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CHAPTER 1

A REVIEW OF MATRIX ALGEBRA
AND QUANTUM MECHANICS

The study of symmetry and its application to spectroscopy involves the
mathematics of operators, vectors, and matrices, and this chapter contains a
review of matrix theory and some of its applications. The review includes a
few concepts and procedures which may not be well known to physicists, but
which are needed in the development of this book. Also, we use the review to
establish much of our symbolism, conventions, and definitions. Finally, there
are some previews of the contents of the rest of the book.

1.1 MATRICES USED IN QUANTUM MECHANICS

The matrix description of quantum mechanics was first developed by Heisen-
berg and has since become widely used. This description differs from some
others mostly by the organization of its bookkeeping, wherein numbers of
physical interest are stored in arrays called MATRICES. Such an array is
shown in Eq. (1.1.1):

My My Ay
M=\ My My My | (1.1.1)
We will use script notation .#,.#",... for a whole matrix, and let the same

letter with subscripts A;; designate the (complex) number which is the
COMPONENT of the matrix, located where the ith row meets the jth
column.




2 A REVIEW OF MATRIX ALGEBRA AND QUANTUM MECHANICS

Many, but not all, of the matrices which we shall use will be finite-square
or (n X n) matrices, that is, matrices with n rows and n columns, where
n=1,273,... is finite. [A (1 X 1) matrix is just a number.] This is because
many physical situations can be described by some relation between a set of
n quantum states and some other set of n different states. Consider now
some examples of such matrices.

A. Transformation Matrix

Quite often in quantum mechanics we can describe a particle or a system of
particles by stating whether they are in one or another of some set of n
quantum states 1,2,3,..., n. The most famous example of this might be the
states (1): spin “up” and (2): spin “down” for an electron.

Now someone else can come along and describe the same system with a
different set of states 1',2',3,..., and n', which are just as complete in their
description as the first set. For example, 1: spin “north” and 2’: spin “south”
are acceptable states for the electron, too, as we will see shortly.

However, you must know the relation between any two equivalent descrip-
tions. This relation is given entirely by a TRANSFORMATION MATRIX
(b’ < b), the meaning of which we shall review:

any Ry e (T
F(b < b) = <2}1> <2}2> v 2 (112)
Wy w2y e (nlmd

For the time being we shall exhibit the & matrix for going between
“yp-down” (1-2) and “north-south” (1-2') directions shown in Figure 1.1.1
for electronic spin. (The figure shows up-down tilted to avoid “geo-
chauvinism” or undue favoring of a particular inhabited latitude.) The I
matrix that follows and generalizations of it are derived in Chapter 5, and in
fact most of symmetry theory is devoted to finding some sort of J matrix:

. 0 [t}
A1y K12 cosi —isinE
F(b < b) = - p 2| 13
2 2’12 —isin — —
1 (212 isin > cos —

i

It is important to understand the meaning of a matrix. It is conven-
tional to say that component {i'|j) gives the “PROBABILITY AMPLI-
TUDE for a system in state j to be found in state i'...”. Now one has a
perfect right to ask what that means, but many students find it difficult to get
a satisfying answer. However. it is not so difficult to learn that {(i’|j) squared,
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Figure 1.1.1 Alternative axes for spin
state definition. The up-down axis (z) is
rotated by angle 6 from the north-south
axis (z').

i.e., [<i’]j)|? is the fraction of, or probability for, systems in state j to end up
in state i’ when forced to make the choice. The difficulty is that it is
apparently impossible to predict the outcome of an individual event. To know
this with certainty we must really wait for the individual particle or system to
make its choice. The prediction |{i’|j)|* is only the probability for the
individual outcome [(i’) from (j)] or the average percentage for choices in a
large number of individual experiments.

A device that forces a particle to make a choice is called an analyzer. An
example of a spin-state analyzer is the magnetic Stern-Gerlach device which
Feynman has described in his Lectures on Physics (Vol. 111, p. 5-1). The
analyzer accepts a beam of spinning particles and displaces each one up or
down according to the projection of the particles’ spin on the vertical axis of
the analyzer. For electrons only two possible projections are possible. One
possible projection is along the axis which is up [state (1)] for an up-down
analyzer, or north [state (1')] for a north-south pointing analyzer, and so on.
The other possibility is opposite to the axis, i.e., down [state (2)], or south
[state (2)], etc. Given an incoming beam of particles in state (), one finds on
the average that a fraction |{(i'| j)|* = IZVJ-I2 of them will come out of the (i)
exit of the (1')-(2") or north-south analyzer.

For example, the fraction of spin-up (1) electrons that would actually
choose to point south (2') in a north-south analyzer (see Figure 1.1.2) is
1<2'11)|* = sin%(0 /2) given <2'|1) in Eq. (1.1.3). The remaining fraction
1 — sin%(8/2) = cos?(8/2) end up choosing north (7).

Understanding the amplitude {(i’|j), apart from its square, is more diffi-
cult. Let us state some axioms which most people like to have the amplitudes
obey, and discuss some thought experiments which may help us to make them
more plausible. The first axiom has already been introduced.
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Figure 1.1.2 Spin analyzer experiment. An incident beam of particles in state (up)
comes in on the right-hand side. The north-south analyzer forces each particle to
choose between state 1" (north) or state 2’ (south). On the average a fraction
[{2']15]% = sin?(/2) choose the latter state 2° and emerge from the bottom of
the analyzer. The remaining fraction [{I'|1)|* = cos®(6 /2) come out at the top in the
state 1.

Axiom 1 ('] jY* ' j) = |{i'| j>|* is the probability for occurrence in state
i’ of a system originally in state j which is forced to choose between
1,2,...,0,....

One should note that in classical wave and polarization theory the abso-
lute square (|4]?) of an amplitude denotes intensity. In quantum theory it
gives probability, which is analogous.

The second axiom deals with complex conjugation (*) and order reversal.

Axiom 2 (' j)* = (jli').

In Axiom 2 one supposes that a reverse process obtained by playing
time backwards is accomplished mathematically by complex conjugation.
For example, a plane-wave amplitude (x,tlk,w) = e‘**~“" reversed is
{x, tk, w)* = e (~*F~«[=D This axiom is a direct carryover from classical
wave theory.

The next axiom tells how states within a given set are related.

Axiom 3 The amplitudes connecting a set of states (1,2, ..., nf with itself
) . f1 0=y
are 1 or 0; that is, (i|j) = 8, = {0 i#j}.

Axiom 3 is closely related to the following experimental result. If some
electrons that originally chose the state of spin north (1') are once again given
the chance in another analyzer to choose north or south (Figure 1.1.3), then
100% will choose north. This means [<1'|1)|> = 1 and {{2/[1')|?> = 0. One
then assumes that the phases are such that {(1'|1) = 1. The same applies to
the (2') state.

Axiom 3 means that the transformation matrix of states {1,2,...,n} to
themselves, or any other set {1,2’, ..., n} to itself must be the IDENTITY or

—va
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Figure 1.1.3 Analyzer experiment associated with Axiom 3. If the incident beam
contains only particles in state 1' (north) or separate (south) then they will be
unchanged by a north-south analyzer.

UNIT MATRIX, I:

iy <1y - rjyy (v
QI Q2I2) - | =21y (212

Ii
O =
N N )

(1.1.4)

The conditions (i|j) = §, ; are often called the ORTHONORMALITY con-
ditions for these states, as we shall explain later.

The fourth and final axiom contains the crucial aspects of quantum wave
mechanics.

Axiom 4 Given three sets of states {1,2,...,n}, {1,2,...,#}, and
{1",27,...,n"} all relations of the following form must hold between their
amplitudes:

Ck"iy = 3 k" G,

j=1

Axiom 4 may be hard to swallow, but at least it is easy to see that it is
consistent with Axioms 1, 2, and 3. A sum of probabilities should be unity if
all states are accounted for, and according to 1 and 2 this sum is the
following:

L= Y @D = X Gl i, (1.1.5a)
7=1 i'=1
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and by Axiom 4 this equals
1=4jlj>, (1.1.5b)

which checks with Axiom 3. However, one probably needs more than this to
trust Axiom 4.

Two analyzer experiments meant to test Axiom 4 are depicted in Figures
1.1.4(a) and 1.1.4(b). The idea is that a beam of electrons all in a definite
state (1') [Figure 1.1.4(a)] will not be affected by a separation into some other
states, say (1) and (2), if this is followed by a coherent recombination as
indicated in the center of Figure 1.1.4(b). [A time-reversed analyzer indicated
by a box whose direction is reversed in the figure is used to reform the
particles into a single beam.] The two experiments shown give the same
average number of electrons in the final states (1”),(2”) on the left, if the
recombination is coherent. If the recombination is incoherent, then the
average number of electrons in final state (k”) would approach the sum of
squares (X [(k"|j){jIU)|*) instead of the square of the sum
(JX<k”) 7)1 12). This would happen if some device in the (1-2) analyzer
determined whether each electron went through in the (1) or in the (2) state.
This is because the device would add a random phase to amplitude {k"|j),
i.e., a different phase for each particle that went through. Then only the
positive-definite terms in the square of the sum

| 2 <k < j|1’>]2 = Y (positive definite) + Y (phase sensitive)

would survive after averaging over many particles, ie., just the sum of
squares or the sum of probabilities for each j:

Y (positive definite) = Y |<k"[ /Y1) .
j

Meanwhile, the phase-sensitive “interference” terms

Y. (phase sensitive) = Y3 (CK”1 ) GIYY)* (Ck"k)<kIT)

.~ j*k

would average to zero.

Axiom 4 can also be visualized in terms of basic wave mechanics. It is
essentially a restatement of the principle of Huygens (circa 1660). Imagine a
lightwave in state i’ (Figure 1.1.5), going through a film to be (possibly) in
some state k”. If each of the points j on the film absorb the light, but then
rebroadcast it starting with the right amplitude and phase {j|i’) for that
point, then Axiom 4 says state k” will be achieved just as well as it would
have if the film had not been there at all. This principle will be discussed in
Chapter 8.
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ol

(i ( 7 SOURCE 3

Figure 1.1.5 Relating Huygen’s principle to Axiom 4.

Axiom 4 is the same as mathematical relations called the COMPLETE-
NESS CONDITIONS for states {1,2, ..., n}, and we shall soon discuss these
from several points of view. Such relations are central to the development of
symmetry analysis.

Furthermore, Axiom 4 is the real reason for ever studying matrix mathe-
matics in the first place. Let us rewrite Axiom 4 using the script notation
introduced in Eq. (1.1.2). Axiom 4 then corresponds to the standard defini-
tion of INNER MATRIX MULTIPLICATION (we discuss outer multiplica-
tion later):

Tr(b" < b)) = Y, Tii(b" < b)T;u(b < V'), (1.1.6a)
j=1
(b «b)=9b < b)T(b<b). (1.1.6b)

Just writing two script letters next to each other, as in Eq. (1.1.6b). implies
that the special sum in Eq. (1.1.6a) is to be performed.

Continuing the review of matrix mathematics, we define the TRANSPOSE
CONJUGATE' of matrix .# by

+

My My e My, /ﬁ V’:ﬁ ERR g
ot = /’[.21 /[.22 e My, _ /lf; M IR g 117
'/gnl ‘/lnz U ‘/[nn ‘/fi;‘. ’[:Xr. o ,7’7
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Observe that the transformation matrix 7 satisfies Eq. (1.1.8), which is
written in several different forms, starting with Axiom 4:

Y kLY = 8y (I =8 (1.1.82)
i=1

™= 1 ps

n
Y T < b) Ty (b < b) = &, Tii(b < b) T (b < b) =8y,
=1 i=1
(1.1.8b)
THY < b)T(b «b)=1=9(b < b)T (b «b). (1.1.8¢)

Any matrix satisfying an equation of the last form, Eq. (1.1.8¢), is called a
UNITARY MATRIX. In fact, when the product of any two finite matrices &
and % is equal to 1, then each is said to be the INVERSE of the other,
written & =%~ or & ="' (Appendix B reviews the calculation of
inverses.) The unitary matrix has the very convenient property that its inverse
is just its transpose conjugate (7! = 7).

For any real matrix % (% has no complex components) the transpose
conjugate % simply equals the TRANSPOSE AT defined by

T
3?11 ,9?12 . gln %11 ‘%21 e gnl
RT = Ry Ry o P =|Fn HEn o Fw. (119)
Hy Fs o Ao Rin PFap e R

Any real transformation matrix will satisfy Eq. (1.1.10). A matrix satisfying
this equation is said to be an ORTHOGONAL matrix:

gr=9g1, (1.1.10a)
YT T =0 = 2T T ki (1.1.10b)
i i

B. Row (n x 1) and Column (1 X n) Matrices: State Vectors

One of Dirac’s famous ideas was to associate the jth column of F(b' < b)
with a unit KET vector |j) and the jth row of I 7(¥’ < b) with a unit BRA
vector {j| as in Eq. (1.1.11), which follows. (A review of elementary vectors
properties is in Appendix A.) The arrow (<) means “is associated with.”

i
217 —

=T e, =TIy G e Gl (1)
()Y
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These columns and rows of numbers represent the state j in terms of the
states 1,2',... and n'. In the first equation (1.1.11) the numbers j, = (l'|;),
j»=L2'lj> ..., iy, are the components of vector |j) in the BASIS
|1'),12'),..., and |n'), and constitute a n X 1 column matrix j. Similarly
( /‘T)m, = (jlm') are components of a 1 X n row matrix /’* that represents { j|
in the basis {1'|, {2'[, and {#’|.

We shall see as we go along why it is necessary to define two types of
vectors (| and |) that do about the same thing. However, the main point to
note is that each vector |j) is a linear combination of any complete set of
vectors {|1'),12),..., [n')} [Eq. (1.1.12a)] or {|1"),|2"), ..., |n")}, or even of
the set {|1),12),..., [n)} to which it belongs, although the latter is trivially
simple. These equations are Dirac’s abstraction of Axiom 4 wherein the
“bra” (k| is removed from the bracket {k|j) to give KET vector |j):

17 = 1) = X 3,0, (1.1.12a)
i'=1 i'=1

17> = 21y = X jali"y, (1.1.12b)
"= =1

17> = X 1X<ili> = X 8,1y = 1)), (1.1.12c)
i=1 i=1

For example, in the vector equation that follows we see that the state
vector of spin up (|1)) is, for small 8, a lot of spin north (]1')) plus a little of
spin south (]2')):

11) = 11XV + [2)¢2'11)

0
cos —
2

.. 0
—isin =
isin >

0 0
= cos E!l’) — isin EIZ’) © (1.1.13)

But, in its own basis it is just spin up:
[1) = [1)<111) + [2)€2]1)

=1I1>+0|2>e((1)).

This “mixing” of states to make other states is the embodiment of the
quantum SUPERPOSITION PRINCIPLE.

The coefficients {1'|j»,<{2'|j),... in the column matrix j. Eq. 11.1.11), are
said to be a REPRESENTATION of |j) in the [1'), :2';.... basis. Strictly
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speaking, it is not correct to replace the arrow j < |j) by an equality sign,
although you will see it done in many works. When you do set j = |j), there
is no way to tell if the stack of numbers in j is supposed to be
1,2 jy,... or {1"1j),<2"|j>,..., or something else entirely. The
notation |j) is reserved for the unique ABSTRACT VECTOR and the
physical state it denotes.

One defines the SCALAR PRODUCT of a bra {j| with a ket {k”) by Eq.
(1.1.14a) so that it equals the bracket {j|k”). This is represented in any basis
as an inner matrix product between a (1 X n) row matrix and (# X 1) column
matrix, as in Eq. (1.1.14b):

Glk™y = 3 GLEDKEE"), (1.1.14a)
i'=1
Tlk">
T x| 2l
s oA = GIOGIzY - Giny (1.1.14b)
\\—// .
(n'lk")

(The dot is a common notation for the scalar or inner product. See Appendix
A)

The following definition for the transpose conjugate of vectors corre-
sponds to the one for square matrices given previously:

Tj»
VARY

1Y = (jl & = (VY - )Y

'<n’|j>
= GIUYGI2y -+ Gln'). (1.1.15)
\_/

Either the bra vector {(¥| or the ket vector |¥) defines a physical state V.
The scalar product requires one of each. (¥|®) gives the amplitude for a
system in state ® to choose state ¥. We shall always obey the axioms by
requiring that (®|¥) = (¥|d)* and (¥|¥) = 1 = (D|D).

The connection between transformation matrix mechanics and wave me-
chanics is made when each state |i) or |'¥) is associated with a wave function

(xliy =¢;(x) or (x|¥)=V¥(x). (1.1.16)

(See Section 1.5.)
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C. Hamiltonian Matrices and Operators

Probably the best-known example of a matrix in quantum mechanics is the
HAMILTONIAN matrix #;;. Among other things, this matrix defines the
time behavior of a state |¥(¢)) through the time-dependent Schroddinger
equation in Eq. (1.1.17): (Planck’s angular constant is # = h/2m = 1.05 X
10~34 Joule second.)

ih%(il‘lf(t» = f‘,%uw(t)), (1.1.17a)
ih;;(illlf(t» Y GIHIX (). (1.1.17b)
j=1

The Dirac notation for matrix components #;; is used in the second
equation. The boldface symbol denotes an ABSTRACT OPERATOR H. In
fact, the abstract Schrodinger equation is obtained [Eq. (1.1.17¢)], by remov-

ing all reference to basis {{1), |2),..., |n)} in Eq. (1.1.17b):

iha%mr(m — H|¥ (1)), (1.1.17c)
<1|\P(t)> Zun o En <11\P(t)>
P 21w (1) Hn Hn o Ho, | |219(1))
Tal |7 .
(nl¥(t)) oy Hp o H, | |(nl¥(1)

EFCLTON

2%2,'(]']‘1'“))
; (1.1.17d)

=7, /(1)

Finally, Eq. (1.1.17d) gives a matrix representation of the entire equation.
It shows the inner product of the (n X n) matrix representing # with matrix
or vector which represents |¥(z)), and the resulting new vector on the
extreme right of the equation.
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(a) Elementary Operators Roughly speaking, operators change old vec-
tors into new and different ones, and matrices represent this process from
some “viewpoint” or basis. We can see this clearly when we apply the
abstract Axiom 4 completeness relations to the abstract operator:

H =Y LIOGIHIDG = X X2,104]- (1.1.18)

J

Equation (1.1.18) shows clearly how ., or any quantum operator for that
matter, is a linear combination of ELEMENTARY OPERATORS e;; =
1iY¢{j|. (Sometimes these are called UNIT TENSOR OPERATORS.)

Each elementary operator can perform the elementary operation of Eq.
(1.19a), converting |j) into |i), or Eq. (1.1.19b), converting bra (i into {ji,
or Eq. (1.1.19¢), zeroing all other vectors:

e 1) =107 = 1), (1.1.19a)
(le,; = i)l = {jl, (1.1.19b)

e lk) =0=(kle k#j. (1.1.19¢)

ij»
The e,;, and particularly the e, are sometimes called PROJECTION
OPERATORS because the effect of e; on any vector |'¥) is to yield its
projection or component along the ith basis vector |i), while discarding the
rest of |[¥):

el Y = [HGIY) = yili). (1.1.20)

Note that the representation of e,; using “its own” basis {11>,12),...}is
simply a matrix with zeros everywhere except for a 1 at the i position.

1 0 - 0 o1 --- 0
0 0 0 0 0 0

€ e = : ik €p e = : 3 EEEE
0 0 - 0 0 0 - 0

(1.1.21)

The mathematical name given for the “point-to-point” combination of
Dirac’s vectors (}i){j]) is the OUTER PRODUCT (or sometimes TENSOR
PRODUCT) of the two vectors. (Recall that “back-to-back™ {i|j) is the
inner product or scalar product, which is just a number). Consider a more
complicated example of an operator: |W){(®|. In the {[1>|2) - -+ |n)} basis
we have the following representation of this object (the symbol ® is a
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notation for outer product of matrices):

a)w)
Q21w T~
(D] o | . | @ (@I(@I2) -+ (D)
. \/
{(n|¥)
(XD ((LIXDI2)) - (LITXDInY)
_ (21 X{D|1)) (21X DI2)) e (2| DIn))
(YD) ((nlEXBI2Y) - ((nl T @In))

(1.1.22)

Later (Chapter 6) we shall discuss products |i)]j) and {(i{|{j|. However, by
now we have seen enough to appreciate the great efficiency for notation of
Dirac’s bra-kets.

Nevertheless, one should be certain to keep in mind the difference
between abstract quantities like |i), |¥){®|, and H on one hand, and the
representations of them on the other. The latter contain numbers which any
physics must ultimately have, and in fact you will never really get a “look™ at
an abstract object unless you write some representation of it. However,
abstract quantities are unique and correspond to some unique physical reality
(supposedly), while the numbers in the representations depend upon your
choice for a basis, that is, upon your viewpoint.

(b) Change of Basis 1t is quite common to want to change your repre-
sentations from one basis {|1),12),...,|n)} to another ‘“better” basis
(1>, 12>, ..., |n'>}. In fact, most of this book will be concerned with the
question of what is the best available basis for a given problem and how to
find it.

The change can be made immediately if you know the transformation
matrix F(d' < b). For example, let us derive now a formula for each new
component {k'|H|l') = #,, in terms of the old components <i|H|;j) = #;
and (b’ < b) components. We get this by simply applying twice the Axiom
4 completeness relations for the old basis:

Zop =<K HIIY = Y Y (KDGHE] G, (1.1.23a)
i=1j=1

n n
Hor =L L Tl « b)Z,TH(B < b),  (1123b)
i=1j=1

X =G(b «b)y#T(b < b). (1.1.23¢)
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In Eq. (1.1.23b) we have used the definition of conjugation (7} = ;%) and
Axiom 2 (7% = U1 jy* = (I

Note that the transformation matrix .7 and its conjugate & ' act left and
right in Eq. (1.1.23¢) in order to change the old representation # into the
new one. Note also that the kth row of the left matrix (97) contains the new
bra vector components {k’'| — ¢ M’I/Z), ... referred to the old repre-

sentation. Similarly, the /th column of the right matrix (7 7) contains the
components of the new ket vector |I'}.

1.2 MATRIX DIAGONALIZATION

What is the best basis to express a Hamiltonian operator? Well, the Schrodi-
nger equation, Eq. (1.1.17), would be a lot easier to solve if we could find a
basis {|e;), le,), ...} in which all the coupling terms #;; vanished except for
the diagonal ones, i.e., a basis that satisfied Eq. (1.2.1):

0, fori#j

g, fori=j.

(e|Hle) = 8,6, = (12.1)

Then Eq. (1.1.17) would reduce to n uncoupled and easily solved equations:

8 .
(e | W (D) = e{elW(0); (el W(1) = e /X e, [ ¥(0)),

i (e W(0) = (el W(0): (el W(D) = e N e ¥(O)

(122)

Now it is always possible in principle to find such a basis for any
Hamiltonian, though many times it is not so easy. In fact we prove in
Appendix C that it is possible to find this diagonal basis for any UNITARY
matrix % (unitary means #' = %~ !) or for any SELF-CONJUGATE or
HERMITIAN matrix # (Hermitian means #7 = #). All proper Hamilto-
nians and all so-called “observable” operators fall into the latter category.

The state vectors le;) satisfying Eq. (1.2.1) are called EIGENVECTORS
and the numbers ¢; are called EIGENVALUES. (The German heritage
apparently enters into the names: “eigen” means “own.”) The eigenvalues
are the magnitudes of the energy quanta for the physical system. The
eigenvectors describe the stationary ground and excited states.

Finding le,), le,),... and &, &,,... given an arbitrary matrix is called the
EIGENVALUE or DIAGONALIZATION PROBLEM. The abstract ver-
sions of Egs. (1.2.1) shown in Egs. (1.2.3a) and (1.2.3b) arc called the

]
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EIGENVALUE EQUATIONS. These are expanded in the old basis
{115, 125,...} in Egs. (1.2.3c) and (1.2.3d) and are represented in matrix form
by Eqgs. (1.2.3e) and (1.2.3f). (Presumably we start off with an “old” basis and
solve the equations for the “new” eigenbasis {le,), le,>,...}.)

Hle;) = ¢g/le;), (1.2.3a)
(e;lH = ¢,{¢,l, (1.2.3b)
Y. KUHIm){mle;) = ,(lle;), (1.2.3¢c)
Y Ael<IHIm) = g;{e;Im), (1.2.3d)
1
Zy iy o Z || (e (1le;>
Hn Hyp o Hy || Qlep (2le;»
. . . =g, . , (1.2.3e)
%;nl %nZ %:nn <n|.ej> <n|‘ej>
I Hy o Hy,
(el1Xe;2) -+ (eflmy| = 7 T o
\_/ :
%nl %n2 T %nn
/_\
=5j<ej[1><ej|2> <ejln>‘ (123f)

The equations contain several unknowns. For the right-handed eigenequa-
tions (#Zle;) = ¢;le;)) one needs to find the ket components (ile;), ie., all
n? components of the 9~ matrix, as well as n eigenvalues &;. The solutions to
the left-handed bra equation ({e¢;|.Z = g;{e;|) are derived easily from the
kets, as we will see.

If an eigenvector’s components (1le;), (2le;),... were known, we could
find the corresponding eigenvalue &; immediately from Eq. (1.2.3c) or Eq.
(1.2.3e). This, incidentally, is what symmetry theory can do, as explained in
the next chapters. In the right situations it finds eigenvectors and transforma-
tions Z(i < e). However, for now let us suppose that they are still un-
knowns.

If the eigenvalues are known, there are several ways to get the eigen-
vectors or (i < ¢), and a description of these occupies most of the re-
mainder of this review. But first let us review the equation that determines
eigenvalues.
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A. Obtaining Eigenvalues: The Secular Equation

Equation (1.2.3¢c) has been rewritten in Eq. (1.2.4a) by putting everything on
the left side. The same has been done for the matrix form, Eq. (1.2.4b).

Z((llHIm) - 8m,sj)<mlej) =0, (1.2.4a)
)y — g e ‘e Z1n (1le;» 0
N Ay —& Ay (2le;> 0

: il =1] (124b)
%nl %nZ %nn—ej <n|ef> 0

We shall take an example of an eigenvalue problem involving the matrix

H= (g ;) and solve it along with the general case. For each equation like

Eq. (1.2.4b) we will give a corresponding example indicated by Eq. (. J,, like

4-¢ 1 \[ley 0
3 2ol cley] = Lol (1.2.4b),

Note that the example could never be a Hamiltonian matrix since it is not
Hermitian, but it serves as a good example for mathematical purposes.

Now Egs. (1.2.4) can have a nonzero solution only if the determinant of
the matrix vanishes. (See Appendix B.) It is the resulting equation, Eq.
(1.2.5), that will determine the eigenvalues, and it is usually called the
SECULAR EQUATION. Note that it is the same for bra and ket eigenequa-
tions.

Ay~ Hy e

2 Ay — € Hon
det

%nl %n2 %nn_s

=S(e)=e"+ae" '+ - +a, g+a,=0. (125)

4 —¢ 1

det 3 2 — g

=8(e) =e*—6e6+5=0. (1.2.5),

It can be a tedious job to solve an nth-degree secular equation. It is easy
enough for small matrices like our example, for which the roots are (e, =1
and (g, = 5). But one should know that no formula exists for roots of quintic,
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sextic, or higher-degree equations. All nth-degree polynomial equations have
exactly n roots somewhere in the complex plane, but no formula exists to give
them all for n > 5 (Abels’s theorem). In general finding the eigenvalues g
can be the hardest part of the problem, if the eigenvectors are not known.

B. Obtaining Eigenvectors: The Hamilton-Cayley Equation

One very helpful fact is that any matrix satisfies its own secular equation.
This is the content of the following theorem. The resulting equation, Eq.
(1.2.6), is called the HAMILTON-CAYLEY EQUATION (HCEq).

Hamilton-Cayley Theorem:: If in the secular equation
S(e) =det|# —ell =" +ae" '+ -+ +a,_e+a,=0

one replaces the terms a,,e” "™ by the matrices a,, 2"~ the constant term
a, by the matrix a,1, and the 0 by the zero matrix 0, then the resulting matrix
equation, Eq. (1.2.6), is valid:

S(Z)y=X"+ax" 1 + .- ta, # +a,l=0, (1.2.6)
2
4 1) _ {4 1 441 1 0
S[(s 2)]‘(3 2) o3 2)+5(o )
_ {19 o6} (24 6 5 0 _{0 0

_(18 7) (18 12)+(0 5) (o 0)' (1.2.6),
We can prove this theorem by using the fact that the product of a matrix
A with its ADJUNCT matrix .#°% equals det.# times a unit matrix. [As

explained in Appendix B, .#32% is (—1)'*/ multiplied by the determinant of
# taken with its jth row and ith column missing.] This gives the following:

Z/fi}idjffjk = Z“lij“ljzdj = 8 (det ).
J J
Setting .# = # — ¢1 we have

AN — €1) = det(# — el)1 = (# — el).a?,

M F —el) =8(e)l = (& — el) .44, (1.2.7)

Now replacement of the number & by the matrix % is well defined, and
doing so proves the theorem: S(#) = 0.
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(a) Eigenvector Projectors If the roots ¢; are known, we may use the
factored form of the Eq. (1.2.6) to derive the eigenvectors:

(# —ed)(F —e,) - (F —g,1) =0, (12.8)

(ERE R 1 [ R P | R F CER)

The procedure depends upon whether or not any of the » roots ¢; are equal.
We study first the cases in which all ¢; are distinct. This includes our example
(e,=1,8,=19).

Case i: All n Roots g; Are Distinct

With all roots having different values one may select n RELATIVELY
PRIME factors p; (“relatively prime” means “no common factor shared by
all”) from the factored HCEq, Eq. (1.2.8), by deleting first one (# — ¢;1)
factor, then the next, and so on:

p=1(# —gd) - () (& —e,1),
lbz.=(/7—€11)' L- () (F—eg,),

p= (#—el) (Z—el) () L (12.9)
N R
B R

Now we see that these p; contain the eigenvectors, if we rewrite the
HCEgq, Eq. (1.2.8), in terms of p; as is done in the following. Equations
(1.2.10b) and (1.2.10c) are essentially the eigenvalue equations (1.2.3e) and
(1.2.3f) with matrix f; in place of the eigenvector:

(#Z —el)p; =0, (1.2.10a)
Zp=¢p, (1.2.10b)
P =€ (1.2.10c)

According to the last equations, each column of p; must satisfy the eigen-
value equation for a ket vector lej>, and each row must satisfy this equation

e ————
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for a bra vector (e;|. In Eq. (1.2.10), we write only the first columns and rows
of Pt

;) =5(3 1). (1.2.10b),

Now if a vector satisfies an eigenvalue equation, so will two times that
vector, or any “length” of that vector including zero. It is conventional to
normalize all our eigenvectors to give (e,le;) = 1.

This normalization can be done if we divide each p; by the right factor to
make it into an IDEMPOTENT matrix .. (Something is called idempotent
if it will give itself back when multiplied by itself. 1 is an example: 1 -1 = 1.)
The following equation follows from the definition (1.2.9) of P ie., all
(# — ¢,1) factors except the ith:

ﬂ,i/bj=l_[(;{/—8,1)/bj= H(ej—el)/bj, fori=j
I+#i 1#j
~ o0, for i #j. (1.2.11)

This implies that the &, defined by Eq. (1.2.12) are idempotent [3’32 =]
Note also that different p; or & will be orthogonal (#,%, = 0 for i # j):

11_1(7/*511)
#+Jj
=t 1.2.12
S (O (1212)
T4
) H
1 1 3 1
3 -3 T -3 31 3 :)
Po= 0 , P, = = .
s (—% ) S ( !
(1.2.12),

Now, because #,.%; = &, the desired normalization factor N; is found on the
diagonal of &, at the intersection of the row and column that were picked to
be the eigenbra ¢ e;| and eigenket Iej>, respectively. The vectors given in Eq.
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(1.2.13) satisfy the normalization condition (ele;) = §;;.

c
h
e 0
chosen row 1 |s €
(ej| 0o ——F=—, lepo——1e?], (1.2.13)
TN PO Rl
m
n
i~ 1
(e o ===,  lepo—| 1
7 7 a
(e, = Y . (%)
e, & ——, e,) o —=| 1. (1.2.13),

According to the convention just given, the normalization is divided
equally between the left (bra) and right (ket) eigenvectors. This allows the
left and right eigenvectors of a Hermitian (or unitary) operator to be related
by transpose conjugation ({e;| = |e; ") as proved in Problem 1.2.7. However,
this relation does not hold between left and right eigenvectors of a non-
Hermitian matrix such as the (2 X 2) matrix, which is our example. In fact, its
bra and ket vectors point in quite different “directions” as seen in Figure
1.2.1. (Compare |e;) with {e;|.) Nevertheless, (e,| is perpendicular to le,)
and {e,| is perpendicular to |e,), as guaranteed by Eq. (1.2.11). The figure
gives a picture of a DUAL SPACE consisting of left or bra eigenvectors { |
on one hand, and the “reciprocal space” of right or ket vectors | ) on the
other.

Finally, notice that the &, matrices are just representations of the PRO-
JECTION OPERATORS Iej> (e;| discussed around Eq. (1.1.20):

1 — 1 _1
2 1 % 4 4
e, = el | | e 3 —a=(_; ;)#’n
—_— 4 4
Bl s
_ 2 V3 o1 |4 a1
€ere, = le;>{e,] © i ® EE (% %) =%;. (1.2.14)
- - ]

Case ii: Some Roots ¢; are Equal

If a matrix has some repeated roots in its secular equation, then it is
possible that the matrix itself will satisfy a polynomial equation of lower
degree than the HCEq. The lowest degree equation satisfied by any matrix or
operator is called the MINIMAL EQUATION (MEq).
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2
(|

gl
Yy

N2,

Figure 1.2.1 Left (¢;|) and right (|e;)) eigenvectors of the matrix (g ;_)

If the MEq has repeated roots, too, then the matrix is not diagonalizable.

It can still be brought to an almost diagonal Jordan form, but we shall not
need to discuss this. Most matrices which will be discussed in this text are
Hermitian or unitary, and they are therefore diagonalizable. (See Appendix
C.) The roots of their MEq are distinct even if there are any number of

repeated roots in the HCEq.
For all such cases the theory from Eq. (1.2.8) to Eq. (1.2.12) applies except

we deal with the MEq instead of the HCEq. The projection matrix defined in

P =

the following obeys the same rules (#,%; = §,,%,):

H (Z —¢1)

s,#sj

1_[ (Sj_sl) '

£,#&;

(1.2.15)
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For example, the matrix

—_-o OO
SO OO
SO = O
oo o -

has a fourth-degree HCEq [(H — 1)>(H + 1)?> = 0] but only a second-degree
MEq [(H — 1)X(H + 1) = 0). Hence, only two idempotents need to be con-
structed. These are the following:

3 0 0 3
PR e G )L S L
i (-1n o 3 3 oo)p
3 0 0 3
b0 0
P 71 R 1.2.16
CTEED o -1 o U9
1 9 g 1

However, these idempotents contain more than one independent eigen-
e

vector apiece. ., has two: its first row: (e, > 1/V2 0 0 1/V2 and its
\—/

—
second row: {e}| — w Z_, has two also. In general, a
X7

£j
will have a number of independent eigenvectors equal to the number of times
g, is repeated in the HCEq.

Any linear combination of rows (or of columris) of a % matrix will be an
cigenbra (eigenket) vector, so thes¢ are not uniquely defined when g; is
repeated. Furthermore, the vectors Ie]‘?‘> from row a may not be orthogonal
to |ef> from column B likewise for columns. However, the same trick works
again: {e;|e?) is the component (‘92’5’,)“3 of the idempotent projector. So
Gram-Schmidt orthogonalization and normalization can be done directly.

(b) Completeness and Orthogonality of Projectors The orthonormal-
ity relation, Eq. (1.2.17), and its consequences were demonstrated in the
preceding section:

PP, =8, P,. (1.2.17)

What needs to be shown now is the completeness relation, Eq. (1.2.18), for
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these same projection operators:

P+ P+ +#, =1 (sumover disctinct £;).  (1.2.18)

[t 0
1o 1) (1.2.18),

Proving Eq. (1.2.18) abstractly is easy for most mathematicians, if not for
most physicists. Most mathematics students have encountered the same idea
repeatedly in number theory, then in algebra, and so forth. In number theory
or algebra one proves that integegs or polynomials {p,p, -+ p,} are rela-
tively prime if and only if there exi,gs some integers or polynomials {a,a, - -
a,} that ¥.a,p, = 1. The same proof works for the relatively prime matrix
polynomials &, defined in Eq. (1.2.9), or for the normalized &, matrices:

Bl A=

Zajg’j = 1.

Now operation with &, gives a;%; =%, and Eq. (1.2.18) is proved.
A less abstract proof follows from elementary algebra. Note that for any
two numbers ¢, and ¢, we have that

m— g, m— g £, — &,
+ = = 1.
&7 & €7 & €17 &

For any three numbers ¢,, &,, and ¢; we have that

(m —&y)(m -83) (m _53)(’" — &3)

(81— &)(&1 — &3) (82— &1)(&; — &3)

(m —¢&)(m — &) _ (81— &) (8 — £3)(&; — &3)

(65— e)(es— &) (81— e)(e1 — £3)(e; — 23)

1,

and so forth. In other words, one may substitute arbitrary values for the ¢ ; in
Egs. (1.2.12) and (1.2.15) for the #; and still have them satisfy the complete-
ness relation in Eq. (1.2.18)! (On the other hand, we have seen that the
orthonormality relations hold only if the g; are the eigenvalues of matrix #.)

It is interesting to note a similarity between the form of the completeness
relation for projection operators of matrices and the Lagrangian interpola-
tion formula which is used in numerical analysis. Suppose a function f(x) of
a real variable has n values f(x,), f(x,),..., f(x,), which are known at n
distinct points x;, x,,..., x,. Then the following (n — Dth-degree polyno-

e
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mial L(x) is constructed to exactly equal f(x) at each point x;.

n E_(x_xk)
L(x) = ¥ f(x) .
/=1 Ig(xj—xk)

The coefficient of f(x;) in the preceding expression for L(x) should remind
you of the formula for P, given by Eq. (1.2.12) if x is replaced by an
n-dimensional matrix and x; are its eigenvalues.

Clearly, L(x) = f(x) at each point x = x;. How well L(x) represents f(x)
for x # x; depends upon how much f(x) deviates from an (n — Dth degree
polynomial in between these points. Simple functions such as f(x) =1 or
f(x) = x have the following polynomial representations for n > 1:

n h
" E(x—xk) n ]!;I(x—xk)
1= Zn]_“‘—, X = ijnj—-
I=U T (= x) =t (%) = xp)
k+j k#j

These have precisely the same form as the completeness relation (1.2.18) and
the spectral decomposition relation which is discussed in the following. [See
Eq. (1.2.21).]

Finally, we observe that, while Eqs. (1.2.17) and (1.2.18) appear very
dissimilar, they are more similar if you represent them with Dirac’s notation.
The completeness relation for basis Iej> is represented by the following in
the basis {[1), {2),...}:

1=} le;Xel, (1.2.19a)
j

Uim) = 8, = ¥ (lle;Ye;lm). (1.2.19b)
J

The orthonormality condition for basis |e;) is similarly represented:

(eile;) =8, = Z(e,-ll}(llej). (1.2.20)
1

The similarity between Eqgs. (1.2.20) and (1.2.19) is now more evident.

(c) Spectral Decomposition of Matrices Any diagonalizable matrix #
will have a set of idempotent projection matrices %, satisfying the orthonor-
mality [Eq. (1.2.17)] and completeness [Eq. (1.2.18)] relations. Now operating
on Eq. (1.2.18) with the matrix # gives Eq. (1.2.21), which is called the
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SPECTRAL DECOMPOSITION of # [eigenvalue equations (1.2.10) are
used]:

Z =P, +eP, + 0 +e,%,  (sumover distinct ¢;), (1.2.21)

‘1 = : : +5 ¢ 1.2.21
3 2 -3 i A ( )

This decomposition provides a very elegant way to manipulate a matrix.

For example, if you wanted the 50th power of the matrix ( g ;) there is no

need to begin multiplying it by itself 49 times. Instead, the spectral decompo-
sition gives the answer quickly:

4 1\" “
3 9 = (6:F + 6,P,)

e P + 506 P8, Py + -+ +63°P230

50 50
7P + e3P,

+ 5%

EN PN
AW B

Il
—_
S —
I

Bl =
~———

1+3-50 591
3-59-3 3+5%

1
4

. (1.2.22)

The property PP, = 6, reduces a complicated expression to a very
simple one. It is this type of analysis that is central to the development of
symmetry analysis and its applications, which are given in the next chapters.

(d) Simultaneous Diagonalization of Commuting Matrices When any
two Hermitian matrices .# and .#° commute with each other [.Z4 = #.#]
then there must exist a complete set of base vectors that are eigenvectors of
both matrices. This is constructed easily using the spectral decompositions
and completeness relations for each matrix. These are shown in Egs. (1.2.23),
where it is assumed that the number of distinct eigenvalues of .# is m, while
for .#" the number is n:

1=2(#) +P*(#) + - +P™(#), (1.2.23a)
M=y P M) + o, PHMH) + - +p, P™(A), (12.23b)
1=PY (W) +PHSI) + - +P(N), (1.2.23¢)

N =0, PUN) + v, PHA) + -+, PY(H). (1.2.23d)

. -~ —— -
T T R I T e ————— e —————— e
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Now if the matrices commute, so will their respective idempotents, since
these are just polynomials of the matrices. Because of this, we get immedi-
ately a complete set of idempotents and hence the eigenvectors for the two of
them by simply multiplying the separate completeness relations:

1=1:1=[PY(H) +PUAL) + - +P"(A)]

x[2Y ) +PH(H) + - w2 ()], (1.2.24a)

1 =P ()P (W) +P(H)YPHI) + -+ +PH(M)YP () + -+,
(1.2.24b)

1=L@1’1+91’2"'+"‘+¢@2’1+"'+"'. (1224C)

Each of the resulting terms must satisfy eigenvalue equations for .# and .#":

MPE = AP(M)PH(N) = p, PE,
NP = WP M)F(N) = NVPE( )P (M) = vp PP

Each term £*# that is not zero is clearly one of a set of complete and
orthogonal idempotents. However, many of the terms are usually zero in
practice.

In fact, if .# is an m X m matrix with m distinct eigenvalues, then there
will be exactly m nonzero terms on the right of (1.2.24b) or (1.2.24c), and
each of these will be identical to one of the #*(.#). Having two or more
nonzero terms #%f, »%F . amounts to having two orthogonal eigenvec-
tors with eigenvalue u, where we said we only had one.

In other words, the reduction of .# will, in the case of distinct u , serve
immediately to reduce all the other matrices .#” which commute with .#. For

example, the fact that matrix /" = (_g - %) commutes with the matrix
M= (‘; ;), which we have reduced, implies that .#" is reduced by the same

idempotents. Solving its secular equation is unnecessary:

s Lo (3
A = ~1- +5 ,
(3 z) (—% AN
5 1 11 301
N = =8| 5 Sl+4-15 T
-3 7 ] i3

This idea is extremely important in the development of symmetry analysis, as
we shall see early in the next chapter.

(e) Obtaining Eigenvectors from Adjuncts To find the eigenvectors
Iej) or (ejl using the projection matrices one needed all eigenvalues
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€8, " &, except £, A competitive method exists which gives the vectors
corresponding to a certain eigenvalue €; when only that g; is known.

We rewrite Eq. (1.2.7) in the following and set ¢ equal to the eigen-
value &;:

MNT = 1) = S(e)1 = (# ~ ;1)

Then the secular equation must hold [S(¢;) = 0] and we are left with Egs.
(1.2.25):

M H —g1) =0 = (7 — ¢,1)., (1.2.25a)
HMS =g 4, (1.2.25b)
S = o Y, (1.2.25¢)

We see that the rows and columns of the adjunct matrix .#2% derived
from (# — ejl) =.# must satisfy the eigenvalue equations of bras and kets,
respectively, according to Eqgs. (1.2.25b) and (1.2.25¢).

ER R R
50 ) )
RN R

1
3
(:§ :})(‘3‘ ;)= (:; :}) (1.2.250),

3
Comparison of the resulting vectors (derived by inspecting the examples in
Eq. (1.2.15b), and (1.2.15¢), with the previously derived ones [Eq. (1.2.13), or
Figure 1.2.1] shows that they differ only by an overall factor. (Normalization
is still needed.)

1.3 SOME OTHER MATRICES USED IN QUANTUM MECHANICS

Different types of quantum mechanical problems can be made more conve-
nient to solve by using various matrix expressions. The mathematics is the
same but the physical meaning can be quite different. We shall come to deal
with the following examples of matrices and operators in later chapters.
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A. Scattering Matrix

Imagine that free electrons can approach or leave some central “scattering”
region in which they are not entirely free, and suppose that they can use n
different paths or channels to go in and out. Their wave functions ¢,(r) in
each channel / where they are free can be written as a linear combination of
an outgoing part and an ingoing part with coefficients 49 and A/, respec-
tively:

W(r) = Afe™" + Aje~i*r,

Now the boundary conditions associated with the junctions of each chan-
nel with the scattering region will, in general, give a set of linear relations
between these coefficients. The most well-known relation involves the S§-
MATRIX in Eq. (1.3.1) and expresses outgoing coefficients 49 in terms of
ingoing ones A/.

A7 L i A A{
AS . . e Py Al

.2 _ '21 .22 .2 .2 (13.1)
A, L T2 Frun | | AL

Generally we require conservation of probability, Eq. (1.3.2), in such prob-
lems; that is, we make sure that no particles go in and get lost in the
scattering region:

n hn
Y A4l = _Z ATAS. (1.3.2)

Expanding Eq. (1.3.2) using Eq. (1.3.1) we obtain

n n n
FRARS Al = ¥ ¥ L Fr A4l (13.3)
k=11=1j=1

YA = X ¥
j=lk=11

=1

D

This must be true for all choices of A/, This yields Eq. (1.3.4), i.c., it shows
% must be UNITARY:

= 8](17 (1.3.43.)

Y IS =8 (1.3.4b)

S =1. (1.3.4c)
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As in the case of the Hamiltonian. there is considerable advantage to
using the eigenvectors of %. This is especially true when symmetry analysis
can provide them, as we will discuss in the following chapter.

B. Density Matrix

So far we have been describing states of systems by vectors | W) and {¥|, or,
more explicitly, by amplitude components {i|¥) = (¥|i)* in some basis:

W) = L1i<ilw), (1.3.5a)

(W] = Y A¥IHGI (1.3.5b)

J

However, it will sometimes be very convenient to describe the state of a
system instead by an operator or explicitly by a matrix. In such a formalism,
the state in Eq. (1.3.5) would be denoted by a single DENSITY OPERATOR
|W){¥| or DENSITY MATRIX p, Eq. (1.3.6), that represents the density
operator.

A1) CFI) UY) (P2) -+ A1) (Pln)

U] oo p = | 1YY CHID QW) D) o QI Cin)

(W) (PI1) {nl¥) (EI2) - {nl¥) (¥in)
(1.3.6)

We note immediately that p is HERMITIAN p;; = p7.

The diagonal terms (i|¥) {(W¥|i) give the quantum mechanical probability
that state will be found in base state i. As shown in later chapters this
formalism is very useful when one wishes to consider the probabilities
associated with thermal averages along with the unavoidable probabilities of
quantum mechanics.

1.4 SOME MATRICES USED IN CLASSICAL MECHANICS

The concepts associated with classical matrix applications are generally more
down-to-earth than those of the preceding quantum mechanical applications.
Nevertheless, Dirac’s bra-ket notation is useful in practically any application
of matrices. We review now some ways that matrices and Dirac notation will
enter our forthcoming discussions of symmetry analysis for classical prob-
lems.
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A. Force, Mass, and Acceleration Matrices

A classical system of jiggling springs and masses can be described by some
number of coordinates x,, x,,"**, x,(t) and the same number of velocities
X1> X25" s X, Each mass may need one or more coordinates depending on
the nature of the system and its constraints.

Furthermore, we shall suppose that for each coordinate X;»> there is a
corresponding component of applied force F; on the mass m located at X;s
and this F; obeys Newton’s equation

F, = ma; = my;. (14.1)

F; is the component along x; of the vector sum of all force applied to m by
attached springs.

For example, suppose the two-mass system in Figure 1.4.1 is desecribed by
two coordinates (xy, x,). These coordinates give the positions of mass m,
and m, with respect to their equilibrium positions indicated by dotted lines.
Suppose also that the tension of each spring is proportional to the difference
between its actual length and its length at equilibrium. (This is Hooke’s law.)
The constants of proportionality k; are written over each spring in Figure
1.4.1.

Then the forces F, and F, are given by the following matrix equation,
which relates them to the coordinates y; and y, (note sign!):

F. F
X1 - _ 11 12} X1 . (1'4.2)
X2 Fn Iunllx:

The matrix in such an equation is called a FORCE MATRIX. This matrix is
always Hermitian for a “conservative” system, as we shall prove below.

(Fl)__(k1+k12 —ky;

Fy| —ki,  kyt kg,

Figure 1.4.1 Example of coupled oscillator system.
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Now the forces on each mass are related to acceleration by Newton’s
cquation, Eq. (1.4.1). This equation can be stated in matrix form also, if one
defines a mass or INERTIA MATRIX m as in Eq. (1.4.3). This matrix is
Hermitian, too, since it is diagonal and real:

om0 [X, My My
0 myfl%, My Mo
Sometimes it will be convenient to define a third type of matrix relation

involving an ACCELERATION MATRIX a = —m ~.% such as is written in
Eq. (1.4.4):

F
F,

X1
X2

. (1.4.3)

-1

X1 My My Fu Zunl{x
X2 My Moy Fu Iullx:
kl + k12 _k12

X1
_ m m,
ki, ky+ ki, N
2
m, m,
a1 25| | X1
= — . (1.4.4)
0y Gxpn)|X2

It is the eigenvalues and eigenvectors of this matrix that give the ELE-
MENTARY RESONANT FREQUENCIES and RESONANT MODES of a
vibrating system. We can see this very clearly if we reformulate the problem
in Dirac notation.

Let us denote the coordinates by x, = (1lx) and x, = (2|x) where the
“state” |i) stands for that state in which mass i is displaced to Xxi = 1 unit
and the others are at equilibrium y; = 0 (j # i). State |x) stands for that
state in which both masses are off equilibrium by (1)x) = x; and 2x) = y,,
respectively. Normalization ({i|i) = 1) establishes the unit distance.

The mathematical procedures are practically the same as they are for the
quantum mechanical Schrodinger equation. [Recall Egs. (1.1.17)-(1.2.3).]
The matrices &, m, and a can all be thought of as representations of the
abstract operators F, m, and a in the basis |1), |2). For example, Eq. (1.4.4)

P
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is rewritten as follows:

(<1i)2>) ~ _(<1|a|1) (1|a|2>)(<1|x>). (145)

Qlgy]  \@laly  Qlal2y | o

Then an eigenbasis |a, ), |a,) is found such that the matrix a in this new
system is diagonal, with eigenvalues a; and a,:

(wilale> =a/,‘8ij: (146)
<a’i|a’j> = 8,']', (14.73)
Lla)al = 1. (1.4.7b)

[These vectors can be made according to the techniques of Section 1.2 so
they satisfy, along with their left-handed companions {a,l,{a,l, Egs. (1.4.6)
and (1.4.7).]

In this basis Eq. (1.4.5) will be very easy to solve since it is uncoupled now:

(ajlx) = —afalx).

The new coordinates (a,jlx), which are often called NORMAL COORDI-
NATES, each oscillate with their particular elementary resonance frequency
w; = ‘/&; - There are quite a number of examples of these coordinates in the

next few chapters.

For more complicated problems it is sometimes convenient to avoid
dealing with the a matrix until the very end of a calculation. One of the
problems with a is that, unlike % and m, it can be non-Hermitian. [See Eq.
(1.4.4).] When a #4a' then left (| )) and right ({|) eigenvectors are not
related by (f) conjugation (i.e., (a;l # Iajfr) as in Figure 1.2.1.

However, there are other reasons why dealing with an equation like Eq.
(1.4.8b) can be easier than working with a in Eq. (1.4.8a):

ale;) = m™'Fle;) =ale,), (1.4.8a)
Flej> = a,jmlej>, (1.4.8b)
(F ~a;m)le;) = 0. (1.4.8¢)

This happens when, for various reasons, we want to use a nonorthogonal
basis |A,), 14,),... in which (A4,|4,) # &, but {4, = |4,)". In this case
we would be seeking an eigenvector Iej> of the form

le; =e,l4;) +e5]A,) + -, (1.4.9a)
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which satisfies a GENERALIZED EIGENVALUE equation

F(£1|Al—> +e,0A,) + -+ ) =ajm(51|A1> +&,0A4,) + - ) (1.4.9b)
Forming the scalar product of this in turn with (A4,| = |4,)", (4,] = |4,)

- results in the following generalized matrix eigenvalue equation in which
the force and mass matrices are Hermitian:

(A,|FlA) (AIF|4,) - Zl
<A2|F|A1> <A2|FIA2> '2
€y
_[{AyImlAa) (A Imi4) -
_a/j <A21m|A1> <A2|m|A2> ) 8:2 . (1.4.10)

Now it is easy to see that the left and right eigenvectors (ejl and Ie]->
satisfying Eqs. (1.4.11a) and (1.4.11b) must be related by Eq. (1.4.11c):

(F —a;m)le;) =0, (1.4.11a)

{&;|(F —a,m) =0, (1.4.11b)

(ejl = lept. (1.4.11c)

The components (g,&, - +-) or (efe3 ---) of |le;) or (e;| are, respectively,

proportional to the columns or rows of the adjunct matrix (F — umm>ADJ.
[Recall Section 1.2.B(e).]

Rewriting Eq. (1.4.11b) shows the relation between the vector (ejl = Iej »
and (a,jl in Eq. (1.4.6):

(¢,lF = (¢;lma =agelm. (1.4.12)
Equation (1.4.12) indicates that { e, is proportional to {e;|m, while a similar
comparison with Eq. (1.4.11a) shows that |e;) is proportional to [a,j>. We
shall choose our normalization of |e;) such that
(ejimle,) = 8y, (1.4.13a)
whence

(e;|Fle,) =afle;imle,) =a;6;. (1.4.13b)

This m normalization gives in turn a peculiar form for the completeness
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relation:

1= Zle > e;lm = 1" = Zmle el (1.4.14)

B. Potential Energy and Hamiltonian Functions

Returning to Eq. (1.4.2), we can see that the work done while changing
coordinate y; to x; + dy, and y, + dyx, is given by Eq. (1.4.15):

_ Zap ap| P s d anlfn S
dW_U F, _U Fu In - (1415

If, as we supposed, the components .#;; are constants, then we have by

integration the following expression for potential energy:

Fu Fu\lxi
W=V /'\ 11 12
(xixa) = 2@ Fn Fnllx:
= 3 L X AxlDGIFI)H ) = 3{xIFlx). (1.4.16)
i

Note that a Taylor expansion of a general potential function V(y, x,) gives
a much more complicated result. (We ignore the zeroth- and first-order terms
which can be taken to be zzro if y; = 0 is the equilibrium point.)

vV
V(xixa) = Zx,x,(9 p
Xi0X; |,
K %4
— XX X———— 1.4.17
3' ik ! ka ianan x=0 ( )

However, if only the qu:dratic terms are nonzerq, then we prove that F is
Hermitian for potential-'riven or conservative systems:

v
Ix; 9x; =0

-7, (1.4.18)

ij =

A function H(gq, p), called the HAMILTONIAN FUNCTION, can be
constructed in terms of canonical momenta p(j) and coordinates g(j) as
defined in the following. Equations (1.4.13) and (1.4.14) are used.

H(q,p) =T+ V==1(Imlx) + 3{x|F|x)
D> [<xlm|ej><e,lmix> + <x|m|e,~><ele|x>].
j
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This may be written as

H(a,p) = 3L [p(i)* +ala(i)F], (1.4.19a)
j
where
a(j) = {g;lmlx) = (a/lx), (1.4.19b)
and
p(J) = (e;lmli) = 4(j). (1.4.19¢)

It is easy to see that the latter obey Hamilton’s equations:

oH
70y ~%a() = PO,

ap(J) =p(Jj)=4a(j). (1.4.20)

This is a necessary prerequisite for any quantum theory in which each
momentum p(j) is replaced by an operator (#/i)d/dq(j) to make the
Hamiltonian operator into the Schrodinger equation.

However, for classical vibration problems it is often more convenient to
deal directly with Newton’s equations. The F matrix is usually easy to obtain
by inspection. For example, for the system in Figure 1.4.2 we would obtain
the component {i|F|j) by simply computing the praduct of the projections of
each spring on coordinate axis x;, = {ilx) and x; = {jlx) for all springs they
share, and summing these products:

—F, = (1|F[1)11x) + <1[FI2){2|x)
+ C1FI3)Blx) + (LF[4)C41x) + - - -,

=

F, = (kycos® ¢, + ki cos® @y + ky, cos” €, x,
+(k, cos ¢, cos ¢, + ki, cos p, + k,cos0,c080,)x,

+(kco805¢c088 ) x5+ (kjcos0,¢c080 ) )x, + - .

One should always keep in mind that classical equations such as Egs.
(1.4.2) and (1.4.4) are approximate descriptions which a sume small ;. For
large x; one will need to include anharmonic x}, x;xz, x; --., etc., to model
the behavior of a highly stretched spring and changing 2eometry. This is
especially true for more complicated problems in two or th ¢e dimensions, as
is represented by Figure 1.4.2, or for models of molecular :ystems.
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Figure 1.4.2 Example of more complicated spring-mass system.

1.5 WAVE FUNCTIONAL ANALYSIS AND CONTINUOUS
VECTOR SPACES

Dirac notation was designed to be used in vector spaces that had a continu-
ous infinity of dimensions. The symbol {x|¥) is Dirac’s notation for a
complex wavefunction ¥(x) of a continuous coordinate x. The complex
conjugate W*(x) is the reversed bra-ket {(¥|x ):

(xIW) = W(x) () = ¥*(x). (15.1)

Several modifications of the formalism are needed to accommodate this
continuously infinite ket vector space {---|x)---} or its conjugate bra
vector space {---{x|---}. These are known in mathematics as Banach
spaces and the description of wavefunctions by these vectors falls under the
mathematical heading of functional analysis. This is a large and complicated
subject. Nevertheless, the basic ideas of completeness and orthogonality
remain intact. A comparison between discrete and continuous vector spaces
is given now.
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A. Functional Scalar Products

Scalar products between continuously infinite bra and ket vectors involve
what is known as Dirac’s delta function &(x,y). In place of the usual
Kronecker delta 8,, relation,

(alb) = 8,, = {(1) paz?t (1.5.2a)

one uses the Dirac delta relation,

ifx=y

(xly) =8(x,y) = {((J)o if x#y.

(1.5.2b)

Replacing unity (1) by infinity («) in the scalar product is necessary because
the sum over discrete dimensions is replaced by an integral. It is the sum or
integral that needs to equal unity. It is easy to see that

2<alb) = X8, =1,
b

b

but the corresponding Dirac sum is not so obvious:

fdy<xly> = fdy 8(x,y) =1.

The delta function is zero everywhere except at x =y where it goes to
infinity in such a way as to have unit area. Both kinds of delta functions are
designed to extract a particular component from a sum. The following
discrete sum

(al¥) = Y alb){bl¥) = Y 6,¥, =V, (1.5.3a)
b b B

is analogous to the following integral:

1) = [dy(xlyXyIw) = [dyd(x,y)¥(y) = ¥(x). (1.5.3b)

B. Orthonormality and Completeness

The completeness relation (1.2.19a) for a discrete space {|1), |2) - - - } has the
form

1= Y |b)(bl. (1.5.4a)
b
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It is replaced by the following integral for a continuous space { --- |y) --- }:

1= fdy|y><y|. (1.5.4b)

For many applications to quantum mechanics there is a discrete set of
eigenstates {|W, ), |'¥,) - - - } but their wavefunctions range over a continuous
set of position states { - - - |x) - - - }. The wavefunctions ¥ (x) can be thought
of as components of a transformation matrix (x|¥,) between these two
bases. Orthogonality and completeness of the transformation is analogous to
the discrete space relations (1.2.19b) and (1.2.20), respectively,

(xly) =8(x,y) = LAx[U ¥, ly),
(V19,5 =35, = fdz(WalzXzI‘I’,,}. (1.5.52)
Here is the same equation in wavefunction notation:
(xly) = 8(x,y) = LESH(x)(y),
(W10, = 8, = [ dz WF(2)¥,(2). (1.5.5b)

Other applications to quantum mechanics involve a continuous set of
eigenstates { - -+ |, ) - - - } defined by wavefunctions over a continuous set of
position states {--- |x) -+ }. For example, plane wave functions ¥,(x) =
e'kx / V27 can be thought of as components of a Fourier transformation
matrix {x|¥,) between position and momentum space. The orthogonality
and completeness of this transformation are similar relations:

(xly) =8(x,y) = [ dk<xI ¥ ly),
(B lW) = 8(k, k') = [ dz(¥1z)(zl,). (1.5.6a)
Here is the same equation for plane waves:
(xly) =8(x,y) = i]dke‘”‘"e“‘y
bl 277_ b
1
— N o— —ikz jik'z
(W W) =8(k, k') = zwfdze 'z, (1.5.6b)

Orthonormality for one basis is the same type of equation as completeness
for the other.
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C. Differential Operators and Conjugates

Analogies between discrete and continuous vector spaces can be extended to
include linear differential operators. For example, the following differential
operator M acting on a function f(x),

2

a’f df
Mf(x) = M(x)w + v(x)a +Ax)f (1.5.7)

can be expressed as a Dirac matrix element

(xIMIf) = [ dy<xIMIyXCylf), (1.58)

where (x|M|y) is expressed in terms of Dirac delta function derivatives.

d’s ( ’y) ds(x,y)

(xIMly> —u(x) + v(x) & + A(x)8(x,y). (15.9)

The Dirac delta derivative extracts the value of a derivative of a function,
that is, the value of the function minus its value at an infinitesimally nearby
point. Integration by parts gives

(,y) df(x)

@t =3 =f(x)s(x I e y) = (),

[ dy f(y) ——— (’y) = f'(x). (1.5.10)

The transpose conjugate operator M' has matrix element {(x|Mly) =
(yIMlx)*:
(xIM'ly) = (yIMx)*

d?s(y, x dé(y,x
) paa sl (y ) v(y)%ﬂ*(y)é(y,x»

(1.5.11)

sy

The result of applying the operator M’ using (1.5.8) and (1.5.11) is the
following,

d? d
MT(x) = 5 (W5 () () = 2 (F(D () + K ()f(x). (15.12)

This is called the adjoint differential operator. If the operator is self-adjoint
(M = M) as are all Hamiltonian operators then the operation above is equal



williamharter
Stamp


WAVE FUNCTIONAL ANALYSIS AND CONTINUOUS VECTOR SPACES 41

to the original one. This places restrictions on the form of the functions wlx),
v(x), and A(x).

D. Resolvants

Given an operator M there is a useful function of that operator which is
called the resolvant R(M) = —Q,(M). It uses a parameter A,

1
QM) = = = —R(M). (1.5.13)

If A =0, the first resolvant R, is the inverse M~! of M and Q, is the
negative inverse —M ™1,

Ry(M) =ML
The resolvant Q,(M) expands into a series of M /A powers,

M M?
L+ —+ — + -
A A

1
GOV S T

Applying Cauchy’s integral theorem to the complex variable A yields contour
integral expressions for each term,

—1 d —1 1 —1 dr ——
A =1, - =M,
2wil. A1 -M 2771% Al
1 AZ'

—Qdr ——— =M?,.... 1.5.14
2mi g, Al—-M ( )

This gives a symbolic expression for any function f(M) of the operator M in
terms of an integral of the function f(A) times the resolvant:

1 A 1
f(M) = Zm,gSLdA )\f(_)M = zm_gsLdA F(N)O(M). (15.15)

To use this we need to know where the poles of the resolvant O, (M) are.
It is a rational function of A1l — M divided by the secular polynomial
S(A) = det [A1 — M,

o (A =m*™ a(a, M)
Q(M) = (A1 — M) = oM S (1.5.16)

This implies that the resolvant’s poles are located at its cigenvalues
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{A, Ay, As, ... ), that is, the roots of S(A) = 0. The adjunct function can have
no singularities of its own. This means the contour loop L in the contour
integral equations above can be deformed into a set of small circles {/,, /,,...}
surrounding each distinct eigenvalue in the complex plane. Each integral
then breaks into a sum over distinct eigenvalues.

The first integral expression for the unit operator becomes an operator
completeness relation like (1.2.18) which we discussed before:

1=
2ari

1
gSLdA i~ /\ZP,\H. (1.5.17)

Here the projection operators have the form

P ! da ! ! dAr Q(M 1.5.18
Aa“zm'gs A1—M"2m’§é OAM). (1.5.18)

a

If all the eigenvalues are distinct then each eigenvalue is a simple pole. In
that case it can be shown that the P-operators are orthogonal idempotents as
in Eq. (1.2.17). Then the M operator and its powers have spectral decomposi-
tions like Eq. (1.2.21):

1 A
dA = ) AP . 1.5.19
S ramviap (15.19)

M= ;
27

However, for degenerate eigenvalue (A, = A,) it may be necessary to include
extra terms in a spectral decomposition such as in the following:

1 A
M=Y2 A
Eazmsézd Al —-M
1 1 1 A—A
= A dA + dA -
Az"[“zmgéa Al—M 27ri9§“ AL—M]

1 A—A

)\Za(P)‘“ + NAa)’ where: N)‘a = 2—m¢ad)\ m (1520)

The extra term N, is zero if the resolvant still has a simple pole at that
eigenvalue. Otherwise it is a nilpotent operator, that is, some power of it is
zero. If the eigenvalue is a second order pole of the resolvant, then (N,)? is
ZEro:

2 1 (A =4’
(N,) = ﬁgﬁ dr ———1= = 0. (1.5.21)

a

Resolvants provide a powerful tool for spectral analysis of operators.
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APPENDIX A. ELEMENTARY VECTOR NOTATIONS AND THEORY

In Chapter 1 we introduced Dirac’s vector notation | ) and < |. Here we
relate this notation to the older notation of vector analysis.

The dirac vector in Eq. (A.1a) can be written in the older notation as Eq.
(A.1b):

o) = xXxlv) + [y){ylv), (A.1a)
v=2Xv, +9v, (A.1b)

v, (x|v)
(Vy) = (<Y|U>) (A.lC)

It can be represented by a column vector in Eq. (A.1c) or as is shown also in
Eq. (1.1.11). Figure A.1 gives a geometrical representation of the vectors v
and w in a two-dimensional space where their properties can be seen clearly.

In Figure A.2 we show the meaning of multiplying a vector by a scalar by

comparing the vectors v, 2v, and —v, where v = —3% + 49,
12 |
—  [Wy
= w -— W)
(7% S A vely ) -— V)
| y
|
i
| A
1 — X
vl
Figure A.1
- [ y
2V
v

o

e o w. - —— -
e - = -

Y

-

\ Figure A.2
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~)

<t

+

3}
£l

<}
J

Figure A.3

Y
»»

Figure A.4

The geometrical interpretation of the addition of two vectors, Eq. (A.2), is
shown in Figure A.3, and Figure A.4 shows the formation of v — w:

o, +uw,

. (A.2)

vy, +wy

Any two vectors in our two-dimensional space that are not proportional to
each other could, by linear combination, form all other vectors in the space.
This is an important concept that can be generalized to n-dimensional space.
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The length or magnitude |v| of a vector v is given by the Pythagorian
theorem [Eq. (A.3)]:

vl = (Vf + Vyz)l/z.

(A.3)

Equation (A.3) is the square root of the scalar product defined by Eq. (1.1.13)
and Eq. (A.4):

vl =(v-v)"/?=7 v‘(zx) = (sz + Vyz)l/z. (A4)
y

2

The geometrical significance of the scalar product of two arbitrary vectors
v and w in Figure A.5 is given now.

'Y
-t
\} pld
- r'd
0 z - $
Yy "
- P4 = e
w e s VW
P -
e
'd
Figure A.5
A
Ay
— -
W\ |s0° v
X
—
0
Figure A.6

e ——————— N N
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Applying the law of cosines to the triangle described by the two vectors we
arrive at Eq. (A.5a):
lv—w)®=[vI® + Iwl® = 2|v| |w| cos 8,

(v—=w) - (v—w)=v-v+w-w-—2|v|] |w|cos 8. (A.5a)
Expanding the left-hand side of Eq. (A.5a), we have
(v-—-wW) - (v-w)=v-v+w-w—2v-w, (A.5b)

and comparing Eq. (A.5a) with Eq. (A.5b), we derive the desired geometrical
interpretation of v - w, which is given in Eq. (A.6):

v-w=|v||w|cos#. (A.6)

To require that the vectors v and w be normalized simply means that they
must be unit vectors as in Eq. (A.7):

wew=1=v-v. (A7)

The vectors x,x, -+ x, are said to by LINEARLY INDEPENDENT if
the relation

Yax; =0 (A.8)
i=1

necessarily implies that all a; = 0.

If in Eq. (A.8) there exist at least two nonvanishing a,, then it is said that
the vectors xx, - - - x, are linearly dependent.

The maximum number of linearly independent vectors in a space is called
the dimension of the space.

For completeness, we present the mathematical definitions of a linear
vector space.

Given that |i), |j), and |k) are vectors in the vector space and « and B
are complex numbers, then the following is true:

(1) Given any two vectors in the space then their sum is in the space. This
is called closure.

(2) The commutative law of addition holds; i.c.,
1+ 170 =1j> + 1i). (A.9a)
(3) The associative law of addition holds; i.e.,

(1> +170) + 1k = 1i) + (1) + |k)). (A.9b)




APPENDIXB 47
(4) There exists a null element 0 such that
0+ iy =1>+0=li). (A.9¢)
(5) There exists an element |i’) for every |i) such that
iy + ') = 0. (A.9d)
(6) The associative law of multiplication holds; i.e.,
a(Bli)) = aBli). (A.9¢)

(7) The distributive law with respect to the addition of complex number
holds; i.e.,

(a + B)liy = ali) + Bli). (A.9f)
(8) The distributive law with respect to the additions of vectors holds; i.e.,
a(li) + 1)) = ali) + alj). (A.9)

The mathematical definitions of the inner or scalar product follow:

(1) Gl + k) = Clj) + <ilk). (A.10a)
(2) (l(aliy = alilj). (A.10b)
(3) Gy = Gl*. (A.10c)
(4) (iliy = 0. (A.10d)

APPENDIX B. LINEAR EQUATIONS, MATRICES, DETERMINANTS,
AND INVERSES o

The simplest nontrivial example of a matrix equation is the linear equa-
tion, Eq. (B.1), involving two unknowns , and =, (we assume the quantities
M;; and g, are known constants). This is written in three ways to display the
matrix notation:

M2y T M2y =y,

M2y T M2, =y, (B.1a)
My M) 41

= , B.1b

(/’721 /”22)(‘52) (9’2 ( )

Hr =y. B.1c

y (B.1c)
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This equation is solved if and when the INVERSE .#~! of matrix ./ is
found such that Eq. (B.2) holds, where I is the IDENTITY matrix:

-1

My M My M 1 0

Ay = 11 12 11 2] _ " (B2)
My My My My 0 1

This will give a solution because the product (7 -z) of the identity matrix
with any vector « is equal to «, and so Egs. (B.1) and (B.2) together give Eq.
(B.3):

MMz =1z =z =H"y. (B.3)
Simple algebra gives, for the inverse of .#,

-1

A M —#13
11 12
_ %11/22 _/%12/[21 /%11/%22 _/%12%21
B —Ay My
My My

/”11/[22 —/22/121 /uﬂzz _112/[21

We derive now a general formula for the inverse of an # X n matrix.

Such a formula follows from the properties of the DETERMINANT
(det .#) of a matrix .#. The determinant is defined by Eq. (B.4), where, for
convenience, we use a different notation for matrix components:

a, a, a; da,
b, b, by b,
det £ = det|c; ¢, €3 ¢4
dy d, d; d,

)y (- 1)pamyP(“1b2C3d4 )

permutations P
of123---n

= (aybycsdy ) — (aybscdy o0 ) + (ay -+
—(axbicsdy -0 ) + (azbseidy o0 ) + (ay -
+(azbicody -0 ) = (asbyeidy o0 ) + (a3
(B.4)

A permutation operation P in Eq. (B.4) is said to have parity = —1 if it is
accomplished by an odd number of “hops” of one number over another
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gkl e > e ik(_jl -+ For example, in permuting 4123 --- to
1234 .-+ we use threc hops: 4123 — 1423 — 1243 — 1234. On the other
hand a permutation is said to have parity = +1 if it is done in an even
number of hops.

From Eq. (B.4) we can understand the expansion of a determinant in
terms of smaller subdeterminants called MINORS, as shown in the following.
We abbreviate the sum over permutation by Y(—).

a, a, a; a,
b, b, by b
det # = det|C; €2 €3 €4
d d, dy d,

=4, Z (=)(bycsdy =+ ) —a, X (=)(bycady -+ 1)

2,3,4,...,n 1,3,4,...,n
+a; Z (—)(bicdy =) -
1,2,4,...,n
b, by b, b, by by
= a4 det|c, ¢3 €4 —a, detjc;, ¢3 ¢4
d, dy d, d, dy d,
b, b, b,
+ ay det Cq Cy Cy
d d, d,
= QMg —daftip T a3y — 770 (B.5)

A minor p;; of a matrix .# is the determinant obtained from .# after
erasing its ith row and its jth column. In Eq. (B.5) we used the minors of the
R ..
first row of .#. However, any row or column of .# could be similarly used to
give the general equation (B.6):

det# = Y (-0 tn,,  j=1,2,..., 0orn, (B.6a)

det#=Y (- u,, i=12,..., o0rn, (B.6b)
J

Now suppose we define a matrix called the ADJUNCT matrix .#°Y of .#
by Eq. (B.7) (note switching of i and j in u;!):

239 = (=1) (B.7)
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A9 together with the original matrix .# obey Eq. (B.8), as can be seen by
studying an explicit representation of it in Eq. (B.8c).

Z“[ij/”jzdj = (det .#)d,, (B.8a)
J
MHY = (det #)1, (B.8b)
a, a, a; a,
by b, b; b,
€ € €3 (4
d d, d, d,
Y(—)byesd, --- —X(—)azesdy --+ (- )aybsid, -
—X(—)bicsd, -+ L(—)ajcsdy -0 —X(—)aybid, -
L(—)bicdy - —X(—)ascrdy -+ E(—)abydy -
=Z(=)bicydy - L(-)ajcrdy - —L(—)abydy -
a, a, a, a, - a, a, a; a, ‘- a, a, a,
b, b, by b, - a, a, a; a, - b, b, b,
det|jc; ¢, ¢3 ¢4 ccc|detjcr €, €3 €4 o |det|a; 4, as;
di dy dy dy - dy dy, dy dgy - d, d, d,

b, b, by b, --- a, a, as a, ‘- a, a, a,
€1 €2 €3 G4 by b, by by - by by b
=det|¢; ¢ €3 ¢ cccdetjc; ¢ ¢z ¢y cccodetjby by by
d d, d; d, - d d, dy d, - di d, dj

€L € €4 €4 vt a, a, as; a; ‘- a, a; a,

=
b, b, by by -+ €; € €3 €4 ¢ b, b, b,
detle; ¢, ¢35 ¢4 ccc|det|c; ¢ ¢35 ¢4 cccoldet|er ¢p cy
d, d, d; d, d, d, dy d, d, d, d

ECRERCINE R T S

det.# 0 0
0 det.# O
=1 o 0 detw# - | (B.8c)

In the last line we use the fact that any determinant with two identical
rows must vanish. Now the general formula for the inverse .#~! follows if we
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can divide Eq. (B.8) by det .#:
yak =/%adj/(det M. (B.9)

This is the case when det .# # 0. Then from Eq. (B.3) we may write the
general solution to the linear equation .#z =y, which is called KRAMER’S

RULE:

det

a, Y1 as b,
MY by y, by by
=#1y = = | det - (det.#) "
* ¥~ det.w? €1 Y3 €3 €4 (det.#)

di 44 d; d,

a, a4 4 4

b, b b

det 1 2 ¥ 4

C, Cy Y3 €4

dy dy y, d4

(B.10)

A linear equation with g = 0 is called a HOMOGENEOQOUS equation.
Equation (B.11) is an example:

Moz=0 7 (B.11)

Now if det .# = 0 then according to Kramer’s rule the only solutions are zero
vectors « = 0. However, if det .# = 0 there will exist nonzero solutions as
shown in Chapter 1, Section 1.2.B. A matrix .# is said to be SINGULAR if
det .# is zero and NONSINGULAR if det .# is nonzero.

In Appendix A, a set of vectors |a), [b),|c),... were defined to be
linearly dependent if and only if a relation of the form of Eq. (B.12) could
exist for values of the coefficients a, B, v, ... not all zero:

alay + Blb) + yle) + -+ =0. (B.12)

By taking the scalar product of this relation with each vector in turn, one
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derives a simple matrix equation which can be used to test for linear
dependence.

alala) + Blalb) + y{alcy + -+ =0,
alblay + B{blb) + y{blc) + --+ =0,
alcla) + Blclb) + y{cle) + --- =0,
(alay (alb) Kale)y - \[a 0
(bla) <(blb) <(bley - |[B]| _|0O
(clay Lelb) Leley - |ly) {0
Clearly nonzero a, B, v, ... exist only if the determinant of the matrix {i|;)

is zero.

APPENDIX C. PROOF THAT HERMITIAN AND UNITARY MATRICES
ARE DIAGONALIZABLE

If a matrix .# satisfied a minimal equation (MEq) with no repeated roots
r;, then we showed in Section 1.2.B(a) how a set of relatively prime polynomi-
als 3”,’_ of this matrix could be made to obey the completeness and orthonor-
mality relations of Egs. (1.2.17) and (1.2.18). This amounted to giving a
complete set of eigenvectors for the matrix, and guaranteed that .# was
DIAGONALIZABLE, or spectrally decomposable.

Now suppose instead that a repeated root r; did appear in the MEq, as
shown in Eq. (C.1):

(A —rd)---(M—r])(#—r1) - (#~-r,])=0. (C1)

This implies that matrix .#" in Eq. (C.2), made from the minimal polynomial
by lifting just one redundant factor (# — r;I), must be>a nonzero matrix
whose square is zero (such a matrix is called a NILPOTENT):

N = (A —rl) ---(1)(/{—rj1)-~(/—rn1) # 0, (C.2a)

NN =0. (C.2b)

Now, this is impossible if .# = # = #7 is Hermitian, since then (we use
here the fact that all roots of # = %7 must be real .. .see Problem 1.2.7) #

must also be Hermitian; Eq. (C.2b) contradicts Eq. (C.2a) if /#;; = NF. As
seen in Eq. (C.3), we must have

2
(#H)y=0= Z/’/U/Vﬂ = Z/Vu/’/: = Z:|/Vi,~| (C3)
J J j
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Hence a Hermitian matrix must be diagonalizable, i.e., decomposable, as
in Eq. (Cd4a) to a sum of idempotents 4. which satisfy completeness
relations [Eq. (C.4b)]l. By construction [recall Eq. (1.2.12)] the & are
Hermitian [Eq. (C.40)]: '

A = Zri‘@ri (rf=r), (C.4a)

1=Y%, (C.4b)

‘@rt=‘@r,-= H(%_rll) ].—.[(ri_rl)' (C4C)
r#r; rp#Er;

The same applies to any ANTI-HERMITIAN matrix # = = —o/7,
since i is Hermitian, as given in Egs. (C.5). Note that &/ eigenvalues are
purely imaginary:

& = Zaj,gaaj (af = —ay), (C.5a)
a;

= L% (C.5b)

Py =P, . (C.5¢)

Finally, we can see that the same can be done for a unitary matrix
'ty = 1 = 7. First observe that the Hermitian and anti-Hermitian matri-
ces # and ./, made from #Z in Eq. (C.6), will commute (Z.& = 7).

¥=w+%, w=%-%" (C.6)
Therefore, the product of the completeness relations of Egs. (C.5b) and

(C.4b) must yield a new set of idempotents &%, , =% Z,, which can
smultaneously decompose #, &, and any combmatlons thereof including

=(# +wv)/2.
= ( Z‘gar,-) ( Zgaj) = Z‘@(riaj)a (C7a)
1
%= 24Py =(r,+ta)/2= = (C.70)
ridj i
'@(tﬂl) <@(’,ﬂj)' (C7C)

(Many of the products &, #, may be zero, but whatever is left must be
complete.) The elgenvalues of % are of the form u = ¢ if % is unitary.
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ADDITIONAL READING

One of the best introductions to the fundamental quantum theory is found in the
third and final volume of the Feynman Lectures. One should read all three volumes,
but the final volume is quite self-contained and may be worth the price of the whole
set.

R. P. Feynman, R. B. Leighton, and M. Sands, The Feynman Lectures on Physics
(Addison-Wesley, Reading, MA, 1967), Volumes I-1ID).

Feynman’s unusual approach to quantum theory introduces the Dirac bra-ket
transamplitudes (bla) and their matrix mechanics in a physical way. Two- or
three-state systems are used as examples in the primary development. Then infinite-
dimensional amplitudes or wave functions (x| ¥) = ¥(x) and differential operators
are treated subsequently.

Another text which begins by discussing amplitude mechanics is by Gordan Baym.

G. Baym, Lectures on Quantum Mechanics (Benjamin Advanced Book Program,
Reading, MA, 1973).

Interpretation of quantum states is debated in Physics Today (April 1993, page
13).

A discussion of spectral decomposition of matrices and the algebra of projection
operators should be found in any good book on mathematical methods for physics or
chemistry. However, most books written for physicists do not cover this subject very
well, if at all. One notable exception which has recently been published is a text by
Hasani.

Sadri Hasani, Foundations of Mathematical Physics (Allyn and Bacon, Boston,
1991).

This text also describes the spectral decomposition and resolvants of differential
operators. -

It is easier to find treatments of matrix spectral decomposition in the mathematical
literature. An excellent readable treatment is found on p. 155 of the following older
but well known text. It features the spectral theorem as the main result of the book.

Paul R. Halmos, Finite Dimensional Vector Spaces (Van Nostrand, Princeton,
1958). r

PROBLEMS

Section 1.1

1.1.1 (Beam stoppers) Consider an incoming beam of spin-% particles
approaching the apparatus shown in the following diagram. A
“stopper” can block the intermediate (2) beam if inserted as shown
in the diagram.
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Use the following notation for the states having different analyzer

angle 4.
1) = lup) [I') = IN) [1") = |right)
[2) = ldn) [2') = |S) 12"y = |left)
=0, 0<o0<mw/2, 6=m/2.

Compute the percentage of particles
that get to counter (1)... without stopper with stopper

for an incoming beam polarized
in state: |1)

...in state: |2)

...in state: |1

Counter 1

Counter 2

@

1.1.2 (Pointing spins the “right” way)
(a) How many of the spins that were originally up (|1)) going into
this apparatus™ will end up “right”? Give answer as a function
of n and see how it behaves for n = 1,2,3,..., 0.

(b) Can you design an apparatus™ that duplicates the effect of the
elementary operator e,,? How about e,?

*« Apparatus’” means some arrangement of Stern-Gerlach analyzers and stoppers.
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left gt ni2
. 2n) m/2
‘e (/) 7 /2

1.1.3 (a) Prove that (AB)" = B4' using components A;;and B of n X n
matrices A and B.

(b) Prove that (A|x)t = (x]A".
() Expand to find (4ABCD)" = 2, ({x]|A4ly )" = 2, (IxX{y1)7?, (e;,)7?

Section 1.2
1.2.1 (Back to your roots)

6
(a) Eigenvalues of M.

(b) Spectral decomposition of M.
(¢) The bra and ket eigenvectors of M.

For the matrix M = (_2 _}) find

(d) All the square roots of M: VM = ( _g - i)

11 7 -9
1.2.2 Do the same as in Problem 1.2.1 for the matrix M = ( 7 1 —9).
-9 -9 27

1.2.3 (Secular behavior)

The polynomial form for the secular equation of a general n X n
matrix M is
S(e) = det|M — £1|
=e"+a;e" ' +aEe"*+ +a, g +a,=0.
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(a) Derive general formulas for the coefficients ay, ay, as,...,
a,-y,a, in terms of the eigenvalues {e,, €3,83,...,6,} Of
matrix M.

(b) Derive general formulas for the coefficients a,, a,,4a,,...,
a,-1,a, in terms of the components {M;} of matrix M. (Hint:
Use the e-tensor definition

detiMl = Y ¢

L3 LR

iip e n,i

oMMy M,

n

for determinants and expand the determinantal secular expres-
sion.)

(¢) Do the coefficients a; change if there is a change of basis?

[ Note: The results of (a) and (b) are particularly important and will be
helpful for later theory and problems throughout the book.]

1
1.2.4 (Multiple degeneracy) The matrix p = p i
1

[ Y
o = s
[

represents a simple example of what is called a pairing operator in
nuclear and superconductivity theory. It has number of repeated or
degenerate eigenvalues.

(a) Find the secular equation, the Hamiltonian Cayley equation, and
the minimal equation of p. (Hint: Problem 1.2.3 is useful.) Find
the eigenvalues.

(b) Compute the projection operators for each distinct eigenvalue
and write the spectral decomposition for this matrix.

(¢) Find all the square roots y/p of matrix p.

e ]
1.2.5 (Knowing spectral decomposition backwards and forwards)

(a) Use what we have discussed about spectral decomposition and
® products to do an eigenvalue problem backwards. Find the
matrix M = M" which has the following eigensolutions:

1 1 1 -1 1 0
M| -1f=1{-1], Ml 1)=|-1], Mi1|l=1]o0
0 0 -2 2 1 0

(b) Find M,
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1.2.6 (Commuting observables)

(a) Use the techniques in Chapter 1 (Section 1.2Bd) to find a single
set of projection operators which spectrally decompose both
matrices:

2 1 0 3 -1 -1
M=11 2 0 and N={ —1 3 -1

0 0 3 -1 -1 3

(b) Use the result of (a) to find a single transformation T which
diagonalizes M and N.

1.2.7 What are the conjugation relations (if any) for eigenvalues (E; and

E}), projection operators (Pg; and P,I-j), and eigenvectors (|E;) and

(Ejl) in the cases that operators are (a) Hermitian: H = H, (b)

anti-Hermitian: A" = — A, or (c) unitary: UT = U™, Check your con-
clusions by spectrally decomposing and diagonalizing the following
examples:
V2 -2 0 i/V2
H) = . b A) = .
(a) (H) (i/\/Z_ —1/\5) (b) (4> (z‘/ﬁ 0
V2 12
U)= .
(o (U (i/ﬁ —i/ﬁ)

1.2.8 Does MM = 1 imply that MM ' = 1, as well?
(a) Prove or disprove in the case that M is a finite n X n matrix.
(b) What if M is an infinite matrix? (Examples of infinite matrices
are the representations of creation and destruction operators a

and a' in the quantum harmonic oscillator eigenstates {|0), |1)
=a’|0), 12) = a'|1),...})
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