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CHAPTER 4

THEORY AND APPLICATIONS
OF HIGHER FINITE SYMMETRY
AND INDUCED REPRESENTATIONS

All but five of the 32 crystal point symmetries (Recall Figure 3.1.1) have been
analyzed in terms of cyclic groups C,, C;, and C, and dihedral groups D,,
D, and D,. The remaining five symmetries 7, T),, T,, O, and 0, are called
tetrahedral, cubic, or octahedral symmetries. To analyze these one needs
only to concentrate on two of them: the octahedral group O and its
tetrahedral subgroup 7. It will be shown that the group 7, is simply
T, =TXC, 0, is simply O X C;, and T, is isomorphic to O.

The derivation and application of octahedral irreps can be done using the
P-operator techniques discussed in the preceding chapters. However, there
are some additional and important relations which help simplify the analysis
of high symmetry. In this chapter the relations between subgroups C,and D,
of octahedral symmetry will be exploited in the reduction of octahedral
representations. The theory of induced representations will be introduced.
This theory has become very important in understanding high-resolution
laser spectra of symmetric molecules, among other things. Examples which
will be treated in this section include the elements of spectral cluster theory
and the classical vibrational spectra of SF; and UF, molecules. An introduc-
tion to the quantum theory of molecular vibrations is given also.

4.1 OCTAHEDRAL SYMMETRIES AND THEIR CHARACTERS

Let us begin with a synopsis of the point symmetries that may be found in a
cubic crystal. They are also fairly common symmetries for polyatomic
molecules.

227
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&

(a) (b) (c)

Figure 4.1.1 Objects having octahedral (O) symmetry. (a) The cube or hexahedron.
(b) The octahedron. The cube is transformed into the octahedron by placing vertices
of one in the center of the faces of the other. (¢) (4! = 24) permutations of four
integers correspond to the 24 cquivalent positions in which the octahedron may be
placed.

A. The Octahedral Group (O)

The rotational symmetry of a regular cube or hexahedron in Figure 4.1.1(a)
or of a regular octahedron in Figures 4.1.1(b) and 4.1.1(c) is called O or
octahedral symmetry. The symmetry of the octahedron can be stated by
naming all its equivalent orientational positions, or by naming all the rota-
tional operations which can change one position into another. For simple
counting purposes the former is probably easier. The octahedron has cight
equivalent faces to show. Since each one can be rotated to three equivalent
positions there must be 8 - 3 = 24 different rotational positions in all. (Equiv-
alently, there are six cube faces or octahedron corners with four rotations for
each, or 12 edges times two rotations each, all products which give the
number 24.) It is interesting to note that each rotation corresponds to one of
the 24 = 4! permutations of the digits (1,2,3,4) as depicted in Figure
4.1.1(c).

The labeling of the 24 symmetry operators is a little more difficult, but
easy enough if donc onc class at a time. Figure 4.1.2 labels the operators
from the class of (a) the identity 1, (b) the 120° rotations, r; and r?, (c) the
180° rotations R? around x, x,, x5 axes, (d) the 90° rotations, R; and R},
and (e) the 180° rotations i; around cdges. Each symbol next to an axis labels
a counterclockwise rotation of the octahedron by a specific angle associated
with its class. Axes are all meant to be fixed in the space of the laboratory
rather than the body of the octahedron.

The O-group multiplication may be found easily using the Hamilton arc
vectors described in Section 3.1.B. Thc octahcedral arcs are shown for
different classes in Figure 4.1.3(a). A stercogram of the superimposed arc
paths is given below that in Figure 4.1.3(b). A projected view of hemisphere
looking down the x; or z axis is shown in Figure 4.1.4. Each of the 24
rotations is labeled on one or more arc vectors. For now you should ignore
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R2
(a) The identity 1 2 i
2
° rotations . .
(b)TherLZO rotat! RI2 {d)The 90° rotations i4
2 .
2 \ r2 R2 R2 |5
' (c)Tr?e i80° rotations Rg (e) The I80° rotations
on 4-fold axes _3 on 2-fold axes

R

hd ;

rz
3

r2 3 Rp

Figure 4.1.2 The five classes of octahedral operations. (a) The identity class (no

rotation). (b) The threefold rotations (120°). (c) The tetragonal twofold rotations

(180°). (d) The fourfold rotations (90°). (¢) The diagonal twofold rotations (180°).

the mmus signs next to some labels. These will be used in Chapter 5 to treat
spin- 3 rotations.

All (24)* = 576 octahedral products R,R, = R,, can be read from the
diagram in Figure 4.1.4. The head-to-tail addition of the a vector to the b
vector yield the ba vector, as indicated by the triangle above the diagram.
Some products are already set up, as are, for example, rsR, =R, or
RPi, = R,. Other products require adjustment of one or two vectors so the
head of the a vector meets the tail of the b vector. The resulting octahedral
multiplication table is given in the table section.

Relatively few multiplications are needed to construct the algebra of the
octahedral classes:

¢ =1,
c,=ritrytrytrg+ri+ri4+rZ4rl,
cgz =R} + R3 + R2,
=R, +R, +R; + R} + R} + R}, )
=iy iyt iyt i, s i (4.1.1)
For example, only three multiplications are needed to determine the class
membership of the 18 elements in the product
CraC;=Riy + - =R, + -
+R3 + gt e
+R3;+ -+ RI+ ---. (4.1.2)
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~

Figure 4.1.4 Octahedral group nomogram.

Since there are two members from ¢, for each one from ¢, in the first
column of Eq. (4.1.2) onc must conclude that the 18 products consist of 12

R’s and 6 i;’s, or
CRa€; = 2Cp + ¢; = C;Cpa. (4.1.3)

This simplification of any class product,

c,Cp=8h, +gh + - =gh, +1ght™" + -
+ ghy + ghy + 0 gihy gt T+ e
+ g hs+ ghs + 0 gihy g hytT + -
+ - e [N SN (4‘1‘4)

is always possible since the second column (or row) of the product is just a
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transformation,
tgohit™t =gt thyt !
=g, W, (4.1.5)

of the first one. According to the definition of classes (see Section 3.2.A) the
transformation converting g, to g, only rearranges the A;/s in class ¢, =
tc,t~*. Hence the proportion of a given class found in cach column (or row)

of Eq. (4.1.4) must be cqual.
The complete set of octahedral class products c,c, = ¢,c, are given by

the following class algebra table:

1 c, Cp2 Cr c;
¢, 81+4dc, +8cp 3c, dep + 4 dep + 4,

Cr 31 + 2¢p2 cp t 2¢; 2¢g t+ ¢

Cg 61 + 3¢, + 2¢pe 3¢, + dcge

c 61 + 3¢, + 2¢cp2

(4.1.6)

This class algebra can have no more than five linearly independent powers of
any element. So it must be possible to construct a minimal cquation for c; by
combining the six powers {c?, ¢;, c?, ¢}, ¢}, ¢k

li
i

=1, ¢} =16¢cgx + 20c¢;,
—c, ¢t = d8c, + 64cp + 20¢2,

] |
H H
2 =61 +3¢,+2cp,  cf=1201+108c, + 104cie, (4.1.7)

(o)

¢’ =320cy + 20c] + 256¢,
~ 2400 1 + 2160c, + 2080cqs + 320 + 256¢;.

Combining the expressions for ¢} and ¢} gives a minimal equation

¢’ — 40c? + 144¢, = 0,
(c? = 36)(ci — 4)c; =0,
(¢, +6)(c; — 6)(c; + 2)(¢, — 2)e; = 0. (4.1.8)

[Note: For typographical convenience we write (c; +r1) as (c; + r).] The
roots {2,— 2,0,6,— 6} correspond to cubic irreps which are labeled (a) =
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{T,,T,,E, A;, A,}, respectively. The Equations (1.2.12) or (1.2.15) from

Chapter 1 for idempotents then gives the following for the root ¢72 = 2:

_ (¢; +2)(c; = 0)(c; = 6)(¢c; + 6)
(2 +2)(2 - 0)(2-6)(2 + 06)

= [ef + 2¢} = 36¢2 — T2¢,] /(—256)

=[31 —cg2—cp +¢;]/8. (4.1.9)

T,

= [(c; + 2)ci(c? = 36)] /(—256)

The complete set of all-commuting idempotents is given now:

PA4 = [1+c, +cpe+ cx+c;]/24,

P4 =[1+4c, +cp—cxr—c;]/24,

PE=[21 —c, + 2cx2]/12,

P = [31 —cg2 + ¢ —¢;1/8,

P’z = [31 —cp2 — Cp +¢,]/8. (4.1.10)

The coeflicients in the brackets are the octahedral irrep characters x;*
according to the theory of Section (3.5.A). The character table is as follows:

g=1 r,r> R? R,R? i
I, = x = 1 1 1 1 1
r,= xgr = 1 1 1 -1 -1
r, = X = 5 1 ) 0 ol (4.1.11)
I, = XgF‘=X;‘= 3 0 -1 1 -1
Is= xl=xl= 3 0 -1 -1 1

This book will use the notation A, E, and T for the single (y{' = [ = 1),
double (x£ =/ = 2), and triple (y! = IT = 3) dimensions of the respective
irreps. The subscripts 1 and 2 indicate the even and odd character of 90°

rotations R or R*:

Xkt =1=xq,
X;;Z = —-1= X}gz. (4112)

Some alternative notation which occurs in the reference literature is indi-
cated in Eq. (4.1.11).
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B. Full Octahedral Group (0,)

The full octahedral group contains all the operations of O ={1,r,,
Foyeoos Ry Ry, ..o yiy,in,. ..} twice; once with inversion and once without.
Since the inversion operator (1) commutes with all rotation operators, one
may write O, as an outer product:

0,=0X%XC,=0x%{1,1}. (4.1.13)

The 48 elements of O, are listed in Figure 4.1.5. O, includes subgroups T,
T,, and T, as well as O. One way to account for the 48 operations is to
consider all transformations of the orthogonal Cartesian unit vectors {|x) =

; S A
- 3
R1RzR3 R?“za Rg
2
Y
1
n 1 |
ry b
,3 3 .
"3 i3
it 3 ;
h is
4 i
]
TSYMMETRY
J O SYMMETRY
s "N __J

IRy IRy IR3 IRy IRy IRy

1A

\
L Th, SYMMETRY i é

T4 SYMMETRY

\_ y

3.3 3
bq

ATNGTNN ST R

ANATOMY
ot Oy,
SYMMETRY

J

Figure 4.1.5 The full octahedral group (0,,) and four non-Abelian subgroups T, T,
T,, and O. The Abelian D, subgroup of T is indicated also.

\.
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X ,0y) = lxy0,lz) = lx57} which leave them pointing along Cartesian axes.
This includes all 3! = 6 permutations. For example, the 120° rotation r, gives

{riley = Ixy), r lx,) = X3, rilxs) = x D). (4.1.14)
O,, also includes 2% = 8 possible sign changes. For example, inversion I gives
{Ilx)y = =le), Iy = = 1x), Ilxy) = = (x50}, (4.1.15)

Altogether, O, contains 3! 2° = 48 such operations. The geometrical signifi-
cance of the operations will be discussed in the explanation of the tetrahedral
subgroups and then again in Sections 4.2.A(a) and 4.2.A(b).

The full octahedral or O, characters follow easily from those of O just as
D,, characters follow from those of D,. The cross-product relation (4.1.13) is
the key:

g=1 r; - R12 R, --- Py I - IRf"‘ IR, -~ Iy -
(a) = A, 1 1 1 1 1] 1 1 1 1 1
Ay, 1 1 1 -1 -1 1 1 1 -1 -1
E, 2 - 2 0 0 2 -1 2 0 0]
T,g 3 0 -1 1 -1 3 0 -1 1 -1
T2g 3 0 -1 -1 1 3 0 -1 -1 11
Ay, 1 1 1 1 1| -1 —1 —1 -1 -1
As, 1 1 1 —1 11 -1 -1 -1
E, 2 -1 2 0 0| -2 1 -2 0 0
Ty, 3 0 -1 1 -1 -3 0 1 -1
T, K} 0 -1 -1 1| -3 0 1 1 -1
(4.1.16)

The g and u subindices stand for even (positive) and odd (negative) inversion
parity, respectively. The following gives the form of the simple relation
between O, and O characters.

XRF = XES XIRE = X
X}_‘;Zu = X};Z’ IYEM = —ng (4117)
The same relation will hold between O, and O irreps:

P°(R) =Z%(R), 2%(IR) =2%R),
F(R) =2°(R),  Z“(IR) = —-2°(R). (4.1.18)
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C. Full Tetrahedral Symmetry T,

The full symmetry of a regular tetrahedron is called T,. It contains 24
operators {1,r;...,r7...,R}...,IR;..., Ii;...} listed in the T, section of
Figure 4.1.5. Note that the tetrahedron edges are face diagonals of a cube.
The tetrahedron is invariant to reflections Ii; through diagonal planes, but
not the horizontal reflections IR]2 The tetrahedron is also invariant to 90°
rotation inversions IR, or IR} around the Cartesian axes. Hence, T, contains
D, , subgroups. Also T, contains the 120° rotations r; or r? around (111) axes
and 180° rotations R2 around the Cartesian axes.

The groups O and T, are isomorphic. For each group product R|R, = r,
or rlz1 =R} in O, there is a corresponding product IR, IR, = r, or r li, =
IR? in T,, respectively, since inversion I is all-commuting. Hence, the
character table (4.1.11) serves as well for T, if we relabel elements R; and i;
as IR; and Ii;. Furthermore, by numbering the tetrahedron vertices as shown
in Flgure 415, the correspondence between 7T, operations and the 4!
permutations of four integers is established.

D. Partial Tetrahedral Symmetries T and T,

The purely rotational subgroup of 7, is called T, and it is the symmetry of
the three twisted planes drawn in Figure 4.1.5. If the planes are flat and
orthogonal the symmetry doubles to 7, shown in the same figure. 7}, contains
horlzontal plane reflections IRJ2 as well as 120° rotation inversions Ir; and
I . 1, is an outer product of 7 and C;:

T,=TxC,=Tx{1,I}. (4.1.19)

T and 7T, are the only non-Abelian crystal point groups that have any
classes of elements separated from their inverses. The counterclockwise 120°
rotations r,r,r,r, are now in a separate class from their inverses riririr:.
No operation ¢ in T or T, exists such that ¢~ !r,;s = r2. This is one case
where some “look-alike” elements do not belong to the same class.

Group T has four classes ¢y, ¢,, ¢,2, and cg2; hence, it has four types of
irreducible representations. The derivation of the all-commuting idempotents

and the irrep character table (4.1.20) is left as an exercise.

g=1 r ré - R?
xi=1 1 1 1 1
xg=| 1 mr e 1 (4.1.20)
x: = 1 e 72T/ Q2w 1
xXT=1| 3 0 0 -1

The T, characters follow easily using Eq. (4.1.19).
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T symmetry Th symmetry 'h symmetry

-

(c)

Tizure 4.1.6  Examples of icosahedral (1,) symmetry and tetrahedral (7},) symmetry.

It should be evident from Figure 4.1.5 that 7, is not the symmetry of a
‘z:rahedron. Instead, it is a subgroup of the highest point symmetry in three
<~ zce. If the rectangles in the T, portion of Figure 4.1.5 have a length : width

zolden” ratio of

r=(1+V5)/2=1618...,

:~2n their vertices describe an ICOSAHEDRON. This 20-sided regular solid
= shown in Figure 4.1.6. Icosahedral symmetry is not a crystal point group
<nce it has fivefold symmetry axes. The importance of this symmetry in
cavsics has been realized only recently with the discovery of the structure of
".ruses, quasi-crystals, and the molecule Cg, which has the geodesic dome
sructure made famous by the architect Buckminster Fuller. Cy, is called
“2uckminsterfullerene” in honor of Fuller’s artistry.

4.2 IRREDUCIBLE REPRESENTATIONS
OF OCTAHEDRAL SYMMETRY
The construction and labeling of octahedral symmetry representations will be

rreated now. By considering carefully the subgroups of O and 0, it is
possible to simplify some of the octahedral group algebra.

A. Subgroup Chains and Idempotent Splitting

The dimensions (/%) of the O irreps @ are determined by the characters

[* = x{ = Trace (1)
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in Egs. (4.1.10) and (4.10.11). Each all-commuting idempotent P* can be split

into [* irreducible idempotents P* =Pz,

P® = P# + PS4 -+ +Pg, (4.2.1)

according to the theory of Section 3.3. In the group O we expect the
following splittings:

PE = PlE + P2E7 (421a)x
P = PlTl + Psz + P3Tl’ (421b)x
PT2 = Psz + Psz + Pst’ (4.2.1¢c),

while P and P42 remain unsplit since [41 = 1 = [,

One way to do this splitting is to use subgroup idempotents. Recall that we
used the C, subgroup idempotents to split the C;, (or D,) all-commuting
idempotent P% [recall Eq. (3.3.3)]:

PE=PEL = PE(PT+ P7)
= PF + PE. (4.2.2)

However, later on a different splitting was effected by C, subgroup idempo-
tents [recall Eq. (3.3.15)]:

E_mEq _ E
PE=P"1 = PE(P, + P, + P,)
= P{j + Pz’”‘;. (4.2.3)
This choice led to circular or moving-wave eigenstates.
Octahedral symmetry has more subgroups and correspondingly more dif-
ferent types of idempotent splittings and wave solutions. Besides D5, one
may notice that D, and T are subgroups of O according to Figure 3.1.1. If

one chooses to split O with D, idempotents then two subchoices remain.
One is free to use D, D C, defined idempotents [recall Eq. (3.6.4)],

PE = PEL = PE + PL, (4.2.4)
or else D, O D, D C, defined idempotents [recall Egs. (3.6.6)-(3.6.8)],

PE=P*1=P5 + Py (4.2.5)
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Each choice for a chain of subgroups suchas O 2D, > D,, 0 > D, > C,,
0 DD, > C,,0or O>D; D C,corresponds to different idempotent splittings
and different (but equivalent) irreps. Let us consider each choice in turn.

(a) Tetragonal Standing-Wave Irreps (0, > D,, D D,,) Suppose we
require O irreps which are diagonal with respect to subgroup D, =
1. R? R3, R%), and reduced with respect to tetragonal subgroup D, =
1. Ry, R3, R3, R}, R3,i5,1,). These irreps are most commonly used in solid-
state applications. The formal derivation of them involves splitting by the
combination of idempotent relations for D,:

1 =PE+pAty pa2 4 pBI 4 pB: (4.2.6)
and D,:
1 =pA1 +pA2 +pBl +pBZ‘ (427)

Here it will be necessary to label D, idempotents with lower-case p; for
example, let

pP = (1 -R;+R; - R})/4,

where D, characters in Eq. (3.6.33) are used. This will distinguish them from
D, idempotents with the same superscript, such as

P%2=(1+R}—R;— R} - R} - R3+i,+i,)/8.

[PB2 follows from D, characters in Eq. (3.6.3).]
The splitting combination is

1= (PE+Ph 4 P2y PRy PBY(pM 4 p*2 + pBi 4 pBa)
_ (PEpBl + PEpB: +PA1pA1 + PAszz + PBlpAl + PszAz)

= PE  +PF +pP4 4P 4+ PB4+ PP (428)

This involves six irreducible D, idempotents. [Recall Egs. (3.6.2) and (3.6.3).]
Operating with this on the octahedral all-commuting idempotent PT gives
the desired three-term splitting,
PTi=p"11 = P(PE + Pf + P + P42+ PP+ PP2)
=PI +P +0+PL+0+0, (4.2.9)
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where some group multiplication algebra yields the irreducible idempotents:

P{t=PhPf =PTP PP = (1+ R} —R3 - RI+ R, + R} —is — i) /8,
(4.2.10a)

Pt = PUPy =POPEpR = (1 - R} + R3 = RE+ R, + R} — i) — i,)/8,
(4.2.10b)

Pii=PhpP% =pPlipAph— (1 —R2- R+ R2+ Ry + R} — i, — is)/8.
(4.2.10¢c)

This formal idempotent production introduces the idea of SUBGROUP
CHAIN LABELING of irrep idempotents and bases. Instead of blindly
numbering them “one,” “two,” and “three,” one uses the previously estab-
lished irrep labels of the subgroup chain D, 2 D, to label the three T,
components. Let us label the T, idempotents (4.2.10) as follows:

(7, [Ty] (71]

A
Pli=P, , Pi=P, , Ph=pP,, (42.11)

where each link in the descending chain of labels stands for a corresponding
subgroup irrep in the O > D, D D, chain.

Wl [u] labels O irrep
Pl = p : v labels D, irrep . (4.2.12)
n labels D, irrep

This chain labeling tells exactly how the @71 irrep is reduced or diagonalized
when restricted or subduced () to subgroups D, or D,.

0
E
97| D, = (9) o | (4.2.13a)
0 0 (D%)
(DB 0 0
2n,D,=| 0 (D% 0o |. (4.2.13b)
0 0 (D%)



27(1) =

r= ry = r{ = ry =
1 1 . 1 : -1 | 1
R P . 1 1 . . 1 . .
-1 | | - -1 1 -1
9T(R?) = R:= ry= ry = r: = r; =
-1 -1 - . S -1 -1 -
-1 -1 =1 | -1 1
ZT(R,) = iy= i = iy = R} = R, =
<1 -1 -1 -1 . 1
1 - -1 - : -1 =1 | -1
. 1 . -1 |1 -1 - -1 - 1
ZT(R3) = iy = R, = R3 = i = is=
-1 | | . -1 —~1 . -1
-1 - 1 . <1 1 - : 1 . .
‘ 1 . -1 -1 - 1 1 - -1
(4.2.14)
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The irrep matrices 9( may be derived formally from the irreducible
idempotents PT1 by constructmg the guarded elements PTlgPT1 normalizing
them, and usmg the elementary operator relation P,1gP/! —.9 (g)PT1. This
was done for C,, in Sections 3.4.A and 3.4.B. Also, thls partlcular T -type
representation can also be derived from simple Cartesian vector properties,
as we will see shortly. The @71 are listed below for all 24 O operations.

R =

The eight matrices in the first two columns belong to the subduced represen-
tation 271 | D,. Notice that they have the block-diagonal reduced form of
Eq. (4.2.13a). The four matrices 27 | D, = {--- 2(R})} are in the diagonal
form of Eq. (4.2.13b).

The octahedral irrep 272 is very similar to @27 The character table
(4.1.11) of O indicates that one can obtain 272 from 27t simply by a change
of sign for the elements {R, R,,..., R3,i1,1,,...,I¢} in the “second half” of
O, i.e., for the coset R,T of subgroup T:

2™(R;)) = —2"(R)),  2"(i;) = —~2"\(i)). (4.2.15)

This definition of &7z is quite convenient for many purposes. However, it
changes the @ representation of the elements R;, R3, i3, and i, in
subgroup D,. Effectively, it introduces a phase change {|f),|§>} - {If),—
I3} in the E basis. When it is necessary to avoid this we shall use the
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following “kosher” @2 irrep:

27(1) = R12 = ry = ry,= ri= rzz =
1 - . 1] - -1 -1 - -1
1 S B | -1 - - -1 | - -1
-1 SR | -1 <1 1 -1
TR = R} = ry = ry= ri= r? =
-1 -1 - 1 | - 1
-1 N D! - . | 1
1 S| 1 --1 -1 -
TR, = iy = i = i R} = R, =
-1 | -1 - 1 -1 - -1 :
1 - -1 - 1 I B S A -1
S U 1] -1 1 - -1 S B
FT(RY) = iy = R, = R} = ig = is=
-1 -1 -1 -1 : 1 -
-1 . 1 . . -1 . . -1 . . -1 . . —1l.
. -1 1 - -1 - 1 - -1 -

The O > D, > D, subgroup chain labeling of the 7, bases is given by the
following:

{T)] (73] [72]

T E T, _pkE T, _ po2
Pl=Py P2 =Pg Pr=P, . (4.2.17)

The two-dimensional irrep 2% of O can be produced formally by the
same D, splitting combination (4.2.8). The splitting of PZ goes as follows:

PE=PE1 = PH(Pf + Pf + P4 + P42 4 PB4 pB2)

0 +0 +PF +0 +Pf +0, (4.2.18a)

where

Pf=PEPA = PIPAp™ = (P (of Dy) = i PY = 5riP ™) /4,
(4.2.18b)

P = PEPPI = PEPPip4 = 3(PPi (of D,) — 3r PP — 1r2PP1) /4.
(4.2.18c)
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The following is a list of the @£ irreps of O symmetry:

2EQ1) R? = ry= ry, = ri= r =

-1 =3l -1 -3 -1 V3 -1 V3
1.0 Lol 1 "2 02 T2 || 2 2| 2 T2
0 1 0 1 Vi -1 Vi -1 -3 -1 —V3 -1

2 2 2 2 | 2 T2
PERY) R3= ry = ry = ry = r}=

-1 =3l -1 -3 -1 3 1 V3
10 Loy 1 il 2 2 2 2 2
0 1 o 1] |3 -1 -1 -3 -1 -3 -

2 2 2 T T2 2 2 2
28Ry i, = i = i = R} = R, =

-1 3 -1 V3 -1 -3 -1 -3
R 2 2 o T2 | 2 2
o -1| lo -1||¥3 1 VR -V3 1 -3 1

2 2 22 T2 2 T2 2
2HRYD iy = R, = R} = ig = is =

-1 V3 -1 V3 -1 -3 -1 -3
L U 2 2 2 T2 || 2 T2
o —1l lo -1l|v3 1 3o -3 1 -3 1

) 22 2 2 T2 2

(4.2.19)

Notice that the part which represents D, = {1, R3, R;, R}, R}, R3,i5,i,) is
diagonal:
D4 0
E _
= \lr D4 - ( 0 DBI ),
while D, = {1, R?, R3, R3} is represented entirely by unit matrices:

D40 1 0
FE|D, = = .
LD ( 0 DAl) (0 1)

Notice also that each member of a D, coset, such as D, = {r ;r,ryr,} is
represented by the same matrix. In fact, the six cosets of D, are each
represented by one E irrep (3.3.7) of D;.

The irreps of full octahedral symmetry differ from the O irreps only by
(+) factors according to Eq. (4.1.18). Consider, for example, the irrep 27w«
given for Ir,, i,, and R? in Figure 4.2.1. The matrices for i, and R? are the
same as in Eq. (4.2.14). However, a u representation of any element with
inversion attached has its sign changed from Eq. (4.2.14).
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x2 s
| 2
T e N PR e
. xg=irg

x27igxz & =4
1

xq !

*3

TETRAGONAL BASES -
Xj=lryxy

T 0
D M= |
0

Figure 4.2.1 Tetragonal vector bases and 7, irreps of Ir,, i,, and Rl2 operators
(octahedral operators are defined in Figure 4.1.2).

The irrep 27« can be easily understood, since it represents the effect of
O, transformations on Cartesian unit vectors {£ = 2,9 =4%,,2=21%;}. The
effects of Ir,, i,, and R} are shown in Figure 4.2.1. It is easy to visualize a
transformed unit vector such as

Irlx)) = —lxy),
which gives the corresponding T,, irrep component
D w(Iry) = {x,lIrylx)) = —1. (4.2.20)
Notice also the difference between horizontal-plane reflections

such as
Q’TI”(IR%) = -1 - , (4.2.21)
’ 1 (D43 >Dy)
which are diagonal in this representation, and diagonal-plane reflections such
as

ng(],'4) =11 - - , (4.2.22)
’ 1 (Dy,>Dyy)
which are not.

The O, > D,, > D,, subgroup chain labeling follows from that of O >
D, > D,. The labeling of the T,, vector bases goes as follows:

T [Tlu] T [Tlu] T [Tlu]
I£1> - 11u>E Eu ’ I‘xAZ> - 21u>E Eu s ,xA3>= 31u>E A2u
Blu Bzu AZu

(4.2.23)

(b) Trigonal Standing-Wave Irreps (O, > D;, > C,,) Suppose we re-
quire O irreps which are diagonal with respect to subgroup C, = {1,i,} and




IRREDUCIBLE REPRESENTATIONS OF OCTAHEDRAL SYMMETRY 245

reduced with respect to subgroup D5 = {1, r, r{,i,,i4,is}. The formal con-
struction of these irreps involves splitting with the idempotent combination

1=(PE+ P2+ phy(P*+ PB)
= pEpA + pEpB 4 pApB 4 pAipA
=PE+PF+P24+ PN, (4.2.24)

made from D5 and C, operators.
For example, the following is the splitting of P7:

P = PTY(PE + Pf + P2 + P)
=PhpE + PLPE + PIiPA42 1+
=Pl +Ph+pPh. (4.2.252)
This defines the D; D C, subgroup correlation and base labeling
ph = phiptpA Pl = phipEp5, Plv=phippB. (4.2.25b)

Another way to obtain trigonal 27" representations involves the Cartesian
unit vectors {&, 0,, 05} defined by

1 1 1
V2 6 V3
1 1 1
U1 = — ﬁ R UZ = —‘/g— s U3 = —ﬁ 5 (4.2.26)
0 2 1
V6 V3

which are drawn in Figure 4.2.2. These are defined so §; points along the
trigonal (111) direction or r, axis, and £, lies along the i, axis. {, is normal

T 2 [ 733 V63 T 12 /33 o T 10 o
D WRY = [vas -3 s23| B Marg- {lovsz a2 0 D Mg = |0 - 0
TRIGONAL BASES 1 JE3 23 -3 0 0 -1 0 [
V. L2
3 -
Vi=RY

Vo= trqv :
22 Vpmigyy
V=V

'
V=R v

Vi=lrgvq

Figure 4.2.2 Trigonal vector bases and T, irreps of R?, Ir;, and i, operators.
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to &, and ¢, Clearly, §, and 0, behave like E partners under 120° r,
rotations. Furthermore, &, and ', are antisymmetric (—) to 180° i, rotations,
while #, is symmetric (+). The full O, > D5, > C,, labeling of these vector
bases is

(7.1 [T:.] (T:.]
|L’1>E][1T1u]>= E, >, lvy) = ;1">= E, >, |v3>s‘§“‘>= Ay, >

A, B B

u u

(4.2.27)

This is in agreement with Eq. (4.2.25b).

The vector transformations and &7« representations of R, Ir,, and i,
are shown in Figure 4.2.2. The entire trigonal representation 27 of O is
given in the following equation.

27(1) = iy, =[12] R} = [13][24] R, = [1423]
. . ViV -3 -6
33 3 T3
) . Vo2 2 iz -2
B 33 3 33 3
1 . Vo 2 1 Vo -2 1
B 33 3 33 3
ry = [132] is = [13] ry = [234] is = [24)
-1 -3 -1 =3 1 R -1 3 e
2 T2 2 T2 2 6 3 2 6 3
V3 -1 -3 1 -3 -1 2 Vi -5 -2
2 2 2 2 2 6 3 6 6 3
. -8 -1 | =Ve -2
! - 3 3|73 T3 3
rf = [123] ir = [23] r3 = [142] R3 = [1342]
-1 3 -1 3 -1 =3 e 13 -6
2 2 22 2 s 3 2 6 3
-3 -1 V3o V3 5 2 -3 1 -2
2 2 2 2 3 6 3 2 6 3
. . -6 V2 -1 VB 1
3 3 3 33
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Notice that group operators which were diagonalized in the tetragonal irrep
(4.2.14) become undiagonalized in (4.2.28), and vice versa. For example, the
tetragonal irrep (4.2.21) of the horizontal-plane reflection becomes

V3 V6

33
Tu(IR?) = | g 2 g (4.2.29)

V6 V2 1

3 3 3 | aysean
in the trigonal basis, but the trigonal irrep
gh(liy=1 - 1 - (4.2.30)
' 1 (D342C3)

of the diagonal-plane reflection becomes diagonalized.

R3 = [14][23] R3 = [1324] R2 = [12][34] iy = [34]
-3 -6 V3 6 . .
3 3 3 3 B ) ‘ - ’ '
1 V8 —1 8
£ oo A 2 i 38
3 3 2 3 3 3 . ) ;
) -8 -1 V81
m CH RNt I v GRS R 3 s
3 3 3 3 3 3
rao=[124] R, =[1234] ry = [143] R} =[1432]
-1 BB -6 1 -3 Ve 1 V3 1 V3
2 6 3 2 6 3 2 2 2 2
F s & O WY R - S R - N V-
3 6 3 2 6 3 5 6 3 6 6
Vo V2 -1 V8 1 -6 V2 -1 o —v2
3 3 3 3 3 3 3 3 3 3
ri = [134] i =[14] r? = [243) R, = [1243]
O R I I S N B BN S LA
2 6 3 2 6 3 2 2 2 2
Vi -1 2 -3 -5 =2 | -3 -1 -8 V3 1
2 6 3 6 6 3 6 6 3 6 6
|
‘ -8 -1 Vo -2 Vo V2 -1 -6 -2
‘ 3 3 3 3 3 3 3 3 e 3

(4.2.28)

Y. w‘%
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The transformation matrix which relates the T,, irreps represented in
ietragonal bases to trigonal irreps is

1 1 1
<X1IU1> <X1|U2> <x11U3> 7——2‘ _6 F
1 1 1
7(4 <« 3) = <x2’U1> <X2‘U2> <x2|U3> = _“/‘E‘ ﬁ F . (4231)
2 1
<x3|U1> <x3|U2> <x3|U3> 0 _ﬁ ﬁ

The three columns of F(4 < 3) are the vectors (4.2.26). The equivalence
transformation between the trigonal (D5, > C,,) and tetragonal (D,, > D,,)
matrices has the following form:

‘7(4 < 3)(97‘1“)(D3d3c211)‘71‘(4 < 3) = (QTIM)(D4h3D2h)’
T4« 3N DTYDyopy T (4 < 3) = (D7) p, nc,). (4.2.32)
The trigonal 22 irreps can be obtained by simply changing the signs of
half the matrices according to Eq. (4.2.15). However, if one requires “kosher”

D, O C, subgroup labeling, then the irreps in the table section in the back of
this book should be used. The O, > D;, > C,, labeling of these is

[T ] T T.
sz Ay 2p sz _ L: 217] sz _ L 217]
1 S 2 O 3 ? ’
AP AP BP
(4.2.33)

where p =g or u is the inversion parity.
The trigonal E-type irreps have the same form as the tetragonal irreps
(4.2.19). The E bases can be labeled

. [E,] [E,] - [E,] [E,]
1”>z Ay =|E, ) 2p>5 By, =|E, ;
lp (DypDyy) Ap (D34Cy,) A, s (Dyy Dyy) Bp (D34Cyp)
(4.2.34)

where p = u or g is inversion parity. They go equally well with D, > D, or
D5 > C, subgroup chains.

(c) Tetragonal Moving-Wave Irreps (O > D, > C,) The introduction
of magnetic fields and molecular rotations will require that cyclic rotation
groups be represented by diagonal matrices. A simple transformation of the
tetragonal irreps in Section 4.2.A(a) causes the irreps of the cyclic subgroup
C, = {1, R;, R3, R3} to be diagonal. For example, the 271 irrep takes the
following form:
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The transformation which disagonalizes 2(R;) from Eq. (4.2.14) is
g1 o -|lg=|- -i -
. « 1 . . 1

-1 1
CARIRENN : N
—i i
2 2

=2T(R,),  (4.2.36)

T = <x2|1E4> <x2l§4> ' =

A
<x3|042>

You may recall seeing this form of transformation before [viz., Egs. (3.4.24)],
and one should certainly expect to see it again. It is the transformation
between standing-wave or linear (x, y) polarization states and moving-wave
or circular (x =+ iy) polarization states. The following is the labeling of the
circular T states by subgroup chain O > D, > C,.

T1 [Tl] T1 [Tl] Tl [Tl]
1, =|E , 3, =|E , 0, =14, ). (42.37)
1, 3, 0,
The corresponding labeling for the T, bases is similar.
T2 [ T2] T2 [ TZ] T2 [T2 ]
1.7 E ) 3, = , 2, = |B, . (4.2.38)
4 1, 3, 2,

The third T, component belongs to 2, waves angular quantum m = 2 mod 4.
The first two components belong to (m = +1 mod4) waves, as do the
corresponding 7; components.

The corresponding labeling of the E, A4,, and A, bases is as follows:

[E] [E] [4.] [4,]
lg“>= A > §4>= B, ’ l4,) = | B, s [4,) = {4,
0, 2, 2, 0,
(4.2.39) (4.2.40) (4.2.41)

Notice that the E- and A, ,-type bases do not require transformation from
their standing-wave forms, since these are already diagonal representations
of C,.
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(d) Trigonal Moving-Wave Irreps (O > D, > C,;) The standing-to-mov-
ing-wave transformation can be used to diagonalize the representations of
cyclic subgroup C; = {1, ry, r2}. This produces complex irreps listed Table
F.2.7.

(e) Idempotent Splitting Corresponds to Level Splitting Each class
idempotent P* is a sum of /* irreducible idempotents Pf = P* (i =1--- %),
Each P® can be thought of as a projection operator for a single state ¥*
belonging to one of {* degenerate energy levels € in an («)-type multiplet.
For example, O symmetry gives rise to T)-type triplets, T,-type triplets,
E-type doublets, and A4,- or A,-type singlets.

If we reduce the O symmetry to one of its subgroups such as D,, D,, or
C, then each of these levels may split according to the way that their
corresponding class idempotents split. For example, the O D D, splitting
relation (4.2.9) gives the following (nonzero) terms:

PTi = pTipE 4 PTIPE 4 pTip4: = PTipE 4 pTip

=PL + P + PJ.

The first line corresponds to a 7, triplet level splitting into an E-type doublet
and an A,-type singlet under D, symmetry. The E-type doublet remains
degenerate until we reduce the symmetry to one of the D, subgroups D,, C,,
or lower. If C, is used the resulting pair of levels emerging from an E
doublet are labeled 1, and 3, according to (4.2.4), while D, > D, symmetry
breaking would split E into B;- and B,-type levels according to (4.2.5).

A level-splitting diagram which traces all the level correlations of the
O > D, > D, chain is shown in Figure 4.2.3(a). The companion figure
[4.2.3(b)] traces the O > D, > C, correlations. Without their labels the two
figures appear identical! However, we have noted that the C, symmetry
breaking gives moving-wave states and is analogous to magnetic Zeeman or
rotational Coriolis splitting. The D, symmetry breaking, on the other hand,
gives standing-wave states and is analogous to electric Stark or anisotropy
splitting. It is helpful to use the level-splitting diagrams to keep track of both
the mathematics and physics associated with idempotent splitting and sub-
group correlations. Another way to do this uses correlation tables as shown in
the following section.

B. More Subgroup Correlations

There are quite a few more possible O, subgroup chains besides the four
main types discussed in the preceding section. However, one or more of the
four types of irreps can easily be adapted to most other labeling schemes.
The “road map” for any link in a subgroup chain is the CORRELATION
TABLE. The correlation table was introduced in Egs. (3.6.27) for hexagonal
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(@) Tetragonal Standing Wave Chain (b) Tetragonal Moving Wave Chain
Octahedral Tetragonal  Dihedral Octahedral Tetragonal ~ Cyclic-4
0 Da D2 0 Da C
Al Al Al Al Al 04
A2 B1 Al A2 B1 24
Al Al Al 04
E -~ E -
~~. B A ~~. BI 24
—— ~,————
B1 14
E — E et
Tt TR T T
NS A2 TS A 04
B1 14
E _ E i
T2 ,55—’__%:‘ B2 T2 :,:=:, 34
Ss. B2 Az S~ B2 %

Figure 4.2.3 Level-splitting diagram for two of the tetragonal subgroup chains in
octahedral symmetry.

or Dy subgroups. A correlation table lists the frequencies f of irreps D of
subgroup H in a subduced irrep Z“ | H of a larger group G > H. These
frequencies can be obtained by comparing character tables of G and H and
using the theory of Section 3.5.B(a).

For example, the O D D, and O > C, correlations used in the preceding
section are summed up by the following tables:

I\D, A, A, B, B, E ¢, 0, 1, 2, 3,
g 1 . . . . g 1 . R

g . . 1 . . G2 . . 1 .
gk 1 . 1 . < gk 1 . 1 .
T . 1 . . 1 gh 1 1 -1
g . . . 1 1 o . 1 1 1

(4.2.42a) (4.2.42b)
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Comparison of the C, characters

x% = 1 1 1 1
xe=1 1 - -1 i |, (4.2.43)
x* = 1 -1 1 -1
X3 = 1 i -1 -

with the O-character table (4.1.11) yielding the O O C, correlations (4.2.42b).
For example, the 27! | C* characters are

- g&=1 R R* R®
Xgl:
| 301 -1 1

from the O table. It is easy to see that
st = X XM+ X

for each g in the C, table (4.2.43). This gives the T, row of (4.2.42b).
The trigonal O D D, and O D C; correlations are found in the same way:

D, A, A, E 1C5 0, 1, 2,

gt 1 g |1

g2 . 1 . g4 | 1 . .

gE : ' o | - 1 1

gh . 1 1 h |1

22 |1 - 1 211 1 1
(4.2.44a) (4.2.44b)

For a number of applications it will be convenient to have correlation
tables for subgroup chains involving O, > C,,, O, 2 C;,, and O, > C,,. The
character table of C,, has the C, X C, form as explained in Sections 2.10
and 2.11:

g=1 i, IR} i,

xF =1 1 11 1
Xe = 1 -1 1 -1, (4.2.45)
xF=1 1 1 -1 -1
XF= 1 -1 -1 1
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The C,, and C,, characters were given by their isomorphic D, and D,
characters in Eqgs. (3.5.8) and (3.6.3), respectively. By comparing these with
0,, characters one easily derives the following correlations:

1 G,

DA
foer
GFe

T
97T
gAlu
A
GEu

ng
T

C.

A B A" B
1

. 1

1 1 :
: 1 1 1
1 1 11,

1 .
1

. . l 1
1 1 : 1
1 1 1
(4.2.46a)

L Cs,

e
D
DEs

T
DT
A
@A
@t

ngu
G T

A A E
1
1 .
S |
1 1
1 1],
1
1
. 1
1 1
1 1
(4.2.46b)

Conjugate and Normal Subgroups

1C,, A B A" B" E

94 | 1 -

e | -1

gt 1 1 - ~

ghe | - 1 1

DT S |

@ . . 1

g4 1

G Eu 11

gh | 1 - 1

Gl | -1 1
(4.2.46¢)

When correlating a C,,, or D, subgroup it is sometimes necessary to specify
which subgroup. For example, consider the two subgroups {1, R3,i5,i,} and
{1, R2, R?, R%}. Both subgroups contain three 180° rotations around orthogo-
nal axes. Both should be labeled D, and both have the same set of irreps:

D;

{t R} RY R3
1 1 1 1
1 -1 1 -1
1 1 -1 -1
1 -1 -1 1

(4.2.47)

However, they have quite different correlations with the octahedral irreps as
the following tables show:

V{1R3i5i,)
g
g
QE
gh
9"

A, B, A, B, |{1R}RiR}} A, B, A, B,
1 g4
1 g
1 1 ’ 174
1 1 1 h 11 1
11 1 oh 1 1
(4.2.482) (4.2.48b)
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The D', subgroup containing i; and i, could be used by itself to label each O
irrep uniquely. The other D, subgroup cannot provide E-irrep labeling, since
E is correlated twice with the same irrep A,. Indeed, the labeling chain
O o D, D D, discussed in Section 4.2.A(b) requires the D, link in order to
work for all O irreps.

Whenever we choose a particular subgroup H for labeling we generally
ignore several CONJUGATE SUBGROUPS H' =tHt ', H* = uHu™',...
obtained by transforming H by group operators. For example, D) =
{1, R3,i,,i,} has two other distinct conjugate subgroups DX = {1, R3,i,i,)
and D& = {1, R}, is, i4}. Most of the subgroups of octahedral symmetry have
several conjugates. By focusing on one choice from several conjugates we
single out a particular axis or direction in the octahedral symmetry. However,
each choice must give the same correlation table. This is true since the
correlations depend only on the characters which are independent of trans-
formations g’ = tgt~! within classes.

The other subgroup D, = {1, R?, R3, R3} is an example of a self-conjugate
or NORMAL subgroup of the octahedral group. A normal subgroup N € G
is one for which gNg~! = N for all transformations g in G. Normal sub-
groups are distinguished by being “unique” in their group.

4.3 INTRODUCTION TO SYMMETRY BREAKING
AND INDUCED REPRESENTATIONS

Many spectroscopic applications of symmetry analysis involve effects in which
higher-symmetry systems are changed into lower-symmetry ones. These ef-
fects are called SYMMETRY-BREAKING EFFECTS, and there are two
basic types of symmetry breaking. One type is EXTERNAL or “applied”
svmmetry breaking, wherein a system of higher symmetry is perturbed by an
outside force of lower symmetry. This perturbation generally causes splitting
of spectral degeneracy, as in the example of Zeeman splitting in Figure 3.6.3
or band-gap splitting in Figure 2.7.7. Another type is INTERNAL or “spon-
taneous” symmetry breaking, in which a system tends to “stick” in a low-sym-
metry state when resonance or tunneling between equivalent states becomes
negligible. This sticking generally goes along with increased spectral degener-
acy. as in the example of NH; with § = 0 in Figure 2.12.7, or band collapse
represented in Figure 2.12.1(c).

Either type of symmetry breaking involves the subgroup correlations which
were introduced in Section 4.2 and the preceding chapter. In this section
some applications will exhibit the relationship between the two opposing
npes of symmetry breaking: one which reduces spectral degeneracy, and the
other which increases it. This will involve a relation between subduced
representations (2 | H) and new type of representation called the induced
representation, denoted by (D 1 G).
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A. Octahedral Models and Induced Representations

Let us consider two different physical problems which are mathematically
very similar. One problem is classical and involves an octahedral arrangement
of six vibrating masses constrained to slide on coordinate axes {+x,+ y,+ z},
as shown in Figure 4.3.1(a). The other problem is quantum mechanical and
involves a particle which spends most of its time in any of the six potential
valleys centered around the {+x,+ y,+ z} axes in Figure 4.3.1(b). The figure
shows a plot of the potential versus angular direction with high-potential
directions indicated by mountains and low ones by valleys. In Chapters 5-7
we will study such angular potentials in greater detail, but for now a
qualitative picture of one example is all that is needed.

In either problem there will be six base states {|1),|2),...,]6)}. In the
spring-mass problem ket |j) means mass j is stretched one unit outward from
its equilibrium oposition, while the other masses are fixed at their respective
equilibrium or resting points. In the quantum-mechanical problem ket |j)
stands for a state for which the probability of finding the particle in the jth
valley is unity. In other words, the wave function

(8o1j) = ¢;(06) (43.1)

of the jth base state is localized around the polar angles of the jth axis or
valley in Figure 4.3.1(b).

{b.)

(51=(rq21

.

21=(R42 |

(3l=(rq

={6 |X)

Figure 4.3.1 Examples of physical systems with octahedral symmetry. (a) Coupled
oscillating beads sliding on octahedral axes are described by six classical coordinates
x; = {jlx}. (b) A six-state quantum system could describe a particle capable of
tunneling between six equivalent potential valleys.
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Either problem involves eigensolutions of matrices which have virtually the
same form. The spring-mass problem involves an acceleration matrix:

(llal1) (1lal2) -+ (1lal6) h t s s s s

2lally (2lal2) -+ (2]al6) t h s s s s

. s h t s s

s s ot b s s’

s s s s h ot

(6lall) <6lal2) ---  (ylal6) s s s s t h
(4.3.2a)

where components
h=2k+1t,

s=k/2 (4.3.2b)

are related to spring constants k£ and ¢ of nearest- and next-nearest-neighbor
connections, respectively, in Figure 4.3.1(a). The quantum problem involves a
Hamiltonian matrix:

AHIY  AHI2) -+ (1/HI6) H T § § § S
QH|1Y Q"2 - (2IHI6) T H § § § S
: : _|s §s H T § §

S § T H § S|
- - S § § S H T
(6/H|1) <(6|HI2) --- (6/H|6) s § S S T H

The diagonal components are the energy-expectation values H of the local-
ized wave functions (4.3.1). The off-diagonal components S and T are
tunneling amplitudes between nearest- and next-nearest-neighboring valleys,
respectively, in Figure 4.3.1(b).

Instead of labeling the bases {|1),]2),..., 6>} with numbers, let us use
octahedral group operators. Let each state be labeled as follows:

lg> =¢gll), (4.3.4)
by the operation g which converts the first state,
1) = 1{1), (4.3.5)

into the gth state |g). This group labeling scheme has been used in Chapters
2 and 3. However, now there are four times as many octahedral operations as
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there are base vectors. Indeed, the first state |1) of the spring-mass problem
could be labeled by R, R3, and R3 as well as by 1. State |1) is unchanged by
3-axis rotations, since it is just a displacement along this axis:

11> = 1]1) = R,y|1) = R%|1) = R}|1). (4.3.6)

In other words the first spring-mass state |1) is invariant to its local
C,=1{1,R,, R;, R3} axial subgroup. Let us rewrite this using the invariant C,
1dempotent

P4 =P%=(1+R,+R;+R3})/4,
as follows:
1) = P%|1) = (1 + R, + R} + R})I1) /4. (4.3.7)

The relations (4.3.6) or (4.3.7) will be called LOCAL SYMMETRY CONDI-
TIONS of [1). They imply that each of the other states |g) = gl1)> could be
Iabeled

lg> = gl1) = gR,|1) = gR3|1) = gR3|1),
lg> = IgR3> = IgR3) = IgR3), (4.3.8)

i.e., by any element gR'g in the gth coset gC, of the local subgroup.
In Figure 4.3.1(a) we have chosen one element g from each coset:

R{(1, Ry, R}, RY) = (RY,i,, R3,i3),
ri(1, R3, R, R3) = (ry, iy, 14, R,),
ro(1, Rs, R, R3) = (ry, 5,13, R3),
r{(L, Ry, RS, R3) = (rf, R}, 3, ig),
r3(L Ry, R3, R3) = (r2, Ry, 1, is), (4.3.9)

of C, = {1, R;, R3, R3} to label the base states

{1 =115,12) = IR}, 13) = |r,),14) = |r,),15) = |r2),16) = lr3}.
(4.3.10)

Furthermore, let us suppose that the base states of the quantum problem
satisfy the 0, local symmetry conditions as well. Then they can be labeled just
like the classical bases as indicated in Figure 4.3.1(b). Imposing these
conditions implies that the wave functions (4.3.1) in the valleys have the
fourfold (0,) symmetry of their locality. Later on we shall consider wave
functions having other types of local symmetry.
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Vectors (4.3.10) which satisfy 0, local symmetry conditions are the basis of
what is called an INDUCED REPRESENTATION .# = D% 1 O of octahe-
dral group O induced by irrep D% of subgroup C,. Let us construct the
induced representation of octahedral rotation i,, for example. Operation on
bases (4.3.10) gives
P =0g11), 02> =i, R, igI3>=1iar 11D, g4 =iyl 1), 5y =iuril1), i 06)=ir31),

=R21), =R, =is|1), =isl1), =i,|1), =i,
= 12, =11, = |6y, = |5y, = |4, =3,
(4.3.11)

where the octahedral multiplication nomogram, Egs. (4.3.9) and (4.3.8), were
used in turn. Expressing these results in matrix form gives

Llighly  (Qigl2y - (1]i,l6)
i1y 2ligl2)
FO010(,) = '
6lighly  (6liy12) -+ (6liyl6)
1
1
N & (43.12)
1 .

Note that the transformed base states {g|1), g|2),...} such as (4.3.11), can
be derived more quickly simply by inspecting Figure 4.3.1 and using Figure
4.1.2, which defines octahedral g. The 0, 1 O induced representations must
be reduced now to solve the problems diagrammed in Figure 4.3.1. Later on
we will discuss other kinds of induced representations.

B. Model Solving and Induced Representation Reduction

The Newton equations of motion for the classical spring-mass problem are
second-order differential equations

62
ma—t§|x> = alx),
or
a*{jlxy
m ;ﬁzx = Y (lalk)<klx), (4.3.13)
k



260 HIGHER FINITE SYMMETRY AND INDUCED REPRESENTATION

coupled by the acceleration matrix (4.3.2). The Schrddinger equations of the
quantum problem are first-order differential equations,

d
lhawﬁ = Hl¢)
or
ajly>
at

ih

= Y GIHIK)Kkly), (4.3.14)
k

coupled by the Hamiltonian matrix (4.3.3). However, either set of equations
becomes decoupled if one first solves time-independent eigenvalue equations,

alej> = ajlej>, (4315)
for the spring-mass problem and Schrodinger’s equation,
Hle;) = Ejle;), (4.3.16)

for the quantum problem. In either problem the eigenvalues determine the
energy spectrum. The quantum eigenvalues,

E, = ho, (4.3.17)

are proportional to the spectral frequencies of the quantum system. The
square roots

(a;/m)"* = w, (4.3.18)

of the classical eigenvalues give the resonant frequencies of the spring-mass
system.

The eigenvectors |e;) can be obtained for either octahedral problem by
applying the octahedral elementary P operators to the first ket |1),

lesy =PIy /(N2 (4.3.19a)
where normalization factor N¢ is chosen so that
(efles) =1,
or
Ng = <11Pj‘,jT 211> = (PG, (4.3.19b)
There are 24 octahedral P operators, but only six |e') states are possible.
One needs a way to tell beforehand whether a projected state Pg| 1) is going
to have a nonzero norm N{.
The key is to use only those Pj whose right-hand “bodyguards™ P are

compatible with the state |1). Since the state |1) has local C, symmetry
condition (4.3.7) of type 04, only those C,-defined P? with k = 0, are
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compatible. Among the C,-defined subgroup labels in Egs. (4.2.37)-(4.2.41),
the k =0, label appears under three different octahedral irrep labels,
namely, « = 4,, E, and T,. For @ = A, and k = 0, = j [Eq. (4.2.41)] there is
one eigenstate,

legy = Py /(N4)?

LY 24 (g)gll) /(N*1)'*
g

(1) + 12) + 13) + [4) + 15) + [6)) /(6)'°.  (4.3.20)

The formula (3.4.19) for P* and the irreps 2“(g) = 1 from the octahedral
characters (4.1.11) are used. For @ = E and k = 0, [Eq. (4.2.39)] there is an
eigenstate for each value of j = 0, and 2,. For j = 0, we have

1/2
le£) = PEy 11> /(N*) 4

2Y 95 (8)glD/(NE)”
g

Il

=2[(1 + Ry + R+ R3) + (R{ + iy + RS + i3)
—%(r1+il +r, +Ry) —%(r2+i2+r3+Rg)
L2+ R4 P ig) = A(rE Ry + i) |ID/(NEY,
(43.21)

where formula (3.4.19) is used again, this time with the @£ irrep (4.2.19).
(Recall that tetragonal standing- and moving-wave E irreps are the same.)
The g sum is collected into the six C, cosets which label the bases
{115,12),..., 16>}. Thus we have

lef) = (211) +212) = 13) = [4) = 15) = 16)) /(2V3). (43.22)

The second E partner with j = 2, is given:

. - 1/2
le£) = PEy, 1) /(N)

2
= 22 Lof()glD/(NF)
4

2 (V3 _ V3 , \
=1 7(r1+11+r4+R2)+T(r2+lz+r3+R‘2)

§ 3 5
— (R i) = (R Ry i) [D/(NE)
(13) + 14) = 15) = 16)) /2. (4.3.23)

les )



(0 > § 9anedau
st opmyridwe urfouuny jeyl 910N) WSISAS wnjuenb 10J soABMUSSIH (q) "WIISAS [RDISSE]D
I0] Sopowl UONBIQIA [RUWLION (B) "SWOISAS [RIPOYRIOO IOJ SUONN[OSUISIH Z'¢p InSig

WNYL1I3dS
ADHINI HO ADNIND3HA

S+ H
ly

262



INTRODUCTION TO SYMMETRY BREAKING AND INDUCED REPRESENTATIONS 263

Finally, for @« = 7| and k = 0, [Eq. (4.2.37)], there are three more eigen-
states, one for each value of j = 1,, 3,, and 0,. Putting these together with
the A, and E eigenvectors gives all six eigensolutions for the octahedral
problems. Sketches of the quantum eigenwaves are given in Figure 4.3.2(b).
[The corresponding classical vibration modes are shown in Figure 4.3.2(a).]
The T, solution for j = 1, is

1/2
1) = P /

1,04

Zgldo(g)g|1>/<zv“>”2

11>/(N™)

3 1 1
- —ﬁ(r1 +i,+r,+Ry)+ ﬁ(r2+i2+r3+R%)
i i
— (P Ry i) £ = (3 Ry ] ) 1D /(N2
ety = (= 13) + 14) —iI5) +il6)) /2. (4.3.24)

The tetragonal moving-wave irreps (4.2.35) were used. Similarly, the other T,
partners with j = 3, and 0, are found:

lel) = (13) — 14) —il5) +il6)) /2, (4.3.25)
lel1) = (11) = 12)) /v2. (4.3.26)

The T,-type eigenfunctions sketched in Figure 4.3.2 are the real standing-wave
partners,

ey = (= lel) + efD) V2 = (13) = 19) /2, (43.27a)
ey = i(lely + 1eID) V2 = (15) = 16)/V2. (43270
leIt) = led) =(D - 12)/V2, (43.27)

obtained through the transformation (4.2.36).
It is easy to verify that the vectors (4.3.20)—(4.3.27) are all eigenvectors of
the Hamiltonian matrix (4.3.3). The energy spectrum,

E4 =H+T+48,

EN=H-T,
EE=H+T-2S, (4.3.28)

is indicated by singlet (A4,), triplet (T,), and doublet (E) levels next to the
wave functions in Figure 4.3.2. For negligible transaxial tunneling (T ~ 0) the
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CHy  NU3  P(8)

IWF
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T
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Figure 4.3.3 Evidence of an (A4,T,E) spectral cluster in methane laser spectra.
(Courtesy of Dr. Allan Pine, MIT Lincoln Laboratories, from Journal of Optical
Society of America 66, 97 (1976)). The ordering and approximate spacing of the 4,7,
and E lines is consistent with that of Figure 4.3.2.

|[ET: — E41| difference becomes twice the |EX — E'1| difference. This two-
to-one splitting is being observed repeatedly in laser spectra of tetrahedral
and octahedral molecules. One of the first resolved (4,7, E) “clusters” is
shown in part of Allen Pine’s methane spectrum in Figure 4.3.3. (The line
mntensities actually correspond to nuclear spin and inversion degeneracy and
not to the octahedral degeneracies.)

Notice that the E and A, wave functions in Figure 4.3.2 have even
inversion parity, i.c., they belong to E, and A4,, irreps of O,. The T, wave
functions have odd parity and are therefore 7, ,-type bases for O,. The
mathematical significance of the (A4,,, T, E,) combination will be explained
in the following section.

1g° u’

C. Frobenius Reciprocity Theorem and Factored P Operators

It is important to understand the role of subgroup correlation here. The A4,
T,, and E octahedral states were the only ones correlated with an 0,
substate. They are therefore the only octahedral irreps to appear in the 0,
column of the C, subgroup correlation table (4.2.42b). This is the necessary
and sufficient condition that A,, T\, and E should appear in the reduction of
0, T O. We now shall prove that, in general, the ath column of a G O H
correlation table will contain the frequencies f* (D?* 1 G) of G irreps 2% in
an induced representation D1 G. By definition, the ath row contains the
frequencies f*(2*| H) of H irreps D” in a subduced representation
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Z* | H. The beautiful relation

fU(D1GYy=f(2“|H) (4.3.29)
is called the FROBENIUS RECIPROCITY THEOREM. It is easy to
understand and prove this theorem using correlated P operators by general-

izing the 0, 1 O example in the preceding section.

Suppose a base state |1) satisfies a local symmetry condition,

1) = Pe{1), (4.3.30a)

where

P* = (1/°H) Y. D" (h)h (4.3.30b)
h

is an irrep projector of subgroup H = {1, 4, #',...} € G for which

hP® = D(h) P* (4.3.31)
for all & in H. Combining this with condition (4.3.30a) gives

|1y = De(h)|1). (4.3.32)

For example, let us consider a local moving-wave state |1) which satisfies
an H = C, condition

1) = Pls|1), (4.3.30a),
where
P's = 3(1 +iR; — R — iR3) (4.3.30b),
and
R,I1) = —i1). (4.3.32),

The sample equations are generalizations of Egs. (4.3.6) and (4.3.7).
For each coset I, H = {l,,l,h,,k',...},I3H, ... of subgroup H let there
be one more orthogonal states [m) = [,|1). The °G /°H orthonormal states

(D1 G} = {D,12) = LI1,I13) = LI1), ..., L ol DD} (4.3.33)

are a basis for the induced representation D*1 G of “supergroup” G =
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1. g,...}. The induced representation is defined by

D*(1;"gl;), i I7'gl;isin H,

S = ilgl) = (4.3.34)
, if not
For example, the 1, 1 O induced representation of i, is
-
(O e N P R

One chooses one element /; from each coset to label the bases of an induced
representation. We shall call these chosen elements the COSET LEADERS.
The same choices were made in the example above as in Egs. (4.3.10) and
(4.3.11).

To reduce .#“"% one uses irreducible idempotents P = P2 and nilpo-

tents P of G. It is convenient to use the ones which are defined by the
subgroup H, i.e., for which

PEPe = skape (4.3.35)

for all irreducible idempotents P* of H. Now, suppose irrep D? of H is
repeated f9(2* | H) times in the subduced irrep 2% | H of G.

DA(h)

DL H =%h) = Do) . (4.3.36)

Each repeat corresponds to a G idempotent {P2 --- P% ---} whose H
sublabel is (a), that is, a base state correlated with (4). These are the only
idempotents which will not annhilate P¢ or state |1) = P?|1) according to
Eq. (4.3.35). Each one gives rise to an orthogonal set of states

2y = PEI1Y /(NS = (1°/°G) L 28 (g) gl 1) /(N /2, (4.3.37)
8

and another 2 in the reduction of 71, If the states P |1) exist then
there are f“ repeated 2¢ in D?1 G which proves the Frobenius theorem
(4.3.29). The norm (4.3.19b) of these states works out to be the following
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nonzero value:
Ny = (1P = (I°/°G) XL 25 (2)<1lgl1)
8
= (I*/°G) L2 (h)D*(h)
h
= (17/°G) 2 L D*(nh)
h

= (I*/°G)° HZ % (P“),

N& = 1“°H/°G. (4.3.38)

Equation (4.3.32) is used to get the second line, while Eq. (4.3.30b) is used
for the fourth line. The fact that 22(P¢) = 1 follows from the assumed form
(4.3.36) of 2*. For example, by combining the representations (4.2.35) of C,
one finds

1.0 0
PT(P%) =2"(1 + iRy — R} — iR3) /4 = (0 0 0), (4.3.39)
0 0 0

and similarly for 272(P'). From this one concludes that .#47% can be
reduced to

(9}?))

Figg = [b—j—— |. (4.3.40)

(23)

Note that only 7, and 7, appear in the (1,) column of correlation table
(4.2.42b).

The projection operator algebra which leads to this reduction can be
simplified. Suppose the sum X, is replaced by a sum and subsum X,X, over
coset leaders {/; = 1,/,,...} and subgroup elements {1, 4, ...}, respectively.

Py =(1°/°G) Y. Y 25 (Ih)ih. (4.3.41)
I h

The projection operation can be factored if 2% is H-defined. The fundamen-
tal definition (3.3.11) gives

F(Ih) P = PrIAPS
= D*(h) PrIPE
= D*(W)Zj(1) Py, (4.3.42)
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where Egs. (4.3.31) and (4.3.35) were used. Then the projection
PEID) = (1“/°G)Z-@jz*(l)l[ZD"’<h)h|1>]
! h
= (I°H/°G) Y2 (DI[P*I1)] (4.3.43)
1

is reduced to a sum just over coset leaders [ if P?|1) = |1).

fa) = PRI /(N2 = (1°°H/°G) P Lo (DI, (43.44)
!

The normalization formula (4.3.38) has been included in this result.

This coset factorization was observed in the previous examples of Egs.
(4.3.21), (4.3.23), and (4.3.24). It cuts the arithmetic labor down by a factor of
°G/°H, and allows one to tabulate that many fewer £(g) matrices. It also
simplifies energy matrix formulas such as

(LIHIE,) = CQUPEHPE |1y /(NoN#)"?

= (1{HP2PE|1) /(N°NF)'/?

J

= 5% 5, (1{HP%|1) /N*. (4.3.45)

Here G symmetry of Hamiltonian H was assumed so that Pl = Pj‘f could
commute through it. The coset factorization formula (4.3.43) reduces the
nonzero components to a sum

(GulHIG%) = Y UHID 2 (1) (4.3.46)
!
just over coset leaders {l; = 1,1,,...,1,;,,4}- For example, the energy
formulas (4.3.28) can be rederived just from one row of matrix (4.3.3). Given
(1iH|l) = (H,T,S.,5.S,S),
I=(1,R,r,ry,ri,r3),
one has for the E levels (here 5% = 2% is real)

Go JHI ) = H2 (1) + T2, (RY)

Jog
+ 5(9(504(“) +9£04(r2) +9£04(r,2) +90€04(r22))
=H-T+28S, (4.3.46),

and similarly for the T, and A4, levels.
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The (A,T,E) induced representation is labeled (A4,,T,,E,) when O,
inversion is included. Indeed, the first column of the O, > C,, correlation
table (4.2.46¢) gives just these irreps. By extending the local symmetry of state
[1) in Section 4.3.B from 0, (of C,) to A’ (of C,,) one obtains the induced
representation

D10, ~oM 09T oDk, (4.3.47)

By specifying the local C,, reflection symmetry one predicts the overall O,
inversion symmetry of the induced wave states in Figure 4.3.2.

The moving-wave irreps 1, and 3, of C, are part of a subduced E irrep of
C,,. [Recall Eq. (3.6.10).] The induced representations 1,10 and 3,170
both contribute a T, + T, pair of O irreps. Therefore it should not be
surprising that E 1 O, contains two such pairs distinguished by opposite
parities. The E column of (4.2.46¢) gives

DE10, ~2Te + 9T + T + P T, (4.3.48)

Indeed, the Frobenius theorem applies as well to multiply degenerate repre-
sentations such as DE. A physical example of an E 1 O, representation will
appear in the SF, vibration problem in Section 4.4. (It is instructive to rework
the analysis of this subsection assuming degenerate D“. See Problem 43.2)

D. Spontaneous or Internal Symmetry Breaking

When all the tunneling coefficients, S as well as T, go to zero the A, T}, and
E levels in Figure 4.3.2 collapse into a sixfold degeneracy. Then any combi-
nation of the base states are eigenvectors, including each one of the original
base states {|1),]2),..., |6)}. One can then imagine that the system is simply
six identical disconnected wells, each with a C, or C,, local symmetry. The
meaning of the “0O, connection” is lost, even though the Hamiltonian still
really has O, symmetry. This is a simple example of spontaneous symmetry
breaking. Single C, symmetric states like |1) become “frozen in” within a
system that intrinsically has a much higher O, symmetry. With this freezing
or breakdown comes higher (sixfold) degeneracy corresponding to an induced
representation.

More complex examples of spontancous symmetry breaking include ferro-
magnetism, order-disorder phase transitions, Jahn-Teller distortions, and
many other effects both real and imagined in other areas of physics such as
high-energy theory. We shall discuss some of these in detail later. For now let
us review a simpler example.

By applying the Frobenius theorem to the D, correlations (3.6.27), it is
possible to understand better the spontaneous symmetry breaking there. The
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columns of the Dy D C, correlation table give two kinds of induced represen-
rations. The first is

D% 1D, ~A,+E +E,+B, (4.3.49a)

which corresponds to C, symmetric waves frozen in twofold symmetric
valleys. The second is

D21'Ds~B,+E,+E, +A4,, (4.3.49b)

which corresponds to C, antisymmetric waves frozen in twofold valleys.
These waves were sketched in Figure 3.6.5, and it is easy to see how they
belong to induced representations. In the absence of communication between
valleys each set becomes degenerate. Then wave functions which are stuck in
a single valley may be eigensolutions.

One should note that the induced representations D% 1 D, are useful for
the opposite extreme in which all valleys disappear. The first and fourth
columns of D¢ D C correlations (3.6.27a) give

D% 1 Dy~ A, + A,,
D% 1 Dy~ B, + B,. (4.3.50)

These are the band-gap degeneracies that occur when the potential is
constant. The wave states belonging to k,, for which m = +1 mod 6 and
m = +2 mod 6 are bases for representations

D'st Ds = E,,
D%t Dy =E,, (4.3.51)

respectively. These are both induced and irreducible representations of D.

Finally, one should observe that the regular representation .%# of group G
(recall definition of % vis-a-vis G = C;, in Section 3.4) is an induced
representation D% (of C,)1 G induced by the smallest subgroup C,. For
example, the octahedral regular representation is

A =D"10=9"0g"2e29 03971 ¢ 39",

According to the Frobenius theorem the frequency of repetition for each
irrep must equal its dimension, since C, has only one kind of irrep.

The simplest regular or induced representation is D 1 C, which was the
basis of the ammonia two-state inversion model in Section 2.12. In the
absence of tunneling or external field perturbation this basis belongs to a
twofold degenerate inversion doublet.
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E. External Symmetry Breaking

Degeneracy of spectra for a physical system may correspond to irreducible
representations of its symmetry group or to combinations of irreps induced
by subgroup irreps. It is generally possible to split any degenerate or nearly
degenerate level by introducing external forces of lower symmetry. The
splitting or “level-crossing” effect of an electric field on the ammonia doublet
was shown in Figure 2.12.8. Let us now consider some more complex level
splitting and crossing using the octahedral states as a basis.

(a) Electric Quadrupole or D, Splitting Suppose the classical or quan-
tum octahedral systems in Figure 4.3.1 are subjected to a D,, perturbation as
indicated in Figure 4.3.4. This perturbation could be two additional identical
springs attached to coordinate states | 1) and |2) along the z axis of the
classical oscillator. Or it could be a change in the masses of the two particles
on the z axis. For the quantum system let us imagine a quadrupole electric
potential V,/’(z%, x* + y?) such as one might find at the center of a homoge-
neously charged x-y slab. Later, in Chapters 5-7, the definition of
“quadrupolarity” will be made more precise. For now we imagine any field
that has D,, symmetry, i.e., 90° and 180° rotations around the z axis as well
as “vertical” xz- or yz-plane reflections and “horizontal” xy-plane reflec-
tions.
Let the Hamiltonian (4.3.3) be perturbed to the form

B% 12> 13 14 15 |6
H+Q 0 s s s s
0 H+Q S s S §
(H+vy=| $ S H 0 S S|, (435)
S S 0O H S§ S
S S S § H 0
S s S s 0 H

Ir2)=|5)
Lo

Figure 4.3.4 D,, symmetric Q perturbation
of octahedrally symmetric system.
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where Q is the change in energy of potential wells 1 and 2 due to the
perturbation. (For simplicity, we assume next-nearest-neighbor tunneling 7 is
zero.) Let a similar change be made to the acceleration matrix (4.3.2) for the
spring-mass problem. More complicated D,,-symmetric perturbations are
possible, but the V,, is sufficient for exhibiting the symmetry-breaking effects.

The first task in any symmetry-breaking problem is to see which levels
split. According to the D, C O correlation (4.2.42a) we have the following for
the A, T}, and E levels in Figure 4.3.2:

Z4w | D,, = A,,, (4.3.53a)
9T1g l, D4/1 = Azu & Eu, (4.3.53b)
PE Dy, = A, 0B, (4.3.53¢)

(Here, the inversion parity subindices u and g have been added to label the
D,, 2 O, correlation completely.) This implies that V', may split the doublet
E, level into A,, and B,, singlets, while the T;, triplet breaks into an A4,,
singlet and a E, doublet. Furthermore, there are now two D,, singlet-A,,
levels, one from octahedral 4,, and one from E,.

The next task is to find eigenstates and eigenvalues of the new Hamilto-
nian H + Vy- The correlation (4.3.53) implies that four of the six octahedral
states are already eigenvectors if they are D,, defined. Using O, > D,, > D,,
chain labels [Section 4.2.A(a)] for these states, it follows that the states (from
Figure 4.3.2)

0 0
0 0
Tl Tl
! 1/V2 ! 0
SRR A R VS R I
Blu g BZu 1/\/5
0 -1/v2
1/V2 0
T, —l/ﬁ E, ?/2
A, 0 A, 1
u O E4 —/2
0 —-1/2

must be eigenvectors of H + V. This is necessary, since H + V, has D,,
symmetry, and the D,, D D,, labels are all distinct. (Note that the D,, label
is bracketed to indicate the maximal symmetry of H + VQ.) On the other



INTRODUCTION TO SYMMETRY BREAKING AND INDUCED REPRESENTATIONS 273

hand, the states

2 1
E, 2 Ay, 1

-1
[Alg] I /\/ﬁ, [Alg] = } /\/6 (4.3.55)
A -1 Ay 1

-1 1

have the same D,, labels, and are therefore to be coupled through a
2 X 2-matrix representation of H + V.

The representation of H + V/, in this basis is easily computed by combin-
ing Eqgs. (4.3.52), (4.3.54), and (4.3.55),

Tlu Tlu Tlu Alg Eg Eg
[Eu] [Eu] [AZM] [Alg] [Alg] [Blg]
Blu BZu A2u Alg A]g Alg
_| H :
(H+ VQ> - . H .
: H+Q

H+45+Q/3 V2073
V20/3 H—25+20/3

H-28.

(4.3.56)

The eigenvalues of the new matrix are easily found. They are plotted in
Figure 4.3.5 as a function of Q for a fixed negative values of S. Note the
splitting or level shifting of the A4,,, T,,, and E, levels around Q = 0 in the
center of the figure. Sublevels belonging to states

E, > _ Eg

1 [Alg]

T A
‘T1u>= 1u >’ and
3

[Azu1>’ A1) = Ly

have shifts proportional to Q for small Q. These are called FIRST-ORDER
energy shifts or splitting. The slopes of the energy-level trajectories are 1, %,
and _%, respectively, for these sublevels. The slopes correspond to the diago-
nal terms Q, Q/3, and 2Q /3 in the Hamiltonian matrix (4.3.56).

The A,, sublevels curve away from each other when |Q| becomes compa-
rable to |S|, and the off-diagonal components V20 /3 take effect. Then the
two different A -substates become mixed up in order to be eigenvectors of
the (2 X 2) submatrix in Eq. (4.3.56). It is instructive to examine the A,
eigenvectors when |Q| is much greater than |S|. Then the A4,, cigenvalue
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i
AN ‘
A |
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(> A | |
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NV \
high i
=—a ;?elq:: fiold = thlig(;d =
(Dgy, Symmetry) (O}, Symmetry} (Dgp, Symmetry)

Figure 4.3.5 Energy-level correlation for D,, Q perturbation. Eigenvalues and
cigenfunctions change as the O, symmetry in broken to D,, by the Q perturbation.

plots asymptotically approach straight lines, and the eigenvectors are nearly
independent of Q. The[A,,] eigenvectors of submatrix

_[H+0/3 V2073

m=\"sos H+20/3 (4.3.57)

in Eq. (4.3.56) with § ~ 0 are easily found. The vector belonging to eigen-
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value H + Q is

E

g

[A1]

Alg \/5
[4,]] "V

1
|(H+Q)[A4,]) = 5 > (4.3.58a)

which is represented by

1 2 1
1 2 1
B! 1 o
Wl/‘/g“Lﬁ ] /\/1_-0/\/5 (4.3.58b)
1 ~1 0
1 -1 0

in the original {|1), 12),...,16)} basis. [(H + Q)N A, D> corresponds to a
positively phased wave on the two ends (|1) and |2)) of the z axis as shown
in the lower left-hand and upper right-hand sides of Figure 4.3.5. The salient
[A4, g] trajectories asymptotically approach the A,, level as |Q| grows. The
orthogonal A,, eigenvector whose energy remains close to H for high [Q] is

_ \/5 1g 1 Eg
l(H)[Alg]> -3 [Alg] A [Alg] ) (4.3.59a)
which is represented by
1 2 0
1 2 0
V2 1|
ﬁi /\/E—F - /\/ﬁ= 1/2 (4.3.59b)
1 -1 1
1 -1 1

The wave function of this A;, state is confined to the octahedral “equator”
(13>, 14>, 155, and |6)) as shown in Figure 4.3.5. Particles residing on the
equator are not effected by the Q perturbation.

It is instructive to transform the A,, submatrix in Eq. (4.3.56) to the basis
[(4.3.58) and (4.3.59)] of high |Q] eigenstates.

1 V2 [ H+45+Q oXe] 1 V2

JRE— — N — —_ JR— —_ H

R | R 3 N B A
V2 1 NeYo) H—25+20Q V2 1

N R A B Hx2s

(4.3.60)
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Then the tunneling amplitude S appears in the off-diagonal position as well
as in the lower diagonal. The lower diagonal H + 2§ gives the expectation
value of the I(H)[Alg]> state. The states I(H)[Alg]>, I[Eg]>, and I[Blg]>
belong to a D,, subcluster of eigenvalues H + 25, H, and H — 2, respec-
tively. They all have equatorial wave functions in Figure 4.3.5 and resemble
the D, molecular orbitals depicted in Figure 2.12.4. Furthermore, the
{4,,, A,,} pairs in Figure 4.3.5 are analogous to the inversion doublet
discussed in Section 2.12. However, in the limit of high Q there is no
A, — A,, splitting as long as next-nearest-neighbor tunneling parameter 7'
is assumed zero.

Nevertheless, the evolution of A;, wave functions and energy trajectories
with Q in Figure 4.3.5 is analogous to the avoided crossing discussed in
Section 2.12. Here the A4,, waves change continuously from polar waves on
one side of the Q axis to equatorial waves on the other.

(b) Electric Dipole or C,, Stark Splitting Suppose the classical or
quantum octahedral systems in Figure 4.3.1 are subjected to a C,, perturba-
tion as indicated in Figure 4.3.6. This perturbation could be two different z
springs attached to coordinate states |1) and |2) of the oscillator. For the
quantum system let us imagine a dipolar electric potential V,, = V(z, x?+y?)
such as one might find in a uniform E field pointing along the z axis. Such a
field has C,, symmetry, i.e., 90° and 180° rotations around the z axis and
“vertical” x-z, y-z, and diagonal plane reflections. It no longer has the x-y
plane reflection symmetry which was present in the preceding D,, example

of V.
Q
Let the Hamiltonian (4.3.3) be perturbed to the form
1) 12) 13) 14> 15> 167
H-D 0 S S S S
0 H+D S S S S
S S H 0 S S|, (43.61
(H+Vp) = ( )
S S 0 H S S
S S S S H 0
S S M S 0 H

where D is the change in energy of potential wells 1 and 2 due to the electric
field. Again, let us ignore the double-tunneling parameter T.
The level splitting associated with a reduction to C,, symmetry depends
upon the O, > C,, correlation (4.2.46¢). This gives
DM Cy = A, (4.3.62a)
9" | C,y=A BE, (4.3.62b)
o8 ,C,, =4 ®B, (4.3.62¢c)
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2 Figure 4.3.6 C,, symmetric D perturbation
|r2)= 16) of octahedrally symmetric system.

which is qualitatively similar to the D,, splitting (4.3.53). The important
difference is that now there are three states belonging to the same label [ A']
of the C,, symmetry of the new Hamiltonian. The states

1 2 1/V2
Alg i Eg % Tlu 1/\/5
<[A’]>= 1 Ve, <[A’]>= 1 V12, <[A’]>= 8
A 1 A —1 A
1 -1 8
(4.3.63)

may all be mixed by a general C,, symmetric perturbation. On the other
hand, each of the states

0 0 0

0 0 0

/ g 1/2 < Tlu 1/\/" Tlu 0

(Bl =1V 12 (E]] =] _ . [E]) = 0
\ ) _1/2 B 16\/5 B 1/‘/5
~1/2 0 —-1/V2

(4.3.64)

is distinguished by one of its C,, > C,, labels, and therefore each one is an
eigenstate of (H + V). Note that the same base states are used here as in
the preceding D,,, example. Because of inversion commutation the Dy, > D,,
hase states are the same as C,, O C,, = {1, R3, IR3, IR3} base states. There-
fore. the states [(4.3.54) and (4.3.55)] were simply relabeled by C,, and C,,
irreps in the preceding equations. The relevant C,, characters are given by
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the following:

1 R} IR} IR?
41 111
B|1 -1 1 -1
A |1 1 -1 -1
Bl1 -1 -1 1

HIGHER FINITE SYMMETRY AND INDUCED REPRESENTATIONS

(4.3.65)

The representation of H + V7, in the basis [(4.3.63) and (4.3.64)] is the
following:

Tlu Tlu Tlu Alg Eg Eg
[E [E] [A] [4'] [4] [B]
B/ B/I A/ A/ A/ A!
H .
. H .
D V2D
H+Vp) = B A
b H— 4§ 0
V3
2D 0 H-2S
V3
H-2S
(4.3.66)

The perturbation V, has odd inversion symmetry, since the I operation
reverses any “polar” vectors such as those of a homogeneous electric field:
IVl =1Vl = =V, (4.3.67)

Therefore, a matrix component of 7}, between any two states of the same
parity must vanish. This includes the component

Eg

1

(A, IV,

E
1g> = —(A]gIITVDI

Eg\ _
1

Since (g) denotes inversion symmetry,

[l = (]
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the component equals its negative and must therefore be zero:

(Al

)t

E
1g> =0. (4.3.68)

The same goes for the diagonal components

< Tlu
3
which would not otherwise be prohibited by C,, symmetry. This is quite the
opposite of the V, perturbation which has even inversion symmetry and
cannot connect any states of different parity.

Elimination of certain matrix components by symmetry analysis belongs to
the subject of SELECTION RULES which are to be discussed in Chapters 6
and 7. For now let us see how the absence of D terms on the diagonal of
Hamiltonian (4.3.66) affects the energy levels. In Figure 4.3.7 the Hamilto-
nian eigenvalues are plotted as a function of D. Note that for small D there
is little or no splitting of T,, or E,. At D = 0 all energy trajectories have
zero slope. The splitting and shifts are said to be SECOND ORDER when
diagonal components of a perturbation vanish. The energies do not change
until appreciable amounts of different states are mixed to make new eigen-
states. The mixing is controlled by the off-diagonal components —D / V3 and
—2D/ V3 in the Hamiltonian (4.3.66).

As in the preceding Vi, example it is instructive to study the case in which
the perturbation V;, dominates the Hamiltonian, i.e., the high-D limit. The
following transformation diagonalizes the D-dependent part of the [A']
submatrix.

il T ) - (bl = (5

1 1
1 LA L 0 _ H-D 25 0
% N i
2 ! D H+ 45 0 ! 2 ! 25 H+ 25 25
0 — —— -—= H+ — — —= |-
& 7 % V6 ¥
1 1 1 \/2D 1 1 1
- i - 0 H-2S —_— - — — 0 2§ H+D
V% B 7 5 ﬁ}

(4.3.69)

The high-D ground eigenstate of eigenvalue (H — D) is the original local
base state |1):

A, E

1 ) 1 8
= l1[4] )+ —) [4] ) (4.3.70)
/e A & A

1 Tlu
1D = (—) [4] )+
V21,
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] ’ |

high zero high
D field field D field 3 —
(C4, Symmetry) (O, Symmetry) (C4y Symmetry)

Figure 4.3.7 Energy-level correlation for D perturbation. Eigenfunction and eigen-
values change as O, symmetry is broken to C,, by the D field. No first-order splitting
(for low D field) occurs.
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This corresponds to a wave function localized on the positive z axis as shown
in the lower right-hand side of Figure 4.3.7. The uppermost eigenfunction on
the same side corresponds to the eigenvector

E

1 1u 1 1g 1 g
12) = (ﬁ) [4] )+ (“6) [4] )+ (ﬁ) [j:] . (43.71)

with eigenvalues H + D. Of course, |1) and [2) switch positions if D
changes sign. The equatorial wave functions belong to the same sort of
(A, E, B) subcluster seen in the preceding example.

The [ A'] state,

A E

(13 + 19 +15) + 16Y) /2 = (%) () - (%) (4] ) (4372)
A A

has energy expectation H + 2.

(c) Magnetic Dipole or C, Zeeman Splitting Suppose a uniform mag-
netic field is placed along the fourfold z axis of the octahedral system. Then
the symmetry is reduced to the Abelian cyclic group C +- A magnetic vector B
is a pseudovector of axial vector. B, is reversed by vertical x-z or y-z planar
reflections, and so these elements of C,, are not symmetry operators for
magnetic fields. The effects of a uniform magnetic field B, are similar to
those arising from a uniform rotation about the z axis, as stated in Larmor’s
theorem. The symmetry properties of a rotating reference frame are more
obvious. It is clear that ¢z plane reflections reverse the z-rotational sense of
direction and cannot be symmetry operations.

The C, correlation table (4.2.42b) tells what can happen to the (A,T,E)
levels of the O, system.

94,C,=0,,
hiCc,=0,9 1,8 3,, (4.3.73)
gE1C,=0,82,.

According to this all degeneracy is removed. This is called C, Zeeman
splitting and is analogous to the splitting discussed in Section 3.6.A. Here a
3 X 3 matrix for the O, states may have to be diagonalized. Transformations
to moving-wave or circularly polarized tetragonal bases are helpful in prob-
lems such as these. Physical examples of C, splitting will be given in Section
4.4,
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(d) Threefold Axial Perturbations and Basis Changing Suppose a
uniform electric field is placed along the threefold (111) direction or r, axis
of the octahedral system. Let the Hamiltonian for this field be perturbed to
the following form:

(1) 12) 13) [4) 15) [6)
H-d 0 S s ) S
0 H+d S S S S
(H+Vpy=| § S H-d 0 ) S
) S 0 H+d S S
S S S S H-—d 0

S ) S S 0 H+d

(4.3.74)

Here the down-field states | 1), |3), and |5) have reduced energy expecta-
tion values (H — d), and the up-field states | 2), | 4), and | 6) have increased
values (H + d). The symmetry of the Hamiltonian is reduced from 0, to
Cs, = {1, ry, ri, iy, li,, Iis}. The broken symmetry includes + 120° rotations
around the field direction and reflections through three diagonal planes
which are parallel to the field direction.

The O > C;, correlations (4.2.46b) tell qualitatively how the octahedral
levels will be split by a C;, symmetric perturbation:

D | Cy = A, (4.3.75a)
9T} Cy,=A +E, (4.3.75b)
95 C,, = E. (4.3.75¢)

According to this a (2 X 2) Hamiltonian submatrix must be solved for the
pair of A4’ states and another one solved for the pair of E states.

In order to reduce (H + V) to (2 X 2) submatrices one must use base
states labeled by C;, irreps. This is where one must be careful to consistently
define all bases and avoid annoying phase errors. The (4,7, E,) bases we
have been using are labeled by tetragonal subgroup chain O, > D,, > D,,.
The tetragonal irreps 2= and 2% are already reduced with respect to

Cs,. From Section 4.2, and, in particular, Eq. (4.2.19) we have the following:

{2Y) =1, DG =1 D2MCDH =1, @i, = L2Mi) =1, DYs(1is) = 1}

DEQ) = DEs(r) = DE(rD) = DEUi) = @iy = @Fey) =

10 L/ IR I BN IR L
2 2 2 2 2 2 2 2

0o 1) ] L TGRS N ICCHR N R P 3 !
2 2 B 2 3 ey 2

(4.3.76)
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However, the Ty, irreps (4.2.14) are not reduced with respect to C,,

Ty = eru(rl) =  ghur?) = gTzu(liz) = ngu([i4) = ng([is) =

SO

4.3.77)
Tlu Tlu
1 /712 /'3
torm for a trigonal problem. One needs an 4’ and an E pair of the T, bases
Tlu
J
make a C;, trigonal {’f>!§>} or [A') bases?

By applying C;, P operators to one of the T,, bases the correct combina-
tions are obtained. |4’) is found from
Tlu
3

Hence the tetragonal bases {

>} are not yet in a convenient

according to correlation (4.3.75b). What combination of tetragonal

Tlu
3

p?

> =(1/6)(1 + ry+r2 + Iiy + Iiy + Ii5)

Tlu
J
and the tetragonal 27(g) in Eq. (4.3.77). The normalized result is

T, A,T1>
173 EP U 3=
A’> 3 3

using

Tlu > T
g 3 /= 291‘3]“(&’)
j=1

Tlu + Tlu +
1 2

Similarly, the |E") states are obtained by using the P£ projectors

Pif: = (lE/OCM)Z@if*(g)g
g

T3“‘ >)/1/3_. (4.3.78)

and the irreps 2%(g) =2 %(g) in Eq. (4.3.76). The normalized results are

Tlu

£ ) =pg| T >\/3/2 - (— T1u> - T1“> 12| T >)/¢E, (4.3.79a)
1 3 1 2 3

e T T T

E | =PE 31">‘/3/2 - ( 11> = ' i >)/\/§ (4.3.79b)
2
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The Hamiltonian (4.3.74) reduces to a submatrix,

Alg Tlu

A A

A4 _[H+48 —d
(H+Vy) —( 4 H)’

between the A’ states

’ill,g> = (11 + 12) + 13> + [4) + 15) + |6)) /V6,

Tlu
A!

>= (1) — 12> + 13) — 14y + I15) — 16)) /V6,

and an identical pair of submatrices,

Eg Tlu

E E

1,2 1,2

E_(H~-28 —d
(v = (HZ2S ),

between the E states of the first partners

Eg

E )= QD +212) - 13) - 14 - I5) - [6))/V12,

1

Tu
E )= @I - 212) = 13) + 14 — I5) + I6)VIZ,
1

or else between the E states of the second partners:

Eg
E =03 +18 15 - 16)/2,
2

Tlu
E =03 =14 - 15+ 16))/2
2

The remaining solution and analysis is left as an exercise.

(4.3.80)

(4.3.81)

(4.3.82)

(4.3.83)

(4.3.84)
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Note that the Dy, — C;, transformation

! 1 1 T,
3 "l V3 1>
1 . 1
=7 - = ’2> (4.3.85)
2 1
3 0 V3 ‘3>

obtained in Egs. (4.3.78) and (4.3.79) differs slightly from the D,, — D,
transformation (4.2.31). One must use caution when changing between D,
and C,, bases.

In fact D,, symmetry results if a threefold axial quadrupole field fell on
the octahedral bases. The O, > D, correlations,

QAwiDM=Am,
9N | Dy, =A,, +E,, (4.3.86)
D | Dy, = E,,

follow from D; correlations (4.2.44). It shows that D, defined bases would
not mix at all. A D;,-symmetric quadrupole Hamiltonian (H + V) results if
one replaces all the +d’s in (4.3.74) with g’s. However, such a matrix causes
no splitting at all. One needs a more “severely” defined Hamiltonian of D,
symmetry. For example, it is possible that the amplitudes,

(11H[4) = 2IHI3) = -+ =S'(q), (4.3.87)
for tunneling along the field might be different from the amplitudes,
(11H13) = (2|H|4) = -+ =8, (4.3.88)

for tunneling transverse to the field. Field-dependent tunneling will effect the
splitting predicted in Eq. (4.3.86) as well as changing the spectrum of other
problems which have been treated previously in this section. (See Problem
4.3.6.) The variation of tunneling amplitudes with interatomic distance is
important in the study of molecular bonding. Electronic energy cigenvalues
of symmetric systems are generally quite sensitive to tunneling. The effects of
nuclear motion on electronic energy and vice versa will be taken up in
Section 6.7 and in subsequent chapters.
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4.4 VIBRATIONS OF OCTAHEDRAL HEXAFLUORIDE MOLECULES

Octahedral hexafluoride molecules such as UF,; have attracted attention
because their spectral properties provide a way to separate the isotopes used
in reactor fuel. Let us study the first of these properties involving its
mechanical vibrations. In Figure 4.4.1 is a drawing of a mechanical model of
UF, assuming O, symmetry for a molecule, and a coordinate system for its
motions. The larger ball represents the U atom of mass M, and the smaller
balls represent F atoms of mass m. To begin with let us assume only two
kinds of central force of “spring” constants: k for the F—F interaction, and
J for the F—U bond. In order to analyze SF; it is convenient to include a
bending constant b for the F—S bond, as indicated in the figure.

Obviously, a continuous infinity of choices for coordinates exists in prob-
lems like this, and one just hopes to pick a fairly convenient system. The
choice made in Figure 4.4.1 is adequate for solution of the harmonic
equation of motion and for demonstration of some further theoretical points
concerning symmetry analysis.

A. Projection Analysis

As in previous examples it is convenient to obtain eigenvectors from vectors
projected by the elementary operators

Pg = (1°/°G)L 25 (8)g (4.4.1)

Model of “covalence’
or bending force

1A)

Figure 4.4.1 Octahedral hexafluoride (UF,SF;,...) molecular model Cartesian
coordinates for each atom are labeled by orbit (A4, B, or C) and coset leaders.
(1 =R, r, R,,... etc.) Spring constants are equal to (k) for (F—F) bonds and ; for
radial (F-central) bonds. Bending spring constant is b.
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of the octahedral groups O or O,. It is important to see how P operators can
be efliciently applied. First of all, our choice of coordinates in Figure 4.4.1
shows which bases are connected by symmetry operations. Sets of base
vectors like {|A4, |R,A) = R,|A4),...} or {IB),|R,B) =R,IB),...} or
{IC),IR,C) = R,|C), |R;C) = R}|C)} are each called ORBITS of symme-
try when any two of their bases can be connected by a symmetry operator.
Elementary operators p;; need only be applied to the first vector in each
orbit. The result of operating on any others is just a linear combination of the
first ones, as seen in the following:

PilgA) = PSgld) = )} 25(g) Pgld). (4.4.2)
k

As explained in Sections 4.3.B and 4.3.C, only certain projectors P need
be applied to a given state such as |4). These are the ones for which the
right-hand index (k) is compatible with a local C, symmetry condition such
as

14y = P14) = (1/4)(1 + R; + R + R3)l4).

This is the same as Eq. (4.3.7) involving C, irrep A = 0,. In fact the orbit
{l4), R?|4),...} is just the basis of the first induced representation

D%10=A4,0T, ®E

introduced in Section 4.3.A. The full C,, € O, labeling of this orbit is given
by the induced representation

D*10,=4,,9T,9E, (4.4.3)

which corresponds to the (A4,,,T,,, E,) eigenvectors for the octahedral
systems in Figure 4.3.1. The mechanical system in Figure 4.3.1 is a con-
strained version of the UF, molecule in which the {|B) ---} and {|C) -}
degrees of freedom are absent.

The {|B) ---} orbit contains 12 base states. The local C, rotational
symmetry condition for |B) is

IBY = P2|B) = 1(1 — R})IB), (4.4.4)

since 180° rotation of |B) around the 3 axis is just — |B). A more detailed
local symmetry condition for |B) is

IB) = PFIB) = (1 — R} — IR? + IR%)IB), 445
1 4 3 1 2
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where
Pf=P; = 4(1 - R} — IR} + IR}) (4.4.6)

is a Cy, © C,, projection operator. The full O, labeling of the {|B) -}
orbit is therefore given by the 12-dimensional induced representation

51 O, =T, @T,,0T,&T,, (4.4.7)

according to the E column of C,, correlation (4.2.46¢).

The three base states of the {|C,), |C,), |C;)} orbit involve translation of
the central U atom. |C;) obviously satisfies the local symmetry condition of a
polar vector

IC;y = PDe|C); (4.4.8)

ie., they are ready-made bases of O, irrep T,, in the tetragonal basis.
Altogether, the UF, coordinates belong to a 21-dimensional representation
which reduces to

A+B+C=(A,0T,9E)e(T,0T,,6T,0T,,) o (T,)
=A,0E, T, 0T, T, &3T,. (44.9)
Each irrep labels a fundamental resonance. All resonances except the three

T,,’s are uniquely labeled.
It will be necessary to account for the 12 B-orbit vectors

e BY = PgIB)Y/(NE)'2. (4.4.10

The tetragonal local symmetry condition (4.4.5) tells which k& to use. If you
forget how the k are labeled it is easy to represent the local symmetn:
projector (4.4.6) and see which components are nonzero. Using tetragonalls
defined irreps (4.2.14) the following representations result:

2Te(PF) = (1/4)(275(1) —2Tw(RE) — 2T+ (IR}) +2 74 (IR3))

0 0 -1 0 0 1 0 0 -1 0 0 0
= 0 1 0]~ 0 -1 0|—-]0 -1 0] + 0 1 0 4=10
0 0 1 0 0 1 0 0 -1 0 0 -1 0

(4.4.11a"

1.0 0 -1 0 0 -1 0 0 1 00 10
h(PEY=110 1 of-] 0o -1 of—-{ 0 1 of+[{0 -1 0 4={0 0
0 0 1 0 0 1 0 0 1 0 0 1 0 0
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The first and second diagonal components, respectively, of the T,, and T,
matrices are nonzero. Hence, T, and T, vectors require that k& = 1 and 2,
respectively,

le,/*BY = PTw|B) /(N{w)"?, (4.4.12a)

IejglgB> = })j;lgNleg|B>/(N72"1g)1/2.

(4.4.12b)

As explained in Section 4.3.C the calculation of Pg|B) is simple when Pg
matches the local symmetry as per Eq. (4.3.35). In writing out each projected
state one needs only to sum over group elements / ; which label coordinates
(|l;B) in Figure 4.4.1. This result was expressed by Eq. (4.3.44). Using the T,
irreps (4.2.14) we derive the following:

leTBY = L(2T(1)B)
+ o +GI(R)IRB)Y + -+ +2T1(R})R}B)

+ - +2T(R)RIBY) /(N)'?

= (B> + IR,B) + IR{B) — |R3B)) /2, (4.4.132)
leliB) = (IR;B) + |r,B) + Ir,B) + 1isB)) /2, (4.4.13b)
les*B) = (= |R,B) + IR3B) + [r}B) + r}B)) /2. (4.4.13¢)

Figure 4.4.2 shows the first partner state |e]*B) to be a translation relative
to the 1 axis of the octahedral equator. Shown also is the state

le]3*B) = 1_16( o+ DP(R)IRB) + - +D[(i5)lisB)

o ADB(r2NBY + - D T(r2)Ir2BY) /(N)

(—IR3B) + lisB) + |r{B) — |riB))/2, (4.4.14)

Figure 4.4.2 T, motions from the B orbit.
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Figure 4.4.3 Hexafluoride vibrational modes and spectrum. 7;, modes are not
drawn precisely, since their form depends upon the choice of constants and rotational
perturbations. (See Figure 4.4.7.)
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which corresponds to rotation around the 1 axis. This is a nongenuine
vibration and so it will not be considered further until rotations are studied in

subsequent chapters.
The derivation of the T, states

lefB) = PT|B) /(N]I)'”, (4.4.15a)
le+B) = PR|B) /(Nf2)"?, (4.4.15b)

follows the same lines. The results are shown by the first and second triplets
in Figure 4.4.3. Shown also are the 4-orbit states

le4is4) = PMis|4) /(N4e)'/?, (4.4.16a)

leEeA) = PEel4) /(NEe)'?, (4.4.16b)

which were derived before in Egs. (4.3.20)-(4.3.23).
Thus we have accounted for all modes of UF; except those labeled by T,
Besides the T, states (4.4.13) there are axial F-atom translation states

1/2
2

lefjuA) = PEulA) /( NTw) (4.4.17)

which were derived before in Eqs. (4.3.27), and the central U-atom transla-
tion states (4.4.8). The first partner of each is shown in Figure 4.4.4a. Each of
these modes causes the molecular center of mass to translate. If the arrows in
Figure 4.4.4(a) stand for velocity, then the linear momentum of |e7iAq),
le"«B), and |eT«C) is mV2, 2m, and M, respectively. Clearly, the combina-
tion modes

Ty = 2 lefied) — [eTnB)
= 2Pj§1u|A> — 2Pj{'u|B> (4.4.18)
and

Icf““) = MﬁIe}ll‘A> + 2M|ejT1"B> — 6mlc;) (4.4.19)

have zero translational momentum and do not move the molecular center of
mass. They are drawn in Figure 4.4.4(b). The genuine vibrations will be
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Figure 4.4.4 (Tll) motions. (a) Primitive motions. (b) Constrained motions with zero

translation.

combinations of these two constrained states only. Rigid molecular transla-
tion corresponds to a third T, state,

|tTw) = y2lelud) + 2lefuB) + |c;), (4.4.20)

and this type of motion will not be considered further here.

B. Solving Equations of Motion

The O, symmetry projection provides states which simplify the equation of
motion

mli) = —Fx). (4.4.21)

The symmetry analysis also tells us exactly how much of the mass matrix (m)
and force matrix (F) needs to be written. Of the (21)> = 441 possible
components of (F) only the 39 entries in Eq. (4.4.22) will be needed. The
same is true of the m matrix, although its form for this problem is quite
simple anyway. In general a row of the matrix is needed for each symmetry
orbit. If the matrices are Hermitian as are (F) and {m) only the upper-diag-
onal parts of each row need be written,
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The (F) components are derived from the spring-coordinate geometry of
Figure 4.4.1 according to the small vibration approximations of Section 1.4.B.
One should expect a spring-mass model to be only an approximate model for
the vibrations of molecules such as UF, or SF;. If more information is gained
about the molecular binding then more realistic {F) components can be
given,

The matrix formula (4.3.46) gives the components of (F) and {m) matrices
in terms of the “primitive” representation (4.4.22). For the bases with distinct
irrep labels the resulting components are the desired eigen-
values. From the eigenvalues of (F) and (m) one derives the -squared
cigenfrequencies w® = (m~'F). As an example consider the T,, and T,,
eigenfrequency calculations:

(wT)" = (1/m)Z<B|F|lB>9T2u(l)

= [(k + &) FT2(1) — (k/2 + b/2)(FT(R,) +DT(R3))] Jm
= (k +b)/m, (4.4.23)
(0722)" = (1/m) L (BIFUB) @571

= [(k+b)D[2(1) — (k/2 + b/2)(FZ(R,) +DJ(R3))] fm
=2(k + b)/m. (4.4.24)

Similarly, the eigenfrequencies of the radially moving motions are derived as
they were in Section 4.3 [recall Eq. (4.3.36),, for example]:

(0™15)" = (1/m) L (AIFILAY D Ns(1) = (4k +j)m, (4.4.25)
I

()" = (1/m) LAAIRIAYDE(1) = (k +j)/m.  (4.4.26)
)

This accounts for all genuine vibrational motions in Figure 4.4.4 except the
two T, modes.

A two-by-two (F) and {m) matrix representations in the |c/«) and |¢/1)
basis [(4.4.18) and (4.4.19)] need to be derived. The first component of
operator Q = F or Q = m is computed as follows:

(efmlQlefy = (2 AP — 2 BIPT)Q(2PSulA) — 2PTu|B))
= 4 A|P{1Ql4) — 4 AIP{j»Q|B)
— 4 B|P1Q|4) + 4(B|P[QIB). (4.4.27)

The projection matrices (P} can be reduced to sums over the labeling coset
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cader elements / for each orbit:
(cfwlQlefmy =20, 4 = V20,5 + Qps — V20s,,  (4.4.28)

where

Q.4 = LCAIQIADT(D),
!
Ops=0.p= (1/\/§)Z<A|Q|1A>93T1’(1)’
!

Ops = L(BIQIIBY2]i(1).
!

Substituting the primitive {F) and {m) components (4.4.22) into the preced-
ing gives the following:

Fii Fup 2k +j —V2k Myq Myl [m 0
Fy. Fyp -2k k+b) My, Mgy 0 m/
(4.4.29)
Hence, the first 7|, components of {F) and {m) are
(cu|Flcha)y =9k +2j + b
<CjT1uIm|cJT!u> = 3m (4430)

Similarly the other components are computed. The off-diagonal component
of Q=ForQ=Mis

(/v lQlefu)y =2MQ , 4 + 2V2MQ 4, — 12m(A|QIC,)
—V2MQp, — 2MQy, + 12m(BIQIC,),
which yields
(cjulFlefu) = 2(j = b)(M + 6m),

<C]T1u]m|CjT1u’> = (. (4431)

The calculation of the second diagonal component completes each matrix
since F and m are Hermitian,

(cTw|FlcTwy = (2 + 4b) (M + 6m)?,
(c/wim|cfw) = 6mM(M + 6m). (4.4.32)
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The acceleration matrix {a) = {(m~'F) is then found:

9k +2j+b  2(j+b)(M+ 6m)

<CT1u‘a’CT1u> <CT1ula|CT1u’>

_ 3m 3m
i — b i+ 2b) (M + 6m
(chwlalcTi)y  (cTwlalcTur) ! U ! )
3ImM 3mM
(4.4.33)
The secular equation for the T,, acceleration matrix is
M—SA+P=0, (4.4.34a)
where each root or eigenvalue
A= (0l (4.4.34b)
is the square of an eigenfrequency, while
=@Bk+j+b)y/m+ (2j+4b)/M (4.4.34¢c)
is the sum of eigenvalues, and
P = (kj + 2kb + jb)(M + 6m)/m*M (4.4.34d)

is the product of eigenvalues. The T, cigenfrequency equation is then
T ) 1,2 1/2
Wl = (S +(S2—4P) ") " V2. (4.4.34¢)

The eigenfrequencies w*(k /j) for b = 0 are plotted in Figure 4.4.5 using
the preceding equations and Egs. (4.4.23)—(4.4.26). The values of (k /j) which
fit the A,, and upper Ty, lines observed in UF,, NpF, and PuF; are
indicated each by a line of circles which denote experimental results. Note
that the values of k/j are small; they range between 0.1 and 0.2. For small k
the spectrum breaks into two “clusters.” The high-frequency cluster
(A4,,,T,,, E,) involves radial vibrations which stretch the j spring or radial
bonds. This cluster belongs to the induced representation A 1O, as ex-
plained in Section 4.3. The low-frequency cluster consists of T,,, T, T,,,
and T, if you count rotations. This includes all the angular motions, which
arise from the B orbit and which belong to the induced representation
E 1 O,,. Angular or bending motions do not affect the j springs directly, but
they do stretch the k& and b springs. For k = 0 = b the bending or B-orbit
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Figure 4.4.5 Heavy-atom hexafluoride vibration spectra and (k, j) spring constant
theory.

cluster of levels become degenerate with zero frequency. The splitting of the
A-orbit cluster (A4,,,T,,, E,) for k = 0 = b depends on the strength of the j
springs and the mass ratio m /M. In Figure 4.4.5 (m /M) is quite small, since
the central atomic mass M is large compared to m. The motion of the
central atom is part of the 7,, modes, and is involved in the coupling
between them for nonzero k or b. (Notice how the T,, curves “repel” each
other as k varies across Figure 4.4.5.) However, even for k = 0 = b there is
coupling between antipodal m atoms through j springs connected by the
central M mass. This coupling is analogous to the “transaxial” tunneling
described by the 7 parameter in Eq. (4.3.28), since it leaves E, and A,
levels degenerate, but splits away the T, level.

For a lighter hexafluoride molecule such as SF, the distinction between
radial and angular states seems to disappear, as shown in Figure 4.4.6. Now a
small (b = 0.2) value for the bending spring seems to be necessary to even
approximately match the observed vibration frequencies. The presence of k
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Figure 4.4.6 Sulfur hexafluoride (SF;) spectra and theoretical curves. A small
bonding constant (b = 0.2) has been included.

and b springs coupling and a light central atom makes the ideas of spectral
clusters and localized vibrational modes less useful. Note, however, that the

ratio w’2 : @’ is predicted to be
s fol =2, (4.4.35)

independent of k or b according to Eqs. (4.4.23) and (4.4.24). This agrees
closely with the experimental values for UF; and SF.

More knowledge of molecular potentials or a more sophisticated arrange-
ment of “springs” is needed to precisely analyze all XY, vibrational spectra.
This is particularly true when higher excitations or overtones are observed,
and when anharmonic contributions to the potentials need to be considered.
However, some information can be learned from the present spring-mass
model.

For example, let us derive a prediction for the isotope shift between S¥F
(M = 32) and S*F, (M = 34) T,, modes. Setting m =19, b = 0.2/, and
k = 0.18j as given in Figure 4.4.6 one needs to consider the solutions
(4.4.34¢) for two different mass values: M = 32 and M = 34. The ratios for
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-7e high (+) and low (=) T,, frequencies are predicted to be

WM = 32) foTu(34) = 1.0173,  wlu(M = 32) /o (34) = 1.0064,
(4.4.362)

- close agreement with the experimental values:

965 cm~! /948 mm~! = 1.0179, 615 mm~'/612mm™~! = 1.0049.
(4.4.36b)

Isotope shifts for the other modes besides T, can be calculated very quickly.
There is no shift in the harmonic spectra due to a change of M. A shift due
t0 changing all the m nuclei is given by the ratio w*(m’) /w*(m) = (m' /m)*/>.
A general theory of isotope shifts by Teller and Redlich is described in
Herzberg’s books listed at the end of Chapter 3.

The interest in the hexafluoride molecules has been centered mostly on
the T,, modes. These are the only modes which vibrate the central M atom
and the only ones which have a useful M isotope shift. It is instructive to see
more exactly how the various atoms move in the 7;, vibrational modes. To
see this one must find the eigenvectors

left(£)) =]/ + &

¢l (4.4.37)
of the T,, acceleration submatrix (4.4.33). For the S**F; molecular parame-

ter values m = 19, M =32, b = 0.2], and k = 0.18j, there is the following
eigenequation:

(00670 41 \fe.) (e,
1(0.00044 0'“2)(5?)_)‘*(8; : (4.4.38a)

where the eigenvalues
NoNTw = (@7m)’ = 0138, Alw = (0T)" = 0.0415] (4.4.38b)
are found using Egs. (4.4.34). The eigenvector solutions are

el +)) = 0.068]c]1) + 0.0012[cTw) (4.4.39a)
|lele( =)y = 0.114] ¢ — 0.00071|c]1e) | (4.4.39b)

where the m = normalization condition
((£)elmle(£)) =1 (4.4.40)

of Eq. (1.4.13a) is used. The first (i = 1) partner for the two SF, modes is
pictured in Figure 4.4.7(a). This was obtained by combining the constrained
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motions in Figure (4.4.3(b)) using the coefficients in Egs. (4.4.39). Note that
the displacement of the equatorial fluorine atoms for |e,(+)) is

(R3Ble,(+)) = 0.068{R3Blc,> + 0.0012( R}B|c})
= 0.068( —1/2) + 0.0012(32) = 0.004, (4.4.41)

which is quite small compared to the values for the axial atoms. Note that the
central atom opposes the axial fluorine atoms in |e(+)) while it goes along
with them in |e(—)). Clearly, |e(+)) has higher frequency because it distorts
the strong j spring more than |e(—)). The displacement of the equatorial
atoms in |e(—)) is almost as large as that of the axial atoms, Bear in mind
that the precise magnitudes of the T, displacements depend on the values of
the molecular parameters m, M, b, j, and k. The T,, motions are not
entirely fixed by symmetry as are the A E,, T,,, and T,, motions in
Figure 4.4.3.

The T,, partners {le,(£)), le;()), les(£))} are the same translational
distortions pointing along the x, y, and z directions, respectively. These are
the plane-polarized or standing-wave bases. It is important to visualize the
motions of the circularly polarized or moving-wave bases,

T £)) = (~lex(£)) — iles(£))) V2,
les(£)) = (lex(£)) — iles(£))) V2, (4.4.42)
leo(£)) = les(£)),

shown in Figure 4.4.7(b). [This transformation of bases was discussed around
Eq. (4.2.36).] Notice that each particle has an elliptical orbit. For example,
the semimajor and minor orbital axes of the xy-equatorial fluorine atoms in
the le(+)> mode are a = 0.11 and b = 0.004. The classical angular momen-
tum of a mass m in an elliptical oscillator orbit is

1g®

[ =mabw /2.

The sum of these momenta for all the atoms in a molecule is the classical
VIBRATIONAL ANGULAR MOMENTUM of the system. The coupling of
the vibrational momentum to the angular momentum of the molecule as a
whole leads to rotational or CORIOLIS splitting of a vibrational line.

C. Classical Canonical Coordinates
From now on let us demand the m-normalization conditions
(eflmlef) = 6P,

(ef|Flef) = 685, (™), (4.4.43)
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which were discussed in Section 1.4.A. The T, eigenvectors le]“(+)) have
already been made to satisfy this. The other modes |ef*) only involve motion
of the mass-m fluorine atoms, and the newly normalized vectors are obtained
by affixing a factor 1/ Vm to the old ones. It is also convenient to use
CANONICAL VARIABLES (g, p) defined by

g = {efImlx),
pif = <ef|mii). (4.4.44)

The relation between canonical coordinates ¢;* and “ordinary” coordinates
o = {IQ1X) is easily derived:

af = X LAefImlIQ)IQlx). (4.4.45)

Q=A4,B,C |

Here completeness of the original unit states |/Q) is used. The labeling
operator [ ranges over all states in orbit Q = A4, B, and C.

Expressing the “ordinary” coordinates in terms of the canonical ones is
probably more useful. Using the m-completeness relation (1.4.14) one derives

X, = UQlx) = Y Y (iQler){efm|x)
= X LQlefar. (4.4.46)
a

For example, let us express Xg3p in terms of g7 The coefficients (/Qle]")
can be read directly from Flgures 4.4.4 and 4.4.7(a):

Xpip = Tow — —— T + 0.004g7( +) — 0.08¢7(—). (4.4.46)

zr 20m zr

The quantum theory discussed in the following section will give wave func-
tions or statistical distributions for the g’s. From this one derives an X,q
wave function through Eq. (4.4.46).

D. Eiementary Quantum Theory of Vibrations

One advantage of the canonical variables (4.4.44) is that they satisfy Hamil-
ton’s equations

oH
apla - ql' - pj ]
oH . >

— = —pr= (") g, (4.4.47)

dq;
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cor the Hamiltonian
H=X X[(p)/2+ (w%ar)*/2)]. (4.4.48)

<22 Hamiltonian describes a collection of independent oscillators each
~zving unit mass and angular frequency w®. According to Dirac’s quantiza-
.22 rules the canonical variables g7 and p;* can be replaced by Hermitian
“perators g = (g/)" and p® = (p®)' satisfying the commutation relations

lar, pf] = 87%5,,1h. (4.4.49)

These relations and the Hamiltonian (4.4.48) are all that is needed to
complete the quantum-mechanical oscillator problem. Most of the work is
Zone once the classical normal modes are found, and the Hamiltonian is
rzduced to the simple form of Eq. (4.4.48).

An even simpler form can result if the following opertors are defined:

a; = (\/qu‘ + %pf‘)/\/ﬁ, (4.4.50a)

R

o' = (Wq;r _ ﬁpg)/m. (4.4.50b)

According to Eq. (4.4.49) they satisfy the following commutation relations:
[ a2, af'] = 585,11, (4.4.51a)

[af. af] = 0= [af', ar']. (4.4.51b)

w . . 1
H=7}, 2—2 (afaf +afa’) = ¥ Zhwa(afaf + E)' (4.4.52)
[ a i
The following commutation relations then result:

[H. o] = ho®a?,  [H,af] = —ho"al. (4.4.53)
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Operators o' and a are called RAISING and LOWERING operators be-

cause of their effect on eigenstates. Suppose eigenstate |e) satisfies Hle) =
ele). Then the eigenvalue of a'le) will be raised by A as follows:

Hay'le) = ([H, o' | +a'H )le)
= (ho® + £)af |e), (4.4.54)
and the eigenvalue of al|e) is lowered by the same amount:
Halle) = (e — ho*)alle). (4.4.35)
It is possible to produce all eigenstates |e) by applying raising operators to

the ground state |0 - - - ). The ground state is defined to be that state which
cannot be lowered.

a?l0--->=0  (forall a,i). (4.4.56)
Then the eigenstates |e) = | - nf -~~~ nf -+ ) are
o nf
|-cong mf oy = (af‘) ((LJB) 10 YN
(4.4.57)

where the 1/ VN factor normalizes the state so that

(oo n® oo g By = (4.4.58)

¢ J 4 J

Derivation of the normalization and eigenvalues involves the following
operator relations whose proofs are left as exercises:

[a.(a)"] =n(a)"™, (4.4.59)

(a2, ()] = n(n = 1)(a)" "+ 2n(a")" "0 + ()",

n—m+r

(a).
(4.4.60)

[, ()] = go(n!/(n —m + ) (ml/(m = r)lr)(a")

o

In the preceding the irrep labels are assumed to be the same and are

deleted for typographical simplicity. The normalization is now derived from a
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special case of identity (4.4.60):

©--- |(a)n(aj)n|0"'>= ©--- l[(w)"(a’r)”] + (aT)"(a)"|0...>

=nl4 0.

This holds for each and every (‘;‘) hence n is given:
Nogongo = o (nf)t (nPYLee (4.4.61)

The general raising and lowering relations result, also:

a:ﬂ... ne coonf o) = /n;’+1|-~n?+1-'-nf Sy,
7|n;1 nlB ey = /n}a’ n?-—lnf cee Y, (4.4.62)

Using these relations it is easy to derive the eigenvalue spectrum of the
Hamiltonian (4.4.52):

H - |nf¥ n}B cee Y = ZZ(”%"‘%)}"UV | --- n? ceepB Sy,
(4.4.63)
The energy eigenvalues for the hexafluoride molecules are given by

e = (nM + 1/2)hwe + (nfe + nks + 1)has
+(npe(+) + ndu(+) + nlu(+) +3/2)ho’n( +)
+ (72 4 npet i+ 3/2)ho" + (] + nle 4+ nTe 4 3/2) o

+ (n{lf‘( =) +ade(=) +nlu(=) + 3/2)th1“( -). (4.4.63),
A sketch of octahedral hexafluoride energy-levels is shown in Figure 4.4.8.
See Figs. 6.6.2—4 for a more complete and accurate diagram of levels for SE,,
UF,, and SiF,. The levels are labeled by a conventional spectroscopic
notation v, for A,,, v, for E,, vy for T,, v, for T,,, and v for T,,. When
the A,,, E,,... states are doubly excited they are labeled 2vy,2v,,..., etc.
These are calied double HARMONICS, and similarly for higher excitations.

The number of levels in a given nth harmonic depends strongly on the
degeneracy of the fundamental. A second harmonic of E, labeled (2v,) has
three degenerate states:

locnfende, 2o = {1..,2,0, 00, 1L, 0,2, 0,
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INTRAMOLECULAR ENERGY TRANSFER IN MULTIPLE PHOTON EXCITATION (SF)

3000
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2000 - Y+21,

'€
S — Ulg—
% 150005 By — Vptly— |
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0

Figure 4.4.8 Sketch of SF, quantum vibration levels. The density of levels increases
rapidly at higher energy. Standard spectroscopic notation is used. For example, two
quanta of the T,,(+) or v, vibration is labeled 2v,. The figure shows expected flow of
energy during laser excitation of the v “ladder.” (Due to Robin S. McDowell and Jay
R. Ackerhalt of Los Alamos National Laboratory.)

while a second harmonic of T, (2v,) has six degenerate states:

|, nTw, nZw nTw o (2v5))
12,000, 30 10,20, 50 0,02,
Lo L0, 0 e 1,0, 1,00, 0,0,1,. ).

In general the nth harmonic of an /“-dimensional fundamental vibration has
degeneracy d(n) equal to a binomial coefficient in Pascals’ triangle:

Fundamental dimension: [=1 2 3 4 5

ground state: n=0d=11 1 1 1

fundamental: n=1 1 2 3 4 5

second harmonic: n =2 13 6 10 15 - (4.4.64)
third harmonic: n=3 1 4 10 20 35 ---

fourth harmonic: »n =4 1 5 15 35 70

The formula for the degeneracy is

d(n®) = (1* + n® — 1)1 /ne1(1% = 1)1, (4.4.65)
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The general level is a combination of each vibration «,f,... excited
n® n*, ... times, respectively. Its degenercy is simply the product
d(n*,nP,...) =d(n*)d(n?)---. (4.4.66)

The d degeneracies are split by anharmonic terms such as ¢°, ¢*%, ¢°¢/, ...
etc. as explained in Section 6.6.

Finally, let us consider briefly the wave function of the oscillator eigen-
states. The ground-state conditions (4.4.56) take the form

(q - Wwg+ (i/Vo)plo---) =0,

b

Vo g + (i/@)(h/i)(%(q S0 ) =0, (4.4.67)

in the coordinate representation where p — (A/i)d/dq. The solution to
these differential equations is a product of Gaussian wave functions:

(g 10 )=y (qg )= (e*m(q)z/Zh/)( oL (4.4.68)

For each coordinate g = g, g, g5¢,q{ ', ... there is a Gaussian distribu-

tion. An excited state is obtained by raising a particular oscillator one unit.
Starting with a Gaussian ground-state function one produces the wave
function of state |1,0,...) as follows

..... (g,...) = (\/5‘1 - (h/\/ﬂ—))% Yo,0,..(a,-..)
= (Ww ge @@ /2y (- (4.4.69)
Finally, the nth-excited state for one coordinate is
Upo. (@,...) = ((02"hmnt) H(qVw /h)e *@ /) (- (4.4.70)

where H,(x) is the nth Hermite polynomial.

Oscillator wave functions (g) die off quickly when g exceeds the magni-
tude of the CLASSICAL TURNING POINT ¢{(TP). This is the classical
point of maximum excursion for g at which momentum L,(p#)? is zero in the
Hamiltonian (4.4.48):

H = (0*)*(q*(TP))*/2;
setting H equal to the oscillator eigenvalue we have
(n® +19/2) 0" = (0%)*(q*(TP))"/2
or

g*(TP) = [(2n® + [*)h /0], (4.4.71)
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where [ is the number of partners {g{ ¢% --- gt} in mode « and n? is the
oscillator quantum number.

ADDITIONAL READING

It is hard to find a simple physical treatment of induced representations and subgroup
coset spaces. The references cited below are not simple to read.

G.W. Mackey, Induced Representations of Groups and Quantum Mechanics
(Benjamin, New York, 1968).

A.J. Coleman, Induced Representations and the Symmetric Group, Queens Univer-
sity Papers on Mathematics (Queens University Press, Kingston, Ontario, 1965).

The first applications of induced representations to tetrahedral and octahedral fine
structure are given in the papers listed below.

W.G. Harter and C.W. Patterson, Phys. Rev. Lett., 38, 224 (1977); J. Chem. Phys.,
66, 4872 (1977).

W.G. Harter, C.W. Patterson, and F.J. Ja Paixao, Rev. Mod. Phys., 50, 37 (1978).

W.G. Harter and C.W. Patterson, J. Math. Phys., 20, 1453 (1979).

The excerpt of methane spectra shown in Figure 4.3.3 was given in Allen Pine’s
article.

A.S. Pine, J. Opt. Soc. Am., 66, 97 (1976).

A review of the spectrosocpy of octahedral and tetrahedral molecules for the laser
isotope program is the following:

R.S. McDowell, C.W. Patterson and W.G. Harter, Los Alamos Science, 3, 38
(1982).

A qualitative discussion of symmetry breaking is given in the following: R. Peierls,
(Dirac Memorial Lecture) Contemporary Physics, 33, 221 (1992)

PROBLEMS

Section 4.1

4.1.1 Generally one does not need to tabulate representations of all ele-
ments of a given group in order to define them. Some smaller number
of elements {g,, g,,...} can be chosen whose products
{g?, g%,...,glgz,glgg,...,glpgzqg{,...} finally generate each and
every element of the group. Such elements are called generators of the
group. What are the minimal number of generators of the groups
listed below? (Hint: Consider the Hamilton turns.)

@ C;, b G, () D, @ 0, (e O,
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(a) How many elements of the octahedral group O commute with
the 120° rotation operator r,? Do these elements form a symme-
try group? If so which and why, or why not?

(b) How many elements of the octahedral group O commute with
the 90° rotation operator R;? Do these elements form a symme-
try group? If so which and why, or why not?

There are several D, symmetry subgroups in the octahedral group.
Identify them and tell which if any of these are normal subgroups. Are
there any normal D, or D, subgroups?

Section 4.2

4.2.1

4.2.2

423

Construct correlation tables and level-splitting diagrams for the fol-
lowing tetrahedral (7,) and octahedral (O,) subgroup chains.

(@ T,>C,,>C,. W 0,>D, DD,,
® T,5D,,02C,. (& 0,5C,>C,.
(© T,5C,;, 2Cs ® 0,>T,>D,.

Compare the two different types of D, subgroup correlations within
O symmetry by sketching level-splitting diagrams.

Dy

I=1
by
P

Describe and/or label the level splitting that would (or would not)
happen to an atomic (I = 1)p orbital triplet placed in the center of
the following “cages.” (Give symmetry group and irreps for each case.)

(a) Eight equal charges (b) Same as (a) but (¢) Same as (a) but
on cubic vertices. one extra charge on two equal charges on
cubic vertex. cubic body diagonal.
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(d) Same as (a) but (e) Same as (a) but (f) Same as (a) but
two equal charges on four equal charges on four extra charges on
cubic face diagonal. cubic face. alternate vertices.

(g) Same as (a) but (h) Same as (b) but
four equal charges on with a magnetic field
cubic body diagonals. along cubic diagonal.
Section 4.3
4.3.1 Let each C; coset {1C5, g,C;, g5C5, ...} in octahedral group O be

associated with a ket vector {|1), |g2>, lg57, ...}, respectively. Let a
representation #(g) of each element g of the group O be defined by

glge) = lgg,) = lg;h),

where gg, is an element of coset g,C;, or

Tx(8) =<glglg,» =1,  if g;'gg, is in subgroup C,,
=0, otherwise.

[This is the principal C, induced representation of O. It is labeled

& = D%of C;)1 0]

(a) Construct matrices .#(1), #(r,), #(R}), #(R,), #(i,).

(b) Use the traces of these representations to compute which and
how many irreducible representations of O will appear if .# is
reduced. Compare with the results predicted using the correla-
tion table between C; and O and the Frobenius reciprocity
theorem.

(¢) Do parts (a) and (b) for the cosets {1D,,g,D,,g,D,,...} of the
subgroup D, which contains the 90° z axial rotatlon R3.

4.3.2 Let each C;, coset {1C;,, g,C;,, £5C;,, ...} in octahedral group O,
be associated with a pair of ket vectors {[1,1), |1,2), |g,,1),
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lg,,2), 185, 1),185,2), ...}, respectively. Let a representation #(g) of
each element g of the group O, be defined by

glew. 1) = DY (g 'e8y )lg; 1) + DE (2, '8, )lg;, 2,
where gg, is in coset g,Cs,.,

glgis2) = DP (87 '88x )lg;, 1) + D5,( g7 a8y )lg;. 20,
or g/ 'gg, is in subgroup C;,,

or

tfj’a;k’}; = <gj7a(g|gk7 b> = Dab:b(gjvlggk)7 lf gj_lggk iS in Subgroup C3L'7
=0, otherwise.

[This is the E of C;, induced representation of O,. It is labeled
F =DF (of C;,)10,.1]

(@) Construct matrices .#(1), #(r,), #(IR}), #(IR)), and #(Ii,).

(b) Use the traces of these representations to compute which and
how many irreducible representations of O, will appear if ¥ is
reduced. Compare with the results predicted using the correla-
tion table between C;, and O, and the Frobenius reciprocity
theorem.

(¢) Do parts (a) and (b) for the cosets {1D,,, g,D,y, 83D,;,-..} of
the subgroup D,, which contains the 90° z-axial rotation R,.
(Use the E, representation of Dy,.)

4.3.3 Suppose a quantum particle can tunnel between eight equilibrium
positions or potential wells each being located at the vertices of a
cube. Let the local energy of each well be H, and let the nearest-
neighbor tunneling rates be —S§, while the next-nearest-neighbor
tunneling rates are equal to — 7. Let the local wave function associ-
ated with each well be trigonally symmetric; that is, let: r,|1) = [1)
and similarly for each of the local states [g, ).

(a) Label the states using coset elements derived in Problem 4.3.1 or
4.3.2.

(b) Construct the first two rows of tunneling Hamiltonian matrix in
terms of H, S, and T.

(c) Construct symmetry defined states P;|1) and sketch the wave
functions. You may want to compare the states generated by the

irreducible representations defined by different subgroup chains
0,-C;.-C, and O,-D,,-D,, or other.
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4.3.5
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JRE
TP

NG —
\ . o

Cube Truncated Cubic Octahedron

(d Display eigenvalue spectrum for the case $ > 0 and T = 0.
(e) Display eigenvalue spectrum for the case § = 0 and T > 0.

Suppose a quantum particle can tunnel between 12 equilibrium posi-
tions or potential wells each being located at the vertices of a cubic
octahedron. Let the local energy of each well be H, and let the
nearest-neighbor tunneling rates be —S§, while the next-nearest-
neighbor tunneling rates are equal to — 7. Let the local wave function
associated with each well be C,, symmetric; that is, let i,/1) = [1)
and similarly for each of the local states |g, ).

(a) Label the states using coset elements.

(b) Construct the first two rows of tunneling Hamiltonian matrix in
terms of H, S, and 7.

(c) Construct symmetry-defined states P5|1) and sketch the wave
functions. You may want to compare the states generated by the
irreducible representations defined by different subgroup chains
0,-C,,-C, and O,-D,,-D,, or other.

(d) Display eigenvalue spectrum for the case S > 0 and 7" = 0.

(e) Display eigenvalue spectrum for the case $ = 0 and T > 0.

The character tables for the icosahedral symmetry Y and the fivefold
dihedrai subgroup Dy are listed in the following.

Y classes 0° 72° 144°  120° 180°
c, order 1 12 12 20 15
A 1 1 1 1 1
T, 3 G+ G - 0 -1
T, 3 G - G+ 0 -1
G 4 -1 -1 1 0
H 5 0 0 -1 1
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The numbers G + and G — are the “golden ratios” G + = a+
V5)/2and G - = (1 —5) /2.

Ds classes  0° 72° 144° 180°

¢, order 1 2 2 5
A, 1 1 1 1
A, 1 1 1 -1
E 2 -G- -G+ 0
E, 2 -G+ -G- 0

(a) Show how the icosahedral levels split when the symmetry is
reduced to Ds and then to Cs. Construct a correlation table
between the Y group and these two subgroups.

(b) Show how the icosahedral levels split when the symmetry is
reduced to D, and then to C,. Construct a correlation table
between the Y group and these two subgroups.

4.3.6 Compute the detailed effects of field perturbations on a charged
particle tunneling through the cubic eight-well system (Recall Problem
4.3.3). Plot the energy levels as a function of the field and draw
cigenfunction sketches for extreme field limits. Label all levels with
appropriate (maximal) symmetry labels.

< T—w <
i D) Pt
P |
(a) Dipole field (b) Quadrupole field
on four-fold axis. on four-fold axis.

(¢) Sketch (without detailed calculation) the energy level effects of
the same fields on the three-fold axis. Use physical arguments
and correlation results.

(d) Check the results of (¢) with detailed diagonalization of the
model Hamiltonians.
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Section 4.4

4.4.1 Construct and solve a mechanical force model for the methane-like
XY, tetrahedral molecule. Using the data listed below try to fit your
model to SiF,, CF,, CD, or CH, fundamental frequencies.

SiF,: v, =80lcm '; v, =264mm™"; vy, vy =382cm ', 1032 cm ™
CF,: v, =908cm /; v, =435cm 1 vy, v, =632cm !, 1283 cm ™
CD,: v, =2069cm™’; v, =1092cm™"; vy, vy =996 cm !, 2259 cm ™
CH,: v, =2917cm™Y; w,=1534cm ';  v;,v, = 1306 cm’, 3019 cm™".

4.4.2 (a) Construct and solve a mechanical force model for a cubic Xg
molecule using O, symmetry.
(b) Label the nonzero frequency modes of the cubic molecule CyHy
(cubane).
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TABLE F.2.2 Conventional O Irreducible Representations. (Cartesian Fourfold Axial Bases)

(a) Vector Representation T,

27(1) = R? = ry = r,= ri = r3 =
1 - 1 . 1 : -1 1 1 .
S co-1 1|t 1 : : 1 o=
1 -1 1 C-1 1 -1 :
2T(R3) = R%= ry= ry = ri= r} =
-1 : -1 : 1 . -1 -1 -1 :
=1 ] - -1 -1 : : 1 |- -1
1 -1 <1 co1 -1 1 .
ZT(Ry) = i, = i = iy= R} = R, =
| -1 -1 -—1 1 : 1 : O: T\ | T, \ | Th
1 S : -1 =1 ] Sl =1 Dy E )| E }]A; Ybasis
: 1 -1 . -1 : -1 - 1 : Cy:|B,[|B, [ |4,
STURYD = iy = R.= R3 = ig = is=
1 ‘ 1- 1 : 1] : -1 -1 - -1 :
P -1 -1 1 1 Co-1 :

(b) Second-Rank Tensor T, = T, ® A, Representation (T- is T, with R, R?, and i Operations Negated.)

2

271 = R?= re= r.= ri= ry =
1 - 1 - 1 : -1 1 T
Sl -1 ] : o 1 S
S - 1 T ] -1 -
2T(R3) = R} = ry = Py = ri= r; =
-1 -1 ~ 1 -1 -1 -1
-1 1 e 1} I R
1 -1 : -1 1 -1 1 :
P2TUR,) = iy i = i= R} = R, =
Lo 1 -1 -1 o |1\ T\ |T2
_‘1 1 . 1 1 . 1 1 1 —1 1 D;ilE - E B, \basis
: -1|- 1 -1 - Bl . o ~1 . C.|B By /|4,
™R3 = iy = R, = Ri= i = =
R - -1 -1 1 : 1
(AU | TP -1 - S—1 : -1 S
. -1 . 1 1 -1 : =1 ‘ 1 ‘




TABLE F.2.2 (Continued)

(c) Second-rank Tensor E Representation

FEQ R} = ry= ry = r? = v} =
S Y -1 -3 ~1 V3 -1 3
10 10 2 2 |12 2 2 2 2 2
0 1' 0 1 V3 -1 V3 -1 -3 -1 -3 -1
P 2 2 2 2| {2 1
QE(Rg) R% = ry = ry = ri = ry =
-1 =3 -1 -3 -1 V3 -1 V3
10 10 2 2 | |2 T2 2 2 2 2
0 1 0 1 V3 -1 V3 ~1 -3 -1 Y3 -1
2 2 2 2 2 2| |2 72
PE(R) iy = i = iy = R} = R, =
-1 3 -1 3 -1 -3 -1 -3
- = - — — || = — o0 | L\|T
1 0‘ ‘1 0 2 2 2 2 2 2 e l4 B\ pas
4 1 1 asis
L PCH I CT O e N Il N U ot PO
2 2 2 2 2 2 2 2
FER3) iy = R, = R} = i = is =
-1 3 -1 V3 -1 -3 -1 -3
10 1 0 2 2 2 2 2 2 |2 T2
0 —1’ 0 -1 VCRS | V3ol -3 1 -3 1
2 2 2 2 T2 2 12 2

3

|A1 \ A
Timsczlar 400 40 1 and pseudoscalar (A45) ‘Bl / representations. see the O character table.
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TABLE F.2.4 (Continued)

(b) Second-Rank Tensor Representations

271 = R} =
1 - - 1
DR} = R: =
-1 - -1
R S|
| -1
DR, = iy =
’ -1 |
1 . -1 -
ZTHRY = iy =
1 l»l
— 1 . .
-1 . 1

ry =

ry, = r12= r22=
. -1 -1 - -1
-1 1 . -1
Fy = r32: r42=
1 - . . -1 S
- -1 —1 . 1 .
i, = R} = Ry =
-1 -1 - -1
P . . 1 . .
1 - -1 1
R}= ig = is =
-1 1 1
-1 - 1 -1

o: |\ |\
Dy:|E Y E )| B, ) basis
Dy:|B, [ 1B, ]|4,

Z5Wm R} = = Ty = ri = r3
-1 -3 -1 =3 -1 V3 -1 V3
10 10 2 2 B B 2 2 2 2
0 1 0 1 V3 -1 ]\? - - -1 -3 -1
2 2 2 R 2 2 2 |
FERY) R} - re= s = - =
SR BT I IS
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For scalar (A4;) |4: ) and pseudoscalar (A,) | B, ) representations, see the O character table.
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TABLE F.2.6 O > D, > C, Subgroup Chain Labeled Irreducible Representations (Fourfold Moving-Wave Bases)

(a) Vector T, Representation
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TABLE F.2.6 (Continued)
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(b) Tensor T, Representation
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The tensor E representation is identical to that of D, > D, standing-wave basis.



TABLE F.2.7 O D D, D C, Subgroup Chain Labeled Irreducible Representations (Threefold Moving-Wave Bases)

(a) Vector T, Representation
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The O D D3 D C, T representation is obtained from that of O 2 D, D D, by the following transformation matrix:
T, T, T\ .0
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TABLE F.2.7 (Continued)

(b) Tensor Representation T
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The O > D, D C; T, representation is obtained from thatof O = D, = D: by the following transformation matrix:
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TABLE F.2.7 (Continued)

(c) Tensor Representation E

™)

R3 = [14](23]
1
1

ry = [124]

-1
2

V3

2

p
i, =112] R? = [13][24]
-1 1
is =[13] ry = [234]
-1 =13
PR F
1, ﬁ -1 V3
2 7' 3t
i =123] r3 =1[142]
-1 —1 3
—_ t i *4—1[
2 2 2
-1 3 _
LR L)
2 2 2 2
. >~ e -
Ri={1324] RE = [12][34}
-1 1
-1 1
R, =[1234] ry = [143]
-1 3 -1 43
5 T R
-1 3 -1 V3
i i
2 T3 2 72
i =114] ri = [243]
-1 3 -1 B
— i — i
2 2 2 2
-1 3 -1 3
Y PR

The O 2 D, 2 C; E representation is obtained from that of O > D, > D, by the following transformation matrix:
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