














82 BASIC THEORY AND APPLICATIONS OF SYMMETRY REPRESENTATIONS

eigenvector of the representation of all symmetry operators R in an Abelian
group, each with eigenvalue D*(R):

R-P* = D*(R)P* & @(R)@(P*) = D*(R)@(P*). (24.9)

The completeness relation guarantees that one has accounted for all possibil-
ities. So every representation @(g) of any Abelian group operator g must be
reducible to a string of (1 X 1) irreducible representations D=(g) on the
diagonal. The notation for the reduction given in Eq. (2.4.8) is given in the
following using the DIRECT SUM sign &:

Tle(g)T =D*(g)®D"(g) ® D (8). (2.4.10)

2.5 PARTIALLY SOLVING A PROBLEM WITH SYMMETRY
ANALYSIS (C,)

It is probably a good idea now to sce an “imperfect” application of symmetry
analysis in order to see some of the limitations of this theory from the start.
The pendulum system drawn in Figure 2.5.1 has the same symmetry C, =
{1, R} which we have been discussing. Operator R is defined in terms of the
base kets by R|1) = |3), RI2) = 12), and R|3) = I1). That is, we may

Base states:

|1> [2>=R|2> [3>=R|1>
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Figure 2.5.1 Coupled pendulums. This is a more complicated example of C, symme-
try. Only two of the three bases are connected by the C, symmetry operator.
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switch the two outside pendulums, but the middle one has to be left alone
because it is different in mass and location.
The equation of motion is written out in three different forms:

[%(2)) = —alx(1)), (2.5.12)
(1] 2(2)) (1lal1l)  <1lal2)  (1lal3) ) [(1]x(2))
(2x(1))y | = = | lally (2lal2) (2lal3) || {2|x(2)) |, (2.5.1b)
(3|%(1)) (3lal1)  (3lal2)  (Blal3) [ \(3]x(¢))
X a+b —a 0 X,
i, l=— -4 24+b —-A ||x,]. (2.5.1¢)
X4 0 —-a a+bl\x,

The constants in the acceleration matrix are a = k/ml*, b =g/I, and
A = k/MI*

The representation of the C, symmetry operator R in the {[1),[2), 3)}
basis is (see Figure 2.5.1)

1|RI1Y <{1|R]2) <{1IRI3) 0 0 1
2IR11Y <(2IRI2) <(2IRI3>|=1{0 1 0,
GIRI1Y  (3IRI2) (3|RI3) 1 0 0

which is precisely the & representation treated in the preceding section. .

[Compare Eq. (2.4.5) with the preceding one.] There we found that a change
of basis from {|1), [2), 13)} to {le, ), l¢’. ), le_),}, represented as

(1le.) 142 (1]e) 0
le,> — <2Ie+> = 0 1 le',> — <2|e,+> =11},
Gley | |12 Gley| o
(e )| 142
le_> = |(2]e) o |, (25.2)
Ble) [\ —142

caused the & representation to assume a reduced or diagonalized form.
[Recall Eq. (2.4.8).] Applying the same change of basis to the acceleration
matrix in Eq. (2.5.1) we see that a partial, but not total, reduction of it occurs:

a+b —V2a 0
TeT = _y24 A+b 0o |- (2.5.3)
0 0 a+b
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Symmetry analysis guarantees that components like (e_lale_), or
(e_lale ), etc, are zero, but it cannot guarantee that a coupling like
(e, |ale ) will go away. In fact, it does not—it equals ~ V24 in Eq. (2.5.3).

So for this problem the (—) eigenvector is fixed, but the (+) eigenvectors
still remain to be solved, and the results will depend upon the values of the
constants g, k, 1, m, and M. Symmetry analysis with the group C, can do no
more than separate the (+) type modes from the (—) types.

In a general symmetry analysis you will determine the REPETITION
FREQUENCY f¢ or the number of times each irreducible representation
D appears in the reduction of the physical group representation. This tells
you how much work is left after the symmetry analysis is completed: Each
[ X f% matrix may need to be reduced. The final reduction is completed
using standard techniques reviewed in Chapter 1, or may be accomplished
numerically on a computer. (Or, perhaps, you may find a higher symmetry!)

2.6 AN EXAMPLE WITH SLIGHTLY HIGHER SYMMETRY (C,)

If the three pendulums are coupled in a more symmetric way, as in Figure
2.6.1, it will be possible once again to deduce the complete solutions to the
equation of motion

X 2a +b —a —a X,
X, = - —a 2a +b —a X, (2.6.1)
X, —a —a 2a + b x,

using symmetry analysis techniques. The constants in the equation are
b =g/l and a = s/ml?, where s is the coupling spring constant and g, [, and
m are gravity, length, and mass constants, respectively. The basic coordinates
Xy, X,, and x, are defined by Figure 2.6.1. Symmetry operators include the
cyclic exchange or 120° rotation operator labeled r which transforms base
states as follows:

rl1y =12y,  rl2) =13), rl3) =D,
the double exchange operator r? which does the transformations,
rA1y =13), A2y =11, 33 =2),

and the identity 1, which changes nothing. (1)i) = |i)). There are some other
symmetry operators such as “reflections” o,, ¢,;, and o5,, where, for
example,

opll) =12),  opl2) =11,  o,l3) = 13).

However, let us put off discussing these until Chapter 3.

viisidHIHES R
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symmetry
rotation
Base States:
) O
7 N ) ] QY
- S,
O

Figure 2.6.1 C; symmetric coupled pendulums.

The three operators {1, r, r%} form a group called C;. The multiplication
table is

1 r r?

1 r 2
A R (2.6.2)
22| 2

Now one can use the minimal equations (+>=1, or r> —1=10) to
produce the idempotents associated with the group elements. The minimal
equation for r is factored into the three roots of unity:

0= (r’—1)=(r—el)(r —e1)(r — gl),
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where

e =1, £, = e2m/3, £y = e 2mi/3,
Using Eq. (2.3.2) we obtain three idempotents P%:

_ (r —e;,)(r — &51)
(&1 —&2)(e — £3)

- (r — e )(r — &) 1 5

P?= (oo e)(eae) 5(1+33r+82r )s

3 _ (r —&1)(r — &,1)

- (63— &1)(e3 — &;)

Pl

1
= §(1+r+r2),

1
= 5(1 + ey + £577). (2.6.3)

The inverses of Eq. (2.6.3) are the completeness and spectral decomposition
relations in the following. These follow from the theory given in Sections
1.2.B(b) and (c).

1=P' + P2+ P>=DY(1)P' + D*(1)P? + D3(1) P,
r=P' +¢&,P? +¢;P? = D' (r)P' + D*(r)P? + D¥(r)P?,

r?=P' +&,P” + £,P? = D'(r*)P! + D*(r?) P2 + D3(r?)P3. (2.6.4)

The eigenvalues D*(g) in the decompositions above are the irreducible
representations (we abbreviate this “irrep,” henceforward) of C;. There are

three kinds of irreps as tabulated in the following using Eq. (2.6.4). Two )
other standard notations for the irreps of C; are shown on the left-hand side /
of the character table (see a “phasor” version of this table at the top of

Figure 2.6.2):

g = 1 r r2 |
D%(g)=D"4(g) =D'(g) = | 1 1 U] s |
D's(g) = D*(g) =D*(g)= 1 e2mi/3  gm2mi/3 [ 0. :
Dza(g) = DE*(g) = DS(g) = 1 e_z”Ti/:” eZ‘n’i/3

The C; example shows many of the properties of general cyclic C, groups
{1,r,7%,...,r""1}. In general there will be n distinct roots to the minimal
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