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CHAPTER 3

BASIC THEORY AND APPLICATIONS
OF SYMMETRY REPRESENTATIONS
(NON-ABELIAN SYMMETRY GROUPS)

So far we have considered symmetry operations which commute with each
other (gh = hg), i.e., groups which are Abelian. It has been shown how one
can expand all operators of any Abelian group in combinations of a single set
of orthogonal idempotent operators. Several examples have been given in
which the Abelian idempotent operators help to solve physical problems.

However, many of the most interesting problems involve non-Abelian
symmetry groups, that is, groups having some operators which do not
commute. In Figure 3.1.1 the non-Abelian crystal point symmetries are listed
and modeled. Note that half of the possible crystal symmetries and all of the
larger groups are non-Abelian.

It will now be shown how to generalize the idea of the idempotent
expansions to include these more complicated symmetry groups and related
physical problems. The simplest examples that illiistrate each point will be
used in the development of this theory.

3.1 SIMPLEST EXAMPLES OF NON-ABELIAN SYMMETRY

A. Trigonal Symmetries C,, and D,

The smallest non-Abelian symmetries are the groups C;, and D, with each
having just six elements. C;, is the full symmetry of the three-pendulum
system which was discussed in Section 2.6. The theory there involved only the
symmetry C, which is a subgroup of C,, (the line between C; and C;, in
Figure 3.1.1 indicates that C, is contained in Cy,; ie, C3CCy.). The
operators of C;, which were neglected in Section 2.6 are the three vertical

151
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Order of Symmetry Group |
2 3 4 6 8 12 16 24 48

Figure 3.1.1 Crystal point symmetry groups. Models are sketched in circles for the
16 non-Abelian groups. (See also Figure 2.11.1.)

mirror-plane reflection operators labeled by oy, 0,, and o5 in Figure 3.1.2.
(See also Figure 3.1.3.) On the left-hand side of Figure 3.1.2 there are
pictures of the pendulum bobs frozen in some nonequilibrium position state.
Then the effect of the reflection operators on the positions of the pendulums
are shown by the pictures in the center of Figure 3.1.2. The effect of o,
followed by o, is a counterclockwise 120° rotation (r?). These results may be
expressed by the group product relations (o0, = r) and (0,0, = r?).

For non-Abelian groups, the order of the operations makes a big differ-
ence. We shall define a group product ab to mean b acts first, followed by a
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Figure 3.1.2 Effects of plane reflections on pendulum mass configuration. The
effects of the products of reflection operations ¢, and o, taken in different orders are
shown. Note that the reflection planes are fixed on the page, while the pendulum
masses get moved.

on an operand sitting to the right of the operations. The complete multiplica-
tion table for all the C,, operations is

2
r|r|r 1oy o o,

2| 2
re | r 1 r o, o3 o (3.1.1)
o lo oy, a3 |1 r r?

1 1|02 O3

2

oy |0y | Oy Oy | T 1
oy |03 oy o, | r 21

By replacing the reflections o, o,, and o5 with 180° rotations p,, p,, and
p5 around axes normal to the o; planes one obtains the symmetry group D,
Objects of D, and C;, symmetry are compared in Figure 3.1.3. Note that
each reflection operation o; in Cs, is related to its rotational counterpart p;
in D, by the equations

o, =Ip; = p;1, p; =10, =0cl, (3.1.2)

J J
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D3 Cav

£3(180°)

r(120°)

93=le3

P . Q (plane reflections)
(180°)

Figure 3.1.3 Pictorial comparison of D; and C;, symmetry. A propeller having D5
symmetry is shown next to a three-plane paddle having C,, symmetry. The group
operations are labeled by arrows, which indicate the effect they have. For example, p;
is a 180° rotation around the y axis, while Ip; = o5 is a reflection through the xz
plane. (Here axes are fixed and the objects rotate.)

involving inversion I. [Recall Eq. (2.11.4).] Since I commutes with all point-
group operations, the relation between D, and C;, is easily established. For
example, the product (0,0, = r) implies that (Ip,Ip, =r) or (p,p, = r),
since 2 = 1. In this way one sees that D, has the same multiplication table,
aside from a change in notation, as C,,; ie., D; is isomorphic to Cj;,.
Mathematicians have shown that there is only one abstract non-Abelian
group of order 6.

B. Reflections and Hamilton’s Turns

There are some easy ways to visualize and compute point-group products.
Consider first the product of mirror reflections. Imagine two planes: an xz
plane, and another ¢z plane which makes an angle ¢ with the xz plane
while intersecting it along the z axis. The matrix representations of reflec-
tions o,, and g, may be obtained from geometry as shown in Figure 3.1.4.
The effect of mirror reflections on the unit vectors |x) and |y) is shown. The
reflection planes intersect along the z axis, which is normal to the figure.
Hence, we have a,,|z) = |z) for all angles ¢.

The presluct of reflections represented in the {|x), |y} basis is as follows:

- [cos2¢ sin2¢ {1 0
(04:00) = sin2¢ —cos2¢ (0 —1)

cos2¢ —sin2¢
(sin2¢ cosz¢)=<R[2¢]>'
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Figure 3.1.4 Representations of mirror plane reflection operators (a) o), (b)
(04,

The result is a representation of a counterclockwise rotation by angle 2¢ in
the xy plane or around the z axis of intersection. This proves that a rotation
Rl[w] by angle w about an axis & is a product of two planar reflections. The
first reflection may be through any plane that contains &. The second
reflection is through a plane containing & and making an angle w /2 with the
first plane as shown in Figure 3.1.5. The w /2 arc between the two normals N,
and N, in the figure is called a HAMILTON-TURN vector.

The Hamilton-turn vector can be positioned anywhere on its great circle
or equatorial arc. It is useful for computing products of rotations around
different axes. Suppose a rotation R[w'] about axis w’ follows R[w]. Then

>

N
Mg

Nk

/
7
2 A
Al d
/ - 2nd pi ANE N 4 N,
| 2] NORMAL 1
1 PLANE N,

NORMAL.
(a) (b)

Figure 3.1.5 Hamilton’s representation of rotation R[w]. (a) Two planes intersect
with half the angle of the rotation. (b) Hamilton-turn great circle arc vectors on a unit
sphere represent the rotation about the axis w, which is orthogonal to their plane.




156 BASIC THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATIONS

8~

Riw'] Rlw] = R[w"]

N2

/)
", A

2
N

2
.

(a) (b)

Figure 3.1.6 Hamilton’s construction for rotation group product (Rle']R[w] =
Rl "]). (a) The head of arc vector (w /2) for first rotation R[w] meets tail of arc vector
(' /2) for second rotation Rl«']. (b) Resultant great circle arc vector (" /2) defines
product rotation Rlw”].

one may move their Hamilton-turn vectors into a head-to-tail position at the
arc intersection as shown in Figure 3.1.6(a). Then the N, and N} normals and
planes coincide and the corresponding reflections cancel. The great circle arc
" /2 between the first normal (N,) for R[w], and the second normal (N}) for
Rl '] is the turn vector for the group product:

R[w"] = R[e']R[w].

This is shown in Figure 3.1.6(b). In other words, spherical vector addition
with half-angle arcs is a key to understanding rotational point-group prod-
ucts. Furthermore, all point-group operations are either rotations (R) or
rotations with an inversion (J) attached. Since inversion commutes with all
rotations (R - I = I - R) and squares to unity (I? = 1), the entire point-group
calculation reduces to Hamilton-turn addition.

In Chapter 5 the half-angle (w/2) will be connected with spin- 1. [Recall
the half-angles that occur in Eq. (1.1.3).] Electrons and half-integral spin
particles have the disturbing property of turning up with a negative (-1
phase after a “full” rotation by 27 or 360°. For these particles a rotation by
(w) is (—1) times a rotation by —(27 — w). The Hamilton-turn method
distinguishes the latter rotation by a clockwise supplementary arc of length
(m — w/2), as shown in Figure 3.1.5. This aids in the understanding of
“double-group” theory, which will be discussed in Chapter 5.
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60° arc for 120°
rotation
90° arc for 180° @ e
rotation . .

(a) (b)

Figure 3.1.7 Geometrical definition of symmetry group D;. (a) Hamilton arc vectors
are drawn for rotations r, i;, and i5. (b) Group nomogram is obtained by projecting
(a) onto the xy plane.

The D; or C;, group table of Eq. (3.1.1) may be replaced by a geometrical
nomogram. The Hamilton-turn arcs for D, rotations are drawn into place in
Figure 3.1.7(a), following the conventions established by Figure 3.1.3. A view
down the z axis is shown in Figure 3.1.7(b). Note that the supplementary arcs
designated by a (—) symbol are included there. Vector addition is accom-
plished by visually sliding the arc vectors into desired positions. For example,
note the product

(—)pir =p,,

which is given by the uppermost sector of Figure 3.1.7(b). By ignoring the (—)
and changing p; to o; one obtains the product (o,r = o,) in agreement with
the C;, table. [Recall Eq. (3.1.1).]

C. Laboratory and Body Reference Frames

For future work it is important to notice that it makes a difference how one
defines the “reference frame” for molecular point-group operations. The
rotation axes and reflection planes can be imagined to be attached to the
stars, or more prosaically, to a fixed “laboratory” coordinate system x, y, and
z. This was done in Figure 3.1.2. Consider now an alternative definition of
operators g; made by fixing all these axes and planes to the “body” frame of
the pendulums, as in Figure 3.1.8. However, note that a change of the
multiplication rules will result, since each operator changes the laboratory
position of all planes or axes except its own.
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Figure 3.1.8 Effects of body-fixed plane reflections on pendulum mass configuration.

At the beginnirz of Chapter 5 a convenient relation is established between
operators defined in laboratory and body frames. It is shown that if each
body operator is identified with the inverse of a laboratory operator, then the
original multiplication rules are recovered.

For the Abelian “fan-blade” group D, (recall Figure 2.1.1), or for any
symmetry involving just inversions or rotations by 180°, it makes no differ-
ence whether the rotation axes are imbedded in the object or fixed in space
as far as the multiplication table is concerned.

D. Tetragonal Symmetries C,, and D,

C,, and D, are isomorphic crystal point symmetry groups of order 8. They
are symmetries of a square pyramid and a square fan blade, respectively, as
shown in Figure 3.1.9.

You should use this analogous symmetry to help you understand the
theory of Sections 3.2-3.6. Each time some theory or application of Cj,
symmetry is given you should work out the same for C,, without looking at
the answers in Section 3.6.

Dy

AN R(90°) 2
RI90%) oq=1Ry
<" i3(180°)

a4=lig

2
\ o2=1R2

Rf(1so°)

Figure 3.1.9 Pictorial comparison of D, and C,, symmetry.
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This sort of on-the-job training will make the difficult non-Abelian algebra
easier to learn and remember. You should begin by constructing a Hamilton
nomogram and group table for D, and C,,- (See Problem 3.3.1.).

3.2 FIRST STAGE OF NON-ABELIAN SYMMETRY ANALYSIS

The idempotent theory developed in Chapters 1 and 2 always works when the
operators commute, but it appears at first not to be applicable to non-Abelian
groups. However, an interesting trick allows the theory to work for the
noncommutative cases, as well. First one assembles the elements of the group
C;, into categclies of operations which look more or less alike. Let category
¢, be the identity 1 by itself, category ¢, = {r, r?} be the 120° rotations, and
category ¢; = {0y, 0,, 03} include all reflections. Then, if one defines the
operators c; to be the sums,

=1,  c¢,=r+r? =0yt 0, + 0, (3.2.1a)

of operators within each category, it turns out that these c; commute with
each other [c;c; = ci¢;]. Their multiplication structure is obtalned by selec-
tively ¢ condensmg the group table in Eq. (3.1.1). The ¢; multiplication table
that follows is derived by simply counting up the elements in the rectangular
sections of Eq. (3.1.1):

¢ ¢ €3
¢ | ¢ C, Cy
3.2.1b
| ¢ 2¢q +c, 2¢, ( )
€3 | C4 2¢, 3¢, + 3¢,

Since the ¢; operators are mutually commutative, it is possible to generate
a set of 1dempotents from them. This is done in Section 3.2. B, but first, a
general theory of ¢; operators is given in the following section.

A. Class Operators

In general the categories ¢, are called CLASSES, the ¢; are CLASS OPER-
ATORS, and their multlphcatlon structure represents the CLASS ALGE-
BRA. The formal definition of a class is the following.

Definition Elements g and g’ are in the same class ¢; of group G if there
are any elements 4 in G such that g = hg'h 1.
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The observation that categories of elements such as {o,, o,, o5} “look alike”
means that, for example, o, or o3 can be replaced by o;. One may state this
more precisely by group equations such as (ro;r~! = o). One translation of
this equation is “r transforms o into o,.” The transformation of o, by r has
the fore-and-aft form which operator transformations should have. [Recall
Eq. (1.1.23).] Figure 3.1.3 shows rather clearly that r transforms o; into o.
Another way to read (ro,7~! = o) is to note that by turning around with r~!
then doing o, and finally returning with r, one obtains the same operation
as 0.

It is easy to see that a class operator ¢, = g + g’ + - - made by summing
all the elements of a class must commute with every element /4 of the group
in question. The following equation:

h™le;h=h"Yg+g + - )h=c, (3.2.2)

follows from the class definition and the fact that A~ !gh = h~'g’h if and
only if g = g’. Inverting this yields

cgh = he,. (3:23)

Roughly speaking, the classes show the symmetry of the symmetry group.
Equation (3.2.3) guarantees that each ¢, commutes with all symmetry opera-
tors. In addition, any product cgc, or linear combination ac, + Bc, will
commute with everything in the group.

The Hamilton-turn diagrams are helpful for describing class structure.
Suppose rotation operator R’ is obtained from another rotation operator R
through the transformation by a third rotation T} i.e.,

R = TRT'. (3.2.4)

Then the Hamilton arcs of R and R’ must be opposite sides of a spherical
parallelogram, as indicated by shading as shown in Figure 3.2.1. Note that
one diagonal of the parallelogram consists of two ¢ arcs. The arc length of
this diagonal is equal to the angle of the T rotation according to Hamilton’s
half-angle rule.

Given a transformation equation (3.2.4), it is possible that several or many
transformation operators {T, U, V, ...} transform R into R'. For each opera-
tor Q which commutes with R, one has

QRQ™'=R. (3.2.5)

Substituting this into Eq. (3.2.4) gives

R = TQRQ 'T~' = URU™, (3.2.6a)
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Figure 3.2.1 Showing class equivalence using
Hamilton’s vectors. Operation R is equivalent
to R = TRT™ L.

where
U=10,
U'l=0 11, (3.2.6b)

Thus each operator Q that commutes with R gives one more operator
U = TQ which transforms R into R’

The set of all operators Q in a group G which commute with a given R
form a subgroup {N; = 1,Q,...} of G. This Ny is the “symmetry group” of
R and is called its NORMALIZER. Ny includes R and all powers of R, and
sometimes several inversion or reflection operators as well. The set of all
operators TN, = {T,TQ,...} = {T,U,...} made by left multiplication by T
on Ny is called the (left) COSET of subgroup Nj. Coset TNy contains T and
all operators which transform R into a particular operator R' = TRT ! in its
class.

For example, the normalizer of r in C;, is the subgroup C; = {1, r, r2}.
The subgroup C, and its coset 0,C; = {0, 0,, 05} divide C,, into two parts,
and so there are only two elements {r, r?} in the class ¢, of r. For another
example, the normalizer of oy in C,, is the subgroup C, = {Ig;}. The
subgroup C, = {1, o} and cosets rC, = {r, 03} and r*>C, = {r?, o,} divide the
group Cj, into three parts, and so there are three elements {0}, o,, o5} in the
class ¢ of o.

It is left as an exercise to prove generally that a normalizer of operator A
contains a number (°N,) of elements which evenly divides the order (°G) of
the group. Furthermore, the fraction

°c, = (°G)/(°Ny) (3.2.7)

is the number of elements in the class ¢, of h. These statements belong to
LAGRANGE’S theorems.
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For the analysis of a symmetry group or algebra it is helpful to define the
ALL-COMMUTING or CENTRAL operators {C,C’,...}. These are any
operators

C=27¢ (3.2.8)

in the group algebra which commute with all group operators [Ch = hAC]. By

averaging over all group operators using commutativity [C = ACh~!] we
obtain

C=(1/°G) L hCh~' = (1/°G)Zyg(2hgh—l). (3.2.9)
h g h

By appealing to Lagrange’s theorem and Eq. (3.2.7) one derives

C=(1/°G) Lv,'Nic, = X (v:/ °c,)e,. (3.2.10)
g

g

This proves that any all-commuting operator C must be a linear combination
of class operators. The C’s make up the commutative class algebra for which
the c¢.’s are a basis. Since any product c,c, belongs to the algebra it must be
a combination,

CeCh = 2 Vi), (3.2.11)
J

of c¢,’s, as well. The coefficients ygh are called algebraic STRUCTURE
CONSTANTS.

B. Idempotent Analysis of Class Algebras

It is possible to write all the class operators ¢, as a combination of a single
set of idempotents P“ as was done for Abelian groups of operators in
Chapter 2. The only difference here is that the minimal equations are more
. complicated.

For example, using the C;, class algebra table [Eq. (3.2.1b)] we find the
minimal equation of c,. This is the lowest-degree equation that involves just
powers of c¢;. [It may also involve ¢, = 1; however, ¢; may be thought of as
the zeroth power (c3)°.] The degree of the following equation is not yet high
enough, since an unwanted 3c, term appears:

(c3)2 = 3¢, + 3c,.
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Multiplying by c; again gives the desired minimal equation
(c3)’ = 3¢5 + 3cye5 = 9cs. (32.12)

Note that the degree of a minimal equation for class operators cannot exceed
the number of classes, since that is the dimension of the algebra. The cubic
minimal equation for ¢, factors into the following form:

(c3 = 31)(cy + 31)(¢c; — 01) = 0. (3.2.13)

The three roots ¢V = 3, ¢{? = —3, and ¢§ = 0 yield three idempotents P!,
P2, and P, respectively, when substituted into the general formula (1.2.15)

pe= TL (e -/ L (e - ). (3219)

y#*a Y#FEa

The desired idempotents are given as follows.

P! = [(c3 +31)(c5 = 0] /[(3 +3)3 = 0)] = [(e3)’ + 3¢5 /18,
Pl=(cite,+¢3)/6=(+r+r+o,+0,+0,)/6,
P?=(c;tc;—¢3)/6=(1+r+r*—0, —0,—0;)/6,

P3=(2¢, ~—¢y)/3=(21 —r—r?)/3. (3.2.15)

The P* are called ALL-COMMUTING, CENTRAL, or CLASS idempotents
of C,,. The original class operators can be expanded in terms of all-commut-
ing idempotents according to spectral decomposition, where

¢; = 2 clPe,

44

¢ P = clope. (3.2.16)

The eigenvalues ¢{* and c¢{® are found by multiplying P* and ¢, and c,,
respectively, and ¢{*’ was given following Eq. (3.2.13). The C,, class spectral
decomposition has the following form:

1=c¢, =P+ P2+ P3,
c, = 2P + 2P? — P3,
¢y = 3P — 3p2, (3.2.17)
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C. Does the Class Algebra Reduction Work in General?

We can easily prove that a decomposition such as the one for C,, is possible
for all finite groups. Since class operators commute, one can follow the
procedure which worked for Abelian groups (recall Section 2.9), provided no
minimal equation contains a repeated root. But suppose a root is repeated;
that is, suppose that

(c —c'D)(-We—cD)"(---)=0 (3.2.18)

was the MEq of ¢ with m > 2 repeated roots. This would imply that one
could construct a nonzero operator n,

n=(c—c( - )e—c)" () =0, (3.2.19)
which is NILPOTENT, i.e., an operator whose square is zero:
n?=0. (3.2.20)

If nilpotent n acts on any combination G = Xy, g of group operators it yields
an operator nG which is also nilpotent (note that nG = Gn since n is in the
class algebra):

nGnG = Gn*G = 0. (3.2.21)

Now setting G = n', and following the same arguments which are stated in
Appendix C, we conclude that n'n and finally » must be zero. A Hermitian
operator cannot be nilpotent without being zero. Hence, a class operator can
never have repeated roots; therefore, the class spectral decomposition is
always possible.

Finally, the all-commuting or class idempotents can be seen to be unique
for the same reasons that applied to Abelian groups (cf. Section 2.9). Also,
they may be shown to be Hermitian (see Problem 1.2.7):

pat — pe. (3.2.22)

3.3 SECOND STAGE OF NON-ABELIAN SYMMETRY ANALYSIS

It is not possible that every operator in a non-Abelian group is a combination
of the same set of idempotents. If this were so, then every operator would
commute. Stated another way, the representations of noncommuting opera-
tors cannot all be transformed to diagonal matrices at once.

However, every non-Abelian group has some Abelian subgroups. For
example, C,, has the subgroup C; = {1,r,r%}, C, = {1, 00}, C, = {1, 0}, or
C” = {1, 0;}, which were mentioned before. (The lines leading back to
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Abelian groups in Figure 2.1.1 indicate all the possibilities for each crystal
symmetry.) The idea is to find the largest possible set of mutually commuting
operators. Abelian subgroup operators commute with each other and with
the all-commuting class operators. A reflection subgroup C, and class opera-
tors taken together give four independent commuting operators o, €1y Cy,
and c,;. By taking the cyclic subgroup C, one gets another set of four
independent operators r, ¢;,c,, and c,. (Note that r? is not linearly
independent, since r? = ¢, — r.] The maximum number of independent
mutually commuting operators which can be found in a group algebra is
called the RANK of the algebra. The rank is the maximum number of
operators that can be represented at once by diagonal matrices. It is up to
the physicist to decide which Abelian subgroups he would like to represent
by diagonal matrices. While one choice may be as good as another from a
mathematical viewpoint, it can make a big difference in ease of computation
and clarity of physical insight. Two very different choices C; or C, exist
within the C,, symmetry. Since r in C, does not commute with o; in C,, one
cannot choose both. It will turn out that the C, choice yields moving-wave
solutions, while a C, choice yields standing-wave solutions.

For example, let us choose C] = {1,0,). This group has the familiar
completeness relation

1=P'+P =11+ + 31 -0a,). (33.1)
When this is multiplied by the completeness relation [Eq. (3.2.17)] for the

all-commuting idempotents [Eq. (3.2.15)] as is done in the following, a new
and different set of idempotents will result:

1=(P"+ P )(P'+ P2+ P%), (3.3.2a)
1=P'P'+ P P '+ P*P?>+ P P? + P*P? + P~P3, (3.3.2b)
1=P'+0+0+P*+ P+ P} (3.3.2¢)

In the last line we use the C,, group table [Eq. (3.1.1)] to work out the
products. The first and fourth products yield the original all-commuting P!
and P2, while the second and third products yield nothing. However, the last
two terms yield a SPLITTING of the all-commuting P? into two new and
orthogonal idempotents,

PP =P"'PP=1(1+0,)(21 —r —r?) = tCl—r—r2—0, -0, + 203),
(3.3.3a)

Pi=P P ={(1-0)(2l —r—r?) = 2l —r—r’+ 0 +o, - 203),
(3.3.3b)
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where
p3 = P13 + P23. (3.3.3¢)

This procedure has yielded four idempotents P!, P2, P{, and P, which may
be used to expand four mutually commuting operators c,, ¢,, €3, and 3. The
four idempotents are called IRREDUCIBLE or unsplittable idempotents,
since they cannot be split further into sums of orthogonal idempotents. In
general a group algebra of rank r has exactly r irreducible idempotents.

However, C,, has six linearly independent operators in all. In order to
expand the whole C;, group we will need two more operators of some kind.
It is not possible to find two more orthogonal idempotents, since Cs, is
non-Abelian. The question is: What form should these two additional opera-
tors take?

We begin to see the answer to this by performing the following expansion
of general C,, operator g using Eq. (3.3.2¢) twice:

g=1gl1= (P + P>+ P} + P)g(P' + P>+ P{ + P}), (3.3.4a)
g = PigP! + P2gP? + PjgP} + P{gP; + P3gP? + P3gP; (3.3.4b)
In writing Eq. (3.3.4b) we ignore vanishing cross-terms such as
PlgP? = gP!P2 = 0, PlgP} = gP'P} =0,
which involve idempotents which are all-commuting. The first two terms
involving all-commuting P' and P? in Eq. (3.3.4b) can be rewritten as

PlgP! = gP' =2(g)P!, PP’ = gP?2 =22%(g)P?, (3.3.5)

using commutivity (P'g = gP!), idempotency, P!P' = P!, and the group
eigenvector properties of P! and P2, which follow from Eq. (3.2.15). Substi-
tuting, we find the eigenvalues

2'(1) =2'(r) =2'(r) =1,  2Y0)) =2 (0y) =Z'(05) = 1,

Y1) =2%(r) =2X(r}) =1, 9*(0) =2%(0) =2%(03) = — 1,
(3.3.6)

and thereby account for the first two of the Cs, irreps. So far this is the same
as an Abelian irrep derivation.

However, the third C,, irrep is different. Its properties are derived from
the last four terms of the form P’gP? in Eq. (3.3.4b). The diagonal terms
P2gP? turn out to be proportional to the original irreducible idempotents as
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follows:
PleP} =27(2)PP,  PigPi =23(g)P2.

The new terms P’gP? turn out to be proportional to two IRREDUCIBLE
NILPOTENT projectors P = P37

i
P138P23 =9132(8)P132’ P23gP13 =9§1(8)P231,
which satisfy o
P132P231=P13, P231P132=P23, g
as well as nilpotency,
P132P132=0=P231P231-
The proportionality coefficients 2,%(g) expressed in matrix form

2%(8) =(

P5(8) 91“2(57))
P5(8) 25(8)

comprise the third irrep 93 of C,:

sy |10 sy o | T1/2 V32

7MW =1, 1)’ 9()_(‘5/2 —1/2)’

s | "2 V32 o [ 12 =32
T s —1/2)’ 9“’”‘(—ﬁ/z 1/2 )
s | -172 V3,2 , . _[1 0
7o) =| 50 1/2), 9(03)—(0 _1). (3.3.7)

These coefficients will be derived in the following section. It is more impor-
tant now to appreciate the general form of non-Abelian group reduction.
Each non-Abelian group operator g may be expressed as a combination

o
g=Y YLo5(8)Pg (3.3.8)
a i

of ELEMENTARY OPERATORS PS weighted by coefficients 2. Diago-
nal operators

Pi=Pf (3.3.9)
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are just the [* irreducible idempotents which were split from ali-
commuting P*:

P =Py +P5+ - + P (3.3.10)
Off-diagonal operators are defined by
Py = PrgPR/5(8) = P (3.3.11)

where nonzero P gP/ may be found and normalized by coefficients 9,-‘}‘( g)
to give

PSP = 5°P5,, Py (3.3.12)

The orthonormality relation (3.3.12) can be understood if you always remem-
ber that Pj carries orthogonal idempotents P and P as “bodyguards” on
its left and right, respectively. When P runs into Pf, then Pf’s right-hand
bodyguard P encounters the left-hand bodyguard Pf of Pf. Annihilation
occurs unless the guards are identical (¢ = B and j = k). Furthermore, one
can show (Appendix D) that all operators PGP with identical sets of
bodyguards are indistinguishable, except for proportionality factors Qi‘}(G);
ie.,

PGP/ =9§(G)P§’
where G = L,v, 8 is any linear combination of group operators. If it happens
that G is annihilated by its bodyguards, then let Qi‘]’f(G) = (). The coefficients

& are chosen so that Eq. (3.3.12) holds, whence they also satisfy group matrix
representation relations:

1B
Y 9£(8) 2k (h) =2(gh). (3.3.13)
J R
To prove the matrix relations first note the effect which a group operator (k)
would have on the left bodyguard of P£. Equation (3.3.8) gives
IL‘(
hPIEl = Z Zgi‘;(h)Pi‘;Plfl’
a i,j

and Eq. (3.3.12) gives

18

hPf = Y D5 (h)PE. (3.3.14)
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This is the left-hand transformation rule, which holds for all group operators,
including products such as (gh):

B
ghPf = L 2f(gh)P}. (3.3.15)

However, this product is also equal to left operation by g onto Eq. (3.3.14):
1B
ghPf, = L. DR (h)gPf
j
18 18
- L 9u(h) Lof(8) Pl
J i

= IZ[IZ%?(g)Qﬁ(h) Pf.

il

Equating the coefficient in brackets to 2%(gh) in Eq. (3.3.15) yields Eq.
(3.3.13).

This is how a non-Abelian group is analyzed; each operator g is a
combination of elementary operators, P, whose multiplicative properties
are, as the name implies, elementary. For example, each C;, operator is a
combination involving six terms:

g =2 (2)P' + 2% ()P +Z)(8) PY I ) P (351
+923’1(g)P231+9§2(g)P232 (3.3.16)

and three sets of irreps. The analysis of non-Abelian groups is a generaliza-
tion of that for Abelian groups. For Abelian groups all irreps are 1 X 1
matrices, whereas a non-Abelian group must have some irreps 2 ¢ which are
1% x 1* matrices with [* > 2. For each (a) there are (/*)*> elementary
operators. Since the number of elementary operators must equal the order
(°G) of the group, we have

°G = ¥ (1%)° (3.3.17)

In the case of C,, this number is 6 = 17 + 1% + 22. The number of different
types () of irreps equals the number of all-commuting idempotents (P* =
Y. P%), which is the number of classes. In the following sections we shall show

it u

how the P¢, viz., Eq. (3.2.15), give directly the dimensions [* of the irreps.
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Now, while Abelian group irreps and elementary operators are all uniquely
defined, those with [, > 2 for non-Abelian groups are not. For example, in
C,, we would have split P?> with idempotents from C; = {1, r, r*} instead of
C, = {1, o5}. However, the number [* of P# split from a given P* is fixed.
Applying the three C, projectors {P%, P13, P?3} to the all-commuting P?
yields only two nonzero idempotents,

P%P3 =P3 (1 +r+r?)/3=0,
P} = PUP3 =P¥1 +e*r+er?)/3=(1+¢e*r +er?) /3,
P} = PBP3 = P¥(1 + er + £%r) /3 = (1 + er + &¥r?) /3. (3.3.18)

Nevertheless, they differ markedly from the two operators obtained using
C, = {1, o;} projectors in Eq. (3.3.3). They lead to a different but equivalent
set of @7 irreps. We shall return to the significance of different choices
shortly.

3.4 THEORY AND APPLICATION OF ELEMENTARY OPERATORS
AND IRREPS

In order to demonstrate the theory and application of the non-Abelian
symmetry C,,, we shall eventually solve the equations for the mechanical
system in Figure 3.4.1. However, the main objective of this section will be to
derive and prove general relations which are followed by the elementary
operators of a non-Abelian finite group G = {1, g, g’,...}. The analysis and
application of multidimensional (I* > 2) irreps has a number of subtle
features which are not present in Abelian symmetry analysis. However, once
these are understood the application of the theory is just as easy as it was in
the Abelian cases. You will soon be able to solve some very complicated
problems with relatively little computation.

A. Group Space and the Regular Representation

In Figure 3.4.1 the coordinates {glx) and unit vectors |g) are chosen in
perfect correspondence to the symmetry group C;,. Each group operation g
acting on the first coordinate (1|x) or vector |1) gives one of the others
according to Eq. (3.4.1).

gl = lgy, (3.4.1a)
(1lg" = (gl =<1lg7, (3.4.1b)
(glx) = (llgtlx). (3.4.1¢c)
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Figure 3.4.1 Spring-mass model with C;, symmetry. One coordinate degree of
freedom exists for each symmetry operator in C,,.

These vectors are defined to be orthonormal, as expressed by the following:

(glh) =8, ,, =8, 1,1, (3.4.2a)

(g1 = 8,1, , = (1lg~h[1). (3.4.2b)

The group basis {|1), |g), ...} spans what is called the REGULAR REPRE-
SENTATION %(g). This is defined in the following with the help of the two
preceding equations:

Znp(8) = Chlglfy = CUKGfI1) = 8,15y = 8, pp1.  (3.4.3)

The regular representation exists quite independently of any physical system
such as the one in Figure 3.4.1. In fact, you may construct each matrix %#(g)
directly from any group table in which the top row is arranged so that each
position contains the inverse f¥ = f~! of the occupant of the corresponding
left column position, as in the following. #(g) is then obtained by transcrib-
ing one (1) wherever g shows up and zero, (0) = (-), elsewhere. For example,
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#(r) is constructed as follows:

2
1 r roop 0y, 03

1 1 r2 r o, 0, o3 1) [r> Ir2> i0'1> |0'2> 10'3>
rlr 1 % o0y o o, ) ’ 1

1 .
o, o3 oy |2>FE(r)= . 1

(3.4.4)

Note that the trace of the regular representation of all group operators g is
zero, except for the identity g = 1, which has a trace equal to the order °G of
the group:

Trace #(g) = 8,,°G. (3.4.5)

This is very important for later derivations.
Note also that group space vectors can be defined with respect to operator
combinations G = Ly, g of group operators:

IGY = GI1y = (1 + 7,8 + D = 9|1 +ylg) -+, (3.4.62)

(Gl = 1IGT = AUV + yfg + ) = yE (Ll + yi gl + -
(3.4.6b)

For example, consider the operators PgP* =25(g)Pj5. If you change
(g)in P=PfgP” it is unchanged according to Append1x D except for an
overall factor &, "(g) Let us suppose Z;5(g) are still unknown, and define
IP) so that the overall factor is absorbed in normahzatlon of the Vector Let

|P“>—P"I1>/( S : (3.4.73)

7

where the normalization factor Ni‘} is determlned by

(Pg1Pg) =1 (3.4.7b)

to within a phase.

For C;, one can easily calculate the operators P“gP for select g, and by
normalizing one finds the corresponding vectors |P‘;‘> Actually, the first four
operators have been derived once before. [See Eqgs. (3.3.3) and equations
following (3.3.4).] The latter two equations are worked out in the following
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using the group table in Eq. (3.4.4):

PUP' =P' = §(1+r+r’+ 0, + 0, + 03),
PAP?=P?=¢(1+r+r’ -0, -0, 0,),
P =P{1P} =P} = (21 —~r ~— 1’ — 0, — 0, + 203;),
P}, =P1P} =P = %(21 -r—-r’+o,+0,— 20'3),
9132(0'2)P132 = Plo,P} = %(0 -r+r’-o,+0,+ 0),
P3(0,) Py = Pio, P} = ;(0+ r =1 — o, + 0, + 0).

By qssembling these coeflicients into vectors and then normalizing so that
(P|P) = 1, one obtains the following:

. l (———— 1

(Plozl11111 (P} & Eﬁ__m,
(Pl —TT1-1-1-1 (Bl o ~T-TT-1710
Vo —  — — — = 12 ) )
(Bilo 7 1T 1-1-13 (Pilo01-1-110
2‘/§\__/’ 21 — - =

(3.4.8)

Pictures of these vectors are drawn in Figure 3.4.2, as they represent motions
of the system in Figure 3.4.1. Let us now study these pictures in order to
understand the P operators.

The first two motions corresponding to |P') (expansion) and |P?) (rota-
tion or libration) have obvious symmetry properties. The interpretation of the
|P5> is more subtle, particularly in regard to the left index (i) and the right
index (j). An index equal to 1 or 2 denotes symmetry or antisymmetry,
respectively. [Recall Egs. (3.3.3).] The states |P{;) and |P3;) are symmetric
and antisymmetric, respectively, to reflection ¢, through the x plane of
Figure 3.4.2. The |P;)) states are eigenvectors of o5. Since o5 runs into the
left-hand bodyguard P?, the left-hand index determines the overall reflection
parity of the state. The eigenrelation

0-3|Pi§> = 0'3Pi§|1> = (_1)i_1|P3>
follows from the definition

0'3Pi3 = ‘(‘1)i1)i3 = Pi3‘T3

of the irreducible idempotents.
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i

@210 I aIPh
: G0/ ) (ripY
| {r2ip"H =l
6+ —_—
| f (U||P'> P>
| (02 1P")
(v | (s 1P
I
|
| /
4| Ve—1p3
-l
_1
2 o)
4 i
-1\ 5 1 1/, 83
G|V 1|2
-l |
2 0
0 2
- -
I /oo lp V. pd
N L [V2R)
| ]
0 \-2

Figure 3.4.2 States of motion corresponding to C;, P operators.

However, the right-hand index determines the local reflection symmetry
properties of the motion. Note that each mass in state |P}) remains on its
local reflection plane, while each mass in state |P3) moves perpendicularly to
its local plane if it moves at all. State |P;}) and |P3) are made of locally
symmetric and antisymmetric motions, respectively. The right-hand index
determines local symmetry since the right-hand bodyguard P}-3 first encoun-
ters the local state |1) in the projection

P21y = P2P|1) = P3IP),

XA
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where
P=(1- (-1 0;)/2

P3 acting on IP ) gives a combination of states gIP ) correspond.ng to similar
motron of the other masses. But ecach state g|P> obeys a local symmetry
equation

gosg 'glPy = —(—1)’g|P)
equivalent to the initial equation
olP) = —(-1)|P).

Note that vectors IP"‘) in Figure 3.4.2 are mutually orthogonal. This is a
general result. To prove it first note that the scalar product in the following is
zeroif i # k, or a # B:

(P3IPE) = C1IPGTPEITY /(NSNE)? = (11PEPaI1Y8°8 /(NNg)
= C11P§11)8,5° /(NgNg)'"”. (34.9)

Now the matrix #(P§) is nilpotent for j # I, since F(P; DR(PG) =
(PP = %(0). Therefore Z(Pj) has all zero eigenvalues and Zero trace
Therefore {1|P#[1) must be zero 1f j # | according to Eq. (3.4.5), since %
being traceless, does not have any component of the unit operator 1. This
gives the scalar product result,

(P21Bg) = (1IPS11)8°05,.8, /NS = 6°65,5,.  (3.4.10a)
In general, normalization does not depend on the left-hand indices:
N = N =<1IPgl1). (3.4.10b)

We find a simple formula for N in the next section.

B. Deriving and Using P;; and 9,(g)

If we change our basis from the old regular representation vectors
{---]g) -} to the new ones {-- |P“>- -}, some simplifications will
occur. The transformation will reduce or “almost diagonalize” the regular
representation % matrices, and it will reduce the acceleration matrix {a)
which describes the motion of the system in Figure 3.4.1.

To understand these two occurrences is to understand the heart of
non-Abelian symmetry analysis, and so let us study them carefully. In
addition, a general method for deriving irreps 2% will be shown, as well as
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some justification of the previous assumptions made about irreps and the
elementary P;; operators.

(a) Reducing the Regular Representation The representation of a sym-

metry operator g in this new basis { - - |[PS) - - -} takes a simpler form, as
shown by the following:

(Pglg| BE) = (1IPgePI1d /4 NANF
= (1|PePgPePaI1) 8 //NFNF
(using idempotency: P = PAPf)
— 92(g)1|PePL P 1)8°# /| /NFNF  [using Bq. (3.3.11)]
=95(8)<1IPF11)8%F /{/NSNF [using Eq. (3.3.12)].
Finally, using the preceding equation (3.4.10) there results
(Pls| PE) = 25(8)8°%s,,. (3.4.11)

It is instructive to see an example of this wherein the 2% are evaluated.
Consider the Cs, vector r|P;;) below. The group multiplication table gives
the following vector and its regular representation.

-1
r|ﬁ131>=r(21—r—r2—01—0-2+20'3)|1>/2\/§ 2
—@2r—r'—1-0y— 0, +20,)1)/2/3 :i /Zﬁ
= (=11 + 20> = 1) = loy) + 20oy) —lo3)) /23 © |
: -1
(3.4.12a)

By computing the scalar products of this vector with |P},) and |P3) we sec
that it is the following combination of them:

-1 2 0
2 -1 1
1 V3
-1 I -1
_1 /2@— 1 -1 /2\/§+ | 1 /2 (3.4.12b)
2 -1 1

0

I
—
[\S]
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This is an example of the left-hand transformation rule first stated in Eq.
(3.3.12):

. 1\ . V3 . . .
PPy = | — = |IP3) + | = ||P3) =23(N\P) +235(nIP5). (3.4.12¢)
2 2

The rule for the second component is derived similarly:
A3 -V3 53 1Y\ 5, 53 « A3
rIP3 ) = o IPi) + | — 2 IP3) =D ,(r)IPi) +Do(r)IP3).
(3.4.13)

Together, the last two equations give the (3)-type irrep matrix of operator
r for 120° rotation:

. (34.14)

ar) 2u(r)| _[-1/2 V3,2
23(ry 235(r)] \ V32 -1,2

93(r) = (

In general a set of vectors {|P{}), |P5;),...} are said to be PARTNERS IN
AN (a) IR BASIS when their symmetry transformation is the following:

1“=2

glpg) = 2_', ZE(8)IPE). (3.4.15)
k=1

Note that the transformation (g) mixes only partners belonging to the same
right-hand index j of local symmetry.

In Figure 3.4.3 there is shown a physical picture of the sort of transforma-
tion in Eq. (3.4.12¢). This picture shows how an x motion that is rotated 120°
by r is a combination of itself and a y motion with coefficients (~1,/2) and
(Y3 /2) respectively. At this point you may realize that we have just gone
through what could very well be the world’s most complicated derivation of
cos(120°) = — 1 and sin(120°) = V3 /2. The same goes for the other &°
components which were given in Eq. (3.4.14) and (3.3.7).

This shows one of the main ideas of symmetry analysis. Only a few key
numbers such as the @ coeflicients are needed for analysis in a virtual
infinity of different problems. The necessary coeflicients are usually easy to
derive from simple physical considerations. The P-operator mathematics
exists to expedite the theory and its applications. It also provides derivations
for cases in which physical intuition fails.

Generally, one will be given the &7 coeflicients and need to derive the P
operators instead of the other way around. Let us now derive a formula for
Pf. To begin this, observe the form of the regular representation of operators
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-

~

[ )
r =
L J L J
. W g A -
B V3
= {-= o
) :
Figure 3.4.3 Pictorial representation of transformation FIPEy = — %|P131> +
(/3 /2P3,.

in the basis of the { --- |P) - - } according to Eq. (3.4.11):

(P!
(P?|
#(g) = (P}
(P3|
(P}
(P3|

[Py
2'(g)

|P?)

2%(g)

IPi) 1P

9131(8) 9132(8)
25(8) 23(8)

P, |P3)

23(8) Z5(8)
23(8) 23(g)
(3.4.16)

In particular, the elementary operators in their own basis have a very simple

form:

( Pin|PE| Bf,) = 6°0576,8,5,,

The operator PS is represented by unity at the (ij) position in each &> block
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matrix and zeros elsewhere:

0 -
-0 .
-1 0
‘%(Pfl) = 0 0 .
-1 0
L O 0_
0 - -
-0 -
- 01
R(PE) = 0 o . : (3.4.17)
- 01
L 0 0_

All-commuting idempotents P are represented by unit matrices in each ¢

block.

_O . -

3y — ¢ 1 0
#(P?) o1 .
. 1 0
L 0 1]
_0 ) -

2y — * 0 0
‘%(lp ) O 0 i 2
-0 0
| 0 OFf

This form should be taken as one of the defining relations between irreps
and the elementary operators. It is expressed more concisely by the following
general equation:

28(Pf) = 5%5,,.8,. (3.4.18)

This is needed in order to derive a formula for the elementary operators P3
in terms of symmetry operators. Let us express an operator 4, which is a sum
of symmetry operators, as follows. [This uses the regular representation trace
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relation in Eq. (3.4.5).]

A =) {TRACE #(g'4)/ °G}s.
8

For A = Pj one needs the trace of 9( g'P3). According to the left-transfor-
mation rule (3.4.15) one has

IlX
g'Pi = L25(2") P = L7 (8) Pi.
I

i

Substituting this in the preceding equation gives
I
A =P =Y L2 (g){Trace #(P)/ °Gls.
g i

A trace is independent of the choice of basis. The form of representations of
< in Eq. (3.4.17) make it clear that

Trace Z(Pg) = 1%6;.
Substituting this in the equation for P gives the desired result:

w=(1°/°G) L2 (8)s- (3.4.19)

The normalization formula promised after Eq. (3.4.10) is found by using
the fact that 25(1) = §,; in Eq. (3.4.19):

Ng = (1IPgI1) = (I%/°G) = N=. (3.4.20)

(b) Reducing an Equation of Motion The first of six coupled equations
of motion for the system in Figure 3.4.1 is given by

—(11%) = X (1lalg){glx), (3.4.21a)

where the first row of the acceleration matrix is the following:

lg) = 1) lry 1r?) loy oy o)
(llalg? = M il_ fl_ ky(2 — ‘/rg) ky(2 + \/5) k, + 2k, sin2a
d 4dm 4m 4m 4m m

(3.4.21b)
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A representation of the acceleration operator (a) in the IP“) basis is derived
as follows SR

R

(Pgla) BE) = <1|Pj§-"aPkB,|1>/\/N"‘NB e

- — 1*{,»\:‘

= (1laPgPSI1)/VN (because of symmetry of a all
g commutute, ag = ga)

= (11aP$11>6,,6°*/N*  [using elementary operator
properties in Eq. (3.3.12)].

Finally, the Eqgs. (3.4.19) and (3.4.20) for P, and N give the reduced
acceleration matrix components,

(PglalPf (Z (g)<1|a|g>)6lk6“3 (3422)
s B
v which are shown explicitly in the following matrix: e
‘f‘
S ) i) dm) sy e
e ‘ - : . a?® . . . . ’P2> : "\:}“"
- T ) S
m(ay = | - - A A - | [PR)
a) A [ |P3) T~
VT
a$} a%) IP 22> ¢
(3.4.23a)
where:
a® =3k, + k,(1 + sin2a), a® = k,(1 - sin2a)
3k 3k
a® = Tl +hky(1 + sin2a),  a@) = Tl
3k 3k,
a$) = Tl’ a§) = Tl + ky(1 — sin2a). (3.4.23b)
Note that the entire representation comes from just the first row of the
original (a) matrix in Eq. (3.4.21). Note also that the new representation
leaves one with only a 2 X 2 matrix (this is repeated twice) to solve from the
original 6 X 6 (a) matrix. The |[P') and |P?) are already eigenvectors.
It is instructive to compare Eq. (3.4.11) with Eq. (3.4.22) and the matrix in

Eq. (3.4.16) with the matrix in Eq. (3.4.23). In Eq. (3.4.11) one observes the
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1P,

B

Figure 3.4.4 Standing-wave eigenvectors of C5, spring-mass system.

factor 8, in the matrix element of symmetry operator g between (Pi‘}‘l and
|P£, while in Eq. (3.4.22) the same matrix element of acceleration operator
has a §,,. In the matrix Eq. (3.4.16) we find two identical block-diagonal
matrices (D?), where the first block connects states in one set (1P, P30}
of partners, while the second block connects the states in another set
{IP2,), |P3,)} [recall Eq. (3.4.15)]. In the matrix Eq. (3.4.23) we also observe
two identical block-diagonal matrices; only now the first block connects
type-1 partners (|P}) and |P})), while the second block connects type-2
partners (|[P3) and |P;,)).

When there is a repeated irrep 2° in any symmet_l_'_y-analysis problem one
has only to'deal with the matrix connecting independent partners of type 1.
This is so since the matrix for type 1 must be identical to that for type 2,...,
and type % The degeneracy of each («) eigenvalue will then be equal to the
dimension [* of irrep (a), since the eigenvalue equations are identical as
well.

Figure 3.4.4 shows the eigenvectors of Eq. (3.4.23) with k, = 0. For this
case there are three states with eigenvalue zero: the x, y translations and
rotation. In molecular physics these are called NONGENUINE vibrations.
The remaining three GENUINE vibration states are similar to those drawn
in Figure 2.6.2. Indeed, the two degenerate states arising from the irreps D'
and D% of C, now correspond to states arising from just one irrep D* of
C;,. The degeneracy exists because C; does not represent the full symmetry
of the system.
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(c) Moving-Wave or Circular Motions The C,, idempotents and irreps
used in the preceding sections were derived by choosing representations of
the reflection subgroup C, = {1, 0;} to be diagonal. The problem can be
done just as well using irreps for which rotation subgroup C, ={1,r,r?%} is
diagonal. However, instead of repeating the entire derivation, let us simply
transform the C, defined irrep 23(r) [Eq. (3.4.14)] to diagonal form. Using
the methods of Section 1.2 we quickly find that

2%(r) = T'9N(r) T = (E ) ) - (_@13(,)

0 o 0 gza(r)) (3.4.24a)

reduces to a direct sum of C; irreps: ¢ = e ™2™/ = @ 3(r) and &* =D %(r),
using transformation

T = ( /2 1/"6). (3.4.24b)

—-i/N2 /2

Applying the same transformation to the0 @ 3(<rj) in Eq. (3.3.7) gives all
nondiagonal reflection representations. &3 (o)) = 7'9%(5)).7, where

930("1)=(g 8;)’ 930(0'2)=(£k 8)’ 930(0'3)=((1) (1))
(3.4.24c)

The preceding equations (3.4.24) define the CIRCULAR or MOVING-
WAVE irreps 23’ of C3,- If you use them to solve the preceding eigenvibra-
tion problem the same eigenvalue must result, since @3 and 23 are
equivalent. However, the columns of the transformation 9 in Eq. (3.4.24b)
give quite different eigenvectors:

'<133> > - (1/'&‘)| ) (i/\/f)'zi) )

l(zi) > = (1/‘5)’(? > + (i/‘/f){(i)> (3.4.25)

if 1¥”) and I$7) are eigenvectors obtained in Figure 3.4.4. The new eigen-
states correspond to a beautiful circular motion such as is depicted in Figure
3.4.5. However, this is just an (x + iy) combination of x- and y-linear
motion. Since x and y motions were degenerate any combination of them is
allowed. This is related to the fact that degenerate (I* > 2) irreps of
non-Abelian groups are not uniquely defined.
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Figure 3.4.5 Mpving-wave or circular form of
type-3 eigenvector.

The circular (x + iy) bases will be excited by circular polarized radiation,
as we will see,in Chapters 4 and 6. They also result in the application of
magnetic fields, Jahn-Teller distortions, and for rotating molecules.

3.5 CHARACTER FORMULAS

For Abelian symmetry analysis the number of repetitions or FREQUENCY
of a given irrep 2 is the number of states of that type still to be separated
by means other than symmetry projection. The same is true for multidimen-
sional irreps of non-Abelian groups because different substrates or partners
of any irrep will give rise to identical equations. One has only to solve one set
for each irrep (a) regardless of its dimension /7.

Let us now derive some simple formulas for frequency of an irrep of a
finite group in a given representation. These are called CHARACTER
formulas. Characters of multidimensional irreps are the traces of the 2¢
matrices as defined in the following:

. J@

x*(g) = TRACE 9°(g) = L i (s). (35.1)

For Abelian groups irreps and characters are the same thing, since then
[* =1 always. Nevertheless, every formula given in this section can be
applied to either Abelian or non-Abelian groups.

One property of the characters is that they are equal for any two symmetry
operators g and g’ that are equivalent or from the same class. If g is in the
same class with g/, then g’ = h~'gh for some other symmetry operators h.
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Representing this gives

1 1«
x(g)=X2:g)= L 25(h™") 25(8) 28(h)
i i,j, k

o (g
= X | X 2a(h) 257" | 25(8)

J. k i
la
= L Z5(#),
j
and finally
Xg =x"(8") =x"(8), (35.2)

for all g in the class ¢_.
Recall the completeness relations between the all-commuting idempotents
P and the irreducible or elementary idempotents Pg:

Pe= 2Pt = 1P
i i

This leads to a formula for the all-commuting idempotents P* in terms of
characters using the formula for P¢ given in Eq. (3.4.19):

Pe=YPs=(I"/°G)Y. Y25 (8)e
i g i

=(I"/°G) X x"(8)¢.

Since the characters are the same for equivalent gperators, the preceding
sum can be reduced to a sum over just one element from each class
c,=(g+g+ ), )

pe = (la/OG)[X;,"*(g-Fg"F ) +X}7*(h + K+ ) + ]’
or

Pe=(I°/°G) ¥ xc,. (3.5.3)

classes

Cg

This sum is a key to the derivation and application of characters.
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A. Derivation of Irrep Characters

The algebra of classes discussed in Section 3.2 gives the all-commuting
idempotents

P = ¥ pic, (3.5.4)

classes

Cg

as a sum of classes. For the example of C;, we obtained
1_1 1 1
Pt = gc; + 50, + €5,
21 1. 1
P? = 5¢; + 5¢; — 563,
3 _2 1
P~ = 3¢, = 3¢5, (3.5.4),

in Eq. (3.2.15). Relating the pJ coefficients in Egs. (3.5.4) to characters in
Eq. (3.5.3) gives

x& =px(le/°G)~". (3.5.5)

To use this one must first determine the dimension [* which is the trace or
character of the irrep of the unit class:

x5 = 1% = Trace 2%(1). (3.5.6)
Solving Eq. (3.5.5) gives
1* = (°Gp™)”. (3.5.7)
The first column of Eq. (3.5.4), gives
I'=(6-4)"" =1,
2=(6-1)""=1,
B=(6-2)"=2, (3.5.7),

which is the first column of the Cj;, character table in Eq. (3.5.8). The other
characters follow from Egs. (3.5.4), and (3.5.5):

j= 1 2:(r,r?) 3:(0,0,03)
Xt =xt=x = ' : (3.5.8)
Xfuzxfiz_:X]_Z: 1 1 -1 o
X]E = X,‘3 = 2 -1 0
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The standard notation (1) = 4,, (2) = 4,, and (3) = E for D, and C,, irreps
will be used from now on. The notation (1) = A’ and (2) = 4” is sometimes
used instead for C,, irreps.

B. Applications of Characters

The power of character theory is great, since it is independent of your choice
of basis. Since a matrix trace is invariant to such choice it does not matter
how a Hamiltonian is represented or which equivalent version of irreps you
chose. Furthermore, sums over symmetry operators are replaced by sums
over classes of operators, which can amount to a considerable saving of labor.

Here one of the simplest C;, examples consisting of the three-pendulum
system of Section 2.6 will be reexamined using character theory. The charac-
ter method is not noticeably easier for such a simple problem, but it is a good
pedagodgical example.

(a) Deriving Irrep Frequency Suppose you want to find out which an:
how many irreps would appear on the diagonal of a given representation #
upon reduction. That is, suppose you want to know the FREQUENCY f* of
irreps Z¢ in the complete reduction,

TR(8)T =fD(g) & fPDP(g) ® -, (3.5.9)

of #. This reduction holds for all combinations of g including the all-com-
muting idempotents P¢. Substituting P for g and taking the trace gives

Trace #(P*) = f - [, (3.5.10)

since 2P(P%) is a unit matrix if a = B and zero otherwise. The equation
for f<,

f* = (1/1*) Trace Z(P*) =
=(1/°G) ), ,\/;,"* Trace #(c,),
clacsses
f*=Q1/°G) ¥ x&°c,Trace #(g), (3.5.11)
classes

follows from Eq. (3.5.3), where OCg is the order of class ¢, and g is any
element in the class.

For the example we need only the traces of 1, r, and » say, o;. The first
trace equals the number of pendulum coordinates: Trace #(1) = 3. The r
trace vanishes: Trace #(r) = 0, since all coordinates are moved by r. One
coordinate sits on each reflection plane; hence Trace #(o3) = 1. The A,
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frequency is given by

fA=1/°G) [ x{%; 3+ x/ %, - 0+ x°, - 1]
= (1/°G)[3x{T + 3xM] =1, (3.5.11a),

where the character table in Eq. (3.5.8) is used. Similarly, one has the other
frequencies:

f2 = %[3/\,{43‘ + 3X;1’§] =0, (3.5.11b),
FE = %[3)(115* + 3Xf*] =1 (3.5.11¢),

From this one learns that the C;, pendulum system has one A4, level and one
E level. The latter is degenerate since [F = 2.

(b) Deriving Eigenvalues Let us use C,, characters to rederive the
eigenvalues of the three-pendulum acceleration matrix

a)

_[<lalny <laln <1|a|r2>)

2a+b -—a —a)
(3.5.12)

which was solved in Chapter 2. In this case one may assume that the basis
which diagonalizes {a) would bring {(P*) to diagonal form also. This form of
{P?) would have a unit submatrix at the same diagonal positions that hold

o

a-type eigenvalues a® = ; a‘i’ of the {(a) matrix. Zeros would occur at all

other positions of the (P®) matrix. Given that frequencies f“ and f% are
unit from Egs. (3.5.11), one may derive the {a) eigenvalues from the formula

a® = (1/1*) Trace (aP*)
= (1/°G) Y x""(g) Traceag).
g

Once again the sum may be simplified since the trace of {tagt™!) is equal to
the trace of {ag). Since all symmetry operators commute with a, one has
that

Trace {tagt~') = Trace {atgt~') = Trace(ag’)

does not depend on which element of class ¢, = {g, g’,...} is used. There-
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fore the a* formula reduces to a sum

a®=(1/°G) ¥ xc,Trace(ag) (3.5.13)

classes
Ce

over just one element from each class.

The trace in the formula can be evaluated in such a way that only the first
row {{1lal1), (1]alr),...} of an {a) matrix is required. For the matrix in
Eq. (3.5.12) we have

Trace(ag) = (1lag|l1) + (rlaglr) + {r?lag|r?)
= (1llag|1) + (1|r tagr|l) + (1|r 2agr?|1)

= (llalg) + {1lalr~'gr) + (1lalr~2gr?).  (3.5.14)
Substituting in turn g = 1, r, and o, one finds

Trace (ay = 3{1]a|1) = 3(2a + b),
Trace {ar) = 3(1|a|r) = —3a,
Trace{aoy) = (1lall) + (1lalr) + {(1]alr®*) = b,

where the symmetry definitions o3/1) = |1), o,/1) = |r), and o|1) = |r?)
of pendulum coordinates are used in the last line. Substituting the traces into
Eq. (3.5.13) gives

att=$[1-3(2a+b) +1-2-(—3a) +3b] =b,

af =¢[2-32a+b)—1-2-(-3a) +0] =3a + b,
in agreement with the previous calculation [recall Eq: (2.6.10)].

If an irrep had been repeated with a frequency f* > 2 the character
procedure may still be applied. However, one can only derive the average of

"

the a“ eigenvalues {a®, a®,a®’,...}:

<a>gverage = l/fazaa’
= (1/°Gf*) ¥ xg" °c, Trace ag). (3.5.15)

classes
g

To find the individual eigenvalues and eigenvectors requires full P projec-
tion operator techniques in general.
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3.6 D, AND C,, SYMMETRY AND BLOCH WAVES

A discussion of Bloch waves and C, symmetry was given in Section 2.12.
Here the D, and C,, symmetry analysis of Bloch waves will be given. This
should provide a clear physical picture of the meaning of various D, irreps
for arbitrary n as well as some other spectroscopic concepts.

A. Tetragonal Symmetry

The tetragonal symmetries C,, or D,, were introduced in Section 3.1 and
Figure 3.1.9. There it was suggested that the reader perform all the deriva-
tions that were done for C;, or D;. (See Problem 3.1.1.) The results are
given in the following and are followed by an interpretation of the irrep bases
in terms of Bloch waves.

The D, Hamilton nompgram is shown in Figure 3.6.1, following the
conventions established before in Figure 3.1.9. This facilitates the computa-
tion of the group table, which is given in the following. Note that the C,,
group table is obtained by replacing transverse 180° rotations {R?, R, i5,i,)
by vertical-plane reflections {o, = IR?, 0, = IR3, 05 = Ii5, 0, = Ii,}.

1 |R| R R*\R? R3|iy i,
R*| 1 |R* R |R: R}|i, i,
R|R|R* 1 |i, i, |R} R
RR|R|1 R*| i i, |R} R; (3.6.1a)
R?|R}|i, i3|1 R*|R R
R |R*|i; iy, |[R® 1 |R R?
i | i, |R? RE|R R |1 R?
i, |i; |{R2 RI|R* R |R, 1
1 ¢, cp Cq C3
1 cg c Cq
21 + 2¢c, 2c4 2¢4 (3.6.1b)
21 + 2¢, 2cq4
21 + 2c¢,

The class algebra table (3.6.1b) follows. Note that transverse 180° rotations
R? and R3 around x and y axes, respectively, belong in a different class than

diagonal rotations i, and i,.
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Figure 3.6.1 Hamilton turn nomogram for D, symmetry.

At least two minimal equations are needed to reduce the five-dimensions®

class algebra since all the c; belong to one-, two-, or three-dimensional

subalgebras. One finds cj = 4cx and ¢} = 4¢,, and combining the resulting
idempotents gives the following five all-commuting idempotents:

Pl=3(1+c,+cg+c +0c3),
P2=3(1+c,—cgr+ec; —c3),
PP=g(1+c,+cp—c; —cy),
P'=3(1+c, —cg—c; +c3),
PS = 1(1 ~ ¢,). (3.6.2)

e

Following Section (3.5.A) one converts the preceding P* to irrep characters:

C,. (oy05) (040,

D, j =1, (R, (R,R®, (RIRY), (iy,)
x¥=xt=xl=1] 1 1 1 1 1
x¥=xB=xi= 1 1 -1 1 -1
xT=xt=xi=11 1 1 -1 -1
x¥ =xP=xi=| 1 1 -1 -1 1
xFE=xf=xi=12 -2 0 0 0

(3.6.3)
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Conventional notation for D, irreps is given on the left-hand side of (3.6.3)
along with an optional notation sometimes used for the isomorphic C,,
symmetry.

The A and B irreps all have dimension /4 = 1 = /%, and so the idempo-
tents P4 and P?% are irreducible as well as all-commuting. However, the E
irrep has dimension [/ = 2, so the P¥ idempotent must split it in two. How
one splits P£ depends on one’s choice of Abelian subgroups. One choice is
the subgroup C, = {1, R, R?, R*}, which is analogous to the C; choice in the
C,, analysis. Multiplying P£ by a C, unit decomposition gives

PE = PE1 = PE(P% + Pl + P% + P%)
=0+ PEP + 0 + PEP
= Pf, + P31i7 (3.6.4a)

where

PE=(1-R*+iR - iR%) /4,
PE=(1-R?>—iR +iR%) /4. (3.6.4b)

This results in a complex set of E irreps analogous to the circular irreps of
C;,. Two examples are

9°E(R)=(_é (:) 9°E(Rf)=((1) é) (3.6.5)

(Note that products of two elements can generate the whole group D,; Z°F
is defined by representing just twvo GENERATORS.) Since the circular or
C,-defined irreps 2 °E are complex they give rise to moving-wave eigenstates
in physical applications.

Standing-wave irreps result if one chooses to diagonalize one of the
transverse 180° rotations, say RZ, or the Abelian subgroup C, = {1, R3}. The
unit decomposition of C, splits PE as follows:

PE = PE1 = PE(P' + P?)
— PE + PE, (3.6.6a)

where

PE = (1-R*>+ R} - R3)/4,
Pf =(1-R?- R} +R3)/4. (3.6.6b)
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The resulting E irreps are the following real matrices.

-1
! 0). (3.6.7)

Note that the whole subgroup D, = {1R?R3R?} is represented by diago-
nal matrices. Stated another way, the standing-wave E irrep is reduced with
respect to D, = {IR?R3R?)

o | D) | _ s, 5
D*(hin D,) = 0 ‘ Do (h) = D®1(h) ® D”2(h), (3.6.8)
as well as C, = {1, R%}.
. _ | D(h) ‘ o 5
PE(hin ) = | — =0 = D'(h) ® DX(h). (3.6.9)

(Recall the irreps of D, labeled in Section 2.8.) Contrast this with the

moving-wave irrep 2 °E, which is reduced instead with respect to C, =

{1’ R’ R27 RS}'

D'«(h)
0 D3+(h)

P°5(hin C,) = [

= D'(h) ® D¥(h). (3.6.10)

The standing Bloch waves provide a simple picture of the D, irreps. The
waves drawn in Figure 3.6.2 are a special case of the Bloch solutions
described in Section 2.12.A and Figure 2.12.2. Note that (B) labels waves on
the first Brillouin band boundaries as before, while 4 waves stand at the
zeroth and second boundaries. Note that the subscripts 1 and 2 denote
symmetry and antisymmetry, respectively, to the reversal R? around the first
potential well; i.e., 4, and B, are symmetric waves, while 4, and B, are
antisymmetric. In the character table (3.6.3) this is expressed by entries

Xt =1=xgh  xat=-1=xgh (3.6.11)
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One could label standing cosine and sine standing-wave states similarly as
xE and x£, respectively. However, do not forget that the E states are
degenerate partner bases of a single irrep E. The E waves can slide their
nodes to halfway or anywhere between wells without costing them energy,
while the 4 and B waves cannot. Note that the B waves change sign under
operation R (or R®), which moves exactly one well spacing forward or
backward. In the character table (3.6.3) this corresponds to the entries

xB = —1=yxk. (3.6.12)

The A waves are unaffected by R or R3, i.e.,

Al =

xpr=1=yg2. (3.6.13)

As the potential wells of a D, symmetric potential grow deeper the form
of the waves changes. This was explained in Section 2.12.A(c). However, as
long as the D, symmetry is maintained the symmetry properties of a given
level do not change. The states labeled A4, B,, etc., on the left-hand side of
Figure 3.6.2 transform into corresponding states of the same label on the
right-hand side. This transformation involves adding many higher harmonic-
wave states which have that same symmetry label. The resulting spectrum will
consist of repeating and alternating (A,EB,), (B,EA,), (A,EB)),
(B,EA,),... clusters of D, levels in the limit of very deep wells. The
lower-energy clusters become more nearly degenerate as the wells become
deeper and their tunneling amplitudes § nearly vanish. Recall the discussion
of Section 2.12.A(c). There D, symmetry was implicitly assumed.

It remains to see what happens to a D, spectrum if symmetry is reduced
to D, = {1, R, R?, R* or C, = {1, R?}. A magnetic field placed along the z
axis would reduce D, or C,, symmetry to C,, since transverse rotations R?
or reflections ¢; do not leave such a field invariant. Similarly, if a field is put
along the x axis, only C, symmetry remains.

The E irrep of C,, or D, is not an irreducible representation of C,.
According to Eq. (3.6.10) it reduces to irreps of C,,

9F | C, = D% @ D*, (3.6.14)

corresponding to two moving waves of wave number or momentum m = 1
and m =2 = —1 modulo 4. The arrow () indicates SUBDUCTION or
symmetry reduction, wherein a representation of a larger group is restricted
to a subgroup. If the representation becomes reducible, or reduced as in
Eq. (3.6.10). then the degeneracy of levels labeled by that representation may
split. In this case Eq. (3.6.14) predicts that E levels will split in two as in
Figure 3.6.3. This is elementary ZEEMAN SPLITTING for which the
right-handed moving wave (m =1 mod4) has different energy than the
left-handed (7: = —1 mod 4) wave.
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Dy Cy (1,)

//m: 1 mod 4

N

.l N (34)
Figure 3.6.3 Zeeman splitting of E P A
level (E | C, =(1,) ® (3,))). m=-1mod4

This is an important concept in symmetry analysis of spectroscopy. En-
ergy-level splitting is associated with splitting of idempotents, viz., & ELc,
= D' + D3 is associated with P” = P + P3’. One says that the E irrep of
C,, or D, is CORRELATED with the 1, and 3, irreps of subgroup C,.
Similarly, other irreps in (3.6.3) are correlated with C, irreps; though, of
course, one-dimensional levels cannot split. For example, comparing the first
three columns of the table with C, irreps gives

94|, C, =94 C,=D%=D", (3.6.15a)
28 1C,=2% | C,=D* = D5 (3.6.15b)

This means A, and A, waves which could not combine in C,, or D,
symmetry can do so under the lower symmetry, since they belong to the same
irrep A =0, of C,. The same applies to B, and B, waves. It means that
waves that had to be standing waves before may combine with complex
coeflicients in the presence of a magnetic field and get moving again. Indeed,
one of the effects of magnetic fields it to improve the “circulation” of
otherwise quenched orbitals.

B. Hexagonal Symmetry -

C,, and Dy symmetry groups are particularly easy to treat, since they are
outer products of groups that we have already solved. Since they are both
symmetries of hexagonal objects (see Figure 3.6.4) they contain a 60° rotation
(h) around the z axis. This implies the existence of a 180° rotation (#*) which
commutes with the transverse 180° rotations (p;) in Dy or reflections (o; = Ip;)
in Cg,. Hence it is permissible to write

D3 X C2 = {17h29h45 P15 P2 p3} X {17h3}

= {1, hz’ h4, pla Pz, p37 h37 hs: ha p1h3a p2h37 p3h3}
= Dy (3.6.16)

according to the definition of the outer product given in Section 2.10. Each
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Cev

ool

103=|ﬂ3

Figure 3.6.4 Pictorial comparison of Dy and C,, symmetry. Note that the 180°
rotations in Dg which are marked with primes (p}) have axes of rotation which are
orthogonal to those of the corresponding unprimed rotations (pj). The same applies
to the Cg, reflections.

element in Dy is a unique product of elements in D, and C, = {1, #%}. Tae
4+ 60° rotations are h = h*h3 and h° = h?h3, respectively. The new 180°
rotations are p} = p, A% p, = p,h® and p} = p,;h°, and their axes are indi-
cated in Figure 3.6.4.

The cross-product definition allows the immediate construction of the Dj
character table from those in D, and C,:

D, 1 hh* .
3 ( ) (p) c, 1 i
A |1 1 1 '
! X A 1 1
A, |1 1 -1
B |1 -1
E |2 -1 0
Dg 1 (h*hY) (p) K (Wh°) (p)
A, |1 1 1 1 1 1
A4, ] 1 1 -1 1 1 -1
- E, |2 -1 0 2 -1 0 . (3.6.17)
B, |1 1 1] -1 -1 -1
B, | 1 1 -1 -1 -1 1
E, 2 -1 0| -2 1 0




198 BASIC THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATIONS

The process is the same as was used in Section 2.10 for Abelian groups,
except now there are two-dimensional irreps involved. The bottom row of the
character table is the trace of the irrep @ %' given by the cross-product
relation

DE (of Dg) =2 (of D3) 27 (of Cy). (3.6.18)

For example, using standing-wave irreps of D; one has

PE(h*) =2E(h)25(1), DE(h) =DE(h*) P (W)
L) L)
|2 2 _| 2 2
-1 5 5 s (3.6.18),
T2 2 2 2

for the z rotation by w, = 240° and w, = 60°, respectively. Note that either
one is given by the rotation matrix formula

F5(w,) =

cosw, —sinw,
( ) (3.6.19)

sin w, cos w,

for x and y components for a vector. The other two-dimensional irrep & £
is given by the cross-product relation

2E: (of Dg) =2F (of D;) 27 (of Cy). (3.6.20)

For the z rotations by w, = 240° (h*) and w, = 60° (k) one has identical
matrices:

-1/2 V3,2

i _1/2) - DE(h). (3.6.20),

DF(h*) = (
The matrix formula which gives the @52 z rotations is

(3.6.21)

GEr — cos2w, sinlw,
—sin2@, cos2w, |’

and it is appropriate for irreducible tensor rotations, as will be explained in
Chapter 6.

For now it is casier to appreciate the difference between E; and E,
irreps, and the 4 and B irreps as well, by appealing to Bloch-wave structure.
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The standing-wave solutions (sin m¢) and (cos m¢) for weak D, symmetric
potentials are drawn in Figure 3.6.5(a) for 0 < m < 6. Note that E; and E,
label the m = 1 and m = 2 waves, respectively, and these states are doubly
degenerate. E, and E, also label the m = 5 and m = 4 waves, since 5 = —1
mod 6 and 4 = —2 mod 6, respectively.

The B; and B, waves each have m = 3 waves on the ring, but are not
degenerate. A source of possible confusion concerns the question of which
has higher energy. Figure 3.6.5(a) shows the B, wave with antinodes or
maxima in potential valleys. Hence, it has lower energy than the B, wave,
which sits on the potential hills. This implies that B, is symmetric to 180°
rotations around axes centered in valleys and antisymmetric to rotations
around axes centered in hills. The B, characters from Eq. (3.6.17) for
transverse 180° rotations are

Xfl =1, Xfl = —1. (3.6.22)

This indicates an implicit assumption about how the p, rotation axes are
related to the potential: they lie in valleys. Then the local parity in each
valley determines 4 and B indices. (1) labels evenness or symmetry, and (2)
labels oddness or antisymmetry. The A; and B, characters,

xji=x2=1, (3.6.23)
are positive, while the 4, and B, characters,

Xl =xl=-1 (3.6.24)

P

are negative. Whenever possible we shall let valley operators label the
symmetry. This is particularly important for large potentials, as indicated in
Figure 3.6.5(b). Then the rapidly varying parts of the wave function are
squeezed into the valleys, and their shapes determine the energy of a whole
band. A, and B, levels are upper or lower energy bounds for a band of
waves made of locally even wave functions in valleys. A, and B, levels are
the same for locally odd wave functions.

Finally, remember that 4 and B levels refer to even or odd behavior
under axial or cyclic rotation (k or A°) from one well to the next. The A
waves are identical in each well and have unit characters:

xih=xit2=1. (3.6.25)
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The B waves change sign from well to well and have negative characters:

Xi'=xpr= 1. (3.6.26)

The correlation of D, irreps with those of subgroup C¢ = {1, h, h?, h3,
h*, h*} and with those of subgroup C, = {1, p3} can be deduced by characters.
From the preceding equations we deduce that

DML Cs=" | Cg = D" (of C;) = D%,
DB Cy =% | Cg = D? (of C;) = D%,

this is analogous to Egs. (3.6.15) for D, | C, correlation. Similarly, we deduce
from Egs. (3.6.23) and (3.6.24) that

PNLC,=9" | C,=D* (of C,) = D%,
P4 C, =95 C,=D" (of C,) = D"
is the C, = {1, p,} correlation for 4 and B irreps of Dy.

It is convenient to summarize all such correlations into CORRELATION
TABLES such as the following for Dy | Cy and Dy | C,:

D06 D16 D26 D36 D46 D56

PN Ce= | 1
o4 = | 1
£ T . (3.6.27a)
932 — . . . 1
9E1 = . 1 . . Eed 1
QEZ = . . 1 . 1
D02 Dlz
9M,C= | 1
91‘12 = . 1

95 =1 . . (3.6.27)
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The last two rows in either table indicate Zeeman splittings such as
DE | Cy = D' + D%.

Finally, note that C, or D, symmetry with odd n cannot have B waves.
Neither can D, have two classes p; and p; of valley and hill 180° rotations,
since hills are opposite valleys on the odd-n symmetric ring. You should be
able to construct diagrams like Figure 3.6.5 for the irreps A4,, 4,, E,, and E,
of D, and the irreps A4,, 4,, E;, E,, and E; of D,.

C. Higher D, Symmetries: D,;, and D, ,

Anyone who has resolved D,, D;, and D, symmetries and their representa-
tions can quickly understand all the other dihedral or D-type symmetries.
This includes the crystal point symmetries D,,, D, Dy, Dgy, D,,, and
D,,. (D,, is Abelian.) However, the noncrystal or molecular point symme-
tries Dsy,, D7y, Dy, ..., etc., or Dy, Dsy, Dy, ..., etc., are no more diffi-
cult.

The D,, symmetries all contain a horizontal or xy-plane reflection opera-
tion:

o, = o,, = IRZ (180°).

This operation commutes with all R, rotations and all transverse 180° p;
operations. Hence, the group D,, can be written as an outer product,

D,, =D, % C,=D, x {1,0,)}. (3.6.28)

For even n the rotation R, (180°) and the product R, o}, = I, i.e., inversion,
must be in D,,. Then one can write -

D,,=D,xC;,=D,x {1,1I} (n even). (3.6.29)

D,, symmetry can be pictured as two parallel and identical regular n
polygons placed one above the other. Some examples are shown in Figure
3.6.6(a). To have D,, symmetry each vertex of the upper polygon must lie
directly above a vertex of the lower one. If one polygon is rotated halfway by
diagonal angle 2(27/n) then the symmetry D, , results. As shown in Figure
3.6.6(b) the center of each polygonal face of the upper D,, polygon lies
above a diagonal or vertex of the lower one.

From Figure 3.6.6 one can appreciate that two types of D,, groups
emerge. For n odd (n = 3) the symmetry contains inversion and can be
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D3><Ch =
D3XC; =
D
= 2h
DXC; = Dag
h I ekl g Dg~ [ |

(a) (b)

Figure 3.6.6 Comparison of horizontial and diagonal dihedral symmetries. (a) Hori-
zontial D, symmetries. (b) Diagonal D, , symmetries.

written
D,,=D,xC;,=D,x{1,I} (n odd). (3.6.30)
For n even (n > 2) D, is isomorphic (~) to a higher D,, 0. Cy,, group:
D,, ~ D,, (n eveni. (3.6.31)
For example, D,, contains the operations

D, = {1, R%, IR, IR*, IR}, IR3, i3, i4}. (3.6.32)

D,, is the same as D, except for the extra inversion attached to the R and
Rf class elements. It is then easy to see that D,, has the same group table as
D, or C,,. Hence, one set of irreps can be used for all three of these groups.

The presence of inversion symmetry in even-n D,;, and odd-n D, ;- s"mme-
tries should be emphasized. Whenever possible the irrep labels should
indicate inversion parity by subindices X, for even and X, for odd, where
X =A,, B, or E,, labels the rest of the symmetry. For example, the D,,
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irreps are obtained quickly for those of D, and C; using Eq. (3.6.29):

D,= 1 R! R} R
A, 1 1 1 1) G= 1 [ )
B, 1 -1 1 -1|xg t
A, 1 1 -1 -1 u 1 -1
B, 1 -1 -1 1
D,,= 1 R! R) R; I IR? IR} IR
Ay, 1 1 1 1 1 1 1 1
B,, 1 -1 1 -1 1 -1 1 -1
Ay, 1 1 -1 -1 1 1 -1 -1
= B,, 1 -1 -1 1 1 -1 -1 1| (3.6.33)
Al 1 1 1 1] -1 -1 -1 -1
B, 1 -1 1 -1 -1 1 -1 1
Ay, 1 1 -1 -1} -1 -1 1 1
B,, 1 -1 -1 1] -1 1 1 -1
Similarly, the characters of D5, = D5 X C; follow:
D,= 1 2
3 (r,r%)  (p1P2p3) c= 1 I
;111 1 1 1 % 7
2 1 1 -1 " . -
E 2 -1 0
Dy, = 1 r p; I Ir.  Ip,
A, 1 1 1 1 1 1
A,, 1 1 - 1 1 -1
= E, 2 -1 0 2 -1 0 (3.6.34)
e 1 1 11 -1 -1 -1
Ay, 1 1 -1} -1 -1 1
E, 2 -1 0] —2 1 0

Now you should have no trouble producing the character table for the largest
crystallographic D group

Dy, =Dg X C; =Dy % C, X C,. (3.6.35)
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The odd-n D,, symmetries have horizontal reflection symmetry but no
inversion center. This may be shown in a prime (X’) and double-prime (X”)
notation for even and odd reflection symmetry, respectively. For example,
using Eq. (3.6.28) one has D, characters:

Dy= 1 (r,rY) (p1p2p3) 3

¢, = 1 oy,
A, 1 1 1

X A 1 1

A, 1 1 -1 Ve 1 -1
E 2 -1 0

Dy, = 1 r pi Op O Ooup;

A, 1 1 1 1

A, 1 - 1 1 -1

= F' 2 - 2 -1 0 (3.6.36)

A 1 -1 -1 -1

A 1 -1 -1 -1 1

E PARE -2 1 0

However, the actual irreps and characters of D, are the same as those of
the isomorphic group D,,; ~ D, in the previous equation (3.6.34). Only the
notation and physical action of the operations is different.

The economy of symmetry mathematics should be evident by now. Just by
learning irreps of C,, C5, C4, D5, and D, one becomes able to treat 27 of the
32 crystal point groups listed in Figure 3.1.1.

3.7 AMMONIA (NH;) VIBRATIONAL MODES

A detailed C5, projection analysis of ammonia (NH;) molecular vibrational
modes will be presented in this section. A reader who is studying symmetry
analysis for the first time may want to skip ahead to Chapter 4. References
contained at the end of the chapter should be consulted after studying this
section.

This section will be devoted to a comparatively simple spring-mass model
of the NH; molecule. Only two spring constants j and k will be used for the
N-—H and H—H bonds, respectively, as shown in Figure 3.7.1. However,
all models of NH; must take account of 12 coordinates for the four masses
and acceleration or energy operators which involve the coordinates in the
Hamiltonian. Therefore, it is important to develop procedures which will use
symmetry analysis efficiently and find the easiest way to solve any modil
Hamiltonian.

For complex problems that are not nearly perfect or regular representa-
tions of the symmetry, one can usually save a lot of algebra by dealing
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Figure 3.7.1 Spring-mass model for ammonia (NH,) molecule. Dashed arrows
indicate coordinate bond angles by giving the cosine of the angle. Base (H—H)
bands have spring constants k, while the pyramidal (N—H) bands have constant .

separately with the force operator F and the inertia operator m instead of
diagonalizing directly the acceleration operator a = m~'F. In this way it is
possible to keep unpleasant algebraic factors out of the denominators. Also,
one does not have to orthogonalize or normalize the basis if so doing would
involve still more algebra. The procedures for dealing with F and m
operators were introduced in Section 1.4.

In order to construct the reduced forms of the (F) and (m) representa-
tions, one needs the irrep bases PZ|x,) obtained from C;, irreps a = 1 (or
A,), 2 (or A,), and 3 (or E). Twelve base vectors Pf|x,) are shown on the
left-hand side of Figure 3.7.2 with their representative vibrational displace-
ments. To make these vectors it is convenient to first collect coordinates or
state vectors into SYMMETRY ORBITS. Orbits are sets of vectors which
can be transformed directly into one another by symmetry operations.
For example, the three downward radially pointing hydrogen bases {|H,),
IrH,) = r|H,), |r2H,> = r?|H,) form an orbit. Operating on this orbit with
the C,, projectors P!, Pf, and Pj; gives three states which, when norma!-
ized, are the following:

P1|H1>>\/§ = (IH1> + |rH1> + |r2H1>)/\/§_,
PYIH)Y3/2 = (21H) — |rH)) — 1r*H ) /Y6,
PYIHOW3/Z = (IrHy) — FPPH)) /Y2 . (3.7.1)

Note that operators P2, P£, and P4 will annihilate the state |H,) since it is
symmetric to local plane reflection:

|H,) = a5|H) = P,|Hy), (3.7.2)
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where

P =(1+o0y)/2.
Exactly the same holds for the three upward radially pointing hydrogen bases
{|H,), |rH;), |r*H;)}. The states P|H, , ;) are shown in Figure 3.7.2, along
with the remaining states projected from the orbits {|H,), |rH,), |r?H,),

{IN}>, rIN}>}, and {IN5)}. The angular hydrogen base |H,) is locally antisym-
metric; i.e.,

|H,) = ~o0;|H,> = P,|H,), (3.7.3)
where
P,=(1-03)/2. (3.7.4)

Hence, only operators P2, P, and P}, give nonzero states:

PH)W3 = (Hy) + |rH,) + [P2H,)) /Y3,
PLIHOW3/2 = (= 1rH) + |P2H)) V2,
P3LIH, 372 = (2|H,) — |rH,) — |r2H,)) /V6 . (3.7.5)

The in-o;-plane nitrogen base |N, ) is ready-made as a type-3 base along with
partner |N,):

PLIND = IND,  P3IND = IN,); (3.7.6)
the same is true for the scalar (1)-type base
PUN,)Y = IN,). (3.1.7)

The states on the left-hand side of Figure 3.7.2.are not genuine vibration
states since they all have either translational moment or momentum, rota-
tional momentum, or both. Here we measure rotational momentu n around
the N atom so that it is easy to calculate. Seven of the states have zero
rotation, and so it is easy to combine these into genuine or constrained states
or zero linear momentum. From the three type-1 states it is possible to make
one state of pure translational motion of the rigid molecule. We are only
interested in the two remaining genuine or constrained states:

lc') = MP'|H,)V3 + V3msin D P'IN,), (3.7.8)
lc'Y = MPY|H;)V3 — V3mcos D P'|N;), (3.7.9)

shown on the right-hand side of Figure 3.7.2. Similarly, the zero-rota;i;)n




208 BASIC THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATIONS
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Figure 3.7.2 Symmetry defined motions of NH;. (a). Primitive projected states —
obtained in Egs. (3.7.1)«3.7.6) are shown. (b) Genuine vibrational states are con-
strained to have zero translation and rotation. i




AMMONIA (NH;) VIBRATIONAL MODES 209

type-3 states combine to give zero-translation constrained partner states
le2):

le3Y = MP3|H,)/3/2 — 3mcos DIN,)/V6, (3.7.10a)
le3Y = MP3\H,)/3/2 — 3m cos DIN,) /V6 . (3.7.10b)

Lastly, one can make type-3 states of rigid rotation around x and y axes. We
shall ignore this motion until Chapter 5, and consider only genuine vibra-
tional motion which includes the preceding |c) states and the following ones:

3y = (cos D P}|H,) — PLIH,) + sin D P}iIH3))Y3/2, (3.7.11a)
lc2) = (cos D PIH,) — PLIH,) + sin D P31H;))yY3/2. (3.7.11b)

All the |c) states satisfy the constraint equations

ey, + Mey =0, (3.7.12a)
Iy X €y + Mry Xcey=0, (3.7.12b)

when ¢, is the displacement from equilibrium of atom p. Note that the
translational constraint (T = 0) guarantees that any new choice of origin for
the angular constraint would still give zero A. If A = 0, then

3
Txd=m) ¢y Xd+Meyxd=0
i=1

implies that

A=mY (ry+d)Xecy +M(ry+d) Xcy=0
i=1

azy

is zero also.

The preceding constraints and C,, symmetry analysis reduce the genuine
vibration problem from NH, to the calculation and solution of two 2 X 2
matrices:
(0 = (cQlety  (MQle"> (O = (ci1Qledy  (cflQlel>
c'1Qlety  LelQle™y ) (31Qledy (10l |

representing Q = F and Q = m operators. Note that vectors |c*) and [c*)
are not orthogonal, and so we are committed to a separate treatment of the
F and m operators. One needs only the rows of these matrices that corre-
spond to the first vector of each orbit, namely, { H,|, { H,|, {H,l, {N,l, and
{Nsl, as given in Egs. (3.7.13) below: o
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The calculation of the representations of operators Q = F or Q = m in

the Ic}’) basis can be made easier by using the properties of the elementary
operators. Let us begin with the vector |¢¥) from Eq. (3.7.10):

(c}1Qlcd)
= M(3/2)"*(H,|P}Q[M(3/2)"*P}|H,) — 3m cos DIN;) /V6 |
—(3m/V6 )eos D{N,1Q[ M(3/2)"* P} |H,> — 3m cos DIN,)/V6 |.

Using the idempotent properties (P} P7, = P},), commutivity (P},Q = QP}),
and Eq. (3.7.5), the following expression results:

1
0ledy = M2 Y. @3 (r{H,|QIr"H,> — 3Mm cos D{H,|QIN,)
n=0

9m?
+Tcos2 D{N,|QIN,). (3.7.15)

Here the formula (3.4.19) for PJ is used again. Now substituting the
required F-matrix components for Eq. (3.7.13a) gives the desired component:

(c{|Fle]) = M?(j + (3k/4)cos® D) + 3jM cos®> D + jm*(9/4)cos* D
= M (3k /4)cos? D + j[(3m/2M)cos* D + 1]°).  (3.7.16)
Similarly, the m-matrix component is
(c¥Imle}y = Mm?[1 + (3m/2M )cos® D]. (3.7.17)

The off-diagonal {c}|Qlc?) is produced in the same way:

2
(31Qlc}y = (M/V8)cos D Y (H,|QIr"H )P (r™)

n=0

—(Z’;m/\/g)cos2 D{H,|QIN,>
2
_(M/\/g) > <H2|Q|r"H1>923;("”)
n=0

+(3m/V8 )cos D{H,|QIN,»
+(M/V8 )sin DY CH,IQIr"H )P (")
—(3m/V8 )sin D cos D{H;|QIN,).
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The off-diagonal F component
(c3IFle}y = (M/V2)cos D[(3k/2) +j(1 + (3m/2M )cos? D)| (3.7.18)

is the coupling between the two vibration coordinates. The off-diagonal m
component,

(c}lmlci) = (Mm/V2 )cos D, (3.7.19)

indicates that |c}) and |c¥) are not orthogonal. The type-3 calculation is
completed with the {c}|Qlc}) components since Q@ = Q for Q = F and
Q = m. The resulting F matrix is

3k/2 + (j/2)cos* D M cos D(3k/2 + jH)

= Mcos D(3k/2 +jH) M?*[(3k/4)cos®> D + jH?| |’ (3.7.20)
where
H=1+ (3m/2M)cos’ D,
while the m matrix takes the form
(m)* = ( ” (/72 )eos D (3.7.21)
(mM/V2 )cos D mM2H

The calculation for the type-1 or A; modes proceeds in the same way but
without the duplicity of the two-dimensional type-3 modes. The force opera-
tor is represented in the {|c!), |¢')} basis by the following matrix:

(FY = M?*(3kcos®’ D + jI) 3JIM?*(k — jm/M)sin D cos D -
 \3IM2(k — jm/M)sin Dcos D M%(3k + j(2m/M)* cos? D)sin? D |’
(3.7.22)
where

J=1+ (3m/M)cos* D.
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The mass operator is represented in the same basis by the following matrix

mM?*K —3(m/M)sin D cos D

(m)' = .
—3(m/M)sin D cos D J

, (3.7.23)

where
K =1+ (3m/M)sin® D.

Combining Egs. (3.7.20) and (3.7.21) gives the acceleration matrix for
type-3 modes:

3k/m 3k/mV8 )M cos D
(@ =(m™'FY =| / (3k/my8) . (3.7.24)
(]/mM\/g)cos D Hj/m
The solutions to the secular equation,
A= S3A, + Py =0,
where
S;=(3k/2 + Hj)/m, (3.7.25a)
Py = (3kj/2m*)(H — (1/2)cos? D) (3.7.25b)

are squared eigenfrequencies of type-3 vibrations:

Moo= (w32)? = (S, + /ST — 4P, )/2 (3.7.26)

=

Similarly, the type-1 acceleration matrix is

L o (3k/m)cos®’ D + Ki/m  3(k/m — j/M)sin D cos D
(@)' = (m™'FY = _ P
3(k/m)sin D cos D 3(k/m)sin° D

(3.7.27)

Its eigenfrequencies are given by

(0,2)7 = (8, + /57— 4P, )/2 (3.7.28)
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where
S, =Bk +Kj)/m (3.7.29a)

P, = 3kj(1/m> + 3/mM )sin? D. (3.7.29b)

Now the physics begins as one decides what to do with these equations.
One of the most interesting applications involves determining the angle D by
“listening” to the vibrations of NH; and comparing this with what has been
found by other methods such as “looking” with x rays. To do this first note
that the last term in the secular equations are the products of the roots
P, =(0,,0,_)* and P, = (w5, w;_)% respectively. The ratio R in the fol-
lowing is a function only of the angle D and masses m = 1 amu and M =
14 amu of hydrogen and nitrogen, respectively,

R = (“’1+(‘)1—/“’3+‘1’3—)2

R=P/P, =21+ 3m/M)sin’> D/[1 + (3m/2M — 1/2)cos> D]

(3.7.30)
Solving for angle D gives
D = sin"'[R(1 + 3m/M) /[4(1 + 3m/M) — R(1 - 3m/M)]]""%.
(3.7.31)

The frequencies w,, needed to calculate R and D are obtained from
spectra such as the infrared adsorption data shown in Figure 3.7.3. The
numbers which are quoted in Herzberg’s text are as follows:

v,,=3337cm™, vy, = 3414 em},
w,,= 6.290 X 10" rad/sec,  w;,= 6.435 X 10" rad/sec,
v,_=908cm™}, : vy_= 1628 cm™?,

w,_= 1712 X 10" rad /sec,  w;_= 3.069 X 10! rad/sec.
1 3

Determination of the frequencies required careful analysis of many such
spectra and an understanding of the rotational structure which surrounds
each “line” in Figure 3.7.3. The development of laser devices has given a
more clear picture of rotational structure and led to better understanding of
it, as will be explained later in the book.




Ui (4 1) 9
JO spueqopIs [RUOIIRIOL SY] Ul 1SO] SI U] ( + ¢€) 3y} 1By} s1eadde 3] -oui] Yorvo opIsaq Paisy

are 819qzIoH Aq UdAIB sonjea pojenqe], ‘(P HN) eruowwe jo enoads porerjuy  ¢'4°¢ aandig

(,_ND) HIGWNNIAYM

009 008 000/ o002l oovl 0091 008/ 0002 006<¢ 000¢ 006¢ 000¢p
_ [ 5y [ _ I [ ] T _ T _ —d0

”OWI uﬂer l.,.m .._..w
N g S

W.S Wr Vn.. ] ON

— 0v

— 09

08

B 00l

JONVLLIANSNVYL

(LN3243d)




216 BASIC THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATIONS

Substituting the observed frequencies into Egs. (3.7.30) and (3.7.31), one
obtains D = 17°, which agrees fairly well with the angle 20° found by other
means. (D = 20° corresponds to an H—N—H angle of 109°.)

One may try to deduce the spring constants k and j from the spectra just
given. One procedure is to use the sums S, = (w,.)* + (w,_)?, which are
the second factors in the secular equations (3.7.25a) and (3.7.29a).

Solving these gives the following:

j/m=(28;—-S)/1 + 3(m/M)cos2D),
3k/2m = S,(1 + (3m/2M)cos* D) — Si(1 + (3m/M)sin® D)

Substitution of the experimental w‘®, D = 20%, and the H mass (m = 1.67 X
10~?7 kg) gives numerical results (j = 850 nt/m) and (k = —62 nt/m),
which indicates some inaccuracy in the k — j spring model. The negative
value for k is physically impossible.

However, this model can still be used to estimate and visualize some
things if it is approached more carefully than in the foregoing. Instead let us
plot in Figure 3.7.4 the eigenvalues o, as functions of the ratio k/j for
D = 20°. Near k/j = 0.3 we find that the ratio of the two lowest functions
becomes equal to the observed ratio w,_/w,_. From this point one may
compare the theory to the experiment for the higher levels. Notice that the
w,, prediction is 20% too high but w,_ is pretty close.

1.5
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o ’
< 644, w(3) =
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K/j

Figure 3.7.4 Plots of k-j model eigenvalues. Experimental values are shown on the
left-hand side.
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It is possible to make a better theory by including bond-bending constants,
i.e., so-called “covalence forces,” or other parameters. Indeed, we shall prove
by symmetry product analysis in Chapter 6 that the number of parameters at
your disposal in any problem of this sort will be exactly enough to make any
eigenvalue (o™, w®,...) and eigenvector combination (al{*®) + b|“)
+ ---) that is possible. However, the use of too many parameters would give
one a rather empty victory unless one goes on to use the parameters for
analyzing spectra of other molecules having similar H—H bonds. This
approach has been carried out successfully for many cases.

Note in Figure 3.7.4 that w,, and w,, are fairly constant and close to
(;/m)'/2, This is mainly because M is larger than m, so the high modes just
amount to hydrogens vibrating more or less independently on j springs. This
gives a rough estimate for j: j = m(6.3 X 10'*)? = 660 nt/m. Incidentally,
the degeneracy at k/j = 0.035 does not, as far as we now, have anything to
do with symmetry. Such crossings are called ACCIDENTAL DEGENERA-
CIES.

APPENDIX D. MATHEMATICAL PROPERTIES OF PrgP?

This appendix is devoted to closing mathematical loopholes in order to
zssure that the techniques developed in Chapter 3 are applicable to any finite
sroup G ={--- g -} of unitary operators. Sections D.1 and D.2 contain
~roofs that the operators {P2gP?, Pfg'P?, ...} for all elements {g, g’,...} in
G are simply proportional to each other if the idempotents P and P
cannot be split. Section D.3 contains a proof that each PfgP* # 0 exists for
wome g if the P =P + P§ + --- are complete sets of all-commuting

idempotents.

D.1 LINEAR DEPENDENCE OF P gP, Prg'Py,...

Consider the set { D, = PgP?, Dy = PZg'P?,---} of all group elements
“guarded” by a Hermitian irreducible idempotent P* = PfP® = P*T. The
assumption that P* is an idempotent implies that this set is a closed
subalgebra. since anyv product DgD, must be a linear combination of some
p,. Furthermore. P~ acts as the identity or unit element ( p P = pg) for all
P, The assumption that P is Hermitian implies that the algebra contains a
conjugate,

p; - PiaTgTI)l_aT - })iagTPia’ (D.l)

for each p,. Hence, the p, basis can be replaced by a Hermitian basis of
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operators
— i —_— .
hg = (pg+pg)/2, h,-= (pg—pg,)/2z.
= . —hi-. (D.2)

-4 8

Each £ satisfies some minimal equation

(h = mP)(h —myP) -+ (h —m,P7) =0, (D.3)
which contains no repeated eigenvalues (n; # n; if i # j). Note that P® is
serving here as the unit element.

Finally, the assumption that P is irreducible implies that a minimal
equation (D.3) must have just one factor

(h = P) =0, (D.4)
or that
h =n, P~
If two or more factors were present in Eq. (D.3) then P# could be split into
two or more orthogonal idempotents (P* = P + P’ + ---), contrary to the
assumption. Equation (D.4) holds for all #, all D, and all combinations of
Dg> as well. One has
py = PfgP® = pPf, (D.5)
where the eigenvalue p is given the notation
p=9;(8) (D.6)

in Section 2.3.

D.2 LINEAR DEPENDENCE OF {P,-"‘ng", Prg'P?,. .o}

Suppose a “guarded” operator N = PgP is nonzero. Then so is its conju-
gate N = P?gP; and their products:

NN' = PegPrg'P* = AP?, (D.7a)

NN = Pg'PgP® = XP¥. (D.7b)
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'Y

The AP form of each product follows from Eq. (D.5), where A and X' must
be real and positive definite. For any other group operators g’ one has

Piaglf)jagTPia — VPia, (DS)

’

according to Eq. (D.5). Combining the preceding two equations gives
0= AvP* — vAP?
= ,\Pi“g'l)jagTP.a . VPl_ag[)jagTI)ia’

14

0 = (AP7g'B — vP7gP) P8 Py, (D.9)
Attaching gP; on the right and using Eq. (D.7b) gives
0= (AP,-ag’Pj“ _ VPiagI)ja)[)jagTPiagI)ja’
0 = (AP%g'PF — vPrgP)X. (D.10)
Assuming A and X are nonzero gives
Pfg'P* = v/APfgP", (D.11)

Therefore, the irreducible “guards” convert all {g,g’,...} to the same
operator to within a proportionality factor v /A. Next we prove that P7gP* is
nonzero for some g; i.e., A # 0. Of course, if all {P*gP?", P g'P?,...} were
zero one would not have needed to prove that they are proportional.

D.3 EXISTENCE PROOF OF PrgP;
Suppose P*gPs = 0 for all group operators g. Then we have
PIGP5 =0, (D.12)

where

G=1Yvzs
g
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is any combination of operators. In other words we suppose that P{* and Py
cannot serve together as bodyguards for any operator g without annihilation.

Let the set {P{, P*, P, ...} of irreducible idempotents contain those
which still may serve as bodyguards with Py, i.e., let

P® = \PFhPEhTPS (D.13)
for some h. Let the second set {P5, P*, P{, - -} contain those which may
serve with P§; i.e., let

P® = pPrkPSk'PS (D.14)

for some k. Combining Egs. (D.12)-(D.14) implies annihilation,
PegP® = AuPehPIHPIgPkPSk'PY = 0, (D.15)

for all g, due to the factor P*GP§. In other words, any idempotent P;* in the
P} subset annihilates any operator containing a member of the Py subset,
and vice versa. This implies that the (a) part of the decomposition

g=1g1=) ) PneP;

a m,n

splits into (at least) two separate parts
g~ X (Trrare + Torers+ |
a Vi, i i

= Y (P8PE) + PG)8Po + = )s

[23

involving idempotents
Py =P +P*+PF+ -,
PG =P§ +Pr+Bf+ o,

which are sums of the separate sets. These new idempotents satisfy commu-
tation relations

[24

Piy8 = PoygPey = PG,

with all group elements g.
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However, this leads to a contradiction. The original all-commuting idem-
potent

P =Pf+P§+ - P&

p— o a ..
= P(l) +P(2) +

should not produce any new all-commuting Pj7, when splitting into irre-
ducible idempotents. (The dimension of the class algebra is fixed.) Hence,
any two irreducible idempotents P and Ps' from the same family must give

some nonzero Py'gP;.

ADDITIONAL READING

An introduction to Hamilton’s turns is given by Biedenharn and Louck.

L. C. Biedenharn and J. D. Louck, in G. C. Rota, Ed., Angular Momentum in
Quantum Mechanics, Encyclopedia of Mathematics and Its Applications, (Addison-
Wesley, Reading, MA, 1981).

The original text by Hamilton (not readily available) is a little difficult for most
modern readers.

W. R. Hamilton, Lectures on Quaternions, (Dublin, 1853).
The slide rule basadupon the turns is described in the author’s American Journal of
Physics article

W. G Harter and N. dog Santos, “Double group theory on the half shell and the
two-level systems,” am. J. Phys., 46, 251 (1978).

A complete description of group algebra is found in a mathematics text by Curtis
and Reiner.

C. W. Curtis and I. Reiner, Representation Theory of finite Groups and Associative
Algebras, (Wiley, New York, 1965). =

The discussion and bibliography for the NH, vibrational spectra found in
Herzberg’s classic texts is still probably the most complete discussion of molecular
spectroscopy.

G. Herzberg, Molecular Spectra and Molecular Structure: 1. Spectra of Diatomic
Molecules, II. Infrared and Raman Spectra of Polyatomic Molecules, III. Electronic
Structure of Polyatomic Molecules (Van Nostrand-Reinhold, New York, 1950).

The XY, analysis starson p. 155 of Vol. IL

The standard reference for molecular normal coordinate analysis is

F. B. Wilson, V. C. Decius, and P. C. Cross; Molecular Vibrations (McGraw-Hill,
New York, 1955).
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Two more modern references are
S. Califano Vibrational States (Wiley, New York, 1976).

D. Papousek and M. R. Alier, Molecular Vibrational-Rotational Spectra, 1982
Studies in Physical and Theoretical Chemistry, Vol. 17 (Elsevier Amsterdam, New
York, 1982).

PROBLEMS

Section 3.1

3.1.1 The subsets (%, Zg,, #8,,...) or (¥, &, %, g,#,...) of group
g={Lg,8,-- .} are called RIGHT or LEFT COSETS, respectively,
of subgroup #Z = {L,h,...1C . The subsets (7, #, %872,
#g, %', ...)are called DOUBLE COSETS of subgroups # and Z".
(a) Construct right cosets for subgroup C, = {1, 03} of C;,.

(b) Construct left cosets for subgroup C, = {1, a3} of C;,.

(¢) Construct right cosets for subgroup C; = {1,r,r% of C,,.

(d) Construct left cosets for subgroup C; = {1, 7, r2} of C,,.

(e) Construct double cosets for subgroup C,={l,0} and C' =
{1, 0,} of Cs,.

() Construct double cosets for subgroup C, = {1, o) and C; =
{1,r,r?3 of Cs,.

3.12 A subgroup .# of & 1s called a NORMAL or INVARIANT subgroup
of group  if g#g™! =.# forany g in &.
(@) Is C, = {1, 05} a normal subgroup of Cs,?
®) Is C, = {1,r,r? anormal subgroup of C,,?
(¢) Prove that if the left and right cosets of a subgroup # are equal,

then # is a normal subgroup. Check this: using the results of
Problem 3.1.1.

Section 3.2

32.1 Use Hamilton’s turns or nomograms to derive a multiplication table
for each of the following symmetries which includes the =+signs that
would be needed to describe rotations of electrons. Do any of the
resulting tables give mutually commuting operators? /

(a) D,.
®) D,
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3.2.2 Let °#(g) be the number of elements of a group that commute with
element g. Let °C . be the order of the class of g in group &. What is
the product of these two numbers?

Evaluate these numbers for the groups D,, D,, and D,.

Section 3.3

3.3.1 The four flat-bladed fan of arbitrary pitch has D, symmetry.

(a)
(b)

()
(@

(e)
®

(g)

(h)

Name or label all the rotations in D, and tell what they do.
Draw a sketch of something with C,, symmetry and relate C,,
symmetry to D,.

Construct a Hamilton-turn nomogram for D,. Could it be used
for C,, as well?

Construct a group multiplication table for D,. Arrange it accord-
ing to classes.

Construct a class algebra table using part (d).

Spectrally decompose the class algebra. Find P* = Y djc; and
¢; = L¢P

Split the all-commuting idempotents found in part (f) into irre-
ducible idempotents of the D, algebra with the help of the
idempotents from the subgroup D, = {1,R,(180°), R (180°),
R ,(180°)}.

Split the all-commuting idempotents found in part (f) into irre-
ducible idempotents of the D, algebra with the help of the
idempotents from the subgroup C, = {1, R,(90°),R (180°),
R,(270°)}.

3.3.2 The quaternion group Q = {1,1,i,1,1j,j, k, k) is defined by Hamilton’s
hypercomplex relations: ij = k, ji = k (and cyclically); ii = jj = kk
=ii=ji=kk=1 il=1i=1i (aind cyclically); 11 =1; and 1 is
identity. » .

(a)

Using Hamilton’s turns show that this corresponds to the spin-
version of the D, groupwithi=R_,i= —R_,j=R , etc.

x? EERE

(b) Redo parts (d), (e), and (f) in Problem 3.3.1 for the quaternion
group.
(¢) Use the subgroup {1k, 1k} in Q to split any all-commuting
idempotents in the Q algebra that might still need splitting.
Section 3.4

3.4.1 The D, symmetric spring-mass model consists of four mass-m parti-
cles held by diagonal, external, and side springs of constants d, e, and
s, respectively, as shown in the diagram.
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(a)

(b)

(c)

@
(e)
®

(g

(h)

Label the eight x-y-plane coordinates using group operators
“named” in Problem 3.3.1.

Write the first row ({1]a{1) --- (1]a|8) - - - ) of the acceleration
matrix in terms of the mass and spring constants.

Use the irreducible D, € D, defined idempotents of Problem
3.3.1 to obtain the irreducible operators P*gP®. Find all the
linearly independent vectors P;|1) and Pl-"‘ng"‘I 1) for the system.
Draw pictures of the normalized displacements or distortions
which they represent. Use these results to find a complete set of
irreducible projection operators PJj.

Write a table of all the D, < D, defined irreducible representa-
tions D?. [Use part (c) of this problem if necessary.]

Derive a table of all the C, C D, defined irreducible representa-
tions D*<,

Obtain the block-diagram reduced forms of the acceleration
matrix {a) using symmetry projectors from parts (c) or (d).
Solve any residual block matrices obtained in part (f). Sketch the
vibrational normal mode distortions and corresponding fre-
quency levels for constants e =0, s = 5,d =3, m = 1.

Draw pictures which differ from part (g) of the normal modes for
e=1,s=5d=3 m=1.

3.4.2 Obtain a set of irreducible representations for the quaternion group,
following results you obtained in Problem 3.3.2. Is Q isomorphic
to D,?

Section 3.5

3.5.1 Given an n-dimensional class algebra (c,¢c; = ¢;¢; = L;_,Cfc,) one
may construct a “regular” representation; R(c,)R(c;) = R(c;c;) of the
algebra using the structure constants C,’j (This is not to be confused

with group regular representation.)
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3.5.5
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(a) Show how to do this. Make and test such a 3 X 3 representation

for C;, classes.

(b) The eigenvalues (cf, cf, c},...) of each matrix R(c;) can be used
to derive characters (x7', xf,...). Give formulas for x{ in terms
of ¢; (and other quantities) and test them using Cj,.

The irreducible representation-orthogonality relation is

Z 25(8) 26(¢g) =Og/la8aﬁsik8n~
all ge%

(a) Prove this by considering 2(Pf) = ?

(b) Discuss the form of the completeness relation that would compli-
ment this orthogonality relation, and derive it, too.

(¢) Derive an irreducible character completeness relation.
Tax{xg =2

(d) Derive an irreducible character orthogonality relation.
Ej"CjX;'*Xf = ? Here °C; is the order of the (j)th class.

(Schur’s lemmas)

Suppose an [* X [* matrix % commutes with all matrices {Z*(g) - --

2%(g’) ---}, where 2¢ is an irreducible representation; i.e.,

Z9g) =2%(g).Z for all g.

(a) What special properties must % have? [Hint: Consider 2 “(P).]

(b) What special properties should an /% X I# matrix .# have in
order to satisfy #2P(g) =2*(g).# for all g, where a and B
label inequivalent irreducible representations. [Consider D*(P*).]

An element g is called a COMMUTATOR element of a group # if it
can be written g = a~ ‘b~ 'ab for some a and b in £. The COMMU-
TATOR SUBGROUP (#,) of & is the smallest subgroup which
contains all the commutator elements of Z.

(a) If g is a commutator, is g~ ! also one? Is 1 one?
(b) If g is a commutator, is every member of its class one, too?

() prove that class sum ¢; contains commutator elements if and
only if there is at least one other class sum ¢, such that
c;c, = - +nc, + -+, where n # 0.

(d) Find the commutator subgroup of Cj,.

A representation R is said to be FAITHFUL to a group if R(g) = R(g’)
for all g and g’ that are group elements. A representation R is said to
be FAITHFUL to a GROUP ALGEBRA if R(x) = R(y) implies
x =y for all possible linear combinations x and y of group elements.
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Note: In the second case we are talking about the whole group algebra

and require that R(a) = 0 if and only if a = 0.

(a) What is the lowest possible dimension of a representation that -
is faithful to the group C,,? To the group C,,?

(b) What is the lowest possible dimension of a representation that is
faithful to the algebra of group C,;,? To the algebra of
group C,,?

(c) What is the maximum number of mutually commuting group
elements in C;,? In group C,,?

(d) What is the maximum number of mutually commuting operators
in the group algebra of C,,? In the group algebra of Cy?

(e) Are either of the answers to (c) or (d) related to those of either
(a) or (b)? Which and why?

Prove the order °% of a group must be evenly divisible by each of the
following numbers. [Part (c) is the hardest to prove.]

(a) The order °# of any of its subgroups.
(b) The order °C, of any of its classes.
(¢) The dimension /* of any of its irreducible representations.
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