles in
this way one sees clearly that they are holonomic coordinates; that is, they
depend only upon the relative orientation of the three frames and not upon
the path or order of operations which yielded a given orientation.

The first two Euler angles (a, 8) serve as polar coordinates for the body
zenith or X, axis in the lab frame as shown in the upper left-hand inset. The
azimuth and polar angles of the lab zenith or x; axis in the body frame are
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(—v) and (—pB), respectively, as indicated in the upper right-hand in set of
Figure 5.5.10.

(b) Coordinate Rotation and Transformation Matrix As explained be-
fore Eq. (5.3.3), the setting of an Euler-defined position is accomplished by
an ordered sequence of z, y, and z rotations. This sequence is indicated
explicitly by Figure 5.5.11. The matrix representation of this sequence is
given by the following:

cosa —sina O cosB 0 sinp cosy —siny 0
(R(aBy)) = | sine cosa 0 0 1 0 siny cosy O],
0 0 1 —sin8 0 cosp 0 0 1

X X; X3
X cosacos Bcosy —sinasiny —cosacosfBsiny —-sinacosy cosasinf
= X, sinacosBcosy + cosasiny —sinacosBsiny +cosacosy sinasinf
X3 —sin B cos y sin B sin y cos B
(5.5.76)

Note that the |x;) ket or third column of (5.5.76) is the polar coordinate
representation of the body zenith, as it should be. Similarly, the (x| bra or
third row of (5.5.76) is the representation of the lab zenith in the body frame
where one could measure an azimuthal angle of (—v) and a polar angle
(—p) for the x, vector.

THIRD
ROTATION R(a0O0)

SECOND
ROTATION R(080)

FIRST
ROTATION R(0Oy)

AROUND J|5 LAB Z-AXIS
q - -

A -
| ROUND {5 LAB Z-AXIS

SETS THE 3 DIAL

Figure 5.5.11 Operational definition of Euler coordinates. Ordered rotational se-
quence R(a00)R(OBOYR(00y) = R(aBy) of lab-based operations orients the body
into the (aBvy) position relative to the lab. Only rotations about the lab y and z axes
are used. [Reprinted from W. G. Harter and C. W. Patterson J. Chem. Phys. 80 4260
(1984).]
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(c) Angular Velocity and Momentum in Laboratory and Body Frames
The angular velocity of the body frame relative to the laboratory may be
expressed simply in terms of the angular velocities «, B, and vy of the three
dials in Figure 5.3.10. The rotation of each successive frame relative to its
supporting frame depends simply upon the angular velocity of the bearing
which connects them. For example, the time derivative (dr/dt)|, of a vector
in the lab (x) frame can be written in terms of the velocity (dr/dt)|, of the
same vector observed in the (x') frame as follows:

dr
dt

dr

x=dt

+w, X, (5.5.77a)

xl
where the angular-velocity vector of the a dial is .
®, = ax; = a(—sin B cos yX, + sin Bsin yX, + cos BX,). (5.5.77b)

This vector lies along the unit lab zenith (x;) and is expressed in terms of the
body axes using the third row of (5.5.76).

Similarly, the time derivative (dr/dt)|, in the (x') frame can be expressed
in terms of the velocity (dr /dt)|,» which would be observed in the (x”) frame
by

dr

dr

dr

B = E + (’)B X r, (5.5.783)

x”

since these two frames are connected by the B axis which lies along the
vector

0g = B( —sin ax, + cos ax,) = B(sin yX, + cos yX,). (5.5.78b)

This is seen by inspecting Figure 5.5.10. Finally, the desired expression for
the body frame observed velocity (dr/dt)|x is given in terms of (dr/dt)|,» by

dr
dt

dr

v dt

+w, X, (5.5.79)

X
where the vy dial angular velocity vector is along the unit body zenith X;:
o, = y(cos a sin Bx; + sin a sin Bx, + cos Bx;) = yX;. (5.5.79b)

A combination of the preceding three relations vields lab-body velocity
relations of the form

dr
dt

dr

. dt

+wXr, (5.5.80a)

X
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where the total angular velocity
0=, e;+o, (5.5.80b)

is a vector sum of those for the three dials. Taking the lab expressions for
(5.5.77)-(5.5.79b) we derive the following matrix equation and its inverse:

M 0 —-sina cosasinB)|a
w,{ =10 <cosa sinasing||gB], (5.5.81a)
w, 1 0 cos 3 0%
@ —cosacotB —sinacotg 1 »
= —sin « cos a 0f|w, (5.5.81b)
v cos a/sin B sina/sinff 0f|w,

If the body expressions are used instead then one derives the following:

w; —sinBcosy siny O0)fa
w;| =| sinBsiny cosy 0|[B], (5.5.82a)
s cos B 0 11ly
a —cosy/sin3  siny/sinfB 0} [w;
3 | = sin y cos y 0|wy|- (55.82b)
0% cot B cos y —cotBsiny 1)|ow;

The coefficients in these matrix relations are useful for relating the
lab-based angular momenta {J, = 4L /dw,, J, = oL/dw,, J. =0L/3w,} to
the body-based momenta {J; = 4L /dw,, J; = L fdw;, J; = L /dw;}, where
L is a given classical Lagrangian. The connection is made through the
quantities {J, = dL /da, Jg =90L/3B, J, =L /Jy}, which are the Euler
canonical momenta, and one uses the chain rule

8L dL da& AL 9B AL dy da aB 3y
dw, dadw, B dw, Iy dw, dw, * dw

Using (5.5.81)-(5.5.82b) then gives lab and body-based momentum in terms

et et e
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of Euler angles:

CoSs «
J, —cosacotBf —singa : J,
sin 8
= _ sin « ,  (5.5.83a)
J, —sinacot cosa - Jg
sin B
J, 1 0 0 J,
cos y .
J; - = smy cotBcosy ||[J,
sin 3
=| siny . . (5.5.83b)
J; sin B cosy —cotBsiny [{J,
Js 0 0 1 J

Y

These relations become quantum operators if one represents the Euler
operators by

a d d
Jo= (/Dg0s Jy= (h/i)or, I = (h/i)3. (5584)

These are consistent with commutation relations

[J.»J,] = ihJ, (and cyclically), [ Jg] =0, etc.,

[Js,J;] = —ihJ, (and cyclically), [J::0,] =0,etc, (5.5.85)
which we deduced using coordinate-free arguments. One should note that
the coordinates conjugate to J,, J,, or J, are nonholonomic; the dw,, are not
exact differentials. Their values depend upon the rotational path history
followed by the rotor to a given orientation. Euler angles depend on only the

orientation.

5.6 ROTATIONAL LEVEL SPLITTING IN FINITE SYMMETRY

Consider a rotating diatomic molecule or an orbiting electron in one of the
angular-momentum states Ifn> belonging to a 2/ + 1-degenerate energy level
g;. The transformation properties of these states are defined by irreps @/ of
symmetry group R, or by 2'* of group O, according to the usual transfor-
mation equations:

Rlm) = X D Rl
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Figure 5.6.1 Molecular or crystal field splitting. l-orbital level splitting due to
symmetry reduction from O; D R; to lower symmetry M corresponds to the reduction
of the subduced representation D' | M.

Suppose now this system is put into a lower-symmetry environment such as
a crystal lattice or molecular site, where the symmetry is described by some
finite group M. As a result, the energy levels will then belong to irreps
9% 9P, ... of the new symmetry M. The corresponding degeneracies
12,18, ... will generally be less than the free-orbital degeneracies QI+ 1.
Some of the orbital levels must split, as shown in Figure 5.6.1. This effect is
often called CRYSTAL FIELD SPLITTING, and was first analyzed exten-
sively by Bethe [1929].

We now see ways to determine which irreps 2 of a symmetry M are
correlated with a given irrep of O;. We also discuss types of potential fields
that cause splitting and show ways to obtain approximate eigenstates of them
under certain conditions. These results will be used later to derive various
model formulas for rotational spectra.

Of all the finite symmetries discussed in Chapters 2—-4, we will treat the
higher ones in each chain first, namely, O, and Dy,. The properties of the
others then follow relatively easily from the subgroup chain correlations.

A. Cubic Symmetry Correlations O, D O,

The O, character table was given in Eq. (4.1.16). To determine the orbital
splittings, we will use these characters to find the frequencies f* of O,, irrep
2% in a given irrep @' of O;. The formula for f¢,

fe=(1/°G) ¥ x°c,Trace 2'(g) (5.6.1)

classes

g
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was given in Eq. (3.5.11). We shall apply this formula to the octahedral
subgroup O of O, = O X C; and R; of O; = R; X C,. It is easy to deter-
mine the inversion parity (z or g) separately. For O we know the characters
«; [see upper left quadrant of Eq. (4.1.16)], the order of the classes °c, (from
Figure 4.1.2, we have °c; = 1, °c 500 = 8, °Ci500 = 3, cope = 6, and °c gp¢ = 6)
and the order of the group (°G = 24). We still need to find the trace of &'
for each rotation class.

To find the trace of an R, rotation by angle w one picks the most
convenient representation. The diagonal matrix

e—tlw

e —ill=De
Z'(000) = . (5.6.2)

represents rotation R(w00) around the z axis. Any rotation R{w] by the
same angle w around any axis 7(8¢) must be equivalent to R(«00).

R[w] = R($80) R(w00) R~'(860). (5.6.3)

Therefore the traces of the representations must be equal.
The desired trace of Eq. (5.6.2) is evaluated by summing a geometrical
series:

Trace Z'(w00) = ¢ #@ 4 ¢~{=De 4 ... L il=Do 4 il
e Trace Z'(w00) = e 70T D0 4 p=ilo 4 p=ill=Do L ... 4 il-Do
Subtracting the preceding two equations gives
(1 — e “)Trace '(w00) = e'l® — g7+ De
or

e/ Do _ milt1/Dey  gin(l + 1/2)w
eI/ (efw/2 — gmin/2) B sin w /2
(5.6.4)

Trace 9'(w00) =

From this formula one derives the trace table (5.6.5a). Substitution of each
row in turn into Eq. (5.6.1) gives the correlation table (5.6.5b) of frequencies.
Several examples of predicted crystal field splitting are shown in Figure 5.6.2.
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Figure 5.6.2 Octahedral splitting of s,

p,d, f, and g orbitals. s, =0 ________ | A
19
The standard atomic notation s, p,d, f, g,... for orbital momentum [/ =
0,1,2,3,4,..., respectively, is used. The inversion parities [g = even = (+),

u = odd = ()] are assigned as they apply to one-electron (hydrogenlike)
wave functions Y'(8¢), namely, odd (even) / means odd (even) parity.
However, the inversion parities for multielectronic orbitals or rotating
molecules do not follow this rule, in general, as we will see later. In general,
a given | may have either parity depending on the physical situation.
Whichever it is, the O,-irreps will have the same parity as their / “parent” in
any O; D O, correlation.

Figure 5.6.2 is a sketch of the form, though not necessarily the order, of
the O, splittings of the lower / levels, as dictated by (5.6.5b). The conve-
nience of the symmetry analysis which gives this so quickly should be evident.
We shall see in Section 5.6.F how the ordering and spacing of the split levels
can also be found easily under certain conditions.

Note that the table of (5.6.5a) for [ = 0 repeats itself after / = 12. This is
as far as one ever needs to calculate it. 2'? contains the regular representa-
tion which has zero trace for @ = 0 plus one scalar (/ = 0 or A,,) irrep
whose trace is all 1. [See the first row in the table of (5.6.5a).] Therefore, the
general result is

2'10 ~ [integer of I/12/(2" 92 0 29F & 39T ® 3972) @ gl md12,
(5.6.6)

B. Cubic Eigenstates and Wave Functions

The cubic symmetry correlations (5.6.5b) indicate that a fivefold degenerate
[ =2 level should split into a doubly degenerate E level and a triply
degenerate 7, [evel under the influence of O-symmetry forces. Let us
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consider this example in some detail in order to understand its physical
implications as well as some computational methods.
First one needs to find what combination of the five d-orbital eigenstates

<|§>lf>|§>|_f>‘_§>} go together to make octahedral base states
MM
/20 3 s

hedral projection operators P to the orbital states:

E>=P5 r2n>/(NE)1/2, tT2>=P£2r2n>/(NT)I/2~

e
The projection factorization techniques discussed in Section 4.3.C help to
simplify this projection.

Suppose the |%,) states are defined with respect to the z axis which is an
octahedral fourfold symmetry axis. Then the first state I§> satisfies a local C,
symmetry condition

2\ _ 52
)=

>} This is accomplished by applying appropriate octa-

§>=%(1—R3+R§—R§)

§> (5.6.7)

This calls for the tetragonal (O > D, > C,) projectors P7 of O, and only
those for which j = 2,. If you forget which components correlate with (2,)
you may construct the octahedral irreps of the local symmetry projector. We

have

9E(P24)=(8 (1’) (5.6.8a)
0 0 0

.9T2(P24)=(0 0 o), (5.6.8b)
0 0 1

from Eq. (5.6.7), (4.2.19), and (4.2.14). (Note: We shall use the T, irreps
which follow directly from the T, by sign change of R and i matrices.) The
position of the unit in the matrices (5.6.8) signals that the second and third
components of E and T,, respectively, are the right ones. The desired
cigenstates for £ will be given by

P;

€

2 2
2> = %deg(Rl)Rl 2>7 (5693)
R,

and for T, by

2
2 > =312 92(R)R,
R,

T,
Pt3

§> (5.6.9b)
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where Z5(R,) are octahedral irreps of coset leaders R, and

R,

§> = %93.2(1?1((1/37))},2" > (5.6.10)

depends on the R, & functions and the choice of R,. Fortunately, there
are only six cosets R,C, of local subgroup C, = (1, R;, R%, R3). Hence,
the sums over leaders R, contain only six terms. Let us choose coset leaders
1 = R(000), R =R, 7,0), R, = R(—mw/2%/27/2), R} = R(—m/2 —
w/27/2), R, = R(0,7/2,0), and R3 = R(0, —7/2,0). Each one of these
leaders transforms a point on the local z axis onto one of the octahedral axes
as explained in Section 4.3. The Euler angles («8y) are obtained by inspec-
tion of the octahedral operations in Figure 4.1.2 or by using axis-to-Euler
conversion formulas (5.5.2). The representation components 92,(aBy) for
each of the leaders is written in the following using the 2 formula (5.4.21).
Only the first column of the & matrix is required here. We use a single-
parenthesis notation 2(R = ( to denote this.

2
o-20Ca+y) 1+ cosp
2
e—i(ﬂ+27)(——_1 + cos B )Sin B
2
2 —2i 3 sa2
Dio(aBy = 7y g sin’ B ,
. 1 — cos
e'("‘_“)(—ﬁ)sinﬁ
2
_ 2
eZi(a*'y)( 1 —cosB )
2
) 0 1/4
0 0 —i/2
2*(1=10, 9*Ri=[0, 2*R,=]|-V3/8,
0 0 i/2
0 1 1/4
1/4 1/4 1/4
i/2 1/2 -1/2
Z(R}=|-V3/8, 9(R,={V3/8, 2(R}=|+3/8.
—i/2 1/2 -1/2
1/4 1/4 1/4

(5.6.11)
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Substituting these into Egs. (5.6.8)-(5.6.10) and using the T, octahedral
irreps we find T, octahedral eigenstates:

1/4 1/4 0
1/2 -2 | _
29 (R)Z2*(R=0+0+0+0—-[y3/8 +|3/8 =| o,
1/2 -172 |1
1/4 1/4 0
1/4 1/4 0
-i/2 i/2 _
Z@TZ(R)QZ(R—O+O+ -V3/8 — | -V3/8 +0+0=| o,
i/2 —i/2 i
1/4 1/4 0
1 {0 1
0 |0 0
ZQTZ(R)Qz(R—o— 0+0+0+0+0=|0.
0 |o 0
0 \1 1

Finally we normalize 7, column vectors and write them in terms of 'fn > kets:
LA _(_12\_| 2

1>*( i1> l—1>)/‘5

Ly _(_.2 2

2 > } ( 1 1 >) / 2.

2= (B)-1-3))e 5612

By applying the octahedral E irreps in the same way one obtains

)-la)

2)-(5)+[3)/7 (5619

It is instructive to examine the wave functions of the states (5.6.12) and
(5.6.13) to see why their energy levels split and see the shape of the
octahedral harmonics. The spherical harmonics Y,/(8¢) are functions of polar
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angles or dimensionless Cartesian coordinates:
X/r = cos ¢ sin 6, y/r = sin ¢ sin 6, z/r = cos 0.

For example, the Y,? functions are as follows:

n2<0¢ §> = n,Y2(06) = (3/8)" e sin>0 = (3/8)/*(x + iv)>/r?,
n2<0¢ %> = Y2 = —(3/2) e sin 8 cos § = —(3/2)X(x +iy)z/r?,
n2<0¢ 3> = n, Y2 = (3cos?0 — 1)/2 = (22 — x* — y2) /212,
n2<0d)’ _%> = n,Y2, = (3/2)" e sin 6 cos § = (3/2)*(x — iv)z/r?,
n2<0¢| _% > = n,Y2, = (3/8) e~ sin 9 = (3/8)X(x — iv)>/r2,

(5.6.14)

where a normalization factor n, = (47 /5)'/? is isolated. From Egs. (5.6.12)
and (5.6.13) the octahedral functions follows:

n2<0¢ f2> = —ny(Y2+Y2)/V2 = (V3 /r¥)yz, (5.6.15a)

n2<0¢ T2> = n,(—i¥Y? +iY2) V2 = (V3 /r?)xz,  (5.6.15b)

2
n2<0¢ §2> =n,(Y7 = Y2,)/V2 = (V3 /r¥)xy, (5.6.15¢)
n2<0¢>lf > =n,Y¢ = (222 —x* - y?¥)/2r?, (5.6.15d)

n2<0¢l§ > =ny(Y2 +Y2,)/V2 = V3 (x2 - y?)/2r% (5.6.15¢)

Two of the octahedral wave functions are sketched in Figure 5.6.3. The
second E wave function (¢f ~ x? — y?) is drawn adjacent to the higher-
energy E-doublet level, while the third 7, wave function (¢3T? ~ xy) is
sketched below. The energy levels are the eigenvalues of the lowest-degree
octahedrally symmetric Hamiltonian or potential

V(4) = D(x4 + y4 =+ 24 — %r“)_ (5616)

The eigenvalues of V¥ and other operators will be computed in Chapter 7.
However, it is easy to understand qualitatively why the states ‘eE> have

th > If one plots the equipo-

higher-energy cigenvalues than those of states
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tential surface x* + y* + z* = 1, then the xy contour assumes the supercir-
cle shape of a rounded square as shown in Figure 5.6.3 (SUPERELLIPSE is
the name given by the designer Piet Hein for any contour x” /a”™ + y" /b" = 1,
where n > 2.) The T, waves avoid the higher potential regions by having
their wave crest’s lobes in the corners of the supercircle. The E waves have
nodes near the T, crests and end up with their lobes pointing into the higher
potential regions on the sides. We are studying here the generalization of the
one-dimensional Bohr and Bloch waves and energy-band splitting. More
discussion and examples will be given in Sections 5.6.D and 5.6.E.

C. Multipole Functions and Polynomials

Before continuing the discussion of waves and level splitting a short descrip-
tion of wave functions and polynomial classification will be given. Let us
define the ELEMENTARY MULTIPOLE FUNCTIONS X,, by the follow-
ing:

. 47 ot
X, = T 1 (r)Yy,. (5.6.17)

The factor (r)' converts Y| into a polynomial in x, y, and z of degree /. The
X,ln are listed as explicit polynomials of x, y, and z for / = 1-4 in the O,
table of Appendix F. In this table one observes 2/ + 1) =1, 3,5, 7, and 9
new multipole functions appearing for each /. However, the corresponding
number of independent /th-order monomials x°y®z¢ (a +b +c =1) is
generally greater: (I + 1XI + 2)/2 = 1, 3, 6, 10, and 15. Note on the right of
the table that each /th-order monomial is a combination of X' and products
X!172(r2), X'=4(r*) of lower-order multipole functions with r2 = x? + y? +
z2

Suppose you want to find how many independent combinations of /th-order
monomials x%y®z¢ or multipole functions X,ﬁ, exist which transform accord-
ing to a given irrep 2 * of a given symmetry such as O,,. This problem can be
approached in a number of different ways.

One direct approach uses coupling coefficients to make G symmetry-
defined polynomials. This will be done in Section 6.3.C and the results are
listed in the tables of Appendix F for order four or less.
~ On the other hand, one may use O, O G correlation tables such as
Eq. (5.6.5b) to see how many independent functions of each type come up for
each /. Let us compare these two accountings.

For example, we may make one new scalar (A4, g) function of fourth-order
[see the ! =4 row and A, column of Eq. (5.6.5b)] and one zeroth-order
polynomial [see the / = 0 row and A, column of Eq. (5.6.5b)] or a constant
multiplied by r*. This means that there are just two linearly independent A;
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polynomials of fourth order. Indeed, the 0, table lists
Vil =x* +y* +2z* and Vg = x?y? + x2z% + y2;2
= (r* =) /2, (5.6.18)

we have already encountered the first of these in Eq. (5.6.16).

Similarly, we may make two independent ('153) polynomials or two indepen-
dent (*) polynomials of fourth order. One set is new [see I =4 row and E
column of Eq. (5.6.5b)], and the other is a product of 2 and the second-order
polynomial [see / = 2 row and E column of Eq. (5.6.5b), which we derived in
Egs. (5.6.15d) and (5.6.15¢)]. The E polynomials of fourth order in the 0,
table of Appendix F are combinations of these two sets.

The relation between T, vector components (x, y, z) and (I = 1) dipole
functions

L=—-(x+y)/2, Ij=2z, I'=(x-iy)/V2 (56.19)

is particularly important. We have seen this sort of relation several times
before when relating standing-wave and moving-wave states. The (I = 1)-
orbital level does not split in the presence of octahedral symmetry. Note that
there is just one set of fourth-order polynomials of the T, or T,, type. [One
should not make the mistake of counting functions which are products of
r=(x*+y?+ 222 or r* with third-order (/ = 3) or first-order (/ — DT,
functions, since these are not polynomials.]

Some O, irreps have to wait even longer before they appear in polynomial
form. According to the table of (5.6.5b) the first odd-/ 4, (i.e., A,,) polyno-
mial is of ninth (I = 9) order.

The even-/ 4, (i.e., A,,) polynomials are more plentiful. Totally invariant
A, polynomials will be very important for tensor operator theory, which is
given in Chapters 6 and 7. There we will learn that the number n12(2k) of
scalars or invariants found between ! = 0 and / = 2k is related to the kth
correlation frequencies f*(@* | M) as follows:

nhe(2k) = ¥ ffe+ 1) /2. (5.6.20)

M irreps
[23

For example, for angular momentum k = 6 we find the following number by
summing over the seventh (/ = 6) row of the table of (5.6.5b):

nie(2k) = ) (2% 0,,)(fa(96 10,) +1)/2
a=A,,A4,,E,T),T,
=1+1+1+4+3+1=7 (5.6.21)

This agrees with the sum of frequencies in the 4, column of (5.6.5b) from
(I = 0) to (/ = 12). (Do not count the A,, at / = 9 since that is a pseudoin-
variant.)

Finally, note that the number of scalar cubic polynomials of order 2/ is
simply the number of partitions of / into 1, 2, or 3 terms. For example, 6 can
be written seven ways: 6, 5+ 1, 4 + 2, 44+1+1,3+3,3+2+1, and
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2 + 2 + 2 corresponding to seven scalar polynomials
X124 yl2 4 g12 1002 4 (10,2 4 10,2 (84 (8,4 | (8,4
x8y222 + x%y822 + x2y228 xOyS + -+ etc. (5.6.22)
This last counting method is a little too special to be of direct use for other
symmetries besides O,.

D. Multipole Expansions

In Section 5.6.C the (I = 2) eigenvectors of an octahedrally anisotropic
potential V® were derived. A possible source of such a potential is drawn in
Figure 5.6.4. There it is imagined that six point charges are brought in on the
vertices of a crystal octahedron surrounding an orbiting electron. The elec-
tron is repelled by the charges. It finds the highest potential energy for a
given radius r along the +x (£+100), +y (0 + 10), and +z (00 + 1) axes
where charges are sitting. It finds the lowest energy along the eight axes
(111),(-111),...,{(—=1 — 1 — 1) in between.

To derive this anisotropic potential one needs to compute the following
sum over the six charges:

il
™M

V(roe) q]'/(lrj_r|)

[
o |l
-

1/2
q,-/[rj2 +r? = 2rr; cos ®j] /
j=1

Il
e

2 1/2
a/r1+ (r/r) = 2r/r)eos O], (5.6.23)
1

J

where @, is the angle between the electronic radius r and radius r; of charge
q;. (See Figure 5.6.4.) This can be rewritten using the Legendre generating
function

1/(1 +h? - 2hz)"* = fj h'P(2) (5.6.24)
=0

and the addition theorem (5.5.75). The result is
V(rog) = ¥ Ya;(r'/r/")P(cos ©))
i

i 1
=2 T X9 = T T wXi(r), (5625

I m ! m=—
where
xl, = @1+ 1/4m) 2yl et = ¥ (q,/rF ) X5 () (5.6.25b)

J

are constant coefficients which depend upon the charge locations. This is
called the MULTIPOLE EXPANSION of a change distribution. Consider
some examples for the charge octahedron with r; = R and g; = Q. For [ = 0
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LOW ENERGY
AXES (111)

HIGH ENERGY
AXES (100)

Figure 5.6.4 Octahedral arrangement of charge centers. Potential energy depends on
the polar angles B, between the electron and fixed charges on the octahedral axes
(£100),(0 £10),and (00 +1). The least energy is had when the position vector r is
farthest away from these axes.

we have
x) = (47)"’6Q/R. (5.6.26)

For =1, 2, and 3 the sum (5.6.25b) contributes nothing. Indeed, the
0), € O; correlation (5.6.5b) has told us that the next octahedral invariant
will be at / = 4. Using the X\ functions in Appendix F we find only the
following coefficients are nonzero:

x3 = (Q/8)(3R* + 3R* + 3R* + 3R* + 8R* + 8R*) = (7Q/2)R*,

xj=x%, = Q(35/128)(R* + R* + R* + R* + 0 + 0) = (V70 Q/4)R*.
(5.6.27)

Hence the octahedral multipole expansion has the form

V(ro$) = (6Q/R) + (35Q/4R%)[(2/V70 ) (X§ + X*,) + 2x3] + -+
= (6Q/R) + (35Q/4R%)[x* +y* + 2% = 2r*] + .-+ (5.6.28)

if we consider only terms up to the fourth order. Sixth- and higher-order
terms will be discussed in Chapter 7. The first (/ = 0) term in the foregoing
gives the potential at the center of the octahedron. The second term contains
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(a) T

Figure 5.6.5 Octahedrally anisotropic potential surfaces of fourth-degree. (a) This
surface corresponds to repulsive charges placed on the octahedral axes, while (b)
corresponds to attractive charges.

the potential V® from Eq. (5.6.16). It describes the octahedral potential
anisotropy just outside the center. As long as x, y, and z remain small
compared to R the higher-order multipole expansion terms can be neglected.

In order to visualize the fourth-order anisotropy V@ it is useful to plot it
as a function of (6, ¢) for fixed r. Expressing V'™ in terms of spherical
harmonics gives

VO = (4m) 2ri (2T 0)(YE + YR, + 3Y5] /3

= r*[35cos*§ — 30cos? 0 + 3 + 5sin* 6 cos 4 ¢] /20. (5.6.29)

The function (a + bV ™) is plotted radially in Figure 5.6.5 as a function of
and ¢ for r =1, a =1, and b = +5. The positive (b = 5) value in Figure
(5.6.5a) corresponds to repulsive charges while the negative (b = —3) value
in Figure (5.6.5b) corresponds to the attractive charges. The scale factors
(a,b) are chosen to clearly exhibit the anisotropic mountain and valley
features while keeping the function (a + V™) positive. To visualize the
potential imagine you are walking on a planet of the shape (a + bV®). Then
mountains and valleys are high and low potential directions, respectively.
This type of spherical plot will be used for studying other multipole functions
in later chapters.

E. Level Splitting for Molecular Rotors

Molecular rotational levels may split in a way that is analogous to crystal field
splitting. Consider, for example, an octahedral SF, molecule which is sketched
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<\

LOW ENERGY
AXES {11 1)

(MOST DISTORTION) HIGH ENERGY

AXES (100)
(LEAST DISTORTION)
Figure 5.6.6 Octahedral rotor. Cen-

trifugal distortion energy depends on
the direction of the angular-momentum
vector J relative to the octahedral axes
(£100), (0 £1 0), and (0 0 +1).
Greatest distortion and the least energy
is had when the J vector is farthest
away from these axes.

in Figure 5.6.6. If this molecule were rigid the Hamiltonian would be that of
a spherical rotor as described in Eq. (5.5.48). However, the SF, molecule has
finite spring constants and will be distorted by centrifugal forces when
rotating. In Chapter 4 we showed that the radial bonds were several times
stronger than the bending bonds. Therefore, we expect less centrifugal
distortion when the angular-momentum vector (J) points along the ¥, ¥, or z
axes than in between. If J is along a (111) direction as shown in Figure 5.6.6
the centrifugal distortion should be maximum. Then the centrifugal forces
would exert the greatest leverage on all the bending bonds at once. Expan-
sion causes the inertia of the molecule to increase and the energy to be
lower. Hence, for a given magnitude of J the threefold (111) axes correspond
to energy minima. If J points along the X, y, or Z axes there will only be a
small expansion allowed by four strong radial bonds. The fourfold symmetry
axes correspond to energy maxima.

The lowest-order perturbation operator which describes anisotropic SF
centrifugal distortion is

Ve = (0t + 08+ 12 - Y. (5.6.30)

This is the body-based angular-momentum analog of the crystal potential
(5.6.16). If you let the fourfold axes in figure 5.6.5b) be J;, J;, and J; axes,
then the figure is an angular plot of energy versus direction of J for fixed
magnitude |J| = (J7 + J7 + J)'/2. For a molecule rotating freely in a labo-
ratory vacuum the classical angular momentum is constant. However, the
direction of angular momentum in the body frame may precess because of
the octahedral anisotropy. An SF, Hamiltonian of the form H, A

sphere cent

has O; X 5,, symmetry; the lab has full orthogonal O5 symmetry, while the
body symmetry is reduced to octahedral O, symmetry of the internal struc-
ture.
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The eigenstates of the octahedral centrifugal distortion Hamiltonian will
have wave functions of the form

N
- £ (N]B)a

n=—-N n b
- 2(1’;/ g)g,x,*(aﬁy)(wﬂ)l/z, (5.6.31)

where ( f stands for octahedral symmetry irrep labels ( ‘?1), ( ’?2), ( f ), ( ‘25 ),

(Tll), . (T; , and N is our new notation for total orbital momentum of the
nuclei in the rotating molecule. Note that only the body momentum compo-

nent n is being summed. The lab component m is still a good quantum
number as long as no external crystal fields exist in the lab.
In Section 5.6.C we introduced methods which gave octahedral crystal

field harmonics,
B N | Blown
<e¢lb >= g(m l b)y,,,(e¢), (5.6.32)

in terms of spherical hormonics. [Recall Eq. (5.6.15).] The same procedures
can be used to derive the octahedral rotor functions r? in terms of the
body-defined angular-momentum functions r¥. Body-defined symmetry
transformations obey the rules

R(ap)|, ) = 2N (aBn)| 0y ) (5.6.33)

according to Eq. (5.5.40). The only difference in form between body- and
lab-defined transformation matrices is the complex conjugation (*) symbol.
Also, that lab transformations (5.5.31) sum over the m’s while the body
transformations sum over n’s. Hence, the coeflicient derived for crystal field
problems are related to the rotor coefficients through complex conjugation:

HERE
ni|b n
The symbol B* will be used to label the irrep 22" = (28)* of the finite

subgroup. In case we are using real octahedral irreps we have B* = B. For
example, the E rotor eigenfunctions,

f)*. (5.6.34)

2E 2
mQ>

res =(ra, + ri_z)/\/f, (5.6.35)

=r
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Figure 5.6.7 (a) Correlation of lowest levels of rigid spherical and symmetric rotors with
semirigid rotors. (b) Centrifugal distortion of semirigid rotors. Amount of distortion
depends on direction of rotation axis. Some directions are softer than others. This
directional anisotropy must have the symmetry of the rotor. Hence the levels and wave
functions must be defined by representations of that symmetry as shown in the figure.
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follow directly from Egs. (5.6.15d) and (5.6.15¢), while the T, eigenfunctions

A= —(rk ki) /2,
rr%lgz = i(rr%tl - rr%t—l)/\/57

= (ra, ~rh2)/V2. (5.6.36)

follow from Egs. (5.6.15a)-(5.6.15¢) after conjugation.

Figure 5.6.7 shows the (N = 2) splitting of E and T, on the left-hand side.
The splitting is analogous to the crystal field splitting in Figure 5.6.3. The E
levels favor the high-energy axes while the 7, levels favor the low-energy
axes. The latter correspond to greater distortion, as indicated at the bottom
of Figure 5.6.7. Note that the energy splittings and the distortion are greatly
exaggerated in the figure. Generally, the splittings are a small fraction of the
spacing between N levels. Neither the splittings nor the distortions would be
visible in drawing of this scale.

The N = 3 splittings are sketched on the upper left-hand side of Figure
5.6.7. The correlations (5.6.5b) predict an 4,, T,, and T, level, though not
necessarily in that order. The derivation of r.% wave functions is left as an
exercise. Note that all the levels shown in Figure 5.6.7 have an additional
(2N + 1)-fold lab degeneracy which is not indicated. For example, each
(N = 2) sublevel is fivefold degenerate with m = 2,1,0, —1, —2. To see
these levels one needs to apply a lab-based perturbation such as a crystal or
Zeeman field.

F. R, D D4 Correlations and Level Splitting

The splittings of N levels appropriate for a hexagonal ring molecule are
shown on the right-hand side of Figure 5.6.7. First the body-based symmetry
is reduced from O, D O, corresponding to the rigid symmetric rotor. Then
[n] is a good quantum number and the levels split according to n?* from Eq.
(5.5.52). [Note that a benzenelike molecule has (C — B) < 0 so the levels
would actually decrease with n2.] Finally, the reduction of body symmetry
from O, to Dy is indicated on the extreme right-hand side of Figure 5.6.7.
This could be caused by a hexagonally anisotropic centrifugal distortion
potential.

The O; D Dy correlations may be constructed in the same way as they
were for O; D O,. The Dy characters derived and labeled in Eq. (3.6.17).
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They lead to the following correlations:

fAl fA2 sz fBl f32 fEl

=01 1 :
1 : 1 : 1
2 1 . 1 . . 1
3 : 1 1 1 1 1
4 1 . 2 1 1 1
5 1 ) 1 1 L (5.6.37)
6 2 1 2 1 1 2
7 1 2 2 1 1 3
8 2 1 3 1 1 3
9 1 2 3 2 2 3
10 2 1 4 2 2 3

It is helpful to try to understand these splittings physically. One way to do
this involves the simpler Bohr orbitals and Bloch waves in Figure 3.6.5. There
it is easier to see how m = 0, +1, and +2 waves become A, E;, and E,
levels, respectively, when a Dy symmetric perturbation is present. The same
sort of labeling is done for the n = 0, +1, and +2 levels on the right-hand
side of Figure 5.6.7. Of course, the |n| values can only be as high as the total
momentum number N for the splitting of each N level. The (N = 3) level in
Figure 5.6.7 has an |n| = 3 sublevel which splits into B, and B, levels under
D¢ symmetric perturbations. These levels correspond to the first Brillouin-
zone standing waves in Figure 3.6.5(a), i.e., sine and cosine waves. The crests
of the cosine wave and the nodes of the sine wave stand in the potential
valleys. This makes the latter have higher potential energy than the former.
Since either wave has the same kinetic energy their levels split. The B, and
B, rotor wave functions for N = 3 are

rrffl = ("313 + "3:—3)/‘/5:
3= (rly = ri_3) /2. (5.6.38)

In order to determine which waves are B, or B, one must specify the 180° p
axis according to Eqs. (3.6.23 and 3.6.24). Whenever possible we shall Jet one
of the p axes be the y axis so the R; matrix 9V (0 180° 0) is real.
Substituting (a = 0, 8 = 180°, y = 0) into Eq. (5.4.45) yields

27,(0180° 0)

k [(/+ n)!(n —n)!(j+ m)!(j — m)1]1/2(0)2f+m—n—zk

=2(-D
k

(J+m=k)(n—m+k)ki(j—n —k)!
(5.6.39)
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The only nonzero terms are those for which the exponent is zero; ie.,
k =j+ (m —n)/2. To keep both the denominator factors (j + m — k) =
(m +n)/2 and (j — n — k) = —(m + n)/2 from being negative it is neces-
sary to have

m+n=0,
This yields

2N (0180°0) =5, _,.(-1) """, (5.6.40)

Note that for odd-N and »n = 0 this component is negative. Therefore the
n = 0 component of the N = 3 level belongs to A,:

ridr=p3 (5.6.41)

The rings in Figure 5.6.8 serve as mnemonics for the R, | Dy level
splitting. The D, levels contained in a particular N = J level lie between the
arrows which are labeled with that momentum number. For example, we
read 4,E E,B, B, between the (J = 3) arrow outside and the (J = 3) arrow
on the inside of the odd-J circle. For J=6n +p(p <6and n =1,2,3,...)
one must read around the circle »n times before stopping. For example, J = 8
gives A,E\E,B,B,E,E,A, A,EE,.

For low N in most molecules the ordering given by the wheel will be
correct. Furthermore, the levels (A, A4,) or (B,B,) enclosed by inside teeth
should be very nearly degenerate. However, this may not be the case for high
N. If the centrifugal potential valleys become deep enough they may trap the
angular-momentum vector on the twofold symmetry axes. Then the levels will

(a)Even J (b) Odd J

Figure 5.6.8 Mnemonic wheels for hexagonal-Dg orbital splitting of J levels for (a)
even J and (b) odd J.
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—— )t
|

Figure 5.6.9 Mnemonic wheels for octahedral-O orbital. Splitting of J levels for (a)
even J and (b) odd J.

fall into clusters (A,E,E,B,) or (A, E,E,B,) as they did in Figure 3.6.5(b).
The clusters are indicated by the outside teeth on the mnemonic wheels.

Mnemonic wheels can be constructed easily for any D, symmetry by
appealing to the wave mechanics described in Sections 3.6.A and 3.6.B. Each
wheel must contain the sequences {4,E,E, --- E, ,_B;} and {B,E, ,,_,
-+ E,E A} for even n, or {A\E, -+ E,_y,,,} and {E, _;, » --+ E;4))
for odd n.

One of the surprising results of modern spectroscopy is the existence of
similar mnemonic wheels for octahedral symmetry. In fact the correlation
table of (5.6.5) can be replaced by the wheels in Figure 5.6.9. The octahedral
wheels are read in the same way as the D, wheels. For example, the 7, and
E states lie between the (J = 2) arrows in Figure 5.6.9(a), and the 4,, T},
and T, states lie between the (J = 3) arrows in Figure 5.6.9(b). The examples
agree with the 22| 0O and 23| O correlations. Furthermore, the wheels
give correct ordering for the energy levels of the V® Hamiltonians (5.6.29)
or (5.6.30). This is very convenient to have for large angular-momentum J.
(The ordering was not discovered until large-J computer calculations were
done by Los Alamos researchers in 1976.) For large J the teeth on the
wheels indicate which levels are clustered, as explained in Chapter 7. The a,
and a, teeth indicate clusters belonging to induced representations a; 10
and a, 10. This is also analogous to the Dy clusters which belong to a, 1 D,
or a¢ T D¢ induced representations.

For J =2 only part of a cluster appears. If there has been six states
satisfying (2,) local symmetry conditions (5.6.7) then the induced representa-
tion

2)10~4,¢ T, E
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would result according to correlation (4.2.42b). However, A, is left out of the
five (J = 2) states computed in Egs. (5.6.15). The physical interpretation of
clusters and induced representations will be taken up again in Chapter 7.

5.7 HALF-INTEGER ;-LEVEL SPLITTING IN FINITE SYMMETRY

We have mentioned the peculiar double-valued transformation behavior of
half-integral j = 1,3,3,... angular-momentum states |;,). Any system that
is composed of an odd number of electrons whose spins play some physical
role will have to be described by this type of state. If such a system is put into
a finite symmetry environment a peculiar splitting of the levels results. We
develop the theory of this here, beginning with hexagonal D, symmetry as an

example.

A. Ray Representations of D

Let us consider two methods for determining the explicit multivalued symme-
try properties of half-integral spin representations. In the first method one
simply calculates the 2'/?(R) representation using either Euler angles
[recall Eq. (5.4.16)] or Darboux angles [recall Eq. (5.5.1)] and then forms all
products of finite symmetry rotations. The second method uses Hamilton
turns to obtain products geometrically. We shall compare the two methods
while discussing the finite symmetry Dy.

Consider, for example, the two 180° rotations p, and p% around trans-
verse axes shown in Figure 3.6.4. The Darboux angles of p’ are (¢ = 7/2,
0 = m, w = 7) while p, has angles (¢ = 7/3, § = m, @ = 7). Substituting
these into Eq. (5.5.1) gives

0 -1 0 —je~im/3
2V2(py) = and 92 = 4 X
(p3) (1 0) (pZ) —jeiT/3 0
(5.7.1)
The products pyp, and p,p’ are as follows:
il /3 0 —ir /6 0
1/2( ot 1/2 _ | = _|¢€
D2(P3) D (p2) ( 0 —ie_i”/3) ( 0 ei'n'/G)

, _ie—i-rr/3 0 e—iS-n'/G 0
DV (p) DV (ph) = ( 0 winsi| = 0 pism /6 (5.7.2)

These results may be expressed in terms of z rotations 4 or 4° for which the
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Darboux angles are (§ = 0 = ¢)and w = m/3 or 57 /3, respectively:

GVUR) D (py) = =D k), DV(p,) DV ) =B V().
(5.7.3)

Notice the minus sign in the first product. The sign changes which appear in
spin- 3 representations make a big difference in the form of the eigenstates
and group transformation properties of half-integral spin states.

Now it is possible to derive, and to a certain extent, visualize all such
products using Hamilton-turn vector addition. One first assigns Hamilton-turn
vectors to all the Dy rotations as in Figure 5.7.1 using the rules given in
Sections 3.1.B and 5.5.A. Each rotation by angle w is replaced by sequential
reflections through planes intersecting by angle w /2. A turn vector is a great
circle arc drawn from the first plane to the second so that it is orthogonal to
the planes. Let us call the vector g positive (+ g) or negative (—g) if it goes
counterclockwise or clockwise, respectively, when viewed from the chosen
axis of rotation. For example, the 30° counterclockwise arc (+#4) in Figure
5.7.1 represents the 60° counterclockwise rotation operator i of D,. The
150° clockwise arc (—4) represents a 300° clockwise rotation. Ordinarily, this
would be the same operation as A, but its effect on half-integral spin states
gives the opposite phase. Hence, it is labeled (—4).

The products p}p, and p,p} are performed “vectorially” in Figure 5.7.2.
The operator that acts first (i.e., p, in p’3p,) has its head positioned so that it
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may meet the tail of the vector for the second factor. (Turn vectors can be
moved anywhere on their great circles.) Then the vector sum is identified for
each product.

Using either the vector sum or the matrix methods, we derive a rather
different set of rules for D, operators which is given in the following
multiplication table:

1 h? h* P P2 Ps3 w h > 4 P> o
R =1 =R*| —py, —ps  p| —h| K -R| —py —py P
Rkt =1 —ps py pp| K| R —h| =py P o
prl P ps| -1 =R =R ol | Py —ph| R RS —h
p2| P —pr| B -1 =R =ph | —p) —ph ko KR
ps| —p1 —pa | K2R =1 =gy | —py | -K R W
Rom =k oy ey ph| -1 RY —RP| —p, —p, —ps
e I T T B e e B e B R O
Rl R R ey ey =) RYRE -1 —py —py  py
| Py e | K =R R pi | -ps  pp| -1 -k —h?
P Py =P —h =R =R oyl p ps | RY -1 —R?
Pyl A —eh| R —h =R | py | KD BT -1
(5.7.4)

The table shown is not that of a group, since negative (—g) operators are
not elements of a group. The ordinary group table of D is obtained if we
drop all the minus signs.

Two procedures exist for analyzing this new mathematical structure with
the minus signs. The first procedure defines operators —1, —r, —r2, ..., —p5
to be elements of a group {1, r,r%,...,p5, — 1, —r, =12, ..., —p’} called the
DOUBLE GROUP or COVERING GROUP which is twice as large as Dy,
This involves a multiplication table with four times the number of entries
shown in (5.7.4). Some of the irreps of this group can be related to the
half-integral rotation matrices.

The second procedure, which we shall follow, treats a table such as that of
(5.7.4) directly, in an algebra. The advantage of this is that, instead of
doubling or quadrupling our arithmetic, we find that it is reduced to about
one-half that of the original group. This makes half-integral spin analysis half
as much work instead of double trouble!

There are other physical problems that require representations which obey
equations of the form

9(8)2(h) = w, 4D (gh). (575)
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These are called RAY REPRESENTATIONS or PROJECTIVE REPRE-
SENTATIONS of the group & ={--g- "h " }. The theory of these is well
worth the time it saves in a multitude of calculations.

In the present Dy example the problem is to find irreducible representa-
tions of the algebra defined by the table of (5.7.4). This will be equivalent to
finding irreducible ray representations (irreps) of Dg. It is necessary to
reduce the algebra to a combination of irreducible P operators. This reduc-
tion occurs in two stages as it did for ordinary group algebras in Sections 32
and 3.3, respectively.

The first stage involves all-commuting operators,

C= Y728 (5.7.6)
g
which satisfy
Cg =gC
or
g7 =C, (5.7.7)

for all g. Note here that the inverse g~ ! is defined for the new algebra so
that g~'g = 1 = gg~', and may not be the same as the group inverse. For
example, in the Dg group the inverses of h and p, are h~' = —h’ and
pil=—p = p3, respectively, according to the table of (5.7.4). All commut-
ing operators in spinor algebras are linear combinations of operators of the
form

cp = (°Ny/°G) Lghe™", (5.7.8)
g

where °N, is the number of operators which commute with & and °G is the

order of group G. The ¢, operators are analogous to the class sums
introduced in Section 3.2. However, they are quite different for the spin ,
algebra than for the group. For example, for the D, spin algebra only the

three ¢, operators are linearly independent:

e, =1, c=h=h' c=h-h. (5.7.9)

The others are either zero (¢, = ¢, = €3 = 0) or proportional to one of
these three operators.

The algebra of the all-commuting operators {cy, ¢, c,2} is determined by
the following multiplication rules:

;=1 c,=h>—h ci=h—n

(5.7.10)

...... e e T T T
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These rules follow easily from those of the table of (5.7.4). The ¢; minimal
equation

(03)3 =3¢;=0

has three roots (V3, — V3 ,0), which yield in turn three all-commuting
idempotents.

_ (c5+ V31)(c5 — 0) P2 (c; = V31)(cs — 0)
(3 +VB)(V3 - 0) (=3 = VB)(—=V3 - 0)’

11 V3 11 V3
—3‘1+g()2+?c3, =§1+EC2—?C3,

(e - V31)(c; + 31)

P (0 —V3)(0 + V3)
1 1
- 31- 30 (5.7.11)

These correspond to three irreducible representations whose characters
follow from the coefficients of (5.7.11) according to Egs. (3.5.5) and (3.5.7).
The latter equation gives the same dimensions:

I* = (12/3)"* =2 (5.7.12)

for all three representations. The character table is given here:

g = 1 h? h
)(51 =x;=| 2 1 V3
XgEz =X§ _ ) 1 3| (5.7.13)
Xf3 = X; = 2 =2 0

A conventional notation {E,E, E;} for the ray representation will be used.
Note that only three classes survived to be part of the class algebra and
appear in the character table. The characters of the other classes are
identically zero.

One could proceed from this point to an algebraic derivation of the twelve
P} operators. Indeed, there are four such operators for each a. [Recall that
the sum of squares (I%)* of dimensions must equal °G. Here we have
22 4+ 2% + 22 = 12.] However, it is easier to use the @’(aBvy) matrices for
most applications.
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Let us determine which Dg ray representations are correlated with a given
SU, or R; irrep 27| D,. The same frequency formula (3.5.11) and trace
formula (5.6.4) may be used. The traces and frequencies are given below.

w=0 w=120° w=60° fEl sz fEs
j= % 2 1 \/§ j= % - )
R -1 3 L 1
| 6 0 0 sl 11
7 8 1 V3 o[ 12 1T
21 10 -1 V3 sl 2 1 2
7| 12 0 0 L2 2 2
(5.7.14)

Note that the frequency or correlation table repeats after j=2
D' | Dy~ [DF + DB + @F2] 4+ i3, (5.7.15)

Hence, the Dg algebra for half-integral spin has exactly half as many
different types of irreps as the Dy group. That is, there are three kinds
{E,E, E;} of ray representations, but six kinds {A,A4,B,B,E,E,} of ordinary
representations for the group Dy. Most other crystal point groups also have
fewer ray-irreps than irreps, as will be seen in the examples that follow.
However, in all cases the sum of the squares (/*)? of dimensions equals the
order of the group:

12 = (1E)* 4+ (1%2)° 4 (1B%)° = 22 4 22 4 22, (5.7.16)

Half-Integral J

Figure 5.7.3 Mnemonic wheel for hexagonal half-integral spin splitting.
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Figure 5.7.4 Hamilton arcs and vector nomogram for D, spin algebra.

The mnemonic wheels for the D, half-integral j correlations are shown in
Figure 5.7.3. Similar wheels can be made for all D, irreps.

B. Ray Representations of Other D, Groups

The group D, = C, X C, was the first symmetry group introduced in Chap-
ter 2. It is an Abelian group since its three orthogonal 180° rotations
commute with one another. However, the corresponding ray algebra gener-
ated by 272 or by Hamilton vectors is noncommutative. The D, Hamilton
vector nomogram is shown in Figure 5.7.4. This gives the following multipli-
cation table:

1 R, R, R,
R, -1 R, -R, 5717)
R, -R, -1 R e
R, R, -R, -1

From this it is easy to show that the identity operator alone is all-commuting
This implies that only one irrep of D, exists. The character table assumes ¢
very simple form!

g=1,

Xt = . (5.7.18

D, gives the world’s simplest nontrivial ray algebra. It has a single irreducibl
representation &£ given by the spinor representation (5.5.1) or (5.4.30):

crny- (2 2) ww= (0 ) (Y

—1
(5.7.19
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Incidentally, these are just the QUATERNION q; matrices defined by Eq.
(5.5.3). In fact, the D, double group is called the quaternion group Q =
{,q9,,4,,9,, -1, —q,, —q,, —q.}, where

-R,=4q,9,=4q.= —q,q, (and cyclically),
and

g} = —1. (5.7.20)

This group Q has a character table which resembles the one for D,. D, and
Q account for the two eighth-order non-Abelian groups which are counted in
Figure 2.2.2. (See Problems 3.3.2 and 3.4.2.)

The derivations of spin- % characters and irreps for other axial groups C,
and D, are left as exercises. However, it is interesting to note that the C,
characters can be visualized geometrically using the nth roots of negative
unity (—1). It is instructive to compare the complex vector roots of positive
unity in Figure 2.7.2 with the corresponding negative ones in Figure 5.7.5.
There is an essential difference between odd-n groups C,,Cs,..., which
have a (—1) representation, and even-n groups C,,C,, C.s . - ., which do not.
This difference carrys over to the D, groups. D, groups with even n have
only n/2 different two-dimensional ray representations {E, B30y
E¢,_1y/2}. The D, groups with odd n have (n — 1)/2 different two-dimen-
sional ray representations and a conjugate pair of one-dimensional ones. The
number and dimension of ray representations of D, for odd n is the same as
that of ordinary representations.

n - EVEN n-0DD

.nil‘

e"V6

Figure 5.7.5 Representing C,, spin representations by complex nth roots of negative
unity (n = 2,3,...,7).
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C. Ray Representations of Octahedral Symmetry

The structure of octahedral ray representations is quite different from
the ordinary representations discussed in Sections 4.1 and 4.2. However, the
O-group nomogram (4.1.4) gives the necessary ray algebra. Once again the
180° rotations get left out of the revised class algebra, and the only all-com-
muting operators are the following:

c, =1,

_ 2
C,=F +ry+tr3+ry—r

r

ck=R,+R,+R;—R} — R} —R;. (5.7.21)

e 2 2
ry r3 L)

When computing the class algebra one has only to compute products which
give one particular element, say 1, r;, and R, from each class. The other
class elements copy this behavior. The necessary products are computed in
the following table using Figure 4.1.4. (Also, see Appendix F, Table F.2.1.)

2,2 3 .2 _p3 _p3 _p3
ry rp rz3 rqg I ry r3 r; R R, Rs Ry R R3

r 1 R,

R, ry 1
R, r 1
R, ry 1

(5.7.22)

(5.7.23)
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From this one derives the minimal equation of cg:
¢} — 18cg = 0.
Each of the three roots (3v2, -3/2 ,0) are identified with one of the
resulting idempotents:
PFi= (21 + ¢, + V2cg)/12,
PE = (21 + ¢, — V2¢g)/12,
P% = (41 —¢,) /6. (5.7.24)
The usual relations (3.5.5)-(3.5.7) give the desired characters.
g=1 r R,

XgE‘ = 2 1 \/5

. 5.7.25
sz = 2 1 —‘/z ( )
XgG = 4 -1 0

The splitting of half-integral angular-momentum j levels or the 97| O
correlations may be calculated easily from the characters (5.7.25). The R,
trace formula (5.6.4) gives the table of traces (5.7.26a). From this one derives
the frequencies f*(27 | O) in the table of (5.7.26b).

1 ry R,
(w=0) (0=120°) (0 =190°)
j=1 2 1 V2
2 4 -1 0
s 6 0 —v2 |,  (5.7.26a)
2 8 1 0
2 10 -1 V2
u 12 0 0
fE B fC
j=z 1 -
3 1
3 1
I (5.7.26b)
211
2l 1
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(a) J=2n+1/2 (b) J=2n+3/2 T=712,152,23/2,..

J=3/2,11/2,192,...

Figure 5.7.6 Mnemonic wheels for octahedral spin algebra correlation with half-in-
tegral J.

Notice that (5.7.26b) shows that 212 =21 and 232 =2¢ are both
irreducible octahedral ray representations.

It is interesting to note that the preceding correlation table can be
replaced by the mnemonic wheels in Figure 5.7.6. Again it happens that the
ordering and clustering of half-integral eigenvalues of V'® Hamiltonians are
predicted by the wheels. This is very convenient to have for molecular ion
problem which involve high angular momentum j.

5.8 SOME HIGHER CONTINUOUS SYMMETRIES: R, AND U,

We give now a brief discussion of two Hamiltonians which have the Coulomb
and oscillator potentials, respectively. The Hamiltonians possess a symmetry
higher than R, or O,. Their theory is very interesting but, is being developed
sufficiently to have considerable practical value. We discuss it with the hope
that future work will be fruitful. Also, we use the opportunity to introduce
techniques for analyzing larger Lie groups, which are now being applied in
modern theory. The Coulomb and oscillator symmetries were known by Pauli
and others. More recently progress has been made toward applying these
symmetries to atomic, molecular, and nuclear structure.

A. The Coulomb Symmetry

A particle of mass m in a Coulomb potential field k/r is described by the
following Hamiltonian:

2/2m — |k| /r (attractive case),
H=p2am + kg = | P/2m K/ veease), 581y

p?/2m + |kl /r (repulsive case).
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Such a Hamiltonian obviously has spherical (R; € O,) symmetry. It con-
serves and commutes with angular-momentum operators:

L, =x,p5 — x;3p,, L, =x3p; — x1p3, Ly=xp; —x,p,. (582)

However, there is an additional hidden symmetry of this Hamiltonian.
Consider a vector € called the ECCENTRICITY or LENZ-RUNGE
VECTOR:

e=r/r — LXp/km. (5.8.3)
(The e vector was actually discovered by Hamilton before Lenz or Runge
wrote about it.) The ¢ vector points along the symmetry axis of the classical
elliptic or hyperbolic orbit, and its length is the eccentricity of the orbit. The
relation between two kinds of Coulomb orbits and their vectors € and L is
sketched in Figure 5.8.1.

It is easy to show that conservation of € and L is consistent with the
classical orbit equation

r=—L?/km(1 — £ cos 8). (5.8.4)
Consider the dot product of € and r:
e'r=¢rcos@=r—LXp-r/km=r+L>/km.

This is the same as the orbit equation. Clearly, the eccentricity vector € is
another quantity besides L = r X p which is conserved in a Coulomb field.
Note also that its classical magnitude,
e2=g-e=1-2r-LXp/kmr + (L X p) + (L X p)/k’*m?
=1+ 2L2/kmr + L*p?/k*m?
=1+2(p*/2m + k/r)L*/k*m = 1 + (2H/k*m)L?, (5.8.5)

is expressed in terms of conserved total energy H and orbital momentum L.

Figure 5.8.1 Location of classical eccentricity vector. The orientation of the eccen-
tricity vector € in an elliptical (k < 0) and hyperbolic repulsive (k > 0) Coulomb orbit
is shown.
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The corresponding quantum eccentricity operators are defined by

g, =x,/r — (Lyps — Lyp, —p, L5+ p;L,)/2km, (5.8.6a)

ey =x/r — ([Lyps — L3p,) — ip,)/2km, (5.8.6b)
ey = xp/r = ([L3py — Lyp3] — ipy) /2km, (5.8.6¢)
e3=x3/r — ([Lyp, — Lypy] — ip3)/2km. (5.8.6d)

The eccentricity operators and the angular-momentum operators (5.8.2) will
be seen to generate a symmetry higher than O;. In constructing the &
operators it is necessary to symmetrize with respect to operators that do not
commute; i.e., let L X p equal (L. X p — p X L)/2 in Egs. (5.8.6). Then one
uses commutation relations such as

[Li, p2] = [x2p3, 2] — [%30,, ;]
= [x,,p,]1p5 = ip;

to simplify the results wherever possible. In Chapter 7 we shall prove that
commutators of L; with any vector v; must have the same form,

[L,v,] =ivs, (5.8.7)
as the angular-momentum relations
[Lla LZ] = lL3

The derivations of ¢ — L commutators require the following commutation
relations:

ap 19

1
[xi/rapj]‘ff(x) = (xi/r)Ya—x - l_-;(xi‘//(x)/") = i(aij +x,.2;)¢(x) /7

or
[xi/r, pj] = i(ﬁij +xixj)/r’ (5.8.8)
along with the derivative properties.

[AB,C]=A[B,C] +[A4,C]B,
[A,BC]=B[A,C]+[A,B]C. (5.8.9)

After considerable algebra the following commutation relation results:

le1, 8,1 = —2Ls[ p?/2m + k/r] /k*m
—i(2H/k*m)L;. (5.8.10)
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In the case of bound states for which (H) = — |E| one may normalize ¢ to
give
k*m k*m
K, =1 - T SE (5.8.11)

whence the following commutation relations result.
[L1L2] =iL,, [Ll’KZ] = IK;, [KI’KZ] =L,
(5.8.12)

We now see that these relations are the ones for R, or O, symmetry.

(a) Introduction to the Lie Algebra of R, We showed in Section 5.4 that
infinitesimal rotations are of the form

R(--e)=1+eG =1+ (¢/i)L,
where operators
L =iG (5.8.13)
are the generators of rotations. The rotation operators are orthogonal:
R™(e) = R (&) =R(-¢).
This implies that
1+eGT=1-¢G,

and that the generators are antisymmetric,

GT= -G, L= —-L. (5.8.14)
Note that since G is real, L is Hermitian:

L'=1*T = (iGy" =iG = L.

Let us generalize the treatment of R, to give one for R,. According to Eq.
(5.1.12), R, has six parameters, or three more than R,. Therefore, we expect
R, to have six generators. Indeed, we may construct the same representations
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of the R, generators (5.4.5b) using 4 X 4 matrices: [Recall Eq. (5.4.5b).]

Ly,=L,=iG; 2 i&5 =1 . )

Ly=L,=iG,—i%,=| | (5815)

These use just the first three dimensions. Then let us make three more R,
generators using the fourth dimension and components (j, 4) or (4, j):

-

Ka=K,=iGy—iga=|. . . .|

Kp=K,=iGp—i%y=1|. . . .|

Kpn=K. =iGy—i%s=|. . . _.|.  (58.15b)

Between these we find commutation relations

z ¢

-+, (5.8.16)

z z

[L..L,)] =i, [L.KJ]=iK.,, [K.K]=iL

which match those of the operators L; and K; of the preceding section.
These relations define the Lie algebra of R,.

We now derive the irreducible representations of the R, Lie algebra. This
can be done by first constructing raising and lowering operators that are
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eigenvectors of L,, in much the same way that R, is solved in Appendix E.
Let us imagine that each operator L , K, L,,... corresponds to a vector
L), |K,>, ILy), ... and make a REGULAR REPRESENTATION analo-
gous to the one for groups.

The regular representation of a Lie-algebra operator L, is constructed by
converting commutation relations,

[L..L,)=iL,, [L.K,]=iK, [L,L)]=-iL

X

[L..K,|]=-iK,, [L,L]]=0, [L,K,]=0,

into vector equations (this is permitted since commutation is a linear opera-
tion):

LJL,Y =ilL,), L,IK,>=ilK,), L,IL)=—ilL),

LJK,> = —ilK,), L,L.,)=0, LIK)=0. (58.17a)

These equations define the regular representation matrix,
Pl
, (5.8.17b)

in the {|L,), |K,>,...} basis.

The last commutation [L,, K,] = 0 indicates that a similar representation
of K, can be simultaneously diagonalized with the one for L, . %#(K)) is
given here:

#(K) =" R (5.8.18)

The simultaneous eigenvectors of #(L,) and %(K,) are found using the
theory of Section 1.2.B(d). First we obtain the individual idempotents for
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#(J,) and #(K,):

1 —i :
. 1 . _l
gdjzﬂ(lz) - (=11 i 1 e
1 1_(_1) 21 . i . 1 . .
r - —i
S S
i 1 * \
3311{:% i . 1 ’
1 ©d
. 1 . i
—i . 1 .
‘@{1=; - - 1 ’
1 : [
. 1
L L : (5.8.19)

Then the products of these give the desired results. The first columns of the
products ! 2K are

&=

PIPK =




422  REPRESENTATIONS OF CONTINUOUS ROTATION GROUPS AND APPLICATIONS
They show that the following operators:

M,=L,+iL,+K, +iK, N,=L +iL,-K,—K,,

y

=L,+K,, =L,-K,,
N_ELx—iLy—Kx-i-iKy, MELx—iLy+Kx—iKy,
=L_—-K_, =L _+K_ (5.8.20a)

obey the eigencommutation relations:

[LZ’M+]=M+’ [LZ’N+]=N+’ [LZ’N—]= —N_a
[LZ’M—]= ~M—’ [Kz>M+]=M+: [K27N+]= _N+,
[K..N_]=N_, [K..M.]=-M_. (5.8.20b)

The M, and N, operators are the R, raising and lowering operators.
Now a very nice separation is possible if one redefines generators by

M,=(L,+K,)/2 and N,=(L,-K,)/2. (5821)
There results two independent sets of R, commutation relations

[M,,M,]=+M,, [N, N,]=tN,, (5.8.22a)
and
[M,,M,)]| =iM,, [N,N,]=iN, (5.8.22b)

where the two sets of operators are mutually commuting;
[Ma, Nﬁ] =0. (5.8.23)

The two commuting R; groups generated by M and N operators are factors
of a cross-product R, = R; X R, according to the definition in Section 2.10.
This tells us that our knowledge of R; can be applied directly to R, since
R, =R; XR,

Now Cartan has developed an elegant geometrical method for treating the
structure and representations of Lie algebras. We introduce some of this now
as it applies to R,. Lie-algebra operators can generally be combined to form
raising and lowering operators {-- E_, -+ E_, - - }like the L and K in
R,. The E, are eigenvectors in the sense of

[H;, E,] = r(a)E, (5.8.24)

for a number of mutually commuting operators {H,H, --- H,}. (The H; are
H =L, and H,=K, in R,) The number of mutually commuting H,
operators is called the RANK of the algebra. Then the eigenvalues or roots
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K, AXIS

PM) = (:)

L, AXIS

(7)) =row o= ()

Figure 5.8.2 Root diagram of the R, Lie algebra.

ri{a) can be taken as components of a vector called the ROOT VECTOR:

ra)

ry(a)

r(a) = (5.8.25)

r(a)

of E,. For example, we would have the set of four root vectors of R, drawn
in Figure 5.8.2 according to Egs. (5.8.20). Cartan has shown how to make
root vectors into a code that defines all commutation relations and finally all
irreducible representations.

For example, note that the commutation between an E_ and an E; must
give an operator whose root vector is a sum of r{a) and r{(8), or else zero:

[Hj2 [Ear Bo]| = [Hys EuEg] ~ [H, EgE,]
= [H E]Eg + E,[H;, Eg| — [H), Eg|E, — Eg[H,, E, ]
= (r(@) +1(B))[ E.» Eg].- (5.8.26)

This implies that a commutator of a raising operator with root r(«) and a
corresponding lowering operator with root —r(«) must give operators with
zero roots, namely H/’s. In fact, it can be shown that

[E o E_,] = NLr(a)H, (5.8.27)

Here N is a normalization constant which is usually set equal to unity. For
example, from Figure 5.8.2 we have

(M M 1 =r (ML, +re (MK, =2M,.  (5827),
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(b) Irreducible Representations of R, If R, is an outer product R; X
R, of rotation groups, then the representations of R, are the outer products

Gimin = Gin @ Pin

of representations of R;. The basis states must obey the standard angular-
momentum relations twice: once for M, and M_ and once again for N, and

N,
“m n m n/’ 2m n m n)/
1 1 — - J J
M |'m In) = Tm tm+ 1) ™" "
i n> VU Fm)(j, £ )mil iyt

N,

n )= JG F MGy 20 D

Jm
men . (5.8.28
m n+ 1> ( )

For a general Lie algebra there will be similar Cartan relations of the form
Hj|m> = mjlm>. (5.8.29)

Here the eigenvalues m; are said to be components of a WEIGHT VECTOR

for a given state. The weight vectors for states belonging to irreps & imin of
R, are indicated by circles in the Figure 5.8.3.

A raising (lowering) operator E, (E_,) applied to any state with weight m
gives another state of weight m + r(a) (m — r(a)), or else zero:

HEIm) = (E,H, + [H, E,])m),

(m;E, + ri(a)E,)m) = (m; + ry(a))E,lm). (5.8.30)

The beautiful theory of Cartan gives the properties of the weight vectors
and the irreps of a Lie algebra in terms of its root vectors. We will study
more about this later.
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o0

(])-—z

Figure 5.8.3 Examples of weight diagrams for irreducible representations for the R, Lie
algebra. Eight examples of R, irreps are chosen in order to show the form of their weight
diagrams.

(c) Coulomb Eigenstates The single-clectron Coulomb energy levels
belong only to certain irreps 2/~» of R,, namely, those for which j,, =j, =
0,1,1,... (see the left-hand side of Figure 5.8.3. This is because the vectors
€ or K are orthogonal to L:

K-L=0,
which implies that
M?>-N?=(M+N)-(M-N)=4K-L=0. (5.8.31)

This relation holds for the operators as well, since M and N commute.
Hence we have j (j, + 1) =j,(j, + Dorj, =j,.
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The first energy level is singly degenerate corresponding to the scalar irrep
2. This would be the hydrogen 1s level. The second energy level is fourfold
degenerate, corresponding to the irrep 2%/2(/?, From the weight diagram
in Figure 5.8.3 we see that one state has orbital momentum L,= +1; two
states have L, = 0, while a fourth state has L, = —1. Together these will
make the 2p (/ = 1) and 25 (I = 0) levels of hydrogen. Similarly, the ninefold
degenerate 1! corresponds to the degenerate 3s, 3p, and 3d (I = 2) states
of hydrogen.

The Coulomb energy spectrum can be given in terms of the ( M2) = (N 23
eigenvalues. The classical equation (5.8.5) gives

k*m k*m
_KZ — , 82 =
2H 2H

+ L2,
or
H = —(k’m/2)/(K?+ L?) = (k*m/2)/(2M? + 2N?). (5.8.32)

However, this fails to take account of the operator noncommutivity. After
considerable algebra one obtains the correct form:

H= —(k’?m/2)/(2M?* + 2N? + 1), (5.8.33)

which gives the Rydberg formula if we substitute (M2) = (N2) = j (s +
1):

E'm= —(k®m/2)/(2j, + 1)’ (5.8.34)

The form of the spectrum and wave functions is sketched some pages ahead
in Figure 5.8.6.

B. The Harmonic Oscillator Symmetry

A particle of mass m = 1 in a three-dimensional isotropic harmonic oscilla-
tor potential is described by the following Hamiltonian:
H=p?/2+w’?/2=dla, +ala, +ala, + 31. (5.8.352)

X

Here the creation operators

af = (Vox, +ip;/Vw ) /2 (5.8.35b)

are the standard ones introduced in Section 4.4.D.
This Hamiltonian is obviously invariant to R, rotations. However, the
expression of it in terms of a’s shows that it is also invariant to a more
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general group of transformations. The full symmetry is the unitary group of
transformations in three dimensions or U;. We have that

e~ T(Tutal)(Zuia) = T T(Zyzus)ate,
j i vk 1 Y]
= Za};ak
k
for all unitary transformations for which
lejiljjl = ZUijsz = 0>
J J

or in abstract notation
Ufr=u"%
We discuss this group U, now.

(a) Introduction to the Lie Algebra of U, The requirement that an
infinitesimal operator

€
U=1+eG=1+ —L
i

be a unitary operator gives the following relations:
Uu-l=uUt,
£ £
1—{;‘(;=1—'‘TL=1——,L"L=1'|'8GJr
i i
G'= -G, L'=1L. (5.8.36)
In U, one admits complex operators U and generators G. However, G
must be anti-Hermitian, or what is the same thing, L = iG must be Hermi-
tian. Translating this into matrix language the generators of U; include the

three antisymmetric Hermitian generators of R:

Ly =iGy 2 i85, L3 =1iG3 = i%;, Ly =iGy = i85y

P I |




428 REPRESENTATIONS OF CONTINUOUS ROTATION GROUPS AND APPLICATIONS

However, there are six more symmetric Hermitian matrices

K3y = Fs, Ky = 7, Ky =7
1 1
= 11, = s =11
1 1
Ey - &y, Ey > &y, Es = &5
1
= , = 1 , =
1
(5.8.38)

It is convenient to define ELEMENTARY matrices or operators as follows:

1
K21 - G21
Ep,-&,=| -~ = =—2 ,
1 K.+ G
13 13
Ejy—> &5 = = ) )
K32 - G3z
Eyy > &p3= 1= 5 ,
Ky + Gy
Ey—-&,=|1 = > s
K3 — Gy
Ey—>&5 = = ) )
1
Ky + Gy
Ep—=&np=|" = = — (5.8.39)
1

The elementary operators satisfy the following commutation relations:

[E

ij?
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The elementary operators are already in a form that conforms to the
Cartan root vector formalism introduced in the previous section. However,
there are now three operators E,,, E,,, and E;; which commute with each
other. Hence, there are three components for each root vector, as in the
following example:

[En’ E12] =E;,

1
[Epn, Ep] = —Ey, R(12) = (—1)-
[E33:E12] =0, 0

This root vector is drawn in Figure 5.8.4(a), along with five others corre-
sponding to the generators in Eq. (5.8.39). Note that the roots form a
hexagon as indicated in Figure 5.8.4.

It is convenient to define combinations of the E,;, E,,, and E;; that
correspond to the symmetry axes H,, H,, and H; of the hexagon:

H, = (E, — E;;)/V2N,
H, = (E; — 2Ey + Ey) /V6N,
H; = (Ey; + Eyp + E33) /V3N. (5.8.41)

By discarding the unit generator H; we obtain a Lie algebra of a group
called SU; or A,. By choosing the constant N = 6 and defining

E, EE12/‘v/g, E, EE23/‘/g, E; EE13/‘/6_’
E_,=Ey/V6, E_,=Ey/V6, E_;=Ey/V6, (5842)

we obtain Cartan’s standard form for the SU,; algebra with the commutation
relations given in terms of the roots in Figure 5.8.4(c):

[Hi7Ea] = ri(a)Ea’ [Ea’E—a] = er(a)l—lf’

[Ea,EB] =ik + 1) /2|r(a)|E, .

The integers j and k are given by

Jj = number of times that r( «) can be raised by r( 8),
2r(a) - r
g @)
r(B) -r(B)
k = number of times that r(«) can be lowered by —r(B). (5.8.43)

Cartan has shown that these relations are valid for an important class of
Lie algebras.
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(b) Introduction to Irreducible Representations of U, and SU; As
shown in the discussion of R,, the base states of Lic algebra irreps have
weight vectors which may be raised or lowered by root vectors. In U, we call
the vectors r(1), r(2), and r(3) raising or POSITIVE root vectors, while
r(—1), r(—2), and r(—3) are called lowering or NEGATIVE root vectors.

Now some examples of weight vectors for SU, irreps are shown in Figure
5.8.5. For each set of vectors there is always one called the HIGHEST
WEIGHT M"™"2 which cannot be raised without going outside the set for
that irrep. The Cartan theory gives the following relations between M ™2
and the positive root vectors r(1) and r(2),

2M™2 (1) /r (1) - r(1)

number of times M can be lowered by r( —1),

2M™M2 - p(2) /r(2) - r(2)

number of times M can be lowered by r(—2).  (5.8.44)

ny

n;

il

D® O M®

D10 D11
| | L, OR H,

O/\O o AXIS

M

L, ORH,

AXIS
O/(g oo D21

Figure 5.8.5 Examples of weight diagrams for irreducible representations of SUs;.
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The vector relations determine the weight vectors of each SUj, irrep, ie.,
the eigenvalues of 97"2(H,). Further theory is needed to find 9™"(E).

(c) Harmonic Oscillator Spectrum 1t happens that the SU, irreps @
with n, = 0 correspond to single-particle energy levels of the three-dimen-
sional harmonic oscillator. These correspond to weight diagrams on the
left-hand side of Figure 5.8.5. The irreps with n, # 0 describe multiparticle
states.

The first oscillator level is nondegenerate, corresponding to the irrep %,
The second level is triply degenerate corresponding to irrep @21°. The states
in the second level are one quantum each of excitation of motion in the X, v,
or z directions. We may also describe them as angular-momentum p(=1

states ‘i >, ' (1)> and l_i > In fact, we may interpret the H, axis as the orbital

momentum (L) axis since operators 2v3 H,, V6 E,, and V6 E _, behave like
ordinary angular-momentum operators L, L + and L _, respectively.

The third oscillator level belongs to the 22 irrep and has a sixfold
degeneracy: five d(/ = 2) states and one s(/ = 0) orbital, or, equivalently, the
six combinations of double excitations xx, yy, zz, xy, xz, and y,. The fourth
level belongs to 2% with a f(I = 3) and a p(I = 1) orbital, and so forth.

(d) Comparing Coulomb and Harmonic Oscillator Spectra 1t is inter-
esting to compare the oscillator and Coulomb problems. In some ways these
two high-symmetry examples are extreme opposites. The Coulomb problem
treats a charged particle orbiting outside a single attractive point charge. The
oscillator problem treats the same particle orbiting inside a large uniform
spherical cloud of attractive charge. The Coulomb problem is a good starting
point for atomic and molecular structure theory. The oscillator spectrum has
been shown to offer a similar, though less easily understood, starting point
for the internal structure of nuclei.

In atomic shell theory we imagine filling each Coulomb level in Figure
5.8.6(a) with one pair of electrons. The magic numbers like 2 or 10 are the
numbers of electrons which give a closed-shell atom, i.e., (15)? = He, (15)?
(2s + 2p)® = Ne, which have greater chemical stability. Similarly, in nuclear
shell theory the magic numbers 2, 8, or 20 give the numbers of protons or
neutrons which give closed-shell nuclei, i.e., ,He%, ;0%°, ,,Ca%) which have
exceptionally great binding energy. The theory of nuclear shells is based upon
the oscillator spectrum in Figure 5.8.6(b).

These single-particle theories work well, up to a point. For example, in
potassium [next atom after argon ((15)*(25)*(2 p)°(35)*(3p)®))] it appears that
the next electron does not settle in the 3d shell, but rather in a 4s level. One
way to explain this is to say that the presence of the other electrons makes a
deeply diving 45 level have lower energy than the 3d.
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The explanation of higher nuclear shell structure requires a more detailed
theory, too, including spin-orbit and internuclear interactions. The next
nuclear magic numbers turn out to be 28, 50, 82, and 126.

APPENDIX E. DERIVATION OF ANGULAR-MOMENTUM
REPRESENTATIONS

In the following the matrices representing the generators or angular-
momentum operators will be derived using their commutation relations.
(E.1):

(o, L] =itdy, [0, ) =ikd,,  [J,, 1) =ind,.  (E.D)

We will choose to find the bases in which J; and J, are diagonal, and
therefore it will be convenient to rewrite (E.1) in the form (E.2),

[V, 0, =8l [JJ 1= —hI_  [J,,J_]=24],, (E2)

where J,=J, +il,, and J_=J, — il, play there the role of eigenvectors
under the transformation [J;, ]. In deriving (E.2) the relations below were
used, and will be needed again shortly (let us also take # = 1):

JJ =1+ 17 =il L) =J2+J}+ W, =J2+J2+],, (E3)
J I =JE+J;—h,=J2+J} -1, (E4)

The operator J? =J{ +J7 + J; can be expressed in terms of J, and J,
as in (E.5) and (E.6):

JP=J J +J? -1, (E.5)
=J I, +J2+,. (E.6)

The preceding makes it easy to prove that J, commutes with J?, as in the
following, where Eq. (E.2) was used:

[‘13"]2] =[50 0 1 =1/ +J.[J5 7 ]1=0. (E.7)

The J; and J? are commuting Hermitian operators, and so orthonormal
vectors l; > exist which are eigenvectors of both J? and J,. It is necessary to
find what values « and m can be:

szn>=a;1n>, J5

@) =m|2 ) (E8)
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First, note that the operators J, make eigenvectors with higher or lower
cigenvalues of J;:
(44
m

« > (E.9)

131_'31>= (m — 1)J_‘;'7‘1>. (E.10)

I,

%>=([J3,J+] +7,J3) ,‘3‘”>= (Jo+ml,)

=(m+1J,

These operators J, are called RAISING or LOWERING operators
because of this effect. We shall assure that the vector J i'f‘n> is proportional

o
m+1/

Let us now inquire about just how far one may “raise” or “lower.” We
observe from (E.5) and (E.6) that @ must be equal or greater than m or —m:

to

a—m=<gl 12—J3%>= <51IJ_J++J32%>=<;1” JII + 1, %>z 0,
(E.11)
a+m= <; J2+J3%>= <;¥n J+J_+J§fn>=<gl‘JiJ_+J;J3 %>z 0.
(E.12)

In the last step of (E.11) and (E.12) we use the fact that diagonal elements of
any operator A'A is positive or zero, as seen in the following:

(ald'dla) = Y <alA'|b) (bl Ala) = Y [{alA|b)|* = 0.
b b

So for a given «, there is a limit to the raising process. Suppose m =j is
the highest value of m for a given a. Then (E.13) must hold:

« > =0. (E.13)
Applying (E.6) and the foregoing we discover the value of a:

J2

i > = (J_J, + I} +T3)

?>=f(f+ 1)l?>- (E.14)

This eigenvalue « = j(j + 1) applies to all lowered states J_lj‘ >, ie., all

states "r"n > since J_ commutes with J2. But, this lowering is limited, too, say
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to m =j as in Eq. (E.15);

‘.“> =0. (E.15)

Applying (E.5) exactly as in the foregoing we get the following:

Yool

from which we can only conclude j(j + 1) =j'(j’ — 1). The two solutions
J'=Jj+ 1and j’= —j are indicated, but only the latter is acceptable since
we said m = j was the largest.
So, for a given @ = j(j + 1), the m range in steps of 1, between m = +j
and m = —j, inclusive. We see that this is possible only if Jj=0313 ...
Now the representation @/ of J, in (E.16) can be produced for any j.

. 1>’ J‘~£1>=‘9’£‘1””(J‘)’£1 - 1>
(E.16)

JZ

Iy

EEREN

By taking the scalar product the following relation results:

PiN_lily gl

m m|" " tTim/)
j 2_li gy (3 N2 T J

| D1 ()] <m|u_1m> <m u_|m>.

Applying (E.5) and (E.6), respectively, gives the desired result to within a

phase.
) ST, :
I9m+1,m(‘]+)l _<in ‘:n>
=(Kj+1)—mz—m)=(j—ij+m+1L
. 2 s .
(@ = (1, 7))

=(j(j+1)—m2+m)=(j+m)(j—m+l).

VAR

|9r£+1,m(']+)’2 = <fn

J2—J}+1,

It is conventional to choose positive real phases:

Dhii,m(J2) = Vi(G +1) = m(m + 1),

Dh () =ViG+ 1) —m(m —1). (E.17)
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ADDITIONAL READING

The most comprehensive treatment of quantum theory of angular-momentum and
rotation-group theory are two volumes of the Encyclopedia of Mathematics and Its
Applications.

L. C. Biedenharn and J. D. Louck, Angular Momentum in Quantum Physics:
Theory and Application, Vol. 8, Encyclopedia of Mathematics, edited by G. C. Rota
(Addison-Wesley, Reading, MA, 1981).

L. C. Biedenharn and J. D. Louck, The Racah Wigner Algebra in Quantum Theory,
Vol. 9, Encyclopedia of Mathematics, edited by G. C. Rota (Addison-Wesley, Read-
ing, MA, 1981).

These two volumes are valuable for their history and references as well as for their
content. A shorter and more “user friendly” reference is the recent monograph by
Zare.

R. N. Zare, Angular Momentum: Understanding Spatial Aspects in Chemistry and
Physics (Wiley Interscience, New York, 1988).

This book is aimed at applications in atomic and molecular physics, particularly
diatomic and nearly symmetric top molecules.

A slightly older and more advanced book along the same lines is by Judd. It also
includes a treatment of O(4).

Brian R. Judd, Angular Momentum Theory for Diatomic Molecules (Academic,
New York, 1975).

Judd is also the author of another classic text on angular-momentum calculus.

B. R. Judd, Operator Techniques in Atomic Spectroscopy (McGraw-Hill, New York,
1963).

Several of the well-known older texts which treat angular-momentum theory are
listed here.

E. Feinberg and G. E. Pake, Notes on the Quantum Theory of Angular Momentum
(Addison-Wesley, Reading, MA, 1953).

M. E. Rose, Elementary Theory of Angular Momentum (Wiley, New York, 1957).
E. P. Wigner, Group Theory, (Academic, New York, 1959).

A. R. Edmonds, Angular Momentum in Quantum Mechanics, (Princeton University
Press, Princeton, NJ, 1960).

D. M. Brink and G. R. Satchler, Angular Momentum (Oxford University Press,
London, 1968).

A collection of famous papers on angular momentum are found in the following
volumes. The first volume contains Schwinger’s original boson algebraic treatment of
angular momentum.

L. C. Biedenharn and H. Van Dam, Eds., Quantum Theory of Angular Momentum
(Academic, New York, 1965).

E. M. Loebl, Ed., Group Theory and Its Applications (Academic, New York, 1968),
Vols. I and II.
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The quantum rotor and its angular-momentum theory probably originated with
Casimir.

H. B. G. Casimir, Rotation of a Rigid Body in Quantum Mechanics (J. B. Walter’s
Vitgevers-Maatschappij, N. V. Gronigen den Haag Batavia, 1931).

References for the theory of quaternions and the U(2) slide-rule wave given after
Chapter 3. See also (if you can find it).

C. 1. Joly, Manual of Quaternions (Macmillan, New York, 1965).

The application of O(4) symmetry to the Coulomb problem is discussed in the
following.

M. J. Englefield, Group Theory and the Coulomb Problem (Wiley Interscience, New
York, 1972).

See also an article by Carl Wulfman in Volume II of Loebl (just listed). This led to
a renaissance in the application of O(4) and related methods to the spectra of doubly
excited atoms.

C. E. Wulfman, Chem. Phys. Lett., 23, 370 (1973).

O. Sinanoglu and D. R. Herrick, J. Chem. Phys., 62, 886 (1975).

D. R. Herrick and M. E. Kellman, Phys. Rev. A, 21, 418 (1980).

M. E. Kellman and D. R. Herrick, Phys. Rev. A, 22, 1536 (1980).

D. R. Herrick, M. E. Kellman, and R. D. Poliah, Phys. Rev. A, 22 1517 (1980).
P. Rehmus and R. S. Berry, Chem. Phys., 38, 257 (1978).

P. Rehmus, M. E. Kellman, and R. S. Berry, Chem. Phys., 31, 239 (1978).

D. R. Herrick, Adv. Chem. Phys., 52, 1 (1982).

PROBLEMS

Section 5.1

5.1.1 Suppose an n-by-n real matrix R is constructed with (n > 2) so that
its columns consist of » mutually orthonormal real n-dimensional
vectors ¥, ¥, --- ¥, ---. Suppose we construct two new vectors ¢,
and ¢, by extracting first and second rows, respectively, of R.

(a) What (if anything) can we say about the values of scalar products
¢, - ¢,? Or ¢, - ¢,? Given R could you quickly give the values
of scalar products ¢, - ¥,? Or ¢, - ¥,?

(b) Answer similarly worded questions involving complex matrix J
and scalar products {(¢,|¢;), {d,ld,), {(¢,|¥,), and {¢,|¥,) of
complex vectors.

(c) What type of matrices are R and J using the terminology of
Chapter 1?



williamharter
Stamp


5.1.2

5.1.3

5241

PROBLEMS 439

(a) What is the trace of a proper orthogonal 3-by-3 transformation
matrix O;; that performs a rotation of angle ¢ around the z axis?
What is the trace if the same rotation is around the x axis?
...Or around the (111) axis?

(b) What is the trace of the corresponding improper operation?

(¢) Suppose instead of using a set of Cartesian unit vectors {|1) = e,
|2) = e,, |3) = es} to construct matrix O;; = {i|Ol|j> we use
nonorthogonal vectors [ay = |1) + |2), |b) = |1) + {3), |¢) =
|2 + |3). By how much will the trace of matrix O,, = {a|O|b>)
differ from that of O;;?

A crystal symmetry group operation of translation ¢ or rotation R may
be defined using a basis of three primitive lattice vectors 1;, 1, and 15
or three reciprocal vectors ry =1, X I;/v, r, =1, X1, /v, and r; =
I, X 1,/v, where v =1, X 1, - 1. The idea is that a symmetry opera-
tion must transform each lattice vector into an integral linear combi-
nation of lattice vectors, i.e., another vector in the lattice. Using
characters, derive which rotational angles o are possible for pure
rotations Rlw] and for improper R - I rotations around any lattice
point in a two- or three-dimensional lattice. Which of the following
point groups correspond to possible crystal point symmetries? D,,?
Ds,? Dyy,? Dsy? Dey? Doy? D3y? D3g? Dy ?

Construct a partial correlation table involving irreps listed in Fig. 5.2.2
for the reduction of symmetry from D, , to subgroups

(@) Dy,

(b) Dy,

(¢) Dy,

d) D,

(e) Dy,

Sketch each correlation by drawing a level-splitting diagram.

Section 5.3

531

53.2

Use the Cartesian {le,), le,, le;)} xyz basis to make the 3-by-3 matrix
R;(aBy) = {e;|R(aBy)le;) representing the Euler-angle rotation op-
erator R(aBy) defined by (5.3.4).

Suppose you have constructed a rotation matrix R; j(aOO) for rotation
a about the z axis and another matrix R,;(0B80) for rotation 8 about
the y axis.

(a) How would you combine these two operations to make one
which rotated by angle o around an axis z’ that lies in the xz
plane at angle 8 from z. [Hint: z’ is obtained from z by rotation
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R(0B0). Use class conjugation transformation: r' = ¢rr~1] Test
your construction by making a rotation by angle « around the x
axis.

(b) How would you combine these two operations to make a Dar-
boux defined rotation R,.j[dww] by angle @ around an axis at
azimuth ¢ and polar angle 6.

(¢) Carry out the operations found in part (b) to construct the 3-by-3
matrix R, [¢6w].

533 (a) Determine the nine direction cosines % - X = cos(x¥), & - y=
cos(xy), ..., % - z in terms of Euler angles (aBy) between Carte-
sian systems (x,y, z) and (x = R(eBy) - x,§=R-y,Z=R-2).

(b) Use these results to determine the Euler angles of the transfor-
mation

xlx) Lxly)  (xIz)
R(aBy) = | (yI®) (ylF)y  (y|2)
(zlx) Lzlp)  (zIz)

1/V2 16 1/V3
=|-1/V2 1/¥6  1,V3 | = R[¢60]
0 -2/V6  1/V3

(¢) Find axis (Darboux) angles as well. (It may help to look at
Problem 5.3.2 first.)

Section 5.4
5.4.1 Verify (5.4.30).

5.4.2 Complete the calculation of D'(aBy) and compare the resulting
matrix with the result of Problem 5.3.1. Are their traces equal? Are
they equivalent? What change of basis would relate them?

5.4.3 Complete the calculation of D3(aBy).

5.4.5 Suppose the spinor representation of an U(2) group operation is
DYV%(y) = (z; ZZ) Derive the formula for the angular-momentum
J representation D/ (u) in terms of Ujgs Uy, Uyy, Usy, J, m, and n.

5.4.6 Derive phase symmetry relations for D functions.

Write:D!, _ (080) in terms of D;, (080).

D],(0B0) in terms of DJ (080).
D;,(0 — BO0) in terms of D, (0B0).
D;,(0m ~ B0) in terms of D/ (080), and/or D] _ .

D} (aBy) in terms of D/, _ (aBy).
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sction 5.5

5.1

5.5

Verify the expression (5.5.1) for D/?[(¢p0w)] and compare with the
expression (5.4.30) for DY*(aBy). Verify Euler to Darboux angle
relations (5.5.2).

Compute the Darboux parameterized matrix D[¢6w]. Compare to
the real vector representation found in Problem 5.3.2(c).

(a) Write a closed-form conversion equations for Euler angles (aBy)
in terms of axis (Darboux) angles [¢pfw] and vice versa.

(b) For the following rotations compute Euler angles and axis an-
gles. (These octahedral operations are shown in Figure 4.1.2.)

Euler angles Axis angles
«@ B 2% ¢ ] )

180° x axis R,

120° (111) axis: r,

180° diagonal: i,

90° x-axis: R,

Determine the ecigenvectors and eigenvalues of the quantum rotor
Hamiltonian (5.5.52) for all levels having total angular momentum
j=1and j = 2 for rigid molecules having the following principal
inertia moments. (Let # = 1.) Sketch spectra of levels.

@ I,=1,=11,=2

® I,=1,=10;1,=1.

© L=L1,=21,=3

Express the symmetric top Hamiltonian BJ? + BJ; + CJ7 in terms of

Euler angles and momenta (JaJBJy). Simplify the expression for the
following cases and give classical equations of motion for each:

(a) J along lab z axis.
(b) J along body z axis.

ection 5.6

6.1

6.2

Construct a correlation table up to ! = 12 for the symmetry breaking
from O(3) to Dq.

Construct a correlation table between O(3) irreps (0*0~17172% --.)
and (a) tetrahedral (7)) irreps; and (b) icosahedral (1) irreps.
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