Molecules and Molecular Spectroscopy:
Learning about molecules from Quantum theory
and

Learning about Quantum theory from molecules
William G. Harter for Kennefict’'s Modern Physics class 3.26 . 13

A sketch of modern molecular spectroscopy
The frequency hierarchy Example ofl6um spectra of CFy

Units of frequency (Hz), wavelength (m), and energy (eV)
Spectral windows in atmosphere due to molecules

Simple molecular-spectra models
2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models

More advanced molecular-spectra models (Using symmetry-group theory)
2-state U(2)-spin tunneling models

3D R(3)-rotor and D-function lab-body wave models
2D harmonic oscillator and U(2) 2" quantization

Bohr Mass-On-a-Ring (model of rotation) and related co-Square Well (model of quantum dots)
Quantum levels of ©-Square well and Bohr rotor
Example of CO: rotational (v=0)<(v=1)bands
Quantum dynamics of ©-Square well and Bohr rotor: What makes that “dipole "spectra?
Quantum dynamics of Double-well tunneling: Cheap models of NH3 inversion doublet

Quantum “blasts” of strongly localized co-well or rotor waves. A lesson in quantum interference
Wavepacket explodes! (Then revives)

Quantum “revivals” of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees
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A sketch of modern molecular spectroscopy
The frequency hierarchy Example of16um spectra of CF4

»Units of frequency (Hz), wavelength (m), and energy (eV) ‘

Spectral windows in atmosphere due to molecules
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Units of frequency (Hz), wavelength (m), and energy (eV)
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Units of frequency (Hz), wavelength (m), and energy (eV)
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Simple molecular-spectra models
» 2-well tunneling, Bohr mass-on-ring, 1D harmonic oscillator, Coulomb PE models ‘

More advanced molecular-spectra models (Using symmetry-group theory)

2-state U(2)-spin tunneling models
3D R(3)-rotor and D-function lab-body wave models
2D harmonic oscillator and U(2) 2" quantization
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Simple
Molecular

Spectra
Models

fine structure

2-well tunneling

inversion doublet
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CF 4and SF,

J-tunneling

More
Advanced =3

Ammonia NH3

M O 1 e Cul ar inversion doubl\e\t \

0) rotational levels _

0 vibrational quantum levels,
electronic quantum levels
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Spectra R v=3
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group theory) S =5 V
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2-well tunneling Bohr mass-on-a-ring 1D harmonic oscillator Coulomb PE models
y n=10 —
n=9 ‘L
“ = ——
2-state U(2)-spin 3D R(3)-rotor 2D harmonic oscillator U(m)*S, analysis of
and quasi-spin and D-function and U(2) 2" quantization multi-electron states
tunneling models lab-body wave
models 2D-
Rotational Energy Surface (RES)
analysis of rovibronic tensor spectra
\

Vv: —~——
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CF 4and SF,

J-tunneling

More
Advanced =3

Ammonia NH3

Molecular mesiopsagi
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Bohr Mass-On-a-Ring (model of rotation) and related o-Square Well (model of quantum dots) ‘
Quantum levels of ©-Square well and Bohr rotor

Example of CO: rotational (v=0)<(v=1)bands
Quantum dynamics of ©-Square well and Bohr rotor: What makes that “dipole ’spectra?
Quantum dynamics of Double-well tunneling: Cheap models of NH3 inversion doublet
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Bohr Mass-On-a-Ring (model of rotation) and related co-Square Well (model of quantum dots)

Circumference Length=L=2nr=2W

co-Square Well has same levels
but half as many states as Bohr Mass-On-a-Ring

Width=W=L/2
< >

+2

+1
m=0

20
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Bohr Mass-On-a-Ring (model of rotation) and related o-Square Well (model of quantum dots)

Infinite

Square
Well

Circumference Length=L=2nr=2W

wo-Square Well has same levels
but half as many states as Bohr Mass-On-a-Ring

Width=W=L/2 LA2mr
< >

oo-well zerotpoint
energ

Bohr Rotor
< LE2W——>
< W- >|< W- >

21
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Bohr Mass-On-a-Ring (model of rotation) and related o-Square Well (model of quantum dots)

Circumference Length=L=2nr=2W

wo-Square Well has same levels
but half as many states as Bohr Mass-On-a-Ring

Width=W=L/2 LA2mr
< >

wo-Square Well has
only sine standing
waves Yn=Asin no

Infinite

Square
Well

Bohr Rotor
< LE2W——>

energ

oo-well Zer(ipoint

22
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Bohr Mass-On-a-Ring (model of rotation) and related o-Square Well (model of quantum dots)

Circumference Length=L=2nr=2W

wo-Square Well has same levels
but half as many states as Bohr Mass-On-a-Ring

Width=W=L/2 LA2mr
< >

wo-Square Well has  Bohr Ring has sine and cosine
only sine standing standing and e moving waves
waves Yn=Asin ng )., =A(cos mo+isin m¢p)=Ae*"?

Infinite Bohr Rotor
Square
=) ———>
Well < d
< W- < W- >

energ

oo-well Zer(ipoint

23
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Bohr Mass-On-a-Ring (model of rotation) and related co-Square Well (model of quantum dots)
Quantum levels of ©-Square well and Bohr rotor

Example of CO: rotational (v=0)<(v=1)bands
Quantum dynamics of ©-Square well and Bohr rotor: What makes that “dipole ’spectra?
Quantum dynamics of Double-well tunneling: Cheap models of NH3 inversion doublet
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Quantum levels of co-Square well and Bohr rotor
Standing wave <x‘ 8n> =y, (x) = Asin(knx) with boundary conditions kW= nm or: k= nn/W

:Asin(ﬂij (n=12,3,...00)

Monday, March 25, 2013
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Quantum levels of co-Square well and Bohr rotor
Standing wave <x‘ 8n> =y, (x) = Asin(knx) with boundary conditions kW= nm or: k= nn/W

=Asin(ﬂWx) (n=12,3,...00)
2

neo, hn'm 2 A2 42 2\ K
Snzz—k = 5 = (1 ,2 ,3 ,...0T' M ) >
M 2MW SMW

Gives energy levels.:

n=3 3%¢,

_
(-

0.0

n=2 2%,

_
(-

n=1 1281

HII|IIIII|I_I!II|IIIII:_!__.III|IIIIII__!__lIII|IIIII_LIII|
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Quantum levels of co-Square well and Bohr rotor
Standing wave <x‘ 8n> =y, (x) = Asin(knx) with boundary conditions kW= nm or: k= nn/W

=Asin(ﬂWx) (n=12,3,...00)
2

Gives energy levels.:

2 2 2
£n=h—k2 = nm — (12, 22, 32,...0r nz) h
2M T M 8 MW'*
_ 2
n=3 3 81 — A
gﬂllil.l:l
= 2nd transition
£30.0 energy 5S¢,
n=2 27%g, fao
= I st transition
=100 ("beat") energy 3¢,
n=1 1281 3 . 5
=1
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Quantum levels of co-Square well and Bohr rotor
Standing wave <x‘ 8n> =y, (x) = Asin(knx) with boundary conditions kW= nm or: k= nn/W

=Asin(ﬂWx) (n=12,3,...00)
2

Gives energy levels.:

2 ) )
gn:h—kz = hnm = (12, 22, 32,...0r nz) A
n=3 3%, N Set W= to get rotor energy:
Ecm.n
= 2nd transition
£30.0 energy 5¢,
n=> 2281 EEEI.I:I X
= 1st transition
=1 ("beat") energy 3¢g,;
= /ero-point energy €=

(For co-Square well) SMW?
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Quantum levels of co-Square well and Bohr rotor
Standing wave <X‘ 8n> =y, (x) = Asin(knx) with boundary conditions kW= nm or: k= nn/W
:Asin(mr—xj (n=12,3,...00)
W

Gives energy levels.: 7 2.2 2 2
_h_kz _mnm (12, 22 3% .or nz) L

E

"M ) M 8 MWV
2 2 4 2 )
2 = / n’ = f n’ = h—nz rotor energy
n=3 3 €1 = A M r? 2 Mr? 21 for: W= zr
E-iIIII.III \_ Yy,
= 2nd transition
=30.0 energy Sg
n=2 2281 EED'D X
= | st transition
=100 ("beat") energy 3¢,
n=1 1281 = ' . h 2
= Zero-point energy g,=

(For o-Square well) 812\/[W2
{mtar energy B-constant: = % =B J
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Quantum levels of co-Square well and Bohr rotor
Standing wave <X‘ 8n> =y, (x) = Asin(knx) with boundary conditions kW= nm  or: k= nn/W

=Asin(’m7xj (n=12,3,...00)

Gives energy levels.:

gn:—kz _anr o_ (12, 2%,3%,..0r nz)
Isnﬁnite Bohr Rotor 2M 2 M W2 8 M W2
quare Likow > ( \
Well | 7?2 ) | n o,
— SN = S :En rotor energy
7B SMn“r 2 Mr for: W=rr
g J
A
5B
Y
A
3B
Y
| B

2
h
{mtor energy B-constant: = 57 =B J
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Bohr Mass-On-a-Ring (model of rotation) and related co-Square Well (model of quantum dots)
Quantum levels of ©-Square well and Bohr rotor
» Example of CO: rotational (v=0)<(v=1)bands
Quantum dynamics of ©-Square well and Bohr rotor: What makes that “dipole ’spectra?
Quantum dynamics of Double-well tunneling: Cheap models of NH3 inversion doublet
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Example of CO: rotational (v=0)<(v=1)bands

620cm-! | 64|0cm'1 | 660Lm'1 0(1,2, J P(£(5)680Lm‘1 | 700Lm-1
: R(3) P(3)
os|----- PP SN PR - I R R
R(Jinir): Raise Jinis R{4)
R(3) P(2)
_ Q:status-Quo
= IR AR YY", --1-1--] -} - F(Z) I I B I N I I I T O .
= P: Plummet L &
E | — CO,
D ol Ro) @ (L LT Infrared bands
& B,(1/A)=0.2cm™!
Dipole transitions o 7»;5;4“;1
s 3 = 1 P B Y O A DR A IO L AN A R O O L o977 R O OO A I Y O DR R O O O A B Y AR | = Zoe e
J—(Jx1) only ‘ ‘ ‘ J
1 PP | .I.J.J_J | |y J.,_j N __J L_.uLmL,_u_jL_.;,_‘,_,l l |.l-].l.-l..-.. .~ e o
%
QO
[ R & o
=
g
2
§ J=4 |, R(3) A ]
= P(5)
I
> J:3 12 R(Ez) rJ 3 (J
T P(4)
& =2 | RO /
(0] \ ) P\J3)
J=1 | RO
J=0 | L P2
o) 2" 6 12 20 30
rotor energy ok g g
[N Il | II Il
=B-J(J+1) e I R b ”

(n =0 v =0) rotational levels
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Example of CO: rotational (v=0)<(v=1)bands

) P | 64|Ocm-1 | 660knr! (1,2, J P(£(5)680Lm'1 | 700k
i R() P(3)
os|----- PP SN PR - I R R
R(Jinir): Raise Jinis R{4)
R(3) P2)
_ Q:status-Quo
-"_"Od' ............................................. --1-1--] -} - F(Z) I I B I N I I I T O .
= P: Plummet L (0
E | _ C02
D ol R @I LV LL L Infrared bands
& B,(1/A)=0.2cm™!
Dipole transitions o 7»;5:4“;1
e 30 = 3 P S R O O U A IO O O A R O A R 770 f A R DR A N A O A O O OO R A B AN AR | = Zoee e
J—(J=E1) only ‘ ‘ ‘ J
1 PP .I.J.J_J | A J.,_u_..l A ,__J L_.L.I,LHJL..&_JL_.A._‘;_,I l |.l-].|.-;..-.. e
1%
)
[ R & o
= 4 3
5 0 =1, )
g _ 4], RG3) o g _
Z A 0 % I~ ]
—
T / T :
! 2
> J=3 12 K (Ez) @ ? ) § J=3 A 1
T P(4) = 9 © o VIUEST USE.
L |t n :
[0} A ) P\J3 > -
J=1 | RO)01) " ) ? <_J >—J(J+1)
J=0 " L& F2) « — 24 o o o
o 26 12 20 30 ~ NOT ﬂ
J:] ] S 1 (]
rotor energy N S < < YETH G
=B-J(J+1) S A & © °% 9 L6
(n =0 v =0) rotational levels T
S~ < < <
1l lﬂ) JIQ 4||§

What dO@S NOT WOI/'k.' rotor energy =B-J o (n =0 v =1) rotational leve

Is
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Bohr Mass-On-a-Ring (model of rotation) and related co-Square Well (model of quantum dots)
Quantum levels of ©-Square well and Bohr rotor

Example of CO: rotational (v=0)<(v=1)bands
Quantum dynamics of ©-Square well and Bohr rotor: What makes that “dipole ’spectra?
Quantum dynamics of Double-well tunneling: Cheap models of NH3 inversion doublet
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Quantum dynamics of o-Square well and Bohr rotor
How what makes that “dipole spectra?

“Sloshing” charge acts like dipole antenna
broadcasting™ linear polarized radiation

Fig. 12.1.2 Exercise in prison. Infinite square well eigensolution combination "sloshes" back and forth.

*Or receives (Depending on relative phase)
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Quantum dynamics of o-Square well and Bohr rotor
How what makes that “dipole spectra?

Rotating charge broadcasts™
circularly polarized radiation
Y(x, )=

W (0)—yH(x)

|

_'fIH | L]
||

L
FARN

<< 5>

Oth Fourie
1st Fouries

“Sloshing” charge acts like dipole antenna

broadcasting™ linear polarized radiation
A |/ B oleE e :f/xf{ X ) } \ "N‘ﬁ"ﬁ‘ P 4:}_44",.4,,,}1 |
e [ — _S\"—_—’Qy NN _v AN, ,\"_SL’_ -
By Harter- ¢10¢ and University of &vkansas Ph Blegans oecaticnal Tecls (Jinee A

Fig. 12.1.2 Infinite square well eigensolution combination "sloshes" back and forth.

*Or receives (Depending on relative phase)
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Bohr Mass-On-a-Ring (model of rotation) and related co-Square Well (model of quantum dots)
Quantum levels of ©-Square well and Bohr rotor

Example of CO: rotational (v=0)<(v=1)bands
Quantum dynamics of ©-Square well and Bohr rotor: What makes that “dipole ’spectra?
Quantum dynamics of Double-well tunneling: Cheap models of NH3 inversion doublet
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Quantum dynamics of Double-well tunneling

Cheap models of NH3 inversion doublet and general 2-state quantum systems

T
"N
0v

(n

an
= =
i

5
E >
o =
—_ p—
© _ <
& Ammonia NH =
s ‘ 3=
@ inversion doublet §
2z () > J=6 S
(@)
et |/ .- S
3 / J=I
2
T
o
<=
=
@)

fine structure rotational spectra

2-well tunneling
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Quantum dynamics of Double-well tunneling
Cheap models of NH3 inversion doublet and general 2-state quantum systems

Ammonia NH3
inversion doublet

!_) \\\

Other types of spectral splitting

fine structure

2-well tunneling

0) rotational levels

(n=0v

rotational spectra

If you add some excited state (—)-symmetry wave...

N
e Ve
)
o Il'l_ 1%
1

<
Oth
st .

Dnr
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Quantum dynamics of Double-well tunneling
Cheap models of NH3 inversion doublet and general 2-state quantum systems

Ammonia NH3
inversion doublet

!_) \\\

Other types of spectral splitting

fine structure

2-well tunneling

0) rotational levels

(n=0v

rotational spectra

If you add some excited state (—)-symmetry wave...

N
e Ve
)
o Il'l_ 1%
1
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Quantum dynamics of Double-well tunneling
Cheap models of NH3 inversion doublet and general 2-state quantum systems

Ammonia NH3
inversion doublet

Other types of spectral splitting

fine structure

2-well tunneling

If you add some excited state (—)-symmetry wave...

<
Oth
st .

Dnr

0) rotational levels

!_) \\\

|
h

.&
0Ov

(n

rotational spectra

2n¢
31d
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Quantum dynamics of Double-well tunneling
Cheap models of NH3 inversion doublet and general 2-state quantum systems

If you add some excited state (—)-symmetry wave...

Ammonia NH3
inversion doublet

!_2 *\\. =6
@) i

0) rotational levels

|
h

.&
0Ov

Other types of spectral splitting

(n

fine structure rotational spectra

2-well tunneling

. ™
R N
A lk /M" g R \'-\;\.;.\__w {J’
] 5 e A 25 Y ¥ ] 1y
1l . | & T b % I o T i L 1w B o1 [T woar uw o PenTaAl ——uy
- o - I~ T 1 7 7 1] 1~ ¥ | 17 e
\\\.'\"a: f'/// - i o X E
g N et e X Oth
S—— 1st
21¢
SN PSS v e 31d
IBEEe ELEkEE e EERRASSXGIINNIMIINER

A= . - x—\c;\/\.‘«.’*x:}/ir"—-f =
By Harter- /¢ and University of &rkansas Physics %/?'ﬁn.w/ Ddexaticnal Fecks Linee ZCX)/
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uantum “blasts” of strongly localized co-well or rotor waves.: A lesson in quantum interference‘
Wavepacket explodes! (Then revives)
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum interference

PulseWave forms are also calledﬂ

—>

Wave Packets (WP) |
since |

' CW terms interfering constructively |
:4— (narrow regions of peaks)—#

| . . _ |
| CW terms interfering destructively |

| (wide regions of zeros |
Prany e i~

|
they are

interfering )/,
cos(")

sums of
+cos(20)

many
CW terms

(10-Cosine Waves— %
make up this pulse

i:
+cos(30)

+cos(40) /

+ )
CW terms are costy)

also called +cos(60)

Color Waves +cos(70)

or

Fourier reosty
Spectral reosy)
Components +eos(104)

T

)

|
|
|
|
(this ¢-dimension is
M):kx _ @ time and/or space)

... and vice-versa ...
CW forms can be
made artificially
from PW sums ...

“pulse-packets”

(this 1s digital
sampling or
digital-to-analog
synthesis.)
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Quantum “blasts” of strongly localized co-well or rotor waves
A lesson in quantum interference

PW widths reduce proportionally with more CW terms (greater Spectral width)

Space-time width (pulse width)

At=1

At = 1t/2
At = 1/5
At =1/10
At = 1/50

(10

(50

cosine/wave

<

this dimension is time

cosine waves
\/
T/2
PR VAV,
T/5
cosine wav@s)
ik AYAYAVAN
/10
cosine wavgs)
VW/SO

Spectral width (harmonic frequency range)

I CW term - Av=I1v= fundamental frequency
Av =v=1/1
’;IIIIIIII‘:IOIIIIIIIIél(l)llllllIéI6IIIIIIIAI6IIIIIIISO
2 CW terms | Av=20 (up to 2nd octave)
AU :2D |2|||||II‘III(I)llllIII|2|C|)|||IIII:|))|6IIIIIIIA-I6I||||||I50
Av=5v (up to Sth)
5 CWterms [{fr
AD :SD 1 II%IIII%IOIlI|||I||2|(|)|I|IIII|3|6|I|IIIIA-I(I)IlllIIII50
Av=10v (up to 10th)
<« >
10 CWterms 1 !! ||||| ||||||||I||||||I||I|||||||||||III
AD :101) 1IO 20 30 40 50
( Av=50v >
S0 CW terms
AU :SOD ||||||II‘|IIO|||||IIZO |||30 |||||LI6II|IIIII50

this dimension is frequency or per-time
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum interference

PW widths reduce proportionally with more CW terms (greater Spectral width)

Space-time width (pulse width)

At=1

At = 1t/2
At =1/5
At =1/10
At = 1/50

(1

(2

e

(5

(10

(50

cosine/wave

<

cosine wav

-«

cosine w ve\Jv‘\/\
<« >
cosine wa GM/

cosine wavgs)

this dimension is time

—

More prone

to

interference

More

Wave-like

Morre

Particle-like

Less prone
fo

/50

interference

Spectral width (harmonic frequency range)

1 CW term
AV =v=1/71

2 CW terms
AV =20

5 CW terms
AV =5V

10 CW terms
AV =10V

50 CW terms
AL =50V

- Av=I1v= fundamental frequency

1

10 20 30 40 50

| AV=20 (up to 2nd octave)

i ||||||I||||||IIII|||||||||I||||||II|||||||||||||

2 10 20 30 40 S0
Av=5v (up to Sth)

1

i ||||||||||||||III|||||||III|||||||||||||||||||||
S 10 20 30 40 50
Av=10v (up to 10th)

<« >

10 20 30 40 50

AV=50v

<

10 20 30 40 50

this dimension is frequency or per-time

Fourier-Heisenberg product: At *Av =1

(time-frequency uncertainty relation)
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum interference
5(x — a) = <x a> = Z‘,’,,°:1<x‘8n><8n

A
—> || €—
2 Ax = 21/100

> >

a> = ,=14, SInk x

AV.W)
......

0.4 0.6 0.8

Fig. 12.2.2 Ultra-thin prisoner M.

Initial wavepacket combination of 100 energy states.
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum interference

5(x—a)=<x

AV.W)
......

A

)=

R
2 Ax = 2n/100
| (—

0.

6

Fig. 12.2.2 Ultra-thin prisoner M.

Initial wavepacket combination of 100 energy states.

220:1<x‘8n><8n

—>>| €—

a> = ,=14, SInk x

an = {ex|la)y= (2/W) sin kn a

(k= n/W)
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum interference

5(x—a)=<x

AV.W)
......

A

0.

DR R CAICH

6

Fig. 12.2.2 Ultra-thin prisoner M.

Initial wavepacket combination of 100 energy states.

¥(x)=

an = {ex|la)y= (2/W) sin kn a

2"
W

a> = ,=14, SInk x

(k= n/W)

m °
Y sin kna sin knx
n
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum interference
5(x — a) = <x a> = Z‘,’,,°:1<x‘8n><8n
A

a> = ,=14, SInk x

an = (exla)y= 2/W) sinkna (ko =na/W)

2 max
‘P(x) — smk asmkx
W
_ 63 nfl dk&sinkasmkx
""" 0.4 0.6 0.8 7 Ak

Fig. 12.2.2 Ultra-thin prisoner M.

Initial wavepacket combination of 100 energy states.
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum interference
5(x — a) = <x a> = Z‘,’,,°:1<x‘8n><8n
A

a> = ,=14, SInk x

an = (exla)y= 2/W) sinkna (ko =na/W)

2 Vmax | .
‘P(x):— >, sink asink x
W n n
n
K
2 "max  An :
...... _ — — | dk—sinka sinkx
dhbd 0.4 0.6 0.8 /8 Ak
K
Fig. 12.2.2 Ultra-thin prisoner M. 2 W "max : :
¢ P =—— | dksinka sinkx
Initial wavepacket combination of 100 energy states. W r 0
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum interference
5(x — a) = <x a> = Z‘,’,,°:1<x‘8n><8n
A

a> = ,=14, SInk x

an = (exla)y= 2/W) sinkna (ko =na/W)

2 Nmax .
‘P(x):— >, sink asink x
W n n
n
K
2 "max  An
...... _ — — | dk—sinka sinkx
dhbd 0.4 0.6 0.8 /8 Ak
K
Fig. 12.2.2 Ultra-thin prisoner M. 2 W "max : :
¢ P =—— | dksinka sinkx
Initial wavepacket combination of 100 energy states. W r 0

‘P(x)s%n(j: dk sin ka sin kx = n(j; dk(cosk(x—a)—cosk(x+a))

1
s
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum interference
5(x — a) = <x a> = Z‘,’,,°:1<x‘8n><8n
A

a> = ,=14, SInk x

an = (exla)y= 2/W) sinkna (ko =na/W)

2 Nmax .
‘P(x):— >, sink asink x
W N n n
K
2 "max  An :
et AL AR A A —— | dk——sinka sinkx
"""" 0.4 0.6 0.8 /8 Ak
K
Fig. 12.2.2 Ultra-thin prisoner M. _ EZ r?ax dsin ka sin foc
Initial wavepacket combination of 100 energy states. W r 0
2 K max . . ] K max
LIr’(x) =— | dksinkasmkx=— | dk(cosk(x— a)— cosk(x+ a))
T o T o

_ sin K (x-a) - sin K (x+a) _ sin K (x-a) s

(x-a) rt(x+a)  7w(x-a)
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum interference
5(x — a) = <x a> = Z‘,’,,°:1<x‘8n><8n
A

a> = ,=14, SInk x

an = (exla)y= 2/W) sinkna (ko =na/W)

2 Vmax | .
‘P(x):— Y, sink asink x
W N n n
2 Kmax Ap
_ —— | dk——sinka sinkx
""" 0.4 0.6 0.8 W o Ak
Fig. 12.2.2 Ultra-thin prisoner M. _ EZ Kr?ax Tk sinka sin for
Initial wavepacket combination of 100 energy states. W r 0
2 m . . ] Kmax
LIr’(x)s — J dk sin ka sin kx = — j dk(cosk(x a) cosk(x+a))
T T
_sin KmaX (x-a) ~ sin K_ (x+a) _snK_ (x-a) oy g

(x-a) w(x+a) B 77:(x Q)

"Last-in-first-out" effect. Last Kmax-value dominates and
“inside” K get "smothered" by interference with neighbors.
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Qugntum “blasts of strongly localized co-well or rotor waves: A lesson in quantum interference
4 Wavepacket explodes! revives)
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Wavepacket explodes!

t = 0.00047,

t = 0.00087,

t=0.00127,

t=0.00167,

t=0.0020r,

Time given in units of period T (slowest phasor of ground level).
fundamental zero-point period T1 =1/Vi
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Wavepacket explodes!

Time given in units of period T (slowest phasor of ground level).
2w 2rmh

0, &

fundamental zero-point period T =I/V11s 1

h S MW ?

CR2sMW? h

t = 0.00047,

t = 0.00087,

t=0.0012r,

t=0.00167,

t = 0.00207,
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Wavepacket explodes!

Time given in units of period T (slowest phasor of ground level).

fundamental zero-point period T1 =1/V11s 1 = 21 _ 27h
\ Lo g
h 8 MW?
t =0.00047 - —
1 h | 8MW? h
en-level classical velocity:
_do, _1dg,
t = 0.00087, T
_1n di”
CR2M gk

_ W2k, hnw  hn
2M MW 2MW

t=0.0012r,

t=0.00167,

t = 0.00207,
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Wavepacket explodes!

Time given in units of period T (slowest phasor of ground level).

fundamental zero-point period T1 =1/V1 1S T, = 2 _ 2nh
\ w, &
h 8 MW*
t = 0.0004 = =
T W | 8 MW? h
en-level classical velocity:
_ do, :lden
t = 0.00087, "k i
1.7 ak”
h2M dk
_ W2k, hnw  hn
C2M MW 2MW
t= ().0012’51 en-level classical round
trip time Tn(2W)
T (o) = 2W o 2MW 4 MW?
" f hn hn
1 8MW?*
t=0.00167, ==
t = 0.0020t,
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Wavepacket explodes!

Time given in units of period T (slowest phasor of ground level).

fundamental zero-point period T1 =1/V1 1S T, = 2 _ 2nh
\ w, &
h 8 MW*
en-level classical velocity:
_ do, :lden
t = 0.00087, o
ThOM gk
_ W2k, hnw  hn
C2M MW 2MW
t= ().0012’51 en-level classical round
trip time Tn(2W)
7 amy=2W gy 2V _ 4 MW
" f hn hn
1 §MW?>
t =0.00167, ==
en-level 1-way time Tn(W)
T
T W)=T,2w)/2=-L
t = 0.0020t, I»

(=0.00257, for: n=100)
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Wavepacket explodes!

Time given in units of period T (slowest phasor of ground level).

fundamental zero-point period T1 =1/V1 1S T, = 2 _ 2nh
@ &
h 8 MW*
en-level classical velocity:
_ do, :lden
t = 0.00087, o
ThOM gk
_ W2k, hnw  hn
C2M MW 2MW
t= ().0012’51 en-level classical round
trip time Tn(2W)
7 amy=2W gy 2V _ 4 MW
" f hn hn
1 §MW?>
t =0.00167, ==
en-level 1-way time Tn(W)
T
T W)=T,2w)/2=-L
t = 0.0020t, I»

(=0.00257, for: n=100)
”Last—in-ﬁrst—aut” effect
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Quantum “blasts of strQngly localized co-well or rotor waves: A lesson in quantum interference
Wavepacket e ¥(Then revives) ‘
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Wavepacket explodes! (Then revives)

Zero-point period Ti 1s just enough time for "particle" in €x-level to make 2n round trips.
8 ML*

T, =2nT,(2W)=
In time T; ground €;-level particle does 2 round trips,
€2-level particle makes 4 round trips,
e3-level particle makes 6 round trips,..,

At time T1, M undergoes a full revival and "unexplodes" into his original spike at x=0.2W,

t = 1.000071,
=3.01,.., W/L'W\nﬂl 0.4 0.& 0.8
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Wavepacket explodes! (Then revives)

Zero-point period Ti 1s just enough time for "particle" in €x-level to make 2n round trips.
8 ML*

T, =2nT,(2W)=
In time T; ground €;-level particle does 2 round trips,
€2-level particle makes 4 round trips,
e3-level particle makes 6 round trips,..,

At time T1, M undergoes a full revival and "unexplodes" into his original spike at x=0.2W,

But, after only 50 round-trips
M's wave does a partial revival
as 1t makes an upside down-delta
function around x=0.8W.

t =0.50007,
=1.57,_,

t = 1.00007,
=3 'OTbeat
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At fractional times Ti/n M undergoes a nurfiber of fractionallrevivals

t=1,/3

t=1,/5

e || o Fermmmrsl | L] TN |
0.6 10 n.s

RTTAY

0.4

t=1,/7 E l l
. il Ty .|-|"l. el |.|._.._. ML 1] doia” Rl II..u..
AT E Al W L TR

t=1,/9

Fig. 12.2.5 The "Dance of the deltas." Mini-Revivals for prisoner M's wavepacket envelope function.
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Quantum “revivals” of gently localized rotor waves: A lesson in quantum number theory ‘
Farey-Sums and Ford-products
Ford Circles and Farey-Trees
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Quantum “revivals” of gently*localized rotor waves

A lesson in quantum number theory
*agently means gently-truncated Gaussian distributions

1/1

3/4

| L*A/”: I3

2-1 01 2 =m

1/2

1/4

0/1
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Tlmert .(l-lrnl'[s of fundamental PGI‘lOd T) (Imagine "Wrap—aroglrry%d" ¢—Coordinate)

1/1 4T -
i o 0 1/4
9/10

4/5
3/4

7/10

3/5

1/

172
C()()rdlnate 0 (unlts of 27[) [Harter; J. Mol. Spec. 210, 166-182 (2001)]

Monday, March 25, 2013




N-level-rotor pulse wave and revival-beat wave dynamics

Zeros(Bpand “particle-packets” have paths

labeled by fraction sequences like: % gy

1/1

(9 orl0-levels (0, +1, +2, 3, #4...., +9, x10, :11..) €XcClted)

v
1

Zeros start here Wave packet starts here — o
i -1/4 0 1/4 i
Coordinate ¢

(units of 2m)

Monday, March 25, 2013 69



1/1 /1

’ 7/8
= > e 67

T 5/6

5/6

45 _ - ‘ Iz 45

34 = ’ , B4
(A e d - T B
b
2/3 SS 4 §§§§§ N P ‘ -
3/55/8—/‘@n uﬁ\ s

47 47
1/2 1/2 7°7°7°7°7°7°7°1
3/7 3/7

2/5 » o Q 3/82/5
e v

2/71/4 1% = ,::»1/4 27
,,,,,,,, ST » -

1/15/6\\ <\ S 1/61/5

7 1/8 & i

- A
)/ M=) |

eros start here Wave packet starts here Zeros start her

Note, for example series :
01234561
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Quantum “revivals” of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products
Ford Circles and Farey-Trees
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Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D

(units of T1) -
(n,+1)/d,

(n,-1)/d,

2/d,
1/d,

0/1

-1/2

14/d,

]3/d1 nz/dz path slope is ]/a’2
12/d,

n,/d;—

n/d, pathslopeis-1/d,

0 /d; and n./d, path
13/d, fractions
numerator/denominator

2/d,

1/d,
Coordinate ¢

-1/4

0

(units of 27)
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Farey Sum algebra of revival-beat wave dynamics
Label by numerators N and denominators D of rational fractions N/D

]/] — 14/d,
Time t ] ] ]3/d1 n./d, path slopeis 1/,
(units of T7) - : IW
] 1/2 -
(n,+1)/d, = ) -ty
I”l]/d]~ 1/2 - (br\ i ‘l/dl
(ng'])/dg nl/d] path slope is ']/dl a

n,/d, and n,/d, path n,/d, and n,/d, path

intersection point 3/d, | intersection time
_dmyngd; | . ;= n;tn,
Ford-Cross Farey-S
(. ) 1/d, 1/d, (Farey-Sum)
0/] | Coordinate ¢

-2 -1/4 0 I/4 12 (units of 2m)

[Lester. R. Ford, Am. Math. Monthly 45,586(1938)] [John Farey, Phil. Mag.(1816)]
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Quantum “revivals” of gently localized rotor waves: A lesson in quantum number theory
Farey-Sums and Ford-products

Ford Circles and Farey-Trees ‘
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Unit Real Interval % Farey Sum

"N\
&
— S

o P P2 P A PSS e P PR P
R related to
ol ¥ vector sum
= 18
I and
@ = 16 Ford Circles
gé ) 1/1-circle has
S Sl diameter /
S
S o
T~ R 12
=
Q 41
N O
V=
Qo
<+
= 8
7
<]
<4
13
Sip!
v,=(0,1)
YV Numerator Axis N
-3 2 -1 1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19
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Unit Real Interval
S0P P7 P8 PO

— O

1
1
1.0

(b)

T L N L

|

-?\
|

19

18

17

16

14

13

12

11

Denominator Axis D

|1||p.|2|||0.T3|||0.f1||p.§||p.ﬁ||p.|7||p.§|lp

Numerator Axis N

30020 -1 1 2 3 4 6 7 8 9 I 12 13 14 16 17 18 19

Farey Sum
related to
vector sum

and
Ford Circles

1/1-circle has
diameter /

1/2-circle has
diameter 1/2?=1/4

Monday, March 25, 2013



N
2
—
W =
-_ | —

Unit Real Interval % Farey Sum
1.

|
ik -ty P2, P, P4 2o PP P PR PP D related to
/___"“
1 vector sum
< 18 d
- dn

o :
@ = Ford Circles
&
~
é =1
‘5’ - 1/2-circle has
= diameter //22=1/4
S
§g 1/3-circles have
Q : diameter 1/32=1/9

-

3

&

=3

v=(0,1)
=7 .
V. Numerator Axis N

30020 -1 1 2 3 4 6 7 8 9 11 12 13 14 16 17 18 19
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T
2
— S

1

o
.
(=i
QL
2 e =
a )
X
PRy
S
~
G |
S o
S 2
S
Q |
~
L =
Q0
<
=
g
.
=
S1h
v,~(0,1)

30020 -]

19

18

17

16

14

Numerator Axis N

Unit Real Interval
S Pe P07 PR PY

I 12 13 14

l6 17 18 19

Farey Sum
related to
vector sum

and
Ford Circles

1/2-circle has
diameter 1/2?=1/4

1/3-circles have
diameter 1/3°=1/9

n/d-circles have
diameter 1/d?
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(Quantim, computer’ simulation
hat makes an &-ly deep "3D-Magic-Eye’/pictiwe
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum uncertainty
5(x — a) = <x a> = Zn:1<x‘8n><8n
A

a> = ,=14, SInk x

an = (exla)y= 2/W) sinkna (ko =na/W)

2 Vmax | .
‘P(x):— >, sink asink x
W n n
n
K
2 "max  An :
...... _ — — | dk—sinka sinkx
dhbd 0.4 0.6 0.8 /8 Ak
K
Fig. 12.2.2 Ultra-thin prisoner M. 2 W "max : :
¢ P =—— | dksinka sinkx
Initial wavepacket combination of 100 energy states. W r 0

"Last-in-first-out" effect. Last Kmax-value dominates and
“inside” K get "smothered" by interference with neighbors.
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum uncertainty
5(x — a) = <x a> = Zn:1<x‘8n><8n
A

a> = ,=14, SInk x

an = (exla)y= 2/W) sinkna (ko =na/W)

2 Vmax | .
‘P(x):— >, sink asink x
W N n n
2 Amax  An | :
_ — — | dk—sinka sinkx
""" 0.4 0.6 0.8 /8 Ak
Fig. 12.2.2 Ultra-thin prisoner M. _ EZ Kr?ax Tk sinka sin for
Initial wavepacket combination of 100 energy states. W r 0
( ) smK__(x-a) ¢ W(x) peaks at (x=a) and goes to zero on either side
X)) = or-x=a . .
m(x-a) at (x=a+Ax) with half-width Ax

"Last-in-first-out" effect. Last Kmax-value dominates and
“inside” K get "smothered" by interference with neighbors.
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum uncertainty
5(x — a) = <x a> = Zn:1<x‘8n><8n
A

a> = ,=14, SInk x

an = (exla)y= 2/W) sinkna (ko =na/W)

2 Vmax | .
‘P(x) = e % sSink_a sk x
2 Amax An
_ —— | dk—nsmka sin kx
""" 0.4 0.6 0.8 W o Ak
ig. 12.2. -thin pri . 2 W Kmax : :
Fig. 12.2.2 Ultra-thin prisoner M _<cw J dsin ka sin foc
Initial wavepacket combination of 100 energy states. W r 0
(x) - smK_(x-a) for ¥ ~ g ¥ (x) peaks at (.x=a) and goes to zero on either side
m(x-a) at (x=a+Ax) with half-width Ax
sim K (Ax)=0 , which implies: (Ax)K _ =*7

"Last-in-first-out" effect. Last Kmax-value dominates and
“inside” K get "smothered" by interference with neighbors.
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum uncertainty
5(x — a) = <x a> = Zn:1<x‘8n><8n
A

a> = ,=14, SInk x

an = (exla)y= 2/W) sinkna (ko =na/W)

2 Vmax | .
‘P(x) = e 2 sink asink x
n
2 Amax An . .
| —— dk = sin ka sin kx
""" 0.4 0.6 0.8 W o Ak
thin pri . 2 W Amax .
Fig. 12.2.2 Ultra-thin prisoner M =" J dk sin ka sin ko
Initial wavepacket combination of 100 energy states. W r 0
( ) _sinK_ (x-a) for v W(x) peaks at (x=a) and goes to zero on either side
Y T ) of.x=d at (x=a+Ax) with half-width Ax
sin K_ . (Ax)=0 , which implies: (Ax)K_ =*m, or: Ax=x7x/K__

"Last-in-first-out" effect. Last Kmax-value dominates and
“inside” K get "smothered" by interference with neighbors.
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum uncertainty
5(x — a) = <x a> = Zn:1<x‘8n><8n
A

a> = ,=14, SInk x

an = (exla)y= 2/W) sinkna (ko =na/W)

2 Vmax | .
‘P(x) = e 2 sink asink x
n
2 Amax An . .
| —— dk = sin ka sin kx
""" 0.4 0.6 0.8 W o Ak
thin pri . 2 W Amax .
Fig. 12.2.2 Ultra-thin prisoner M =" J dk sin ka sin ko
Initial wavepacket combination of 100 energy states. W r 0
( ) _sinK_ (x-a) for v W(x) peaks at (x=a) and goes to zero on either side
Y T ) of.x=d at (x=a+Ax) with half-width Ax
sin K_ . (Ax)=0 , which implies: (Ax)K_ =*m, or: Ax=x7x/K__

Ax - |Kmax |=Ax - Ak=mn

"Last-in-first-out" effect. Last Kmax-value dominates and
“inside” K get "smothered" by interference with neighbors.
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Quantum “blasts” of strongly localized co-well or rotor waves

A lesson in quantum uncertainty
5(x — a) = <x a> = Zn:1<x‘8n><8n
A

a> = ,=14, SInk x

an = (exla)y= 2/W) sinkna (ko =na/W)

2 Vmax | .
‘P(x) = e 2 sink asink x
n
2 Amax An . .
| —— dk = sin ka sin kx
""" 0.4 0.6 0.8 W o Ak
thin pri . 2 W Amax .
Fig. 12.2.2 Ultra-thin prisoner M =" J dk sin ka sin ko
Initial wavepacket combination of 100 energy states. W r 0
( ) _sinK_ (x-a) for v W(x) peaks at (x=a) and goes to zero on either side
Y T ) of.x=d at (x=a+Ax) with half-width Ax
sin K_ . (Ax)=0 , which implies: (Ax)K_ =*m, or: Ax=x7x/K__

Ax - |Kmax [ =Ax - Ak=m OrT. [Ax Ap=mh=h?2 oo-Well uncertainty relation]

"Last-in-first-out" effect. Last Kmax-value dominates and
“inside” K get "smothered" by interference with neighbors.
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Introduction to Cn beat dynamics and “Revivals” due to Bohr-dispersion
wo-Square well PE versus Bohr rotor

SinNx/x wavepackets bandwidth and uncertainty
SinNx/x explosion and revivals

Bohr-rotor dynamics

» Gaussian wave-packet bandwidth and uncertainty ‘

Gaussian Bohr-rotor revivals

Farey-Sums and Ford-products

Phase dynamics
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Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum-m plane waves:

2
LI”(Q),Z‘:O):ZL ozo, e [Am] eimq)

m=—oo
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Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum-m plane waves:
2
N i Complete the square in exponent
| A ime
Y(9,:=0)= . 2 e e to simplify O-angle wavefunction.

m

m=—oo

Monday, March 25, 2013

90



Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum-m plane waves:

(2] Complete th '
1 o A imo omplete the square in exponent
¥ (9.1=0)= pys 2 e € to simplify O-angle wavefunction.
=—0c0
2 2 2
g el
_ Y . A, 2 2
2T pp=—oo
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Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum-m plane waves:

1 —[A—) i Complete the square in exponent
(9.1=0)= pye 2 e e to simplify O-angle wavefunction.
M=—oo
2 2 2
Aol
_1 3, A, 2 2
2T jp=—oco
m A, 2 A 2
] = Tla ! 127
= — 2 e m e 2
2T jp=—oco
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Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum-m plane waves:

2
| o —[Aﬂ] 6 Complete the square in exponent

rm
‘P(¢J:0):_2 2 e e to simplify 0-angle wavefunction.

m=—oo
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Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum-m plane waves:

2
1 o —[Aﬂ] 6 Complete the square in exponent
rm
‘P(¢J:0):2_ 2 e e to simplify O-angle wavefunction.
m=—oo
2 2 2
g a3
2T jp=—oco
2 2
U G i B )
=— X e ~ " e
2T jp=—oco
2
A
A(Am’¢) _[2’%)]
T

m=0, £1, £2, £3,...are momentum quanta in wavevector formula: k,=2mm/L (kn=m if: L=27)
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Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum-m plane waves:

2
1 o —[Aﬂ] 6 Complete the square in exponent
rm
‘P(¢J:0):2_ 2 e e to simplify O-angle wavefunction.
N=—oo
2 2 2
Aol
_ 13, A, 2 2
2T jp=—oco
2 2
R o IR E D
=— > e ~ M e
2T jp=—oco
2
A
_ A(A,,.9) e—(;’"d)]
2z
_[ m Z-Am¢j2 _( k _ZAm¢j2
A(Am,¢)=m:2_oo€ A,,>>1 /Lwdke

let: K=K 'A"w dk=A dK
Cct. = ] — SO: =
A 2 mn

m

m=0, £1, £2, £3,...are momentum quanta in wavevector formula: k,=2mm/L (kn=m if: L=27)
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Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum-m plane waves:

2
1 o —[Aﬂ] 6 Complete the square in exponent
rm
Y(9,:=0)= . 2 e e to simplify O-angle wavefunction.
m=—oo
2 2 2
Aol
_ 13, A, 2 2
2 pp=—oo
2 2
Ao g
_L s, A, 2 o\ 2
27T =—oo Gaussian integral:
2 AT .
A edx||edy= e dxdy
A(A,,.9) —[2’%] \/J \/J I
= e 27 o0 oo d 2
2r = \/j [erraras = Jznjefzi =r
2 2 00 0 2
o 0) Lo, 0]
A(Am’¢) - m:z_ooe A,,>>1 g L°° dk e

let: K= —iBmy sor dk=A dK h}~A = ax & 2 A
et: —A——ZTQb so: dk=A then: ( m,qb)— I e =A ~NT

m

m=0, £1, £2, £3,...are momentum quanta in wavevector formula: k,=2mm/L (kn=m if: L=27)
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Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum-m plane waves:

2
| e —[&] o Complete the square in exponent
Y(9,:=0)= . 2 e e to simplify O-angle wavefunction.
M=—oo0
2
2 2 2 A
I imos] By | Am A ‘(—m‘/’]
1o [A] "’( > "’] [ > ‘”] ¥(g.=0)= e\
_Emzz_ooe 2\/;
. It is a Gaussian/distribution, too
1 = _[A
2T p=—oo
2
A
_ A(A,,.9) e—[z’"cf)]
2r
_[ m _ZAmd))z _( k _Z.Amq)}z
A(Am,q)): E e \Bm 2 > [Z dk e Bm 2

oo A,,>>1

let: K== _iBmy so: dk=A dK h}~A = ak KV A Jx
et: —A——ZTQb so: dk=A then: ( m,qb)— I e =A ~NT

m

m=0, £1, £2, £3,...are momentum quanta in wavevector formula: k,=2mm/L (kn=m if: L=27)
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Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum-m plane waves:

2
| e —[&] o Complete the square in exponent
‘P(¢J:0):2_ 2 e e to simplify O-angle wavefunction.
M=—oo
2
2 2 2 A
I imos] By | Am A ‘(—m‘/’)
1o [A] "’[ > "’] [2 ‘”] ¥(g.=0)= e\
_Emzz_ e 2\/;
. It is a Gaussian distribution, too
R _[Am 0 :
21 m:z_oo ) a _[Aq)}
, ¥(9,1=0) = \/m— e
A 2N T
a0 A%
= "~ € here: A :i or: AA =2
27 WSS B = 01 295
_[ m _ZAmd)Jz _( k _Z.Amq)}z ;
A(Am’¢):m§_me o A,,>>1 > [ dk e e

let: K== _iBmy so: dk=A dK h}~A = ak KV A Jx
et: —A——ZTQb so: dk=A then: ( m,qb)— I e =A ~NT

m

m=0, £1, £2, £3,...are momentum quanta in wavevector formula: k,=2mm/L (kn=m if: L=27)
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Gaussian wave-packet bandwidth and uncertainty

Suppose we excite a Gaussian combination of Bohr momentum-m plane waves:

2
| e —[Aﬂ] - Complete the square in exponent
rm
Y(9,:=0)= . 2 e e to simplify O-angle wavefunction.
M=—oo0
2
2 2 2 A
M imos] Bmg | [ Am A ‘(—m‘/’)
1o [A] "’( > "’] [ > ‘”] ¥(g.=0)= e\
_Em—z_ e N
. It is a Gaussian distribution, too
R _[Am 0 :
2r m:z_oo ) a {Aq)]
Y(p,i=0)=—" ¢
. NS
) A(A,-9) e{ﬂ] - > \
o where: A¢_A_ or:; A¢Am—2
2 2 mn
3 _[ A’”” _,A2m¢] _( A" _,-A2m¢) Gaussian uncertainty relation
A(AM’¢) - mzz’_ooe " A, >>1 > dke T (Compare to Ax - Ak=mn for oo-Well) D

\_
let: K= —iBmy so: dk=A dK | th }~A = ax & 2 A
et: —A——ZTQb so: dk=A then: ( m,qb)— I e =A ~NT

m=0, £1, £2, £3,...are momentum quanta in wavevector formula: k,=2mm/L (kn=m if: L=27)
En= (hikn)?/2M = m?[W?/2ML?]= m? hv; = m? hw;

fundamental Bohr /—frequency ®;=2mv; and lowest transition (beat) frequency Vi =(E1-Eo)/h
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Christopher Rowland; John Barton (2002). Apocalyptic in history and tradition. Sheffield Academic Press. pp. 233-252. ISBN 978-0-8264-6208-4. Retrieved 23 March 2011.

Kershaw’s prediction that the year Ap 2000 would see the dramatic
intervention of God in the world of human affairs was by no means new.
Indeed, Kershaw himself refers to the tradition found in both Jewish
and Christian circles that ‘at the end of 6000 years the Messiah shall
come, and the world shall be renewed’.53 In this context, for example, the
work of William Whiston, discussed in chapter g above, might be further
noted. Whiston in his Essay on the Revelation of Saint John similarly pre-
dicted that the end of all things would come in Ap 2000. The reasoning
behind this thinking is reasonably plain: the world was created in six
days followed by a day of rest; scripture says that ‘one day is with the
Lord as a thousand years, and a thousand years as one day’ (2 Pet. 3.8);
therefore there will be 6,000 years of toil followed by a Sabbath-millen-
nium. Kershaw himself appeals to such reasoning.

9 Kershaw is quoting Thomas Newton at this point. See Thomas Newton, Dusertation on the

Prophecies, 18th edn, (1834), p. 666. The work was oniginally published in 1754.

% For a discussion of belief in the Sabbath-millennium, see further John Jarick, *The Fall of the
House (of Cards) of Ussher: Why the World as We Know it Did not End at Sunset on 22nd

October 1997 {and Will not End at Midnight on g1st December 1999/1st January 2000)", in
Stanley E. Porter, Michael A. Haves and David Tombs (eds.), Faith in the Millennium (Rocham-

pton Institute London Papers, 7: Sheffield Academic Press, forthcoming, 2000).
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