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Abstract: Spectra of high-symmetry molecules contain fine and superfine level cluster
structure related to J-tunneling between hills and valleys on rovibronic energy surfaces
(RES). Such graphic visualizations help disentangle multi-level dynamics, selection rules,
and state mixing effects including widespread violation of nuclear spin symmetry species.
A review of RES analysis compares it to that of potential energy surfaces (PES) used
in Born–Oppenheimer approximations. Both take advantage of adiabatic coupling in
order to visualize Hamiltonian eigensolutions. RES of symmetric and D2 asymmetric top
rank-2-tensor Hamiltonians are compared with Oh spherical top rank-4-tensor fine-structure
clusters of 6-fold and 8-fold tunneling multiplets. Then extreme 12-fold and 24-fold
multiplets are analyzed by RES plots of higher rank tensor Hamiltonians. Such extreme
clustering is rare in fundamental bands but prevalent in hot bands, and analysis of its
superfine structure requires more efficient labeling and a more powerful group theory. This
is introduced using elementary examples involving two groups of order-6 (C6 and D3∼C3v),
then applied to families of Oh clusters in SF6 spectra and to extreme clusters.
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1. Overview of Eigensolution Techniques for Symmetric Molecules

A key mathematical technique for atomic or molecular physics and quantum chemistry is matrix
diagonalization for quantum eigensolution. As computers become faster and more available, more
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problems of chemical physics are framed in terms of choosing bases for eigensolution of time evolution
operators or Hamiltonian generator matrices. The resulting eigenvectors and eigenvalues are Fourier
amplitudes and frequencies that combine to give all possible dynamics in a given basis choice.

Despite the increasing utility and power of computer diagonalization, it remains a “black box” of
processes quite unlike the complex natural selection by wave interference that we imagine nature uses to
arrive at its quantum states. Diagonalization uses numerical tricks to reduce each N -by-N matrix to N
values and N stationary eigenstates, but the artificial processes may seem as opaque as nature itself with
little or no physical insight provided by N2−N eigenvector components. We are thus motivated to seek
ways to visualize more of the physics of molecular eigensolutions and their spectra. This leads one to
explore digital graphical visualization techniques that provide insight as well as increased computational
power and thereby complement numerically intensive approaches [1].

Before describing tensor eigensolution techniques and rovibronic energy surfaces (RES), a brief
review is given of potential energy surface (PES) to put the tensor RES in a historical and methodological
context. This includes some background on semiclassical approximations of tensor algebra that help
explain rotational level clustering and are used to develop the RES graphical tools. Section 2 reviews
how RES apply to symmetric and asymmetric top molecules. This serves to motivate the application
of RES to more complicated molecules of higher symmetry. Section 3 contains a graphical analysis
of octahedral RES and an introductory review of level clusters (fine structure) having 6-fold and 8-fold
quasi-degeneracy (superfine structure) due to rank-4 tensor Hamiltonians. Following this is a discussion
of mixed-rank tensors that exhibit 12-fold and 24-fold monster-clusters. The latter have only recently
been seen in highly excited rovibrational spectra [2] and present challenging problems of symmetry
analysis to sort out a plethora of tunneling resonances and parameters for so many resonant states.

Following introductory Section 4, these problems are addressed in Sections 6–8 by redeveloping
group algebraic symmetry analysis into a more physically direct and elegantly powerful approach. It
uses underlying duality between internal and external symmetry states and their operations. Duality
is introduced using the simplest order-6 symmetry groups C6 and D3∼C3v before applying it to Oh

symmetric monster-clusters in Section 8. Monsters in REES-polyad bands are shown in final Section 9.
The direct approach to symmetry starts by viewing a group product table as a Hamiltonian matrix H

representing an H operator that is a linear combination of group operators gk with a set of ortho-complete
tunneling coefficients gk labeling each tunneling path. A main idea is that symmetry operators “know”
the eigensolutions of their algebra and thus of all Hamiltonian and evolution operators made of gk’s.

1.1. Computer Graphical Techniques

Several graphical techniques and procedures exist for gaining spectral insight. One of the oldest is
the Born–Oppenheimer approximate (BOA) potential energy surface (PES) that is a well-established
tool for disentangling vibrational-electronic (vibronic) dynamics. While BOA-PES predate the digital
age by decades, their calculation and display is made practical by computer. More recent are studies
of phase portraits and wavepacket propagation techniques to follow high-ν vibrational dynamics and
chemical pathways for dissociation or re-association [3,4]. This includes BOA-breakdown states in
which a system evolves on multiply interfering PES paths. Dynamic Jahn–Teller–Renner effects involve
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multi-BOA-PES states in molecules and solids. Examples in recent works [5,6] include coherent
photo-synthesis [7].

Visualizing eigensolutions and spectra in crystalline solids is helped by bands of dispersion functions
in reciprocal frequency-versus-wavevector space. Fermi-sea contours are used to analyze de Haas–van
Alphen effects and more recently in understanding quantum Hall effects. Analogy between band theory
of solids and molecular rovibronic clusters is made in Section 4 and 7.

Visualization of molecular rotational, rovibrational, and rovibronic eigensolutions and spectra is
the subject of this work and involves the rotational energy surface (RES). As described below, an
RES is a multipole expansion plot of an effective Hamiltonian in rotational momentum space. Ultra
sensitivity of vibronic states to rotation lets the RES expose subtle and unexpected physics. Multi-RES
or rovibronic energy eigenvalue surfaces (REES) have conical intersections analogous to Jahn–Teller
PES (See Section 9).

The RES was introduced about thirty years ago [8] to analyze spectral fine structure of high resolution
spectral bands in molecules of high symmetry including PH3 [9] XDH3 and XD2H molecules [10],
tetrahedral (P4) [11], tetrafluorides (CF4 and SiF4) [12], hexafluorides (SF6, Mo(CO)6 and
UF6) [13–16], cubane (C8H8), and buckyball (C60) [15,16] and predicted major mixing of Herzberg
rovibronic species. Recently RES have been extended to help understand the dynamics and spectra of
fluxional rotors [17] or “floppy” molecules such as methyl-complexes [18] and vibrational overtones [2].

Each of the techniques and particularly the RES-based ones described below depend upon the
key wave functional properties of stationary phase, adiabatic invariance, and the spacetime symmetry
underlying quantum theory. Additional symmetry (point group, space group, exchange, gauge, etc.) of a
molecular system introduces additional resonance. Symmetry tends to make graphical techniques even
more useful since they help clarify resonant phenomenal dynamics and symmetry labeling [19].

1.1.1. Vibronic Born–Openheimer Approximate Potential Energy Surfaces (BOA-PES)

A BOA-PES depends on an adiabatic invariance of each electronic wavefunction to nuclear vibration.
It is often said that the electrons are so much faster than nuclei that the system “sticks” to a particular
PES that electrons provide. Perhaps a better criterion would be that the Fourier spectrum associated with
nuclear motion does not overlap that of an electronic transition to another energy level. Nuclei often
provide stable configurations that quantize electronic energy into levels separated by gaps much wider
than that of low lying vibrational “phonon” states.

A BOA wavefunction is a peculiarly entangled outer product Ψ = ηψ of a nuclear factor wavefunction
ην(ε)

(
X . . .

)
whose quantum labels ν(ε) depend on electronic quantum numbers ε = nlm, etc. while

the electronic factor wave ψ(x(X... ) . . . ) is a function whose electron coordinates x(X... ) . . . depend
adiabatically on nuclear vibrational coordinates (X . . . ) of PES Vε(X . . . ) for electron bond state ε.

Ψν(ε)(x
electron . . . Xnuclei . . . ) =

ψε(x(X... ) . . . ) · ην(ε)(X . . . ) BOA-Entangled Product (1a)
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Ψν,ε(x
electron . . . Xnuclei . . . ) =

ψε(x . . . ) · ην(X . . . ) Unentangled Product

= 〈x . . . |ψε〉〈X . . . |ην〉 = 〈x . . . ;X . . . |ψε; ην〉 (1b)

The adiabatic convenience of a single product Equation (1a) with a vibration eigenfunction
ην(ε)(X . . . ) on a single PES function Vε(X . . . ) is welcome but comes at a price; a BOA-entangled
coordinate-state is not a simple bra-ket wavefunction product Equation (1b) of bra-bra 〈x . . . |〈X . . . |
position and ket-ket |ψε〉|ην〉 state. Symmetry operator product analysis of Equation (1b) is well known.
Symmetry of Equation (1a) depends on rotational BOA-relativity of its parts. Vibronic BOA-PES
generalize to rovibronic RES by accounting for rotational relations.

1.1.2. Rovibronic BOA Rotational Energy Surfaces (BOA-RES)

The rotational energy surface (RES) can be seen as a generalization of adiabatic BOA wave
Equation (1a) to Equation (2) below that includes rotational motion. Here one treats vibronic motion
as having the “fast” degrees of freedom while rotational coordinates Θ (e.g., Euler angle (αβγ) for
semi-rigid molecules) play the “slow” semi-classical role vis-a-vis the “faster” adiabatic vibration or
vibronic states.

ΦJ [ν(ε)](x
elec . . . Qvib . . .Θrot) =

ψε(x(Q...Θ... ) . . . ) · ην(ε)(Q . . . [Θ . . . ]) · ρJ [ν(ε)](Θ
rot . . . )

(2)

In Equation (2), the wave factors of each motion are ordered fast-to-slow going left-to-right. As in
Equation (1a) each wave-factor quantum number depends on quanta in “faster” wave-factors written
to its left, but each coordinate has adiabatic dependence on coordinates in “slower” factors written to
its right.

The Q in Equation (2) denotes vibrational normal coordinates (q1, q2, . . . qm) and ν denotes their
quanta (ν1, ν2, . . . νm). The number m = 3N − 6 of modes of an N -atom semi-rigid molecule has
subtracted 3 translational and 3 rotational coordinates. Each mode qk assumes an adiabatic BOA
dependency on overall translation and rotation Θ known as the Eckart conditions. (Here we will
ignore translation.)

RES are multipole expansion plots of effective BOA energy tensors for each quantum value of
vibronic ν(ε) and conserved total angular momentum J . Choices of effective energy tensors depend on
the level of adiabatic approximation. So do the choices of spaces in which RES are plotted. Elementary
examples of model BOA waves, tensors, and RES for rigid or semi-rigid molecules are discussed below.

1.2. Lab-Frame Coupling vs. Body Frame Constriction

Wave ρ
J
(Θrotation) for a bare rigid symmetric-top (ψ = 1 = η) molecule is a Wigner DJ -function.

ρ
J
(Θ) = ρ

J,M,K
(αβγ) = DJ∗

M,K(αβγ)
√

norm norm = [J] = 2J + 1 (3)

Total angular momentum J is J = R for a bare rotor. Bare lab-frame z-component is labeledM = m.
Its body-frame z̄-component is labeled K = M̄ = n. m and n range from +R to −R in integral steps.
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Entangled BOA product Equation (2) mates vibronic factor Equation (1a) with a rotor factor ρ
J

=

ρ
J,M,K

in Equation (3). Now J and K = M̄ depend on total vibronic momentum l and its body z̄-
component µ̄ in Ψν(ε) = Ψl

µ̄.

ΦJ [ν(ε)] = Ψl
ν(ε) · ρJ[ν(ε)] = Ψl

µ̄ · ρJ,M,K = Ψl
µ̄ ·DJ∗

M,K

√
[J ] (4)

Disentangled product Ψρ in Equation (1b) of lab-based vibronic wave Ψl
µ and bare rotor ρ

R,m,n
of

Equation (3) is coupled by Clebsch–Gordan Coefficients C lRJ
µmM into a wave ΦJ

M of total J = R + l,
R + l − 1, . . . or |R − l| and M = µ + m by sum Equation (5) over lab z-angular bare rotor momenta
m and lab vibronic µ bases.

ΦJ
M =

∑

µ,m

C lRJ
µmMψ

l
µ · ρRm =

∑

µ,m

C lRJ
µmMψ

l
µ ·DR∗

m,n

√
[R] (M = µ + m = const.) (5)

A BOA-entangled wave in Equation (1a) or Equation (4) requires more serious surgery in order to
survive as a viable theoretical entity. BOA vibronic waves are not merely coupled as in Equation (5)
to a rotor, they are adiabatically “glued” or constricted to the intrinsic molecular rotor frame. (A rotor
is “BOA-constricted” by its vibronic wave much as a boa-constrictor rides its writhing prey as the two
rotate together.)

A remarkable property of quantum rotor operator algebra is that Wigner Dl-waves in Equation (3) are
also transformation matrices that relate rotating body-fixed BOA Ψl

µ̄(body) into the lab-fixed Ψl
µ(lab).

Ψl
µ̄(body) =

∑

µ

Ψl
µ(lab)D l

µ̄µ(αβγ) (6a)

Ψl
µ(lab) =

∑

µ̄

Ψl
µ̄(body)D l∗

µµ̄(αβγ) (6b)

This rotational wave relativity is a subset of Lorentz–Einstein–Minkowski space-time-frame relativity
that uses symmetry algebra to keep track of the invariant sub-spaces (eigensolutions). D-Matrices
underlie all tensor operators, their eigenfunctions and their eigenvalues and are a non-Abelian
(non-commutative) generalization of plane waves dk∗(r) = 〈r|k〉 = eikr underlying Fourier operator
analysis. Details of this connection comprise the later Section 5.

Of particular importance to RES theory is the Wigner–Eckart factorization lemma that relates
Clebsch–Gordan C lRJ

µmM to Wigner-D’s and transforms coupled wave Equation (5) to BOA-constricted
wave Equation (4).

∫
d(αβγ)D l∗

µµ̄(αβγ)DR∗
mn(αβγ)DJ

MK(αβγ) =
1

[J ]
C lRJ
µmMC

lRJ
µ̄nK (7a)

∑

µ

∑

µ̄

C lRJ ′

µmMD l∗
µµ̄(αβγ)DR∗

mn(αβγ)C lRJ
µ̄nK = δJJ

′
DJ∗
MK(αβγ) (7b)

∑

µ

C lRJ ′

µmMD l∗
µµ̄(αβγ)DR∗

mn(αβγ) =
∑

µ̄

C lRJ
µ̄nKDJ∗

MK(αβγ) (7c)

A more familiar form of this is the Kronecker relation of product reduction D l⊗DR ≈ DJ⊕DJ ′⊕· · · .
Another form is a body-to-lab coupling relation with M = µ + m and n = K − µ̄ fixed in the µ or µ̄
sums. The latter yields a sum over µ̄ = K − n of body-fixed BOA waves Equation (5) giving lab-based
ΦJ
M wave Equation (4).
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ΦJ
M =

∑

µ

C lRJ
µmMΨl

µ(lab)DR∗
m,n

√
[R] (8)

ΦJ
M =

∑

µ

C lRJ
µmM

∑

µ̄

Ψl
µ(body)D l∗

µµ̄D
R∗
m,n(αβγ)

√
[R]

=
∑

µ

C lRJ
µ̄nKΨl

µ̄(body)DJ∗
MK(αβγ)

√
[R] (9)

=
∑

µ̄CJlR
−Kµ̄nΨl

µ̄(body)DJ∗
MK(αβγ)

√
[J ]

ΦJ
M =

∑

µ̄

CJlR
−Kµ̄nΨl

µ̄ρJ,M,K =
∑

µ̄

CJlR
−Kµ̄nΦJ [Kν(ε)] (10a)

ΦJ [Kν(ε)] ==
∑

R

CJlR
−KµnΦJ

M (10b)

Body-(un)coupling in Equation (10a) is an undoing of BOA-constriction by subtracting vi-
bronic (l, µ̄) from (J,K) of BOA-wave ΦJ [ν(ε)] in Equation (10b) to make lab-fixed ΦJ

M in
Equation (10a) with sharp rotor quanta R = J − l, J − l + 1 . . . or J + l. In a lab-fixed wave ΦJ

M

of Equation (5) or (10a) rotor R is conserved but K and µ̄ are not. A BOA wave ΦJ [ν(ε)] of Equation (4)
or (10b) has body-fixed vibronic K and µ̄ that are conserved but rotor R is not.

Note the following for Equations (8)–(10b). For Equation (8) we have constant (M = µ+m). Result
Equation (9) is derived from Equations (6b) and (7c) with constant (n = K − µ̄). In Equation (10a)
K = µ̄+ n. In Equation (10b) M = µ+m.

However, in both Equation (10a) and (10b) the internal bare-rotor body component
n = K − µ̄ is conserved due to a symmetric rotor’s azimuthal isotropy. This n is a basic
rovibronic-species quantum number invariant to all lab based perturbation or transition operators. Like
a gyro in a suitcase, no amount of external kicking of the case will slow its spin. Only internal body
operations can “brake” its n.

The duality of lab vs. body quantum state labels and external vs. internal operators is an important
feature of molecular and nuclear physics, and it is to be respected if we hope to take full advantage of
symmetry group algebra of eigensolutions. The duality is fundamental bra-&-ket relativity. For every
group of symmetry operations such as a 3D rotation group R(3)lab = {. . .R(αβγ) . . . } there is a dual
body group R(3)body = {. . . R̄(αβγ) . . . } having identical group structure but commuting with the
lab group. Tensor multipole operators, discussed next, come in dual and inter-commuting sets as well.
Generalized Duality is key to efficient symmetry analysis as shown beginning in Section 6.1.

1.3. Mathematical Background for Tensor Algebra

1.3.1. Unitary Multipole Functions and Operators

Spherical harmonic functions Y l
m(φθ) are well know orbital angular factors in atomic and molecular

physics. They are special (n = 0)-cases of Wigner-Dl functions Equation (3) as follows.

Y l
m(φθ) = D l∗

m,0(φθ0)

√
[l]

4π
where:[l] = 2l + 1 (11)
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A diatomic or linear rotor must have zero body quanta (n = 0) and has a Y l
m(φθ) rotor wave.

Y l
m-matrix elements or expectation values of a multipole potential Y k

q are proportional to Clebsch forms
of Equation (7a).

∫
d(φθ0)DJ ′

m′0(φθ0)Dk∗
q0 (φθ0)DJ∗

m0(φθ0) =

√
(4π)3

[J ′][k][J ]

∫
d(φθ)Y J∗

m′ Y
k
q Y

J
m =

1

[J ]
CkJJ ′

qmm′C
kJJ ′

000

(12)

A multipole vkq matrix is Equation (12) with factor 〈J ′‖k‖J〉 depending on {J ′, k, J} but
not {m′, q,m}.

〈J ′
m′

∣∣∣vkq
∣∣∣J
m

〉
= CkJJ ′

qmm′〈J‖k‖J〉 (13a)

Factor 〈J ′‖vkq‖J〉 is the reduced matrix element of vk
q and chosen by a somewhat arbitrary convention.

〈J ′‖vk‖J〉 = (−1)k+J ′−J

√
[J ′]

[k]
(13b)

This particular choice simplifies bra-ket coupling and creation-destruction operator expressions for vkq .

vkq = (−1)2J ′
∑

m,m′

=q−m

CJ ′Jk
m′mq

∣∣∣J
′

m′

〉∣∣∣J
∗

m

〉†

= (−1)2J ′
∑

m,m′

=q−m

CJ ′Jk
m′mq

∣∣∣J
′

m′

〉〈 J

−m
∣∣∣(−1)J−m

=
∑

m,m′

=q+m

(−1)J
′−m′

√
[k]

(
k J J ′

q m −m′

)
āJ
′

m′ ā
J
m

(13c)

Other choices rescale vkq eigenvalues but do not affect eigenvectors of a tensor vkq or its transformation
behavior Equation (14). (By Equations (7c) and (13c), vkq transforms like Equation (6a) for a wave
function Y k

q (φθ).)

v̄kq = R(αβγ)vkqR
†(αβγ) =

k∑

q=−k

vkq̄D
k
q̄q(αβγ) (14)

Examples of vkq tensor matrices for J ′ = J = 1 to 3 are given in Table 1. The J = 2 case is given in
expanded form by Table 1. (Higher-J tables are q-folded to save space. Scalar 〈v0

0〉
J

= 1/
√

[J ] is left
off each J-table in Table 2)
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Table 1. Tabulated vkq values for J = 1.

〈v2
2〉J=1 = 〈v2

1〉J=1 = 〈v2
0〉J=1 = 〈v2

−1〉J=1 = 〈v2
−2〉J=1 = · · ·

· · ·
1 · ·


 · · ·

1 · ·
· −1 ·

 1√
2

1 · ·
· −2 ·
· · 1

 1√
6

· −1 ·
· · 1

· · ·

 1
2

· · 1

· · ·
· · ·


〈v1

1〉J=1 = 〈v1
0〉J=1 = 〈v1

−1〉J=1 =

· · ·
1 · ·
· 1 ·


 1√

2




1 · ·
· 0 ·
· · −1


 1√

2



· −1 ·
· · −1

· · ·


 1√

2

〈v0
0〉J=1 =


1 · ·
· 1 ·
· · 1


 1√

3

〈v2
q=−2...2〉J=1 =1 −1 1

1 −2 1

1 −1 1

 1
1√
2

1√
6

〈v1
q=−1...1〉J=1 =


1 −1 ·
1 0 −1

· 1 −1



·
1√
3

1√
2

〈v0
0〉J=1 =


1 · ·
· 1 ·
· · 1



·
·
1√
3

Historically, spinor J = 1/2 tensors shown in Table 3(a) are related to four Pauli spinor matrices σµ
and Hamilton quaternions {1, i, j,k} in Table 3(b) or Table 3(c). The latter appear in 1843 and are used
for Stokes’ polarization theory in 1867. The σµ are U(2) algebraic basis of quantum theory for physics
ranging from sub-kHz NMR to TeV hadrons and also applies to relativity. General U(k) algebra has k2

generators v0
0,v

1
q , . . . ,v

k
q with a subset of k mutually commuting diagonal (q = 0) labeling operators vk0

of the U(k) tensor algebras. The vkq are related to elementary creation-destruction ejk = a†jak-operators
and to their RES in the following sections.
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Table 2. Unit tensor representations.

〈v1
q=−1...1〉J=1 = 〈v1

q=−1...1〉J=2 = 〈v1
q=−1...1〉J=3 =

1 1 ·
1 0 −1

· 1 −1

·
1√
3

1√
2

2 −
√

2 · · ·√
2 1 −

√
3 · ·

·
√

3 0 −
√

3 ·
· ·

√
3 −1 −

√
2

· · ·
√

2 −2

·
·
·
1√
10
1√
10

3 −
√

3 · · · · ·√
3 2 −

√
5 · · · ·

·
√

5 1 −
√

6 · · ·
· · ·

√
6 −1 −

√
5 ·

· · · ·
√

5 −2 −
√

3

· · · · ·
√

3 −3

·
·
·
·
·
1√
28
1√
28

〈v2
q=−2...2〉J=1 = 〈v2

q=−2...2〉J=2 = 〈v2
q=−2...2〉J=3 =

1 −1 1

1 −2 1

1 −1 1

1
1√
2

1√
6

2 −
√

6
√

2 · ·√
6 −1 −1

√
3 ·√

2 1 −2 1
√

6

· ·
√

2 −
√

6 2

·
·
1√
7

1√
14
1√
14

5 −5
√

5 · · · ·
5 0 −

√
15

√
10 · · ·√

5
√

15 −3 −
√

2
√

12 · ·
·
√

10
√

2 −4
√

2
√

10 ·
· ·

√
12 −

√
2 −3

√
15

√
5

· · ·
√

10 −
√

15 0 5

· · · ·
√

5 −5 5

·
·
·
·
1√
42
1√
84
1√
84

〈v3
q=−3...3〉J=2 = 〈v3

q=−3...3〉J=3 =

1
√

3 1 −1 ·√
3 −2

√
2 0 −1

1 −
√

2 0
√

2 −1

1 0 −
√

2 2 −
√

3

· 1 −1
√

3 −1

·
1√
2

1√
2

1√
10
1√
10

1 −
√

2
√

2 −1 · · ·√
2 −1 0 1 −

√
2 · ·

1 1 −1 0 1 −1 −1

·
√

2 0 −1 1 0 −
√

2

· ·
√

2 −1 0 1 −
√

2

· · · 1 −
√

2
√

2 −1

·
·
·
1√
6

1√
6

1√
6

1√
6

〈v4
q=−4...4〉J=2 = 〈v4

q=−4...4〉J=3 =

1 −1
√

3 −1 1

1 −4
√

6 −
√

8 1√
3 −

√
6 6 −

√
6
√

3

1 −
√

8
√

6 −4 1

1 −1
√

3 −1 1

1
1√
2

1√
14
1√
14
1√
70

3 −
√

30
√

54 −3
√

3 · ·√
30 −7

√
32 −

√
3 −

√
2

√
5 ·√

54 −
√

32 1
√

15 −
√

40
√

2
√

3

3 −
√

3 −
√

15 6 −
√

15 −
√

3 3√
3

√
2 −

√
40

√
15 1 −

√
32

√
54

·
√

5 −
√

2 −
√

3
√

32 −7
√

30

· ·
√

3 −3
√

54 −
√

30 3

·
1√
2
1√
2
1√
6
1√
6
1√
84
1√
84

〈v5
q=−5...5〉J=3 =

1 −
√

5 1 −
√

2 1 −1 ·√
5 −4

√
27 −

√
2 1 0 −1

1 −
√

27 5 −
√

10 0 1 −1√
2 −

√
2
√

10 0 −
√

10
√

2 −
√

2

1 −1 0
√

10 −5
√

27 −1

1 0 −1
√

2 −
√

27 4 −
√

5

· 1 −1
√

2 −1
√

5 −1

·
1√
2

1√
2

1√
6

1√
6

1√
84
1√
84

〈v6
q=−6...6〉J=3 =

1 −
√

2 1 −
√

2
√

5 −1 1√
2 −6

√
30 −

√
8 3 −

√
12 1

1 −
√

30 15 −10
√

15 −3
√

5√
2 −

√
8 10 −20 10 −

√
8
√

2√
5 −3

√
15 −10 15 −

√
30 1

1 −
√

12 3 −
√

8
√

30 −6
√

2

1 −1
√

5 −
√

2 1 −
√

2 1

1
1√
2

1√
22
1√
22
1√
33
1√
264
1√
924
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Table 3. Tabulated vkq values and relation to quaternions. (a) Tabulated vkq values for
J = 1/2; (b) Simple Conversion from v to σ; (c) Conventional quaternion-spinor relations.

(a) Tabulated vk
q values for J=1/2

〈v1
−1〉J=1/2 = 〈v1

0〉J=1/2 = 〈v1
1〉J=1/2 = 〈v1

−1...1〉J=1/2 =(
· ·
−1 ·

)
−
(

1 ·
· −1

)
1√
2

(
· 1

· ·

) (
−1 1

−1 1

)
1
1√
2

〈v0
0〉J=1/2 = 〈v0

0〉J=1/2 =(
−1 ·
· −1

)
1√
2

−
(

1 ·
· 1

)
·
1√
2

(b) Simple Conversion from v to σ

v1
−1 = −σ− v1

0 = − 1√
2
σz v1

+1 = +σ+ v0
0 = +σ0

σx = σ+ + σ− σz = −
√

2v1
0 σy = −iσ+ + iσ− σ0 = −

√
2v0

0

=

(
· 1

1 ·

)
=

(
+1 ·
· −1

)
=

(
· −i
i ·

)
=

(
1 0

0 1

)

(c) Conventional quaternion-spinor relations

i = iσx k = iσz j = iσy 1 = σ0

=

(
0 i

i 0

)
=

(
+i 0

0 −i

)
=

(
0 1

−1 0

)
=

(
1 0

0 1

)

1.3.2. Tensor and Elementary Matrix Operators

Coefficient
〈 J
m′

∣∣∣vkq
∣∣∣J
m

〉
of elementary operator em′,m =

∣∣∣ J
m′

〉〈J
m

∣∣∣ is the following CG or Wigner 3-j.

〈vkq 〉J =
∑

m′,m

〈 J
m′

∣∣∣vkq
∣∣∣J
m

〉∣∣∣ J
m′

〉〈J
m

∣∣∣ =
∑

m′,m

〈 J
m′

∣∣∣vkq
∣∣∣J
m

〉〈
em′m

〉J
where: q = m′ −m (15a)

〈J ′
m′

∣∣∣vkq
∣∣∣J
m

〉
= (−1)J

′+m′
√

[k]

(
k J J ′

q m −m′

)
= (−1)J

′+J−k

√
[k]

[J ′]
CkJJ ′

qmm′ (15b)

Each matrix
〈
vkq
〉J for J ′ = J = 1 to 5 is displayed in compressed form by the following tensor

representation Table 2.
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CG-3j relation Equation (13c) implies
〈
vkq

〉J
and

〈
em′,m

〉J
matrices have ortho-complete unit

vectors of dimension d(J, q) = [J ] − q = 2J − q + 1 along qth-diagonal of each [J ]-by-[J ] matrix.
For example, quadrupole v2

2, octopole v3
2, and 24-pole v4

2 share the q = 2 diagonal of J = 2 Table 2.

〈
v2
q=±2

〉J=2

=

√
2

7

〈
e−2,0

〉J=2

+

√
2

7

〈
e−1,1

〉J=2

+

√
2

7

〈
e0,2

〉J=2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· ·
√

2
7
· ·

· · ·
√

3
7
·

· · · ·
√

2
7

· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

√
2

7

∣∣∣∣∣∣∣∣∣∣∣∣

· · 1 · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣

+

√
3

7

∣∣∣∣∣∣∣∣∣∣∣∣

· · · · ·
· · · 1 ·
· · · · ·
· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣

+

√
2

7

∣∣∣∣∣∣∣∣∣∣∣∣

· · · · ·
· · · · ·
· · · · 1

· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣

(16a)
〈
v3
q=±2

〉J=2

=

√
1

2

〈
e−2,0

〉J=2

+0
〈
e−1,1

〉J=2

−
√

1

2

〈
e0,2

〉J=2

∣∣∣∣∣∣∣∣∣∣∣∣∣

· ·
√

1
2
· ·

· · · 0 ·
· · · · −

√
1
2

· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣

=

√
1

2

∣∣∣∣∣∣∣∣∣∣∣∣

· · 1 · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣

+0

∣∣∣∣∣∣∣∣∣∣∣∣

· · · · ·
· · · 1 ·
· · · · ·
· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣

−
√

1

2

∣∣∣∣∣∣∣∣∣∣∣∣

· · · · ·
· · · · ·
· · · · 1

· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣
〈
v4
q=±2

〉J=2

=

√
3

14

〈
e−2,0

〉J=2

−
√

8

14

〈
e−1,1

〉J=2

−
√

3

14

〈
e0,2

〉J=2

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

· ·
√

3
14

· ·
· · · −

√
8
14

·
· · · ·

√
3
14

· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

=

√
3

14

∣∣∣∣∣∣∣∣∣∣∣∣

· · 1 · ·
· · · · ·
· · · · ·
· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣

−
√

8

14

∣∣∣∣∣∣∣∣∣∣∣∣

· · · · ·
· · · 1 ·
· · · · ·
· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣

+

√
3

14

∣∣∣∣∣∣∣∣∣∣∣∣

· · · · ·
· · · · ·
· · · · 1

· · · · ·
· · · · ·

∣∣∣∣∣∣∣∣∣∣∣∣

Tensor
〈
vkq

〉J
relations easily invert to

〈
em′,m

〉J
by inspection due to their being orthonormal sets.

〈
e−2,0

〉J=2

=

√
2

7

〈
v2
q=±2

〉J=2

+

√
1

2

〈
v3
q=±2

〉J=2

+

√
3

14

〈
v4
q=±2

〉J=2

〈
e−1,1

〉J=2

=

√
3

7

〈
v2
q=±2

〉J=2

+0
〈
v3
q=±2

〉J=2

−
√

8

14

〈
v4
q=±2

〉J=2

(16b)

〈
e0,2

〉J=2

=

√
2

7

〈
v2
q=±2

〉J=2

−
√

1

2

〈
v3
q=±2

〉J=2

+

√
3

14

〈
v4
q=±2

〉J=2

Any [J ]-by-[J ] matrix is a combination of elementary
〈
em′,m

〉J
and thus also of

〈
vkq
〉J . This leads to

RES maps that approximate [J ]-by-[J ] matrix
〈
vkq
〉J eigensolutions by plotting related combinations of

Y k
q (θ, φ) for select θJM .
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1.3.3. Fano–Racah Tensor Algebra

Diagonal dipole-vector (rank k = 1) matrix
〈
v1

0

〉J
is seen in top row of Table 2 to be proportional

to the angular momentum z-component matrix
〈
Jz

〉J
. Diagonal 2k-pole (rank-k) tensors

〈
vk0

〉J
are

linearly related to Jz powers J2
z = JzJz, J3

z = JzJzJz, . . . up to the kth-power Jkz . This relates〈
vk0

〉J
-eigenvalues to powersmp of

〈
Jz

〉
-eigenvaluesm and, in turn, leads to an RES scheme to analyze

〈
vkq

〉J
eigensolutions.

For example, matrix diagonals in Table 2 give elementary representations for J = 2.

√
5
〈
v0

0

〉(J=2)

=
〈
1
〉(2)

=
(

1 1 1 1 1
)

√
10
〈
v1

0

〉(J=2)

=
〈
Jz

〉(2)

=
(

2 1 0 −1 2
)

(17a)

√
14
〈
v2

0

〉(2)

=
(

2 −1 −2 −1 2
)

√
10
〈
v3

0

〉(2)

=
(

1 −2 0 2 −1
)

(17b)
√

70
〈
v4

0

〉(2)

=
(

1 −4 6 −4 1
)

Powers of
〈
Jz

〉2

in Equation (18) are combinations of
〈
vkq

〉2

found by dot products with vectors in
Equations (17a) and (17b).

〈
J0
z

〉(2)
=
(
1 1 1 1 1

)
=

5√
5

〈
v0

0

〉(2)

〈
J1
z

〉(2)
=
(
2 1 0 −1 −2

)
=

10√
10

〈
v1

0

〉(2)

〈
J2
z

〉(2)
=
(
4 1 0 1 4

)
=

10√
5

〈
v0

0

〉(2)
+

14√
14

〈
v2

0

〉(2) (18)

〈
J3
z

〉(2)
=
(
8 1 0 −1 −8

)
=

34√
10

〈
v1

0

〉(2)
+

12√
10

〈
v3

0

〉(2)

〈
J4
z

〉(2)
=
(
16 1 0 1 16

)
=

34√
5

〈
v0

0

〉(2)
+

62√
14

〈
v2

0

〉(2)
+

24√
70

〈
v4

0

〉(2)

〈
v0

0

〉(2)
=

1√
5

〈
J0
z

〉(2)

〈
v1

0

〉(2)
=

1√
10

〈
J1
z

〉(2)

〈
v2

0

〉(2)
=− 2√

14

〈
J0
z

〉(2)
+

1√
14

〈
J2
z

〉(2) (19)

〈
v3

0

〉(2)
= −34

√
10

120

〈
J1
z

〉(2)
+

√
10

12

〈
J3
z

〉(2)

〈
v4

0

〉(2)
=
3
√
70

(5)(7)

〈
J0
z

〉(2) − 31
√
70

(3)(7)(8)

〈
J2
z

〉(2)
+

√
70

24

〈
J4
z

〉(2)

Triangle inversion of Equation (18) gives each
〈
vk0
〉2 in terms of Jz powers 〈Jpz〉2 = mp in

Equation (19). RES plots depend on relating
〈
vk0
〉J expansions Equation (19) in Jz to Wigner (J,m)
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polynomials (−1)J−m
√

[k]

(
k J J

0 m −m

)
in Equation (14) and Legendre polynomials Dk

00(·θ·) =

Pk(cos θ) in Equation (11) that are also polynomials of Jz = |J | cos θ. By plotting the latter we hope to
shed light on the eigensolutions of the former.

2. Tensor Eigensolution and Legendre Function RE Surfaces

Legendre polynomials occupy the central (00)-component of a Wigner-DJ matrix.

Dk
00(·θ·) = Pk(cos θ) (20)

Examples of Legendre polynomials of cos θ = Jz/|J | and Jz = |J | cos θ are given below.

P0 = 1

P1(cos θ) = cos θ

P2(cos θ) = −1

2

3

2
cos2 θ (21a)

P3(cos θ) = −3

2
cos θ +

5

2
cos3 θ

P4(cos θ) =
3

8
− 30

8
cos2 θ +

35

8
cos4 θ

P0 = 1

|J |1P1(cos θ) = Jz

|J |2P2(cos θ) = −1

2
|J |2 3

2
J2
z (21b)

|J |3P3(cos θ) = −3

2
|J |2Jz +

5

2
J3
z

|J |4P4(cos θ) =
3

8
|J |4 − 30

8
|J |2J2

z +
35

8
J4
z

Classical Pk functions are compared with corresponding quantized
〈
vk0
〉J unit-tensor e-values in Table 4

that generalize examples of tensor matrix (J=1 to 3)-eigenvalues in Table 2 and Equation (19) to any J
and m = J, . . . ,−J . The powers of m and J in

〈
vk0
〉J , shown in Table 4 are taken to higher order in

Table 5.
Norm 2k

√
[k]/
√

2J + k : −k + 1 makes each
〈
vk0
〉J a unit vector. (Note: A + a :

b = (A + a)(A + a − 1) . . . (A + b).) In contrast, normalized Pk have Pk(cos 0) = 1. Coefficients
cp of cosp θ sum to 1 = Σcp. Square |cp|2 usually do not sum to 1.

Tensor values 〈v0
0〉
J , 〈v1

0〉
J , and 〈v2

0〉
J in [. . . ]-braces of Table 4 equal Legendre functions P0, P1, and

P2 in Equation (21b) exactly using J-expectation values Equations (22a) and (22b). However, for rank
higher than k = 2, Pk is only approximately equal to

〈
vk0
〉J
m

though the approximation improves with
higher J.

〈Jz〉Lm = m = 〈|J |〉Jm cos θJm (22a)

〈|Jz|〉 =
√
J(J + 1) ∼= J +

1

2
(22b)
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Table 4. Forming
〈
vk0
〉

from powers of J and m.

〈
vk0
〉J
m

=

〈
J

m

∣∣∣∣∣v
k
0

∣∣∣∣∣
J

m

〉
= (−1)J−m

√
[k]

(
k J J

0 m −m

)
= (−1)k

√
[k]
[J ]
CkJJ

0mm

〈v0
0〉
J
m = 1√

2J+1
[1]

〈v1
0〉
J
m = 2

√
3√

2J+2:0
[ m]

〈v2
0〉
J
m = 22

√
5√

2J+3:−1
[−1

2
J(J + 1) +3

2
m2]

〈v3
0〉
J
m = 23

√
7√

2J+4:−2
[ −3

2

(
J(J + 1)− 2

3

)
m +5

2
m3]

For large-J values, the
〈
vk0
〉J
m

in Table 4 approach the P3, P4, . . . of Equation (21b) according to the

relation:
〈
|J |k

〉J
m
−−→
J�k

[J(J + 1)]k/2. However,
〈
vk0
〉J
m

differ significantly from Pk for low J . The

classical Pk in Equation (21b) lack the small terms (−2/3, −5/6, etc.) that kill the
〈
vk0
〉

in Table 4
whenever J falls below strict quantum limits such as whenever J < |m| or J < k/2. However, the
quantum “killer” terms become negligible for larger J-values (J > k) and this makes tensor eigenvalues
converge to Pk and thus to their RES plots.

2.1. Angular Momentum Cones and RES Paths

Quantum J-magnitude Equation (22b) introduces a quantum angular momentum cone geometry with
quantized angles θJm given by Equation (22a) as summarized here in Equation (23a) and (23b) for lab
m = M and molecular body n = K.

cos θJM =
M√

J(J + 1)
(23a)

cos θJK =
K√

J(J + 1)
(23b)

An angular momentum eigenstate

∣∣∣∣∣
J

m, n

〉
has sharp (zero-uncertainty) eigenvalue m or n on the lab or

body frame z or z̄ axis, respectively. This sharp altitude and magnitude in Equation (22b) constrains
vector J to base circles of cones making half-angle θJm or θJn with z or z̄ axes, respectively. Expected
J-values appear in Figure 1 at intersections of quantized J-cones with the RES as explained below.
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Table 5. Forming
〈
vk0
〉

from powers of J and m, expanded.

k m0 m1 m2 m3 m4 m5 m6 m7

0 1

1 1

2 −1
2
J
(
J + 1

) 3
2

3 −3
2

(
J(J + 1)− 2

3

)
5
2

4 3
8
(J + 2 : −1) −30

8

(
J(J + 1)− 5

6

)
35
8

5 15
8

(
(J + 2 : −1) −

4
3
J(J + 1)− 4

5

) −70
8

(
J(J + 1)− 3

2

)
63
8

6 −5
16

(J + 3 : −2) 105
16

(
(J + 2 : −1) −

3J(J + 1) + 14
5

) −315
16

(
J(J + 1)− 7

3

)
231
16

7 −35
16

(
(J + 3 : −2) −

3(J + 2 : −1) +
36
5
J(J + 1)− 36

7

)
315
16

(
(J + 2 : −1) −

5J(J + 1) + 61
9

) −693
16

(
J(J + 1)− 10

3

)
429
16

8 35(J + 4 : −3) −1260
128

(
(J + 3 : −2)−

13
2

(J + 2 : −1) +

332
15
J(J + 1)− 761

35

)
6930
128

(
(J + 2 : −1) −

22
3
J(J + 1)− 1871

1386

) −12012
128

(
J(J + 1) + 9

2

)
6435
128
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RES energy level analysis begins by writing a multipole T kq tensor expansion Equation (24a) of
a general rigid rotor or asymmetric top Hamiltonian and then plotting the resulting surface using
Equation (24a)

H = A(Jx̄)
2 +B(Jȳ)

2 + C(Jz̄)
2

=
1

3
(A+B + C)T 0

0 +
1

3
(2C − A−B)T 2

0 (24a)

+
1√
6

(A−B)
(
T 2

2 + T 2
−2

)

T 0
0 = (Jx̄)

2 + (Jȳ)
2 + (Jz̄)

2 = |J|2

T 2
0 =
−1

2
(Jx̄)

2 − 1

2
(Jȳ)

2 + (Jz̄)
2 = |J|2

(
3

2
cos2 θ − 1

2

)

= |J|2P2(cos θ) (24b)

T 2
2 +T 2

−2 = −
√

3

2
(Jx̄)

2 +

√
3

2
(Jȳ)

2

= |J|2
√

3

2
sin2 θ cos 2φ

Inertial constants (A = 1/Ix̄, B = 1/Iȳ, C = 1/Iz̄) combine J-tensor operators T kq . Exact relation of
〈v0

0〉
J and 〈v2

0〉
J in Table 4 to classical P0 and P2 in Equation (21b) is used in Equation (24b) for T 0

0

and T 2
0 .

A rigid spherical top (A = B = C) has only the T 0
0 term Equation (24a). Rigid prolate (A = B > C)

or oblate (A = B < C) symmetric tops have only T 0
0 and T 2

0 terms with energy eigenvalues below.
〈
J

m, n

∣∣∣∣∣H
SymTop

∣∣∣∣∣
J

m, n

〉
=

〈
J

m, n

∣∣∣∣∣B(Jx̄)
2 +B(Jȳ)

2 + C(Jz̄)
2

∣∣∣∣∣
J

m, n

〉

=
1

3

〈
J

m, n

∣∣∣∣∣ (2B + C)T 0
0 + 2(C −B)T 2

0

∣∣∣∣∣
J

m, n

〉

=

〈
J

m, n

∣∣∣∣∣B|J |
2 + (C −B)(Jz̄)

2

∣∣∣∣∣
J

m, n

〉

= BJ(J + 1) + (C −B)n2

(25)

Since a rigid symmetric-top involves only T 0
0 and T 2

0 , the θJn-cones define its eigenvalues exactly by
J-vector trajectories at angle-θJn where θJn-cones intersect the following T 2

0 -RES shown in Figure 1.

RESymTop(θ) =
1

3
(2B + C)T 0

0 (θ) +
2

3
(C −B)T 2

0 (θ) (26a)
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Inserting quantized-body cone relation Equation (23b) yields desired eigenvalues Equation (25) exactly.

RESymTop(θJL) =
1

3
(2B + C)J(J + 1)

+
2

3
(C −B)J(J + 1)

(
3

2
cos2 θJK −

1

2

)

= J(J + 1)
1

3

[
(2B + C) + (C −B)(K2 − 1)

]

= J(J + 1)B + (C −B)K2

(26b)

Figure 1. J = 10 Symmetric top RES. Angular momentum cone of minimum uncertainty
angle θ10

10=17.55◦ intersects the highest K=J=10 of the quantized J-path contour circles.
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Cone paths in Figure 1 are constant energy contours on symmetric top RES Equations (26a) and (26b)
of constant J . They may be viewed as J-phase paths on which the J-vector may delocalize or “precess”
on a circular θJn-cone around body z̄-axis. Or else one might view paths on Figure 1 as coordinate
space tracks of the lab z-axis around the z̄-axis by assuming J lies fixed on the former. Either
view describes J in the body-frame by Euler polar and azimuth angles −β,−γ with angle β = θJn
and |J |2 = J(J + 1) fixed.

J = (Jx̄, Jȳ, Jz̄) = (−|J| cos γ sin β, |J| sin γ sin β, |J| cos β) (27)

The difference between quantum solutions and semi-classical Pk solutions can be easily plotted as in
Figure 2. The figure shows a slice of the semi-classical surface and the uncertainty cones for each m
from J to −J . The orange circles indicate the intersection of the surface with the uncertainty cones and
the blue circles indicate the energy of the quantum value,

〈
vk0
〉J
m

, placed along the uncertainty cone.
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Figure 2(a) shows some divergence between quantum and semi-classical energies for 〈v4
0〉

4
m, while

Figure 2(b) are exact for all J as in the J = 4 cases 〈v2
0〉

4
m shown. As J and m are made larger

than k then semi-classical values converge on exact eigenvalues as described below.

2.1.1. Reduced Matrix and RES Scaling

An RES is a radial plot along J direction −β,−γ that has hills where energy is high and valleys
where it is low, but at all points the same magnitude |J| =

√
J(J + 1). Origin-shift to keep RES radius

positive and scaling to display hills, valleys, and saddles, may be needed to make useful RES plots.
A scalar term s · v0

0 added to a tensor combination T = Σktkv
k
0 does not affect the T-eigenvectors

and neither does an overall scaling of T to cT. This is true since eigenvectors are invariant to adding a
multiple s1 of unit matrix 1 to T or multiplying it by c1. (Of course, eigenvalues would, respectively,
be shifted by s or scaled by c.)

Figure 2. Quantum eigenvalues (blue) compared with semi-classical cone values (orange)
for multipole tensor rank (a) k = 4 (approximate), 〈v4

0〉
4
m and P4(cos Θ4

m) diverge for large
m; and (b) k = 2 (exact), 〈v2

0〉
4
m and P2(cos Θ4

m) correspond for all m.

(a) (b)

Wigner–Racah tensor algebra defines a reduced matrix element
〈
J ′‖T k‖J

〉
to serve as a scale factor

for each Clebsch–Gordan tensor matrix element having Wigner–Eckart form Equation (13a).
〈
J ′

m′

∣∣∣∣∣T
k
q

∣∣∣∣∣
J

m

〉
= CkJJ ′

qmm′ 〈J ′‖T k ‖J〉 (28)
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This matrix

〈
J

m

∣∣∣∣∣T
2
0

∣∣∣∣∣
J

m

〉
of quadrupole-J-tensor T 2

0 = J2
0 in Equation (24b) reveals some key points.

〈
J

m

∣∣∣∣∣

(
3

2
J2
z −

1

2
J2

) ∣∣∣∣∣
J

m

〉
=

〈
J

m

∣∣∣∣∣T
2
0

∣∣∣∣∣
J

m

〉

=
(
C2JJ

0mm

)
· 〈J‖T 2 ‖J〉 (29a)

3

2
m2 − 1

2
J(J + 1) =

〈
J

m

∣∣∣∣∣T
2
0

∣∣∣∣∣
J

m

〉

=
4[J ]√

2J + 3 : −1

(
3

2
m2 − 1

2
J(J + 1)

)
·
√

2J + 3 : −1

4[J ]
(29b)

Reduced matrix element 〈J ‖T 2‖ J〉 cancels norm factor 4
√

[J ]/
√

2J + 3 : −1 in C2JJ
0mm. The result

is the quadratic Legendre form |J |2P2(m/|J |) found inside [. . . ]-braces of Table 4 with norm
4
√

[k]/
√

2J + 3 : −1 outside the braces. (The latter is just a norm in Equation (29a) and (29b)
multiplied by the factor

√
[k]/[J ] from definition Equation (15b).)

Apparent conflicts in factors are due to having sum-of-squared-component normalization of unit vk

on one hand and sum-of-component normalization of Pk on the other. Matrix elements

〈
J

m

∣∣∣∣∣T
∣∣∣∣∣
J

m

〉
or

∣∣∣∣∣
J

m

〉〈
J

m

∣∣∣∣∣ use the former since amplitude squares give probability. However, it is unsquared amplitude

sum Σckthat measures anisotropy of a tensor T = Σck · Pk since Σck is a maximum T -amplitude.

(Each Pk contribues Pk(0) = 1.) Expectation values

〈
J

m

∣∣∣∣∣T
∣∣∣∣∣
J

m

〉
scale linearly, too, but J2 tensors may

have extra scale factors.
Tensor T 2 = J2 in Equation (29a) and (29b) scales as |J |2 = J(J + 1) and T k = Jk scale as |J |k.

Factor 4
√

[J ]/
√

2J + 3 : −1 of C2JJ
0mm reduces scale |J |2 to

√
2J + 1 =

√
[J ]. Then the reduced factor

〈J ‖T‖ J〉 brings it back to |J |2.

4[J ]√
2J + 3 : −1

=

4(2J + 1)√
(2J + 3)(2J + 2)(2J + 1)(2J)(2J − 1)

(30)

=

√
[J ]√(

J + 3
2

)
(J + 1)J

(
J − 1

2

) ≈
√

[J ]

|J |2

Each rank-k part has a factor |J |k = |J(J + 1)|k/2. Anisotropy of mixed-rank J-tensor T = Σck · Jk is
Σ|J |kck, and thus is quite sensitive to quantum number J . So also are the RES and related eigensolutions
of T.
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2.2. Asymmetric Top and Rank-2 RES

Plotting RES of non-diagonal Hamiltonians for the asymmetric top Equation (24a) involves 2nd-rank
tensors v2

q with reduced z-axial symmetry, nonzero q-values, and non-commuting Ja combinations.
Each Ja in the quadratic expressions in Equation (24a) is replaced by its classical Euler-angle form
in Equation (27).

Or else, each tensor T kq in Equation (24a) is replaced by a multipole fucntion Xk
q = |J |kDk∗

0q (·, β, γ).
(Recall Equation (24b)).

HAsymTop = A (Jx̄)
2 +B (Jȳ)

2 + C (Jz̄)
2

⇒ RESAsymTop = A (|J | cos γ sin β)2 +B (|J | sin γ sin β)2 + C (|J | cos β)2
(31a)

HAsymTop =
A+B + C

3
T 0

0 +
2C − A−B

3
T 2

0 +
A−B√

6

(
T 2

2 + T 2
−2

)

⇒ RESAsymTop =
A+B + C

3
|J |2 +

2C − A−B
3

X2
0 +

A−B√
6

(
X2

2 +X2
−2

)
(31b)

= |J |2
[
A+B

2
+

2C − A−B
2

cos2 β +
A−B

2
sin2 β cos 2γ

]

Forms Equations (31a) and (31b) of rank-(k = 2)-RES are equal and give the same plots shown
in Figure 3, but tensor form Equation (31b) reveals symmetry. Terms X0

0 and X2
0 (Figure 1) are

z-symmetric and non-zero near z-axis while X2
±2 terms are asymmetric and vary as sin2 β with polar

angle β between the J vector and the z-axis. As β approaches π/2, X2
±2 terms grow to give equatorial

valleys and saddles in Figure 3 while X2
0 vanishes.

Figure 3. Asymmetric top RES J = 10.
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Asymmetric tensor operators T k±q are non-diagonal and do not commute with diagonal T k0 or with
each other, and so HAsymTop eigenstates as well as eigenvalues vary with coefficient (A − B) in

Equation (31b). As T 2
±2 mixes symmetric-top states

∣∣∣∣∣
J

K

〉
into asymmetric-top eigenstates, θJK cone

circles around the z-axis of Figure 1 warp into oval-pairs squeezed by nascent ovals emerging from the
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x-axis and bound by a pair of separatrix circle-planes that meet at an angle θsep on the y(orB)-axis.
Figure 4 shows a range of RES and levels between symmetric-prolate top (B = A or θsep = 0) and
oblate top (B = C or θsep = π). A most-asymmetric case (B = C or θsep = π/2) is midway between
the symmetric cases.

Figure 4. Asymmetric top energy levels with corresponding RES.
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θsep = tan−1 |A−B|
|B − C| =





0 for : B = A

π/2 for : B = (A+ C)/2

π for : B = C

(32)

As B first differs a little from A, off-diagonal T 2
±2 and asymmetric X2

±2 first “quench” degenerate

±K-momentum eigenstate pairs

∣∣∣∣∣
J

±K

〉
into non-degenerate standing cos or sin-wave pairs.

∣∣cJK
〉

=
1√
2

(∣∣∣∣∣
J

+K

〉
+

∣∣∣∣∣
J

−K

〉)
(33a)

∣∣sJK
〉

=
−i√

2

(∣∣∣∣∣
J

+K

〉
−
∣∣∣∣∣
J

−K

〉)
(33b)

These states have nodes or anti-nodes standing on hills, saddles, or valleys of the RES topography at
the principal body axes. Whether a wave is cos-like or sin-like at an axial point depends on whether it
is symmetric or antisymmetric at the point and thus whether that point is an anti-node or node. Nodal
location can determine whether a cos-like or sin-like wave has higher energy.

As B differs more and more from A, off-diagonal T 2
±2 will mix standing waves like

∣∣cJK
〉

with others
such as

∣∣c J
K±2

〉
,
∣∣c J
K±4

〉
, and

∣∣c J
K±6

〉
that share the same HAsymTop symmetry described below.

2.3. Symmetry Labeling of Asymmetric Top Eigenstates

Throughout the range of asymmetric cases in Figure 4 the symmetry of HA Top in Equation (31a)
and (31b) is at least orthorhombic group D2 of 180◦ rotations Rx, Ry, and Rz about inertial body axes
that mutually commute (RxRy = Rz = RyRx), etc.). Unit square (R2

x = 1, etc.) R-eigenvalues ±1

label nodal symmetry (+1) or antisymmetry (−1) on each axis. D2 is an outer product of cyclic C2

groups for two axes, say C2(x) and C2(y). x and y values also label nodal symmetry for the z axis
since RxRy = Rz. A Cartesian 2-by-2 product of C2(x) and C2(y) symmetry character tables shown in
Table 6 gives four sets of characters and four symmetry labels [A1, B1, A2, B2] for D2 = C2(x)⊗C2(y).

Labels (A,B) or (1, 2) for (x) or (y) symmetric and anti-symmetric states follow ancient
arcane conventions. We prefer a binary (02, 12) notation for C2 characters and N-ary notation
(0N , 1N , 2N , . . . , (N−1)N) forCN characters DmN (Rp) where each labelmN denotes “m-wave-quanta-
modulo N” as in Table 7.

DmN (Rp) = e−im·p(2π/N) (34)

This notation is used in correlation Table 8 between symmetry labels of D2 and its subgroups C2(x),
C2(y), and C2(z), respectively. Each row belongs to a D2 species and indicates which C2 symmetry,
even (02) or odd (12), correlates to it. The Table 8(a), 8(b) and 8(c) follow respectively from the columns
Rx, Ry, and Rz of Table 6. An even (02) D2 character is D02(R) = +1 and odd (12) is D12(R) = −1.
J = 10 HAsymTop-levels in Figure 3 consist of two sets of five pairs [(A1, B1) (A2, B2) (A1, B1)

(A2, B2) (A1, B1)] and [(B2, A1) (B1, A2) (B2, A1) (B1, A2) (B2, A1)] separated by a single (A2)

level. Each is related to RES x-valley path pairs Kx ∼ [±10,±9,±8,±7,±6] or z-hill pairs Kz ∼
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[±6,±7,±8,±9,±10] separated by a single y-path (A2 : Ky ∼ 5). Even-K belongs to a (02) column
and odd-K belongs to a (12) column of C2(x) Table 8(a) or C2(z) Table 8(c).

Valley-pair sequence (A1, B1), (A2, B2) . . . is consistent with (02) and (12) columns of the C2(x)

Table 8(a), and hill-pair sequence (B2, A1), (B1, A2) . . . is consistent with (02) and (12) column of
the C2(z) Table 8(c). This is because lower pairs correspond to x-axial RES loops of approximate
momentum Kx ∼ ±10,±9 · · · ± 6 while upper pairs correspond to z-axial RES loops of approximate
momentum Kz ∼ ±6,±7 · · · ± 10 in Figure 3

Table 8(b) for C2(y) is not used since ±y-axes are hyperbolic saddle points on one separatrix path,
unlike the disconnected pairs of elliptic RES paths that encircle ±x-axes or ±z-axes at hill or valley
points. Only a singleE level exists in Figure 3 at the energyESep of the saddle points and their separatrix.

ESep = HAsymTop(Jx, Jy, Jz) = BJ(J + 1)for





Jx = 0

Jy = |J |2

Jz = 0

(35)

Table 6. Orthorhombic 4-group D2 = C2 × C2 character table construction.

D2 = C2(x)× C2(y) 1 Rx Ry Rz

C2(x) 1 Rx C2(y) 1 Ry A1 = (0202)xy 1 1 1 1
A = (02)x 1 1 × 1 = (02)y 1 1 = A2 = (0212)xy 1 -1 1 -1
B = (12)x 1 −1 2 = (12)y 1 −1 B1 = (1202)xy 1 1 -1 -1

B2 = (1212)xy 1 -1 -1 1

Table 7. Group character tables for cyclic groups of symmetry order N. (a) N = 2;
(b) N = 3: ε = e2π/3; (c) N = 4.

(a)

C2 1 Rx

(02) 1 1
(12) 1 -1

(b)

C3 1 R1 R2

(03) 1 1 1
(13) 1 ε∗ ε

(23) 1 ε ε∗

(c)

C4 1 R1 R2 R3

(04) 1 1 1 1
(14) 1 −i -1 i

(24) 1 -1 1 -1
(3)4 1 i -1 −i
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Table 8. Symmetry correlation table between species of D2 and its axial subgroups.
(a) C2(x) subgroup; (b) C2(y) subgroup; (c) C2(z) subgroup.

(a)

D2 ⊃ C2(x) (02)x (12)x

A1 1 ·
A2 · 1
B1 1 ·
B2 · 1

(b)

D2 ⊃ C2(y) (02)y (12)y

A1 1 ·
A2 1 ·
B1 · 1
B2 · 1

(c)

D2 ⊃ C2(z) (02)z (12)z

A1 1 ·
A2 · 1
B1 · 1
B2 1 ·

As symmetricHSym becomes a more asymmetricHAsymTop in Figure 4, a hill or valley path bends away
from its ideal single-K symmetric-top cone circle at constant polar angle θJK Equations (23a) and (23b).

Each HSym state

∣∣∣∣∣
J

K

〉
turns into an HAsymTop eigenstate expansion of states

∣∣∣∣∣
J

K ± 2p

〉
with K ± 2p

above and below K, and its RES path bends from constant θJK toward polar angles θJK±2, θ
J
K±4, θ

J
K±6 . . .

above and below angle θJK . At energy near the separatrix ESep, bending of hill and valley paths become
more severe as they approach separatrix asymptotes where the polar angle range Equation (32) expands
to 2θSep or π and the bend becomes a kink.

It is conventional to label HSep eigenstate |E〉 by both Kx and Kz quantum values since |E〉 may use
either a Kx basis or else a Kz basis. However, Jx and Jz do not commute. For energy E above ESep,
a |J,Kz〉 expansion is more compact and a dominate |Kz| value may label |E〉. For E below ESep, a
|J,Kx〉 expansion has a meaningful |Kx| label. For E near ESep, K-labels are questionable.

Table 9. Correlation tables between octahedral symmetric, O and various cyclic subgroups.

(a)

O ⊃ C4 04 14 24 34

A1 ↓ C4 1 · · ·
A2 ↓ C4 · · 1 ·
E ↓ C4 1 · 1 ·
T1 ↓ C4 1 1 · 1

T2 ↓ C4 · 1 1 1

(b)

O ⊃ C3 03 13 23

A1 ↓ C3 1 · ·
A2 ↓ C3 1 · ·
E ↓ C3 · 1 1

T1 ↓ C3 1 1 1

T2 ↓ C3 1 1 1

(c)

O ⊃ C2(i1) 02 12

A1 ↓ C2 1 ·
A2 ↓ C2 · 1

E ↓ C2 1 1

T1 ↓ C2 1 2

T2 ↓ C2 2 1

(d)

O ⊃ C2(ρz) 02 12

A1 ↓ C2 1 ·
A2 ↓ C2 1 ·
E ↓ C2 2 ·
T1 ↓ C2 1 2

T2 ↓ C2 1 2
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Though a general form of the symmetry identification process may be unfamiliar, it may implemented
by computer. Group projectors Equation (36) can distinguish how each eigenvector splits with respect
to subgroup operations. The product of these projectors and the calculated eigenvectors identifies the
subgroup symmetry of each level.

Pα
jk =

( lα
◦G
)∑

g

Dα∗

jk (g)g (36)

Only projectors in lower symmetry subgroups are used because they are easy to calculate and there
are fewer in number. With the eigenvector projection lengths and knowledge of the correlation table
between the molecular group itself and the subgroup one can start to deduce the eigenvector symmetry.
As mentioned earlier, one correlation table is not enough to fully identify an eigenvector’s symmetry, but
using several subgroups one can assign symmetry. This process is simpler than calculating projectors
of the full group, particularly if one can use a Cn subgroup and Dα∗

jk (g) in Equation (36) is found by
Equation (34).

This method can be significantly simpler than a traditional block diagonalization. Block
diagonlalizing the Hamiltonian requires projectors of the entire molecular symmetry group rather than
of the smaller subgroups.

The disadvantage of this method is that it becomes unstable when clusters are tightest. As eigenvectors
become more mixed with tighter clustering the algorithm may be unable to distinguish. Some RES paths
and level curves indistinguishable to numeric projector then appear black. Symmetry definitions hold
for asymmetric tops where J < 50. Spherical tops are quite challenging as seen in Section 7.

2.4. Tunneling between RES-Path States

N-atom inversion in ammonia, NH3, is an example of molecular tunneling modeled by a particle
whose closely paired levels (inversion doublets) lie below the barrier of a double-well PES. An RES
generalization, sketched in Figure 3, shows level pairs such as (A1, B1), (A2, B2), etc. as rotational
analogs of inversion doublets. Here the tunneling between left and right positions on a PEs is replaced
by an RES inversion between left-handed and right-handed rotation of an entire molecule. Instead of
oscillation of expected position values 〈r〉 between PES valleys there is oscillation of momentum 〈J〉
between pairs of x-paths (+Kx ↔ −Kx) in RES valleys or else between pairs of z-paths (+Kz ↔ −Kz)

on RES hills. Section 7 describes this phenomenon in more detail for molecules of Oh and Td symmetry.

3. Tensor Eigensolutions for Octahedral Molecules

Section 2 has shown that asymmetric top molecules may be treated semi-classically, using only tensor
operators and RES plots with a seperatrix between regions of local symmetry. Spherical top molecules
experience such symmetry locality, but with greater variety of local symmetry. This section focuses on
the added complication and convenience of higher symmetry as well as showing novel rotational level
clustering patterns related to RES paths and tunneling.
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3.1. Tensor Symmetry Considerations

Theory of asymmetric top spectra in Section 2 may be generalized to a semi-classical treatment of
tensor operators for Td or Oh symmetric molecules such as CH4 or SF6. The results contain level
clusterings that first appeared in computer studies by Lea, Leask, and Wolf [20], Dorney and Watson [21]
and followed by symmetry analyses [22,23] and others described below.

Up to fourth order, any such molecule may be treated using the Hecht Hamiltonian [24] rewritten
in terms of tensor operators below in Equation (37a) and (37b) that isolates the rank-4 tensor term
Equation (37c).

H = BJ2 + 10t004(J4
x + J4

y + J4
z −

3

5
J)4 (37a)

H = BT 0
0 + 4t044

[
T 4

0 +

√
5

14

(
T 4

4 + T 4
4

)]
(37b)

T [4] =

√
7

12

[
T 4

0 +

√
5

14

(
T 4

4 + T 4
4

)]
(37c)

This is continued below to higher rank tensors with more complicated structure [14]. The coefficients
of each tensor operator may be found from a spherical harmonic addition-theorem expansion of points
at vertices of an octahedron. Coefficients cn,m are based on Equation (38), where Y n

m is the spherical
harmonic and f(~r) is a position of octahehral vertices (100), (010), ..., (00− 1).

cn,m =

∫

V

f(~r)Y n
m · rn dτ (38)

A normalized sum of these coefficients gives the rank-6 Oh tensor as follows.

T [6] =
1

2
√

2
T 6

0 −
√

7

4

(
T 6

4 + T 6
−4

)
(39)

The first study of RES and eigenvalue spectrum with varying rank-4 and rank-6 tensor operators [25]
expressed in Equation (40) revealed intricate level cluster crossing shown below.

T [4,6] = cos(θ)T [4] + sin(θ)T [6] (40)

Later studies [26] examined rank-8 contributions such as expressed by Equation (41). Effects peculiar
to combining Hamiltonian terms of rank-8 and higher include extreme clusters.

T [4,6,8] = cos(φ)
(

cos(θ)T [4] + sin(θ)T [6]
)

+ sin(φ)T [8] (41)

As with the asymmetric top Hamiltonian, the octahedral Hamiltonian uses non-axial operators shown
in Equations (37b) and (39). Such operators involve more than Legendre functions, complicating
purely semi-classical analysis. Thus, approximate solutions based on axial operators alone apply only
asymptotically for high J > 10 and in regions away from RES seperatrices. Combined powers of J
and Jz do not give all levels. Tensor operators provide a sparse banded Hamiltonian matrix, but full
numerical diagonalization is needed to get all levels to high precision.

Gulacsi and coworkers [26] explored how eigenvalues vary with T [4] and T [8] for J ≤ 10 and small
contributions of T [6]. Results below agree but extend to larger J and use RES topology.
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While the asymmetric top systems show clustering related to symmetry subduction from D2 to a
related C2 subgroup, octahedral molecular clusters relate to a variety of subgroups. Oh may cluster into
D4, D3, D2, C4, C3, C2 or other subgroups involving reflection or inversion.

For simplicity, this discussion will focus on O rather than Oh molecules to make equations and
correlation tables easier to display and interpret. Later Sections 6–7 give fuller discussions and explain
the reciprocity relations that are behind correlation tables.

ForD2-symmetric molecules, clustering patterns are described in terms of the correlation tables found
in Table 8. The similar correlation tables for octahedral molecules are given for C4, C3 and C2 in
Table 9. The columns of Table 9 represent the different clusters of rotational levels found within the
spectra of given molecule at a given rotational transition. These clusterings are identified by their
degeneracy as well as their RES location. Since symmetry labeling of octahedral group O differs form
asymmetric top D2, a new coloring convention for O levels is defined: A1 is red, A2 is orange, E2 is
green, T1 is dark blue and T2 is light blue.

In the RES, rotationally induced deformation or symmetry breaking is seen from the shape of local
regions of the RES involving a specific contour. Figure 5 shows two different RES plots, both globally
octahedral, but with local regions that correspond to a subgroup symmetry of the octahedron. Figure 5(a)
demonstrates a possible RES of an octahedral molecule with Hamiltonian parameters that allow for C4

and C3 local symmetry regions to be present. The C4 regions are identified by their location and by their
square base. Similarly, the C3 regions are identified by their location and triangular base. In this case C3

symmetric regions are concave while C4 regions are convex. This is not required and is dependent on
Hamiltonian fitting terms that change the relative contributions of T [4] and T [6]. Likewise, Figure 5(b)
shows the C2 regions that are determined by their location and rectangular base.

Cluster degeneracy is a hallmark of a specific symmetry breaking. While a symmetric top spectra may
be resolved into mJ levels, a rotationally-induced symmetry-reduced spherical top has several identical
z axes. The mJ levels can then localize on a single symmetry-reduced local region. The number of these
regions must equal the degeneracy of the cluster in that same region. This degeneracy, `α, is also found
using the sum of the numbers in the columns of Table 9 or by Equation (42) given ◦G is the order of the
molecular symmetry group and ◦H is the order of the subgroup.

`α =
◦G
◦H (42)

In the cases shown here cluster degeneracy `α becomes 6, 8 and 12 for C4, C3 and C2 respectively.

3.2. Numerical Assignment of Symmetry Clusters

As mentioned previously, it is possible to diagonalize the Hamiltonian and organize species by the
order of each block, yet this alone will not distinguish all levels. For Hamiltonians defined by T [4] as
Equation (37a) it is possible to analytically [25] determine the symmetry of each level. Once T [6] or
T [8] terms are present, a numerical examination of eigenvectors is required to assign the symmetry of
each level. Subgroup projectors are used here where the cluster degeneracy increases and the symmetry
becomes challenging to distinguish. These projectors represent a simplification of the symmetry analysis
of an octahedral molecule into projections onto C4 symmetric projectors. The correlation table for O ⊃
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C4, shown in Table 9, and Equation (36) give the information necessary for the assignment. Moreover,
when using the subgroup C4 there are only four projectors to create and a clever choice of axis can force
several of these projectors to be entirely real or entirely imaginary. Conveniently, the C4 projectors can
be used to diagnose level symmetry for clusters in any subgroup region.

3.3. Octahedral Clustering vs. RES Topography

3.3.1. Variation of T [4,6] Topography

The Hecht Hamiltonian Equation (37a) and its higher order analogues are generic Hamiltonians. Such
Hamiltonians have numerous fitting constants specific to a given molecule and a given vibronic species.
To better understand all such octahedral systems, one must focus on changes in the level spectrum and
RES plots with varying contributions of T [4], T [6] and T [8].
T [4,6,8] in Equation (41) has two bounded parameters θ and φ so several plots are required to

explore this parameter space. By setting T [8] contributions to zero the eigenvalue spectrum for T [4,6]

in Equation (40) can be plotted for changing values of θ, relative contributions of 4th and 6th rank
tensor terms. Figure 6 plots such an eigenvalue spectrum and also places the RES plots that go along
with important parts of the level diagram and, conversely, points out what spots on the level diagram
correspond to important changes in the RES plot. We note T [4,6] RES have circular ring separatrices not
unlike those on D2 RES in Figure 3.

To understand the behavior of the level diagram in Figure 6 it is critical to inspect the changing
shape of the RES plots. In particular, the clustering of levels in the eigenvalue diagram is dependent
on the localized symmetry regions of the RES at each value of θ. Locally, the RES forms hills and
valleys of a lower symmetry than that of the molecule. The local symmetry must also be a sub-group
of the molecular symmetry. Figure 5 identifies regions of local symmetry C4, C3 and C2 whose local
rotation axis lie fixed normal to the RES at the center of each region, respectively, even as θ varies from
Figure 5(a) to Figure 5(b). For some θ one or two of the Cn regions may shrink out of existence as shown
below in Figure 6.

Figure 5. Symmetry axes of T [4,6] RES for differing contributions of T [4] and T [6]. (a) C3

and C4 local regions; (b) C2 local region.

(a) (b)
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3.3.2. Semi-Classical Outlines vs. Quantum Eigenvalues

With this understanding of local subgroup regions it is possible to discuss more detail of Figure 6.
The correspondence between the RES plots and the level diagram can also be seen by appending the
eigenvalue spectrum in Figure 6 with the height of the C4, C3 and C2 axes. This serves two purposes:
To confirm that the quantum spectrum sits inside the semi-classical boundaries and to see that there is a
change in the eigenvalue spectrum corresponding to changes in RES topology. Figure 7 shows the same
quantum spectrum as Figure 6, but also includes the height (energy) of each symmetry axis. The outlines
are printed in bold and are labeled for which Cn axis they each belong.

Figure 6. J=30 Energy levels and RES plots for T [4,6]vs.[4,6] mix-angle θ with T [4] levels
above φ=0◦(extreme left), T [6] levels at θ=90◦ (center), and−T [4] levels at θ=180◦ (extreme
right). C4 local symmetry and 6-fold level clusters dominate at θ=17◦ while C3 type 8-fold
level clusters dominate at θ=132◦. In between these extremes are C2 type 12-fold level
clusters particularly around θ=80◦ where a C3 − C4 level-cluster-crossing of the top 14
levels occurs.
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Figure 7. Quantum spectrum of octahedral Hamiltonian (Equation (40)) with changing θ.
Bold lines are the energy of the classical symmetry axis labeled.

Section 2 described how to predict the error between a fully quantum mechanical calculation and
a semi-classical approximation of the symmetric rotor rotational spectra. For the symmetric rotor this
was done analytically. It is difficult to be as exact in calculating error for an octahedrally symmetric
Hamiltonian, but a line plot can show when an RES plot fails to describe quantum mechanical behavior.

Rather than plotting the Hamiltonian as Equation (40) we will arrange it as

T [4,6] = (1− x)T [4] + xT [6] (43)

This changes semi-classical outlines from cosines to lines and shows where quantum levels exceed
semi-classical bounds and where an RES approximation fails. Also, x-line plots show by degree of
avoided-crossing-curvature for each level the degree of its state mixing at x.

The three plots in Figure 8 show these spectra and semi-classical outlines for J = 30, J = 10 and
J = 4. Figure 8(a) shows that the quantum levels fit for all values of x at J = 30, while Figure 8(b)
shows some small disagreement near x = 2 for J = 10. Figure 8(c) shows that for low J there is strong
disagreement between quantum calculations and semi-classical approximations.

Figure 8. Spectrum of Octahedral Rotor Showing Semi-Classical Boundaries Given
Equation (43). (a) J = 30; (b) J = 10; (c) J = 4.

(a) (b) (c)
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Indeed, such plots as Figure 6 have been created before, both for the RES plots and the level
diagrams [25]. Next, we show such an analysis of T [4,6,8] and demonstrate how such a Hamiltonian
can show a different type of topology than previously reported.

3.3.3. Variation of T [4,6,8] Topography and Level Clusters

The inclusion of eighth rank operators to the Hamiltonian dramatically changes the possible types of
RES local symmetry and the related level clustering. While Figure 5 shows C4, C3 and C2 symmetric
local structures for RES plots for T [4,6] Hamiltonians, Figure 9 shows a new kind of local T [4,6,8] RES
path pointed out there with C1 symmetry. (That means no rotational symmetry!) The path is repeated 24
times and thus belongs to a single cluster of 24 levels. As shown in Section 6.7.2. the cluster spans an
induced representation D01 (C1) ↑ O, also known as a regular representation of O.

Figure 9. RES with C1 local symmetry regions visible.

Details of the two dimensional T [4,6,8] parameter space appear in a figure Table 10 containing RES
plots for several (θ, φ) points. To be consistent with Equation (41), the plots increase θ from 0 to π going
left to right and φ from 0 to π going top to bottom. RES O levels are colored with the usual red for A1,
orange for A2, green for E2, blue for T1 and cyan for T2.

As expected from Equation (41), the top and bottom rows are opposites to one another. That is, where
one RES has a hill (higher energy), the other has a crater (lower energy.) The RES at θ = 0, φ = 0 has
convex C4 and concave C3 structure as does the RES at θ = π, φ = π, but opposite the shape of the
RES at either θ = 0, φ = π or θ = π, φ = 0. The ordering of the levels is also opposite. These two
extremal rows also have no eighth order contribution, so they produce simpler shapes than the others and
are incapable of producing C1 local symmetry regions. The middle row shows a different behavior: all
the diagrams are identical. Again, this follows from Equation (41) wherever φ = π/2.

While Table 10 shows only the RES plots along the parameter space defined by Equation (41),
Figure 10 shows level diagrams with RES plots placed showing the symmetry and topology present
at a given point in the space. The bold vertical lines next to the RES plots indicate the spot in the level
diagram that particular RES plot would exist. Again, it is clear the θ = π/2 case would be unchanged,
so it is not shown. The θ = π case is neglected as it is a mirror image of the θ = 0 case.



Int. J. Mol. Sci. 2013, 14 745

Table 10. RES plots exploring the 2D parameter space.

θ = 0 θ = π/4 θ = π/2 θ = 3π/4 θ = π

φ = 0

φ = π
4

φ = π
2

φ = 3π
4

φ = π

Figure 10. Level diagrams of energy vs. θ for given φ with RES plots at selected positions.
(a) φ = π/4; (b) φ = 3π/4.
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3.4. CriteriaforC1 Level Clustering

Figures 9–11 show where the local regions of hills and valleys form on the RES depending on mixing
angles φ and θ. Unlike the local symmetry regions known previously, the local C1 structures associated
with 24-fold level clusters have no rotation axis to locate their central maxima or minima on the RES.
However, they do have bisecting reflection planes that must contain surface gradient vectors and an
extreme point for which the gradient points radially. RES plots with C1 local symmetries are shown in
parts of second, third and fourth rows of Table 10 as well as parts of Figure 10(a) and 10(b). Figure 11
shows how C1 regions lie on hills or else valleys and how they can be arranged with their neighbors into
either a square or triangular pattern.
C1 clusters require tensors of rank-8 with φ between π and zero as θ varies. Momentum J must be

large enough for its minimum-uncertainty (J=K)-cone angle ΘJ
J to fit in a C1 region.

ΘJ
J = cos−1(

J√
J + 1

) '
√

1

J
(44)

RES with J as low as J=4 may haveC1 regions but fail to fit its (2Θ4
4=56◦)-wide cones. C1 clusters begin

to appear around J=20 (2Θ20
20=26◦) but even for J=30 (2Θ30

30=21◦) are still barely formed in Figure 11(a).
There a minimum uncertainty cone appears to barely fit within a separatrix on a C1 hill between C3

and C4 valleys of its (J=30)-RES. Others are situated more comfortably in valleys of RES shown in
Figure 11(b) where they appear to encircle a C4 axes as in Figure 10(a) where a corresponding cluster of
24 eigenvalues in 10 levels appear at the lower left hand side of the level diagram. In Figure 11(c) they
surround a C2 axis.

With higher J and Oh-tensors of greater rank than k=8, one expects clusters of 48-fold degeneracy
corresponding to C1-regions centered away from Oh symmetry axes or planes. So far, these are only
beginning to be explored and analyzed. To analyze such complicated tunneling effects (and better
understand older ones) requires an improved symmetry analysis developed in Sections 4–7.

Figure 11. J = 30 RES for various rank k=4, 6, 8 combinations giving C1 features. (a) C1

hills around C3 and C4; (b) C1 valleys near C4; (c) C1 valleys near C3.

(a) (b) (c)
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4. Introducing Dual Symmetry Algebra for Tunneling and Superfine Structure

For a system to have symmetry means two or more of its parts are the same or similar and therefore
subject to resonance. This can make a system particularly sensitive to internal parameters and external
perturbations and give rise to interesting and useful effects. However, resonances can make it more
difficult to analyze and understand a system’s eigensolutions. The tensor level cluster states give rise to
spectral fine structure discussed in the preceding sections and that splits further into complex superfine
structure due to J-tunneling that is the focus of the following sections.

Fortunately, the presence of symmetry in a physical system allows algebraic or group theoretical
analysis of quantum eigensolutions and their dynamics. Groups of operators (g, g′, g′′, ...) leave a
Hamiltonian operator H invariant (g†Hg = H) if and only if each g commutes with it (gH = Hg).
Then each g in the group shares a set of eigenfunctions withH . However, if (g′) and (g) do not commute
then the (g′) and (g) sets will differ.

Hamiltonians may themselves be symmetry operators or linear expansions thereof. Multipole tensor
expansions used heretofore are examples. Expanding H into operators with symmetry properties, such
as (a†a) or (T kq ), helps to analyze its eigensolutions since, in some sense, a symmetry algebra “knows”
its spectral resolutions. The underlying isometry of a system’s variables and states contains all the
sub-algebras that are possible H-symmetries.

If H-symmetry operators (g, g′, ...) also commute with each other (gg′ = g′g, etc.) then all g share
with H a single set of eigenvectors as discussed in Section 5. Such commutative or Abelian symmetry
analysis is just a Fourier analysis where allH are linear expansion of its symmetry elements (g, g′, g′′, ...)

and simultaneously diagonalized withH . Such g expansions define both HamiltoniansH and their states
as described in Section 5.

However, non-commuting (non-Abelian) symmetry operators (g, g′, g′′, ...) of H cannot both expand
H and commute with H . This impasse is resolved in Section 6 by using a dual local operator group
(ḡ, ḡ′, ḡ′′, ...) that mutually commutes with the original global group. Then local (ḡ) expand any H that
commutes with global g, while the global g define base states and their combinations define symmetry
projected states. Roughly put, one labels location while the other labels tunneling to and fro.

In Section 6, the dual group (D̄3 ∼ C̄3v) of the smallest non-Abelian group (D3 ∼ C3v) is defined.
Dual symmetry-analysis is demonstrated for a trigonal tunneling system by group parametrization of all
possible (D3)-symmetric H matrices and all possible eigensolutions for each. The example shows how
global (g) label states while the local (ḡ) label tunneling paths. In this way symmetry labels processes
as well as states. An added benefit is a kind of “slide-rule-lattice” to compute group products.

In Section 7, the local symmetry expansion is applied to octahedral O⊂Oh tensor superfine structure.
Local symmetry conditions are used to relate tunneling paths to RES topography discussed previously
and predict possible energy level patterns. The O⊂Oh slide-rule-lattices appear in Figures 22–24.

5. Abelian Symmetry Analysis

An introductory analysis of tunneling symmetry begins with elementary cases involving homocyclic
Cn symmetry of n-fold polygonal structure. But, it applies to all Abelian (mutually commuting) groups
A since all A reduce to outer products Cp × Cq × · · · of cyclic groups of prime order.
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5.1. Operator Expansion of Cn Symmetric Hamiltonian

The analysis described here and in Section 6 deviates from standard procedure [27–31]. Instead of
beginning with a given quantum Hamiltonian H-matrix, we start with a Cn symmetry matrix (r) and
build all possible Cn symmetric (H)-matrices by combining n powers (rp) = (r)p of (r) ranging from
identity r0 = 1 = rn to inverse rn−1 = r−1 [32].

H = r0r
0 + r1r

1 + r2r
2 + . . .+ rn−2r

n−2 + rn−1r
n−1

= r01 + r1r
1 + r2r

2 + . . .+ r−2r
−2 + r−1r

−1 (45)

In Equation (45) the rotation r is by angle 2π/n so rotation rn is by angle n2π/n = 2π, that is, the
identity operator r0 = 1 = rn. Thus power-p indices label modulo-n or base-n algebras. If n=2, it is a
Boolean algebra C1 ⊂ C2 of parity [+1,-1] or classical bits [0,1]. (U(2) spin-algebras of q-bits have
4π identity but are not considered here.)

Sum rule: p+ p′ = (p+ p′) mod (n) Product rule: p · p′ = (p · p′) mod (n) (46)

We construct the general H-matrix using Cn group-product tables shown below in a g−1g-form and a
g†g-form that is equivalent for unitary operators g† = g−1 . In each table the kth-row label g−1 matches
kth-column label g so that the identity operator 1 = g−1g resides only on the diagonal. This example
is for hexagonal symmetry C6 for which r−6 = r0 = 1 = r6 = r6†, r−5 = r1 = r5†, r−4 = r2 = r4†,
r−3 = r3 = r3†, and so forth.

g−1g
form r0 r1 r2 r3 r4 r5

r0 r0 r1 r2 r3 r4 r5

r5 r5 r0 r1 r2 r3 r4

r4 r4 r5 r0 r1 r2 r3

r3 r3 r4 r5 r0 r1 r2

r2 r2 r3 r4 r5 r0 r1

r1 r1 r2 r3 r4 r5 r0

=

g†g
form 1 r+1 r+2 r+3 r−2 r−1

1 1 r+1 r+2 r+3 r−2 r−1

r−1 r−1 1 r+1 r+2 r+3 r−2

r−2 r−2 r−1 1 r+1 r+2 r+3

r+3 r+3 r−2 r−1 1 r+1 r+2

r+2 r+2 r+3 r−2 r−1 1 r+1

r+1 r+1 r+2 r+3 r−2 r−1 1

(47)

The g†g-form produces a regular representation R(g) = (g) of each operator g as shown below.
Each R(rp) is a zero-matrix with a 1 inserted wherever a rp appears in the g†g-table.

R(1) =


1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1




,

R(r1) =


· 1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1

1 · · · · ·




,

R(r2) =


· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1

1 · · · · ·
· 1 · · · ·




,

R(r3) =


· · · 1 · ·
· · · · 1 ·
· · · · · 1

1 · · · · ·
· 1 · · · ·
· · 1 · · ·




...

(48)
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The Cn Hamiltonian (H) matrix has matrices from (48) inserted into expansion (45) of operator H.

(H) =
n−1∑

p=0

rp (rp) =




r0 r1 r2 r3 r4 r5

r5 r0 r1 r2 r3 r4

r4 r5 r0 r1 r2 r3

r3 r4 r5 r0 r1 r2

r2 r3 r4 r5 r0 r1

r1 r2 r3 r4 r5 r0




=




r0 r1 r2 r3 r−2 r−1

r−1 r0 r1 r2 r3 r−2

r−2 r−1 r0 r1 r2 r3

r3 r−2 r−1 r0 r1 r2

r2 r3 r−2 r−1 r0 r1

r1 r2 r3 r−2 r−1 r0




(49)

Matrices in Equation (49) are simply group tables Equation (47) with complex tunneling amplitude rp
replacing operator rp. Parameters r0 = (r0)∗ and r3 = (r3)∗ match self-conjugate binary subgroups
C1 ⊂ C2 = (1, r3) related by 1 = (r3)2. Both are real if matrix (H) is Hermitian self-conjugate
(Hab = H∗ba).

Three distinct classes of tunneling or coupling parameters are depicted in Figure 12 using classical
spring-mass analogs for quantum systems [22]. Tunneling matrices have a long history [33] going
back to Wilson [34]. Here this is being revived to treat extreme J-tunneling and more recently by
Ortigoso [17] and Hougen [35,36] to treat extremely floppy molecule dynamics. Both these tasks use
tunneling parametrization that has so far been quite ad.hoc. To accomplish either of these tasks, or what
will surely be needed, namely both tasks, we need a tighter symmetry analysis. The group operator
scheme being introduced here seeks a way to achieve this.

The 1st-neighbor class has non-zero parameters r1=-r and conjugate r−1=-r∗=-r̄ coupling only
nearest neighbors each with self-energy r0=H1. The 2nd-neighbor class has non-zero parameters
r2=-s and conjugate r−2=-s∗=-s̄ coupling only next-nearest neighbors with self-energy r0=H2. Finally,
3rd-neighbor coupling r3=-t=-t∗ is real as required for binary self-conjugacy r3=(r3)†.

Figure 12. Three classes of tunneling paths and parameters.
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5.2. Spectral Resolution of Cn Symmetry Operators

Eigenvalues χmp of each operator rp are mth multiples of nth-roots of unity since all Cn symmetry
operators g = rp satisfy gn = 1 and are characters of Cn symmetry operators. Magnetic or
mode-wavenumber indices m label a base-n algebra as do the power or position-point indices p in
Equation (46). Spatial lattice points xp = L·p(meters) are indexed by pwhile reciprocal-(k)-wavevector
space km = 2πm/L(permeter) is indexed by integer m.

〈rp〉m = χmp = e−i(m·p)2π/n = e−ikmxp = D(m)(rp) (50)

The χmp are Cn irreducible representations D(m)(rp) as well as Cn characters. General group
characters are traces (diagonal sums) of D-matrices (χ(m)(g) = traceD(m)(g)). Abelian group
irreducible representations are 1-dimensional due to their commutativity, and so for them characters and
representations are identical. (χ(m)(g) = D(m)(g)) All this is generalized in subsequent Section 6. Any
number of mutually commuting unitary matrices may be diagonalized by a single unitary transformation
matrix. The characters in Equation (50) form a unitary transformation matrix Tm,p that diagonalizes each
Cn matrix (rp).

Tm,p = χmp /
√
n (51)

This T is a discrete (n-by-n) Fourier transformation. A 6-by-6 example that diagonalizes all matrices in
Equations (48) and (49) and in Figure 12 is shown in Figure 13 by a character table of wave phasors based
on D(m)(rp) in Equation (50) or (51). The irreducible representations D(m)(rp) or irreps play multiple
roles. They are variously eigenvalues, eigenvectors, eigenfunctions, transformation components, and
Fourier components of dispersion relations. This hyper-utility centers on their role as coefficients
in spectral resolution of operators rp into idempotent projection operators P(m). P(m) are like
irrep placeholders.

rp =
n−1∑

m=0

χmp P(m) = χ0
pP

(0) + χ1
pP

(1) + χ2
pP

(2) + χ3
pP

(3) + χ4
pP

(4) + χ5
pP

(5) (52)

Equation (52) is column-p of Figure 13. Column-0 is a completeness or identity resolution relation.

r0 =
n−1∑

m=0

P(m) = 1 = P(0) + P(1) + P(2) + P(3) + P(4) + P(5) (53)

Dirac notation for P(m) is |(m)〉〈(m)|. Its representation in its own basis (eigenbasis) is simply a
zero matrix with a single 1 at the (m,m)-diagonal component. P(m)-product table in Equation (54) is
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equivalent through Equation (52) to g-product table in Equation (47) but the P(m)-table given below has
an orthogonal (e.g.P(1)P(2) = 0) idempotent (e.g.P(1)P(1) = P(1)) form.

P(m)P(n) = δmnP(n) →

P†P
form P(0) P(1) P(2) P(3) P(4) P(5)

P(0) P(0) · · · · ·
P(1) · P(1) · · · ·
P(2) · · P(2) · · ·
P(3) · · · P(3) · ·
P(4) · · · · P(4) ·
P(5) · · · · · P(5)

→
(
P(2)

)
P

=




· · · · · ·
· · · · · ·
· · 1 · · ·
· · · · · ·
· · · · · ·
· · · · · ·




(54)

The location of each P(m) in the P-table is a location of a 1 in its representation as indicated in the
right hand side of Equation (54) in the same way that locations in g-table Equation (47) place 1’s in
representations Equation (48). However, idempotent self-conjugacy (P† = P) makes row labels of
P-table Equation (54) identical to its column labels, whereas only g = 1 and g = r3 are self-conjugate
in g-table Equation (47).

Character arrays such as Figure 13 represent operator eigen-products between rp and P(m).

rpP(m) = χmp P(m) = P(m)rp (55)

Also character χmp is the scalar product overlap of position state bra or ket with momentum ket or bra.

Position bra: 〈xp| = 〈p| = 〈0|r−p

Position ket: |xp〉 = |p〉 = rp|0〉 (56a)

Momentum bra: 〈km| = 〈(m)| = 〈0|P(m)√n
Momentum ket: |km〉 = |(m)〉 = P(m)|0〉√n (56b)

Momentum eigenwave ψkm(xp) is character Equation (50) conjugated to eikmxp and normalized by√
n.

ψkm(xp) = 〈xp|km〉 = 〈p|(m)〉 = (χmp /
√
n)∗

= (〈(m)|p〉)∗ = eikmxp/
√
n (57)

Action of rp on m-ket |(m)〉 = |km〉 is conjugate and inverse to action on coordinate bra 〈xq| = 〈q|.

ψkm(xq − p · L) = 〈xq|rp|km〉 = 〈q|rp|(m)〉
= 〈q − p|(m)〉 = e−ikmxp〈q|(m)〉 (58)
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The same overlap results whether rp moves a (m)-wave p-points forward or moves the coordinate grid
p-points backward. This Cn relativity-duality principle generalizes to non-Abelian symmetry and is key
to operator labeling of coordinates, base states, Hamiltonians, and their eigensolutions.

Figure 13. C6 characters (a) numerical table; (b) wave phasor table.

P(m) projects m-states with conjugate characters φmp = (χmp )∗ with factor 1/n so P(m)’s are
idempotent and sum to 1. (ΣpP

(m) = 1) But, |km〉 has φmp with factor 1/
√
n to be orthonormal so

its squares sum to 1. (Σp|〈xp|km〉|2 = 1) Thus projection Equation (56b) of |km〉 by P(m) has a
factor

√
n. Inverse spectral resolution Equation (52) sums over column points p using φmp from each

row-(m) of Figure 13. Factor 1/nmakes P(m) complete (ΣmP(m) = 1 in Equation (53)) and idempotent
(P(m)P(m) = P(m)) in Equation (54)).

P(m) =

(
n−1∑

p=0

φmp rp

)
/n = (φm0 r0 + φm1 r1 + φm2 r2 + φm3 r3 + φm4 r4 + φm5 r5)/6 (59)

First row ((m)=(0)-row) of Figure 13 is an average, i.e., sum of all symmetry operators weighted by 1/n.

P(0) =

(
n−1∑

p=0

rp

)
/n = (r0 + r1 + r2 + r3 + r4 + r5)/6 (60)

Thus factors
√
n =

√
6 in state projections in Equation (56b) give state norms

√
n/n = 1/

√
n in

Equation (57).

P(m)|0〉√n =

(
n−1∑

p=0

φmp |p〉
)
/
√
n = (φm0 |0〉+ φm1 |1〉+ φm2 |2〉+ φm3 |3〉+ φm4 |4〉+ φm5 |5〉)/

√
6 (61)
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The (0)-momentum or scalar state is a sum over the (m)=(0)-row of Figure 13 normalized by 1/
√
n.

P(0)|0〉√n =

(
n−1∑

p=0

|p〉
)
/
√
n = (|0〉+ |1〉+ |2〉+ |3〉+ |4〉+ |5〉)/

√
6 (62)

5.3. Spectral Resolution of Cn Symmetric Hamiltonian

Given Hamiltonian H expansion in Equation (45) in operators rp and the spectral resolution in
Equation (52) of rp, there follows the desired spectral resolution of H. The eigenvalue coefficients
ω(m) of P(m) define the dispersion function ω(km) of H in Figure 14(a) where it is conventional to
center scalar origin (m)=(0).

H =
n−1∑

p=0

rpr
p =

n−1∑

p=0

rp

n−1∑

m=0

χmp P(m) =
n−1∑

m=0

ω(m)P(m) where : ω(m) =
n−1∑

p=0

rpχ
m
p = ω(km) (63)

Positive km-axis C6 array [...(0), (1), (2), (3), (4), (5), ...] of Equation (54) shifts to a zone-center-array
mod-6: [...(4), (5), (0), (1), (2), (3), ...]=[...(−2), (−1), (0), (1), (2), (3), ...] using Equation (46).

Examples of dispersion relations for three classes of tunneling paths in Figure 12 are shown in
Figure 14. Dispersion ω(km) for C6 symmetry depends sensitively on the Hamiltonian tunneling
amplitudes rp for −3 < p ≤ 3 (or 0 ≤ p < 6) in Equation (49), and for any set of eigenvalues
ω(km) there is a unique set of rp found by inverting Equation (63).

rp =
n−1∑

m=0

φmp ω
(m)/n where : φmp = (χmp )∗ (64)

A common tunneling spectral model is the elementary Bloch 1st-neighbor B1(6)-model shown in
Figure 14a, much like that developed in Reference [33]. For negative values of r1=-r, a B1(6) spectra
for C6 consist of six points on a single inverted cosine-wave curve centered at m=0 with its maxima at
the Brillouin-band boundaries (m)=±3. This curve applies to B1(n) spectra for Cn where n equally
spaced (m) points lie on the dispersion curve between m=±n/2 for even-n. The n energy eigenvalues
ω(m) are projections of an n-polygon. For n=6 that is the hexagon shown in Figure 14a projecting two
doublet levels ω(±1) and ω(±2) between singlet ω(0) and singlet ω(3) at lowest and highest hexagonal
vertices as follows from Equation (63).

ωB1(n)(km) = r0χ
m
0 + r1χ

m
1 + r−1χ

m
−1 = H1 − 2r cos(2πm/6) (65)

The 2nd-neighbor B2-model (Figure 14b) has a two-cosine-wave dispersion curve. An equilateral
triangle projects energy doublet levels [ω(0), ω(3)] from its lowest vertex and a quartet [ω(±1), ω(±2)]
from its upper vertices.

ωB2(n)(km) = r0χ
m
0 + r2χ

m
2 + r−2χ

m
−2 = H2 − 2s cos(4πm/6) (66)
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Figure 14. Energy level dispersion for architypical tunneling parameters: B1:r1 = −r,
B2:r2 = −s, B3:r3 = −t.

The 3rd-neighbor B3-model (Figure 14c) has a three-cosine-wave dispersion, which for n=6 and
r3=−t separates levels into an even-m triplet [ω(0), ω(±2)] below an odd-m triplet [ω(3), ω(±1)].

ωB3(n)(km) = r0χ
m
0 + r3χ

m
3 + r−3χ

m
−3 = H3 − 2t (−1)m) (67)

Combining of kth-neighbor rk-terms gives dispersion ω(m) as a k-term Fourier cosine series that
is, for real rk, a sum of the preceding three Equations (65)–(67). However, real rk imply symmetry
that is higher than C6, namely non-Abelian reflection-rotation symmetry such as C6v or D6h and a
corresponding degeneracy between ω(±m) levels that will be treated shortly. Simple C6 symmetry allows
six real parameters with complex r1 and r2. Then Equation (63) implies six levels that are generally
non-degenerate as shown in Figure 15. Complex r1 = |r|eiφ of a ZB1 model describes chiral magnetic
or rotational effects that include Zeeman-like splitting of m-doublets. The projecting hexagon tilts by
the “gauge” phase angle φ = π/12 as the ZB1(6) dispersion ω(m) shifts. Then m doublets (±1) and
(±2) suffer splittings that are 1st-order in φ while singlets (0) and (3) undergo shifts that are 2nd-order
in φ.
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Figure 15. Zeeman shifted Bloch dispersion for complex parameter in ZB1(6) model:
r1 = −reiφ with φ = π/12.

6. Non-Abelian Symmetry Analysis

Characterization and spectral resolution in Equation (63) of a Hamiltonian HBk(6) uses its expansion
in Equation (45) in Abelian group C6. Similar spectral resolution of a Hamiltonian H by a non-Abelian
group G = [...g1,g2...] of non-commuting symmetry operators might seem impossible. To be symmetry
operators of H, elements g1 and g2 must commute with H, but that cannot be if H is a linear expansion
of them like Equation (45). The impasse is broken by introducing operator relativity-duality detailed
below. AD3-symmetric tunneling H with a 3-well potential sketched in Figure 16 is used as an example.

6.1. Operator Expansion of D3 Symmetric Hamiltonian

The simplest non-Abelian group is the rotational symmetry D3 = [1, r1, r2, i1, i2, i3] of an equilateral
triangle. D3 is used to show how to generalize C6 operator analysis of the preceding section to any
symmetry group. The D3 analysis begins with a g†g-form of group product table like Equation (47) for
C6. However, D3 also requires a gg†-form giving the same product rules but using inverse g† ordering
|..r2, r1, ...|=|..r1†, r2†, ...| along the top instead of down the left side as is done for the g†g-form of table.
(The two ±120◦ rotations r1 and r2 are the only pair (r1†=r2) to be switched by conjugation). The three
±180◦ rotations are each self-conjugate (ip†=ip) as is (always) the identity 1†=1.

g†g
form 1 r1 r2 i1 i2 i3

1 1 r1 r2 i1 i2 i3

r2 r2 1 r1 i2 i3 i1

r1 r1 r2 1 i3 i1 i2

i1 i1 i2 i3 1 r1 r2

i2 i2 i3 i1 r2 1 r1

i3 i3 i1 i2 r1 r2 1

gg†

form 1̄ r̄2 r̄1 ī1 ī2 ī3

1̄ 1̄ r̄2 r̄1 ī1 ī2 ī3

r̄1 r̄1 1̄ r̄2 ī3 ī1 ī2

r̄2 r̄2 r̄1 1̄ ī2 ī3 ī1

ī1 ī1 ī3 ī2 1̄ r̄1 r̄2

ī2 ī2 ī1 ī3 r̄2 1̄ r̄1

ī3 ī3 ī2 ī1 r̄1 r̄2 1̄

(68)

Over-bar notation is used for dual-group D̄3 = [1̄ , r̄1, r̄2, ī1, ī2, ī2] of “body”-based operators
isomorphic to “lab”-based group.
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Figure 16. Rotation operators [1, r1, r2, i1, i2, i3] for a D3 symmetric square-well potential.

Matrix representations Equation (69a) for D3 or matrices Equation (69b) for D̄3 are given,
respectively, by g†g or gg†-forms Equation (68) just as g†g form Equation (47) for C6 gives matrices in
Equation (48).

(1) = (r1) = (r2) =


1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1







· 1 · · · ·
· · 1 · · ·
1 · · · · ·
· · · · 1 ·
· · · · · 1

· · · 1 · ·







· · 1 · · ·
1 · · · · ·
· 1 · · · ·
· · · · · 1

· · · 1 · ·
· · · · 1 ·




(i1) = (i2) = (i3) =




· · · 1 · ·
· · · · · 1

· · · · 1 ·
1 · · · · ·
· · 1 · · ·
· 1 · · · ·







· · · · 1 ·
· · · 1 · ·
· · · · · 1

· 1 · · · ·
1 · · · · ·
· · 1 · · ·







· · · · · 1

· · · · 1 ·
· · · 1 · ·
· · 1 · · ·
· 1 · · · ·
1 · · · · ·




(69a)

(1̄) = (r̄1) = (r̄2) =


1 · · · · ·
· 1 · · · ·
· · 1 · · ·
· · · 1 · ·
· · · · 1 ·
· · · · · 1







· · 1 · · ·
1 · · · · ·
· 1 · · · ·
· · · · 1 ·
· · · · · 1

· · · 1 · ·







· 1 · · · ·
· · 1 · · ·
1 · · · · ·
· · · · · 1

· · · 1 · ·
· · · · 1 ·




(̄i1) = (̄i2) = (̄i3) =


· · · 1 · ·
· · · · 1 ·
· · · · · 1

1 · · · · ·
· 1 · · · ·
· · 1 · · ·







· · · · 1 ·
· · · · · 1

· · · 1 · ·
· · 1 · · ·
1 · · · · ·
· 1 · · · ·







· · · · · 1

· · · 1 · ·
· · · · 1 ·
· 1 · · · ·
· · 1 · · ·
1 · · · · ·




(69b)
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Most pairs of resulting D3 matrices in Equation (69a) do not commute. (For example (r1)(i1)=(i3)

does not equal (i1)(r1)=(i2).) Identical non-commutative product rules apply to the dual bar group D̄3

matrices in Equation (69b). However, all matrices of the latter D̄3 commute with all matrices of the
former D3. This suggests that the Hamiltonian matrix, in order to commute with its symmetry group D3,
is constructed by linear combination of bar group operators of D̄3 [32].

H = r01̄ + r1r̄
1 + r2r̄

2 + i1̄i1 + i2̄i2 + i3̄i3 (70)

D3 symmetric (H) matrix Equation (71) generalizes C6 symmetric (H) matrix Equation (49) to a
non-Abelian case.

(H) =

oG∑

g=1

rg(ḡ) =




r0 r2 r1 i1 i2 i3

r1 r0 r2 i3 i1 i2

r2 r1 r0 i2 i3 i1

ii i3 i2 r0 r1 r2

i2 i1 i3 r2 r0 r1

i3 i2 i1 r1 r2 r0




(71)

6.2. Spectral Resolution of D3 Symmetry Operators

Spectral resolution of D3 or any non-Abelian group G = [...g1,g2...] entails more than the C6

expansion into a unique combination of idempotent operators Pα=|α〉〈α| multiplied by eigenvalue
D(α)(g) coefficients as in Equation (52). It is not possible to diagonalize two non-commuting g1

and g2 in one basis since numbers (eigenvalues) always commute. If g1 and g2 do not commute,
their collective resolution must include eigen-matrix coefficients Dα

m,n involving nilpotent (N2 = 0)
operators Pα

m,n=|αm〉〈αn| as well as idempotent (I2 = I) operators Pα
m,m=|αm〉〈αm| seen in Equation (52).

Unlike a commutative algebra of Cn idempotents, which are shown in Equation (54) and uniquely
defined by Equation (59), a non-Abelian algebra yields a panopoly of equivalent choices of P operators
that resolve it. The number and types of these P’s is uniquely determined by size and structure of certain
key commuting sub-algebras. The key to symmetry analysis of quantum physics is to first sort out the
operators and algebras that commute from those that do not. It amounts to a kind of symmetry analysis
of symmetry and leads to a far greater diversity than is found in commutative Abelian systems.

6.2.1. Sorting Commuting Subalgebras: Rank and Commuting Observables

The rank ρ(G) of a G-algebra is the maximal number of mutually-commuting operators available
by linearly combining the oG operators gk of symmetry group G. ρ(G) is also the greatest number of
orthogonal idempotents Pm that can resolve the G-identity 1 as in Equation (53). (oG is total number
or order of G. Here oD3 and oC6 both equal 6.)
C6 rank is obviously equal to its order (ρ(C6) = 6), but the rank of D3 turns out to be only four

(ρ(D3) = 4). As shown below, D3 can have no more than four P-operators that mutually commute
though there exist quite different sets of them. On the other hand, D3 has just three linearly independent
Pα-operators that commute with all of D3, and there is but one invariant set of them just as there is but
one set of P(m) for C6 in Equation (59).
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Rank is a key quantum concept since it is the total number of commuting observables, the operators
that label and define eigenstates. Of primary importance are G-invariant labeling operators IG that
commute with all g and not just with other labeling operators. IG are uniquely defined within their
group G and invariant to all g. (gIGg−1=IG) For example, total angular momentum J2 and e-values
J(J + 1) are R(3)-invariant .

Next in importance are labeling operators [IHn−1 , IHn−2 , ..., IH1 ] belonging to nested subgroups of
G=Hn in a subgroup chain G⊃Hn−1⊃Hn−2⊃...H1. Multiple choices of chains exists since each
subgroup link Hk is not uniquely determined by the Hk+1 that contains it, but each IHk is invariant
to all possible Hj≤k at level-k or below.

For example, the z-axial momentum Jz and its e-values mz belong to a 2nd link in
chain-R(3)⊃R(2z)⊃C6(z). Given R(3) there are an infinity of R(2) subgroups besides the one for
z-axis of quantization. Jx or Jy are just two of an infinite number of possible alternatives to Jz. Each
R(2ζ) has an infinite number of cyclic Cn(ζ) sub-subgroups.

6.2.2. Sorting Commuting Subalgebras: Centrum and Class Invariants

The centrum κ(G) of aG-algebra is the number of all-commuting operators available by combining
gk. It is also the number of G-invariant Pα-operators. Students of group theory know κ(G) as the
number of equivalence classes of group G. D3 elements in Figure 16 are separated into three classes of
elements [1],[r1, r2], and [i1, i2, i3]. (κ(D3) = 3)

Elements in each class are related through transformation g1=gtg2g
−1
t by gt in group G. Sum κk of

ock elements in gk’s class is invariant to gt transformation. (It only permutes gk-terms in κk thus κk
commutes with all gt in G.)

gtκkg
−1
t = κk where: κk =

j=ock∑

j=1

gj = 1/osk

t=oG∑

t=1

gtgkg
−1
t (72)

The product table for D3 class algebra [κ1 = 1 , κ2 = r1 + r2 , κ3 = i1 + i2 + i3] in Equation (73)
below follows by inspecting D3 group product tables in Figure 16 or Equation (68). It is a commutative
algebra since each κj commutes with each κk as well as with each gt. This guarantees a class algebra
has a unique and invariant spectral resolution.

1 r1 r2 i1 i2 i3

r2 1 r1 i2 i3 i1

r1 r2 1 i3 i1 i2

i1 i2 i3 1 r1 r2

i2 i3 i1 r2 1 r1

i3 i1 i2 r1 r2 1

→
κ1 = 1 κ2 = r1 + r2 κ3 = i1 + i2 + i3

κ2 2κ1 + κ2 2κ3

κ3 2κ3 3κ1 + 3κ2

(73)

The first sum in Equation (72) is over the ock elements in gk’s class. (ock is order of κk.) The second
sum is over all oG group elements. The number of elements gt that commute with gk is osk, the order
of gk’s self-symmetry sk. Each group operator gk has a self-symmetry group consisting of (at least) the
identity 1 and powers (gk)

p of itself. The order of class-k is the (integer) fraction ock=oG/osk.
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6.2.3. Resolving All-commuting Class Subalgebra: Centrum=κ(D3) = 3

Spectral resolution gives class-sum operators κ1, κ2, and κ3 as combinations of three D3-invariant
Pα-operators with each of the κk eigenvalues as coefficients. The κ3 characteristic equation found by
Equation (73) gives three Pα directly.

0 = κ3
3 − 9κ3 = (κ3 − 3 · 1)(κ3 + 3 · 1)(κ3 + 0 · 1)

= (κ3 − 3 · 1)PA1 = (κ3 + 3 · 1)PA2 = (κ3 − 0 · 1)PE (74)

Standard notation A1, A2, and E is used for the three invariant idempotents Pα.

κ1 = 1 ·PA1 + 1 ·PA2 + 1 ·PE

κ2 = 2 ·PA1 − 2 ·PA2 − 1 ·PE

κ3 = 3 ·PA1 − 3 ·PA2 + 0 ·PE

PA1 = ( κ1 + κ2 + κ3)/6

PA2 = ( κ1 + κ2 − κ3)/6

PE = (2κ1 − κ2)/3

= ( 1 + r1 + r2 + i1 + i2 + i3)/6

= ( 1 + r1 + r2 − i1 − i2 − i3)/6

= (21− r1 − r2)/3

(75)

Traces of D3 matrices (gk) in Equation (69a) are zero excepting Trace(1) = 6. Traces of (Pα) then
follow.

tracePA1 = 1, tracePA2 = 1, tracePE = 4 (76)

This means (PA1) and (PA2) are each 1-by-1 projectors while (PE) splits into two 2-by-2 projectors.
The latter splitting is not uniquely defined until subgroup chain D3⊃C3 or a particular D3⊃C2 chain is
chosen, but relations in Equation (75) are invariant and unique. The κk coefficients inside parentheses
of Pα expansion give the D3 character table for traces of irreducible representations (irreps). Irrep
dimension `α is trace of the αth-irrep of identity g1 = 1.

D3 κ1 κ2 κ3

A1 1 1 1

A2 1 1 −1

E 2 −1 0

χαk = TraceDα(gk), `α = χα1 = TraceDα(1) (77)

6.2.4. Resolving Maximal Mutually Commuting Subalgebra: rank = ρ(D3) = 4

Completing resolution of D3 uses a product of two completeness relations, the resolution of class
identity κ1 = 1 in Equation (75) with the identity resolution of a D3 subgroup C3 = [1, r1, r2] or else
C2 = [1, i3]. In either case invariant PE splits but PA1 and PA2 do not. In Equation (78) PE is split by
C2 into plane-polarizing projectors PE

x,x + PE
y,y = PE

0202
+ PE

1212
.

[
D3

(
class algebra
completeness

)

1 = PA1 + PA2 + PE

]
·
[
C2

(
subgroup
completeness

)

1 = P02 + P12

]
=

[
D3

(
group
completeness

)

1 = PA1
0202

+ PA2
1212

+ PE
0202

+ PE
1212

]

where :

PA1 = PA1
0202

= ( 1 + r1 + r2 + i1 + i2 + i3)/6 = PA1P02

PA2 = PA2
1212

= ( 1 + r1 + r2 − i1 − i2 − i3)/6 = PA2P12

PE
x,x = PE

0202
= (21 − r1 − r2 − i1 − i2 + 2i3)/6 = PEP02

PE
y,y = PE

1212
= (21 − r1 − r2 + i1 + i2 − 2i3)/6 = PEP12

(All other

PαPm2 = 0)

(78)
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In Equation (79) PE is split by C3 into Right and Left circular-polarized projectors
PE
R,R+PE

L,L=PE
1313

+PE
2323

.

[
D3

(
class algebra
completeness

)

1 = PA1 + PA2 + PE

]
·
[

C3

(
subgroup
completeness

)

1 = P03 + P13 + P23

]
=

[
D3

(
group
completeness

)

1 = PA1
0303

+ PA2
0303

+ PE
1313

+ PE
2323

]

where :

PA1 = PA1
0303

= ( 1 + r1 + r2 + i1 + i2 + i3)/6 = PA1P03

PA2 = PA2
0303

= ( 1 + r1 + r2 − i1 − i2 − i3)/6 = PA2P03

PE
R,R = PE

1313
= ( 1 + ε r1 + ε∗r2 )/3 = PEP13

PE
L,L = PE

2323
= ( 1 + ε∗r1 + ε r2 )/3 = PEP23

(All other

PαPm3 = 0)

ε= ei 2π/3

(79)

In Equations (78) and (79), neither PA1 nor PA2 split or change except to acquire some C2 or C3

labels. The total number (four) of irreducible idempotents after either complete splitting is the same
group rank noted before: ρ(D3)=4. But, the RL-circularly polarized pairs PE

R,R and PE
L,L split-out by

C3=[1, r1, r2] differ from the linear xy-polarized pairs PE
x,x and PE

y,y split-out by C2=[1, i3]. PE
x,x and

PE
y,y are, respectively, parallel (symmetric i3P

E
x =+PE

x ) and anti-parallel (anti-symmetric i3P
E
y =−PE

y )
to x-axial 180o rotation i3 in Figure 16 and will be used in examples.

6.2.5. Final Resolutions of Non-Commuting Algebra: o(D3) = 6

Mutually commuting algebras resolve into (I2 = I) operators Pα
m,m=|αm〉〈αm| that sum to identity

operator 1. They are split using the “one-equals-one-times-one” (1=1·1) trick in Equations (78) and (79).
Non-commuting algebras resolve into idempotents and nilpotent (N2 = 0) operators Pα

m,n=|αm〉〈αn|
that are split out using the following “operator-equals-one-times-operator-times-one” (g=1·g·1) trick. It
is only necessary that 1 be resolved into rank-number ρ of irreducible idempotents as in Equation (78)
or (79). (Here ρ(D3) = 4.)

g = 1 · g · 1 = (PA1
x,x + PA2

y,y + PE
x,x + PE

y,y) · g · (PA1
x,x + PA2

y,y + PE
x,x + PE

y,y) (80)

The product in Equation (80) could have sixteen terms, but only six survive due to idempotent
orthogonality Pα

j,jP
β
k,k = δα,βδj,kP

α
j,j , and the fact that both PA1 and PA2 remain invariant and commute

with all Pα
j,j and all g.

g = PA1 · g ·PA1 + PA2 · g ·PA2 + PE
x,x · g ·PE

x,x + PE
x,x · g ·PE

y,y

+PE
y,y · g ·PE

x,x + PE
y,y · g ·PE

y,y

(81)

This reduces to a non-Abelian spectral resolution of D3 that generalizes resolution Equation (52)
of Abelian C6 and includes two nilpotent projectors Pα

j,k multiplied by off-diagonal irrep matrix
components Dα

j,k as well as the four idempotents Pα
j,j with their diagonal irrep matrix coefficients Dα

j,j

that are not altogether unlike the D(m)(rp)P(m) terms in Equation (52). ( Now X has matrix indices
(Xj,k).)

g =
∑

irreps (α)

`α∑

j=1

`α∑

k=1

Dα
j,k(g)Pα

j,k (82a)
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g = DA1(g)PA1 +DA2(g)PA2 +DE
x,x(g)PE

x,x +DE
x,y(g)PE

x,y

+DE
y,x(g)PE

y,x +DE
y,y(g)PE

y,y (82b)

where :Pα
j,j · g ·Pα

j,j = Dα
j,j(g)Pα

j,j Pα
j,j · g ·Pα

k,k = Dα
j,k(g)Pα

j,k

Terms (1/n)D(m)∗(rp)rp in Equation (59) of P(m) of Cn in Equation (52) generalize here to Pα
j,k and

invert Equation (82a) to Equation (83).

Pα
j,k = (`α/oG)

oG∑

g=1

Dα∗
j,k(g)g (83)

D3 resolution in Equation (82b) has two irreps DA1 and DA2 of dimension `A1=1=`A2 and a third irrep
DE of dimension `E=2 as noted in the first column of the character array in Equation (77). The irrep
dimensions are related to the centrum κ(D3)=3, rank ρ(D3)=4, and order oD3=6. The following power
sums of `α apply to any finite group G.

G− centrum : κ(G) =
∑

irrep(α)

(`α)0 = Number of classes, invariants, or irrep types

G− rank : ρ(G) =
∑

irrep(α)

(`α)1 = Number of mutually commuting observables

G− order : o(G) =
∑

irrep(α)

(`α)2 = Number of symmetry operators

(84)

6.3. Spectral Resolution of Dual Groups D3 and D̄3

Spectral resolution shown in Equations (82a) and (83) of non-Abelian group G reduce g·h-product
tables in Equation (68) to P -projector algebra.

Pα
jkP

β
j′k′ = δαβδkj′P

α
jk′ (85)

Product tables in Equation (86) for D3 projectors Pα
jk generalize the C6 idempotent table in

Equation (54). Non-commutativity entails a pair of tables like the g†g form and gg†-forms in
Equation (68) for “lab” g and “body” ḡ operators. Tables in Equation (68) differ by switching conjugate
pair r1 and r2 on side and top.(r1† = r2) The rest are self conjugate. (i†1=i1, etc.) Similarly, tables
in Equation (86) differ by switching conjugate nilpotent pair PE

xy and PE
yx. (PE†

xy=PE
yx) The rest are

self-conjugate. (Pα†
jj =Pα

jj)
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p†p
form PA1

xx PA2
yy PE1

xx PE1
xy PE1

yx PE1
yy

PA1
xx PA1

xx · · · · ·
PA2
yy · PA2

yy · · · ·
PE1
xx · · PE1

xx PE1
xy · ·

PE1
yx · · PE1

yx PE1
yy · ·

PE1
xy · · · · PE1

xx PE1
xy

PE1
yy · · · · PE1

yx PE1
yy

pp†

form PA1
xx PA2

yy PE1
xx PE1

yx PE1
xy PE1

yy

PA1
xx PA1

xx · · · · ·
PA2
yy · PA2

yy · · · ·
PE1
xx · · PE1

xx · PE1
xy ·

PE1
xy · · · PE1

xx · PE1
xy

PE1
yx · · PE1

yx · PE1
yy ·

PE1
yy · · · PE1

yx · PE1
yy

(86)

The p†p and pp† tables in Equation (86) give commuting representations of projector Pα
jk just as g†g

and gg† tables in Equation (68) give commuting (g)G-matrices in Equation (69a). Wherever Pα
jk appears

in a table, a “1” is put in its (p)-matrix. Putting “Dα
jk(g)” at each Pα

jk spot instead gives the following
p†p-representation (g)P of g since it is a sum of Dα

jk(g)Pα
jk in Equation (82a).

(g)P = T (g)G T
† =∣∣PA1

xx

〉 ∣∣PA2
yy

〉 ∣∣PE1
xx

〉 ∣∣PE1
yx

〉 ∣∣PE1
xy

〉 ∣∣PE1
yy

〉



DA1(g) · · · · ·
· DA2(g) · · · ·
· · D

E1

xx(g) D
E1

xy (g) · ·
· · D

E1

yx (g) D
E1

yy (g) · ·
· · · · D

E1

xx(g) D
E1

xy (g)

· · · · D
E1

yx (g) D
E1

yy (g)




(87)

Conjugate pp†-representation (ḡ)P of ḡ has complex conjugate “Dα∗
jk (g)” put at each Pα

jk spot. The
matrices in Equations (87) and (88) are transformations (g)P = T (g)GT

† and (ḡ)P = T (ḡ)GT
† of the

respective matrices in Equations (69a) and (69b) by transformation T composed of Dα
jk(g) components.

The C6 analogy is Fourier transform Equation (51) from Equation (48) to Equation (54).
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(ḡ)P = T (ḡ)G T
† =∣∣PA1

xx

〉 ∣∣PA2
yy

〉 ∣∣PE1
xx

〉 ∣∣PE1
yx

〉 ∣∣PE1
xy

〉 ∣∣PE1
yy

〉



DA1∗(g) · · · · ·
· DA2∗(g) · · · ·
· · D

E1∗
xx (g) · D

E1∗
xy (g) ·

· · · D
E1∗
xx (g) · D

E1∗
xy (g)

· · D
E1∗
yx (g) · D

E1∗
yy (g) ·

· · · D
E1∗
yx (g) · D

E1∗
yy (g)




(88)

Matrices ...(r̄2)P , (̄i1)P , ... defined by Equation (88) commute with every ...(r2)P , (i1)P , ... defined by
Equation (87) while each represents identical non-commutative D3 product tables in Equation (68).
Both use real [x, y]-based i3-diagonal irreps Dα

jk(g) given below.

g = 1 r r2 i1 i2 i3

DA1 (g) = 1 1 1 1 1 1

DA2 (g) = 1 1 1 −1 −1 −1

DE
xx xy
yx yy

(g) =

(
1 ·
· 1

) (
−1
2

−
√

3
2√

3
2

−1
2

) (
−1
2

√
3

2
−
√

3
2

−1
2

) (
−1
2

−
√

3
2

−
√

3
2

1
2

) (
−1
2

√
3

2√
3

2
1
2

) (
1 ·
· −1

)

(89)

Appendix-A describes elementary derivation and visualization of Dα
jk(g) and their projectors Pα

jk(g).

6.4. Spectral Resolution of D3 Hamiltonian

Hamiltonian H-matrix in Equation (71) has six parameters [r0, r1, r2, i1, i2, i3] or coefficients of its
expansion Equation (70) in terms of intrinsic D̄3 operators [1 = r̄0, r̄1, r̄2, ī1, ī2, ī3]. The parameters are
indicated in Figure 17 by tunneling paths between the first D3 base state |1〉 and other D3-defined base
states |g〉 = g|1〉 representing potential minima.

Figure 17. D3-operator defined states and tunneling paths.
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The resolution of H-matrix then follows that of ḡ and (ḡ)P -matrices. Any reduction of all
(ḡ)P -matrices, such as the [x, y]-reduction in Equation (88), also reduces the (H)P -matrix accordingly.
Row-1 of (HP ) in Equation (71) has all six parameters.

H
α

ab =

◦G∑

g=1

〈1|H |g〉Dα∗

ab (g) =

◦G∑

g=1

rgD
α∗

ab (g) (90)

If the P -nilpotent pair are switched to ...PE
xy, PE

yx.., then (H)P and all (ḡ)P (instead of all (g)P as in
Equation (87)) are diagonal with eigenvalues HA1 and HA2 or block-diagonal with a pair of identical
2-by-2 HE-blocks.

∣∣PA1
xx

〉 ∣∣PA2
yy

〉 ∣∣PE1
xx

〉 ∣∣PE1
xy

〉 ∣∣PE1
yx

〉 ∣∣PE1
yy

〉

(H)P = T̄ (H)G T̄
† =




HA1 · · · · ·
· HA2 · · · ·
· · H

E

xx H
E

xy · ·
· · H

E

yx H
E

yy · ·
· · · · H

E

xx H
E

xy

· · · · H
E

yx H
E

yy




(91)

The H-block matrix components follow by combining Equation (89) with Equation (90).

HA1 =r0D
A1∗(1) + r1D

A1∗(r1) + r∗1D
A1∗(r2) + i1D

A1∗(i1) + i2D
A1∗(i2)

+ i3D
A1∗(i3)=r0+r1+r∗1+i1+i2+i3

HA2 =r0D
A2∗(1) + r1D

A2∗(r1) + r∗1D
A2∗(r2) + i1D

A2∗(i1) + i2D
A2∗(i2)

+ i3D
A2∗(i3)=r0+r1+r∗1−i1−i2−i3

H
E

xx =r0D
E∗

xx(1) + r1D
E∗

xx(r1) + r∗1D
E∗

xx(r2) + i1D
E∗

xx(i1) + i2D
E∗

xx(i2) + i3D
E∗

xx(i3)

=(2r0−r1−r∗1−i1−i2+2i3)/2

H
E

xy =r0D
E∗

xy (1) + r1D
E∗

xy (r1) + r∗1D
E∗

xy (r2) + i1D
E∗

xy (i1) + i2D
E∗

xy (i2) + i3D
E∗

xy (i3)

=
√

3(−r1+r∗1−i1+i2)/2=HE∗
yx

H
E

yy =r0D
E∗

yy (1) + r1D
E∗

yy (r1) + r∗1D
E∗

yy (r2) + i1D
E∗

yy (i1) + i2D
E∗

yy (i2) + i3D
E∗

yy (i3)

=(2r0−r1−r∗1+i1+i2−2i3)/2 (92)

Irrep-dimension `E = 2 implies (at least) 2-fold degenerate E-level since eigenvalues of identical
HE-blocks must also be identical, but only certain parameter values give diagonal HE-blocks in
Equation (92), i.e., real r1 = r∗2 and equal i1 = i2.

(
H

E

xx H
E

xy

H
E

yx H
E

yy

)
= 1

2

(
2r0−r1−r∗1−i1−i2+2i3

√
3(−r1+r∗1−i1+i2)√

3(−r∗1+r1−i1+i2) 2r0−r1−r∗1+i1+i2−2i3

)

=

(
r0−r1−i12+i3 0

0 r0−r1+i12−i3

)

For: r1=r∗1 and: i1=i12=i2

(93)

These are the values that respect the localD3 ⊃ C2[1, i3] subgroup chain symmetry that gave (x, y)-plane
polarized splitting in Equation (78). This is broken by a complex r1 or by unequal i1 and i2. Complex
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r1 = |r|eiφ gives rise to complex rotating-wave eigenstates similar to ones in Figure 15 but, unlike that
ZB1 model, cannot split E-degeneracy. Unequal i1 and i2 shift standing-wave nodes but cannot split
E-doublets either. E-levels may split if H contains external or lab-based operators g in addition to its
internal or body-based ḡ, but it thereby loses its D3 symmetry.

6.5. Global-Lab-Relative G versus Local-Body-Relative Ḡ Base State Definition

Non-Abelian symmetry analysis in general, and the present example of D3 resolution in particular,
involves a dual-group relativity between an extrinsic or global “lab-based” group G=D3 on one hand,
and an intrinsic or local “body-based” group Ḡ=D̄3 on the other hand. Each ḡ in Ḡ commutes with
each g in G.

In the present example, the global “lab-based” group G=D3=[1, r1, r2, i1, i2, i3] labels equivalent
locations in a potential or lab-based field and is a reference frame for an excitation wave or “body”
occupying lab locations.

On the other hand, the local “bod-based” group Ḡ=D̄3=[1, r̄1, r̄2, ī1, ī2, ī3] regards the excitation
wave as a reference frame to define relative location of the potential or laboratory field.

Quantum waves provide the most precise space-time reference frames that are possible in any situation
due to the ultra-sensitive nature of wave interferometry. This is the case for optical coherent waves or
electronic and nuclear matter waves. The latter derive their space-time symmetry properties from the
former, and these are deep classical and quantum mechanical rules of engagement for currently accepted
Hamiltonian quantum theory.

Interference of two waves depends only on relative position as reflected in the following equivalent
definitions of base kets for waves in a D3 potential of Figure 16 with six localized wave bases
[|1〉, |r1〉, |r2〉, |i1〉, |i2〉, |i3〉] in Figure 17. (We call this the “Mock-Mach Principle” of wave relativity.)

|gk〉 = gk|1〉 = ḡ−1
k |1〉 (94)

Key to this definition is the independence and mutual commutation of dual sets Equation (69a)
and (69b).

gjḡk = ḡkgj (95)

Neither relation makes sense if we were to equate gk with ḡ−1
k . The effect of gk is equal to that of ḡ−1

k

only when acting on the origin-state |1〉. The action of global i2 in Figure 18a is compared with local ī2

in Figure 18b that gives the same relative position of wave and wells. In Figure 18c product ī1ī2=r̄ has
the same action as i2i1=r−1=r2 on |1〉.
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Figure 18. D3-operators compared (a) Global i2; (b) Local ī2; (c) ī2 followed by ī1.

Different points of view show how “body” ḡ operations relate to the “lab” g. Starting from state |1〉,
r̄1=r̄ rotates lab potential clockwise (−120o) in a view where the body “stays put”. The body wave ends
up in the same well as it would if, instead, the body rotates counter-clockwise (+120o) by r=r1 in a lab
frame that “stays put.”

In a lab view, effects of body operation ḡk and lab operation g−1
k on |1〉 are the same except that ḡ−1

k

also moves each body operation ḡj in the same way to ḡkḡjḡ
−1
k . The lab view of a lab operation gk does

not see any of lab gj axes change location. The following generalization of lab-body relativity relation
Equation (94) using Equation (95) shows how ḡj affects arbitrary |gk〉.

ḡ−1
j |gk〉 = ḡ−1

j gk|1〉 = gkḡ
−1
j |1〉

= gkgj|1〉 = gkgjg
−1
k gk|1〉 = gkgjg

−1
k |gk〉 (96)

6.6. Global versus Local Eigenstate Symmetry

Applying projector Pα
jk in Equation (83) to origin ket |1〉 gives a local-global symmetry-defined ket

|αjk〉.

|αjk〉 = Pα
jk|1〉

√
oG/`α =

√
`α/oG

oG∑

g=1

Dα∗
j,k(g) |g〉 (97)
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The norm-factor N=oG/`α is a non-Abelian generalization of the integral norm N for Abelian CN

eigenket projection in Equation (61). Interestingly, the non-Abelian norm is also an integer since irrep
dimension `α is always a factor of its group’s order oG.

A non-Abelian projection ket in Equation (97) has two independent symmetry labels j and k

belonging to global-lab symmetry operators g and local-body operators ḡ, respectively. Application
of g-resolution Equation (82a) to ket Equation (97) is reduced by P-product rules in Equation (85) to
the following global transformation.

g
∣∣α
j k

〉
= gPα

j k |1〉
√
N

=
`α∑
j′=1

`α∑
k′=1

Dµ
j′ k′ (g) Pα

j′ k′P
α
j k |1〉

√
N =

`α∑
j′=1

Dα
j′ j (g) Pα

j′ k |1〉
√
N

=
`α∑
j′=1

Dα
j′ j (g)

∣∣α
j′ k

〉
(98)

The corresponding local operator ḡ first commutes through Pα
jk according to Equation (95) and is

converted by Equation (94) to inverse global g−1 on the right of Pα
jk using Equation (82a) again. Finally,

unitary irreps Dα(g−1) = Dα†(g) are assumed.

ḡ
∣∣α
j k

〉
= ḡPα

j k |1〉
√
N = Pα

j kḡ |1〉
√
N = Pα

j kg
−1 |1〉

√
N

=
`α∑
j′=1

`α∑
k′=1

Dµ
j′ k′ (g

−1) Pα
j kP

α
j′ k′ |1〉

√
N =

`α∑
j′=1

Dα
kk′ (g

−1) Pα
j k′ |1〉

√
N

=
`α∑
j′=1

Dα
kk′ (g

−1)
∣∣α
j k′

〉
=

`α∑
j′=1

Dα∗
k′ k (g)

∣∣α
j k′

〉
(99)

A summary of the results is consistent with the block matrix forms in Equations (87) and (88).

〈
α
j′ k

∣∣g
∣∣α
j k

〉
= Dα

j′ j (g) ,
〈
α
j k′

∣∣ ḡ
∣∣α
j k

〉
= Dα∗

k′ k (g) (100)

Choice of subgroup C2 = [1, i3] in Equation (78) leads to (x, y)-polarized states (m)2 labeled by their i3

eigenvalues (−1)m.

〈
α
j′ k

∣∣ i3
∣∣α
j k

〉
=Dα

j′ j (i3) ,
〈
α
j k′

∣∣ ī3
∣∣α
j k

〉
= Dα∗

k′ k (i3) .

=δj′ j

{
+1for :j=x

−1for :j=y
, =δk′ k

{
+1for :k=x

−1for :k=y

(101)

Physical significance of these global-(j) and local-(k) values are now discussed using Figure 19.
Wherever the global j is x or i3-symmetric (02), then the entire wave is symmetric to x-axial rotation

by π in Figure 19a or horizontal reflection through the middle square-well in Figure 19b. Similarly,
wherever the global j is y or i3-antisymmetric (12), that is seen for each overall figure, too.

However, if the local k is x or i3-symmetric (02), the local wave in each well has no node and is
symmetric to its local axis of rotation by π in Figure 19a or horizontal reflection of each square-well in
Figure 19b. Similarly, wherever the local k is y or i3-antisymmetric (12), that antisymmetry and one
node is seen in each well, too.

Local and global symmetry clash along the i3-axis for states projected by nilpotent Pα
xy or Pα

yx. The
result is the x-axial wave nodes indicated by pairs of arrows in Figure 19. The |Eyx〉 wave in the lower
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right of Figure 19b appears quite suppressed on the i3-axis. However, the simulation of the |Exy〉 in the
upper left seems to have its “node” coming unglued.

Figure 19. D3-symmetry waves (a) Sketch of projection; (b) 3-Well wave simulation
(Compare with Figure 20).

The “unglued” level ωExy is higher than ωEyx and enjoys more tunneling. If tunneling increases so do
parameters such as r1 and r2 in Equation (92) that do not respect x-axial local subgroupC2 = [1, i3]. This
breaks x-axial nodes and i3 local symmetry causing E-modes to be less C2-local and more like current-
carrying above-barrier C3-local waves rotating on r-paths. D3 correlation arrays in Equation (102) with
C2 or C3 indicate level cluster structure for extremes of each case.

D3 ⊃ C2 02 12

A1 1 ·
A2 · 1

E 1 1

D3 ⊃ C3 03 13 23

A1 1 · ·
A2 1 · ·
E · 1 1

(102)

Column 02 of array D3 ⊃ C2 in Equation (102) correlates to A1 and E. The lower (A1, E)-level
cluster in Figure 19 has 02 local symmetry and lies below cluster-(A2, E) that has local 12 symmetry
according to the 12 column of Equation (102). Column 03 of table D3 ⊃ C3 indicates that A1 and A2

levels cluster under extreme C3 localization, but columns 13 and 23 indicate that each E doublet level is
unclustered under C3 with no extra degeneracy beyond its own (`E = 2).

A classical analog of quantum waves states in Figure 19 is displayed in Figure 20 in the form
of vibrational modes for an X3 molecule. A detailed description of this analogy in Appendix A
includes modes of various local symmetry combinations analogous to those introduced above and in
Sections 6.7.1 and 6.7.2 below.
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Figure 20. D3⊃C2(i3)-local symmetry modes of X3 molecule (Compare with Figure 19).

6.7. Symmetry Correlation and Frobenius Reciprocity

The mathematical basis of correlation arrays in Equation (102) is a Frobenius reciprocity relation that
exists between irreps of a group and its subgroups. This may be clarified by appealing to the physics of
Pα
jk-projected states |αjk〉 such as are displayed in Figure 19 and by exploiting the duality between their

local and global symmetry and subgroups.
D3-symmetric Hamiltonian H in (71) is made only of local ḡ that couple |αjk〉-states through local

k-indices by Equation (100) but leave all `α values of global j-indices unchanged. Thus α-eigenstates
of H mix k-values to form `α-fold degenerate levels labeled by j-indices. (Recall `E = 2 equal
sub-matrices Equation (93) in (91).) Further degeneracy or near-degeneracy (“clustering”) occurs if
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inter-and-intra local tunneling coefficients decrease exponentially with quantum numbers thus isolating
equivalent local modes into nearly degenerate sets of “spontaneously” broken local symmetry.

In contrast to this clustering or “un-splitting” associated with local ḡ symmetry operators, global g are
associated with external or “applied” symmetry reduction that causes level splitting. Adding global gm

to a Hamiltonian H reduces its G-symmetry to a self-symmetry subgroup K=sm consisting of operators
that commute with gm. Adding a combination of gm and gn reducesK to an even smaller self-symmetry
intersection group sm ∩ sn.

Global g couple |αjk〉-states through global j-indices according to Equation (98). The more global
perturbations are added to a Hamiltonian H the more likely it is to split `α-fold j-degeneracy (for `α ≥ 2)
and/or linebreak alter eigenfunctions.

6.7.1. Global “Applied” Symmetry Reduction, Subduction, and Level Splitting

In the G=D3 example, adding matrix (r1) from Equation (69a) to (H) in Equation (71) reduces its
symmetry to K=C3=[1, r1, r2], and adding (i3) reduces it to K=C2=[1, i3]. Adding a combination of (r1)
and (i3) completely reduces (H)-symmetry to intersection C3∩C2=C1=[1], which corresponds to having
no global symmetry.

By reducing G to a subgroup K⊂G, each G-labeled α-level becomes relabeled by that subgroup K
and split (if `α ≥ 2) in precisely the way that central G-idempotent Pα is relabeled and/or split by unit
resolution shown in Equation (78) or (79). The splitting in Equation (79) of D3 idempotent PE into
C3-labeled PE

1313
plus PE

2323
implies the D3 doublet level ωE splits into C3-labeled singlets ω13 and ω23 .

Both D3 singlets A1 and A2 end up relabeled with C3 scalar 03 labels.

D3 ⊃ C3 Pαrelabel/split Dαrelabel/reduce ωαrelabel/split

A1 PA1 = PA1P03 = PA1
0303

⇒ DA1 ↓ C3 ∼ D03 ⇒ ωA1 → ω03

A2 PA2 = PA2P03 = PA2
0303

⇒ DA2 ↓ C3 ∼ D03 ⇒ ωA2 → ω03

E PE = PEP13 + PEP23 ⇒ DE ↓ C3 ∼ ⇒ ωE → ω13

= PE
1313

+ PE
2323

D13 ⊕D23 ↘ ω23

(103)

Global D3⊃C2 relabeling and/or splitting is by Equation (78). Now D3 singlets have different labels 02

and 12.

D3 ⊃ C2 Pαrelabel/split Dαrelabel/reduce ωαrelabel/split

A1 PA1 = PA1P02 = PA1
0202

⇒ DA1 ↓ C2 ∼ D02 ⇒ ωA1 → ω02

A2 PA2 = PA2P12 = PA2
1212

⇒ DA2 ↓ C2 ∼ D12 ⇒ ωA2 → ω12

E PE = PEP02 + PEP12 ⇒ DE ↓ C2 ∼ ⇒ ωE → ω02

= PE
0202

+ PE
1212

D02 ⊕D12 ↘ ω12

(104)

Center portions of splitting relations in Equations (103) and (104) use subduction symbols (↓) to
denote how eachD3 irrep-Dα reduces to subgroupC3 orC2 irreps under their respective global symmetry
breaking. Earlier studies [34] have referred to these multiple subgroup splittings as multiple frameworks.
Each α-row of Equations (103) and (104) corresponds to the row α=A1, A2, or E, of correlation array
D3⊃C3 or D3⊃C2, respectively, in Equation (102).
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6.7.2. Local “Spontaneous” Symmetry Reduction, Induction, and Level Clustering

Opposite to global G⊃K symmetry irrep subduction Dα(G)↓K=...⊕da(K)⊕db(K)⊕... that
predicts level-splitting is the reverse relation of local K⊂G symmetry irrep induction

da(K)↑G=...⊕Dα(G)⊕Dβ(G)⊕... that predicts “unsplitting” or level-clustering. In the former, an
`α-dimensional irrep Dα(k) of global G-symmetry is reducible to smaller (`a ≤ `α) block-diagonal
irreps da(k) of a subgroupK. In the latter, aK irrep da is induced (actually projected) kaleidoscope-like
onto coset bases of a larger induced representation da↑G of G that is generally reducible to G irreps Dα.

Base states |k ↑αj 〉 of induced representation dk↑G are each made by aG-projector Pα
jk acting on local

dk-symmetry base state |k〉=Pk|k〉 defined by local K-projector Pk. G-projection is simpler if Pα
jk is

also based on K-projection. (It helps to stick with one framework through this!)
Of all D3⊃C2-projectors Pα

j2k2
based on Equation (78), only PA1

0202
, PE

0202
, and PE

1202
have right index

k2 = 02 . Only these can project induced states |02 ↑αj2〉 from local base state |02〉 corresponding to the
02-column of D3 ⊃ C2 array in Equation (102) having A1 and E. Similarly, A2 and E in the 12-column
of Equation (102) correspond to PA2

1212
, PE

0212
, and PE

1212
projecting states |12 ↑αj2〉 from a local |12〉

state. Each projector Pα
j2k2

in Equation (104) has a C2-subgroup projector Pk2 “right-guarding” the side
facing each local `2-ket |`2〉 = P`2|`2〉 that is similarly “guarded” by its own defining projector P`2 .
C2-subgroup projector orthogonality then allows only k2=`2, giving the projection selection rules just
described.

Pα
j2k2
|`2〉 = Pα

j2k2
Pk2P`2|`2〉 = δk2`2Pα

j2`2
|`2〉 = δk2`2|`2 ↑αj2〉 (105)

Each “right guard” projector Pk of Pα
jk is part of a G⊃K subgroup splitting or subduction splitting

Dα(G)↓K=...⊕dk(K)⊕... as shown by D3↓C2 examples in Equation (104). (These go back to the
original D3⊃C2 subgroup chain resolution in Equation (78).) In Equation (105) each Pk selects which
α-type induced bases |k ↑αj 〉 and block-diagonal α-irreps can appear in a k-induced representation
dk(K)↑G=...⊕Dα(G)⊕..., and it implies a duality between induced (↑) level-clustering and subduced
(↓) level-splitting as stated by the following Frobenius reciprocity relation.

Number of Dα in dk(K) ↑ G = Number of dk in Dα(G) ↓ K (106)

The numbers on the left-hand side of Equation (106) would reside in the kth-column of a
G⊃K-correlation array such as in Equation (102) while the numbers on the right-hand side of Equation
(106) would reside in the αth-row of the same array. The examples in Equation (102) have only ones
{1} and zeros {·}. A deeper correlation D3⊃C1 to C1 symmetry, i.e., to no symmetry is a conflation of
either the array D3⊃C2 or the array D3⊃C3 in Equation (102) since C1=C2∩C3 is the intersection of C2

and C3.

D3 ⊃ C1 01 = 11

A1 1

A2 1

E 2

(107)

C1 local symmetry base |01〉=|11〉 is the |1〉 in Figure 18 that contains scalar A1, pseudo-scalar A2,
and two E wave states in Figure 19 consistent with a single column of D3⊃C1 correlation array in
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Equation (107). This column describes induced representation D01 (C1) ↑ D3, also known as a regular
representation of D3.

Reciprocity in Equation (106) also holds for non-Abelian subgroup irreps dk. D3 is the smallest
non-Abelian group so it has no such subgroups, but octahedral symmetry has non-Abelian D3 and D4

subgroups that figure in its splitting and clustering that are described in later Section 7.

6.7.3. Coset Structure and Factored Eigensolutions

Three pairs of kets in Figure 17 relate to left cosets [1C2 = (1, i3), rC2 = (r1, i2), r2C2 = (r2, i1)]
one at each site.

[(|1〉, |i3〉), (|r1〉, |i2〉) = r1(|1〉, |i3〉), (|r2〉, |i1〉) = r2(|1〉, |i3〉)] (108)

Conjugate bras 〈g|=〈1|g†relate to right cosets [C2=(1, i3), C2r
2=(r2, i2), C2r=(r, i1)], again, one per

C2-well site.

[(〈1|, 〈i3|), (〈r1|, 〈i2|) = (〈1|, 〈i3|)r2, (〈r2|, 〈i1|) = (〈1|, 〈i3|)r1] (109)

C2 projectors P02=1
2(1+i3)=Px and P12=1

2(1-i3)=Py split bra 〈g| into ±-sum of bras mapped by left
coset g†C2.

[
〈1| Pm2 =1

2 (〈1| ± 〈i3|),
〈
r1
∣∣ Pm2 =1

2 (
〈
r1
∣∣ ± 〈i2|),

〈
r2
∣∣ Pm2 =1

2 (
〈
r2
∣∣ ± 〈i1|)

]
(110)

The same projectors split ket |g〉 into bases Pm2|g〉 that are ±-sum of kets mapped by right coset C2g.

[
Pm2 |1〉 =1

2 (|1〉 ± |i3〉), Pm2
∣∣r1
〉

=1
2 (
∣∣r1
〉
± |i2〉), Pm2

∣∣r2
〉

=1
2 (
∣∣r2
〉
± |i1〉)

]
(111)

g-coefficients in H-submatrix Equation (93) track C2 cosets. Row-(bra)-x
terms in HE

x,· line up in (+)-right-coset 1g+i3g order ...(r1+i1), (r2+i2).
Row-(bra)-y terms in HE

y,· line up in (−)-right-coset 1g-i3g order
(r1-i1), (r2-i2). Column-(ket) (±)-forms HE

·,x and HE
·,y line up in left-coset order ...(r1±i2), (r2±i1).

Either ordering gives the same matrix. Off-diagonal components HE
x,y and HE

y,x have x vs. y symmetry
conflicts so coset parameters (r0 ± i3) vanish.
(
H

E

[x]x H
E

[x]y

H
E

[y]x H
E

[y]y

)
=

(
(r0 + i3)−1

2̄(r1+i1)−1
2̄(r2+i2) 0 · (r0 + i3)−

√
3

2̄
(r1+i1)+

√
3

2̄
(r2+i2)

0 · (r0 − i3) +
√

3
2̄

(r1−i1)−
√

3
2̄

(r2−i2) (r0−i3)−1
2̄(r1−i1)−1

2̄(r2−i2)

)

bra(
H

E

x[x] H
E

x[y]

H
E

y[x] H
E

y[y]

)
=

(
(r0 + i3)−1

2̄(r1+i2)−1
2̄(r2+i1) 0 · (r0−i3)−

√
3

2̄
(r1−i2)+

√
3

2̄
(r2−i1)

0 · (r0 + i3) +
√

3
2̄

(r1+i2)−
√

3
2̄

(r2+i1) (r0−i3)−1
2̄(r1−i2)−1

2̄(r2−i1)

)

ket

(112)

Kets Px|rp〉=[Px|1〉, Px|r1〉, Px|r2〉 span induced representation dx(C2)↑D3, and Py|rp〉 span
dy(C2)↑D3. Normalized states Px|rp〉

√
2 and Py|rp〉

√
2 correspond to σ-type and π-type orbitals at

vertex positions p=0, 1, or 2 in Figure 21. D3 table in Equation (68) is reordered in Equation (113)
below to display C2(i3) body-basis right-coset representation bra-defined by 〈g|=〈1|ḡ or ket-defined by
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ḡ† |1〉=|g〉. The resulting H-matrix in Equation (68) is Equation (71) reordered for cosets of C2 instead
of C3.

D3 body

gg†form
|1〉 |i3〉 =

ī3 |1〉
|r1〉 =

r̄2 |1〉
|i2〉 =

ī3r̄
2 |1〉

|r2〉 =

r̄1 |1〉
|i1〉 =

ī3r̄
1 |1〉

〈1| 1 ī3 r̄2 ī2 r̄1 ī1

〈i3| = 〈1| ī3 ī3 1 ī2 r̄2 ī1 r̄1

〈r1| = 〈1| r̄1 r̄1 ī2 1 ī1 r̄2 ī3

〈i2| = 〈1| r̄1̄i3 ī2 r̄1 ī1 1 ī3 r̄2

〈r2| = 〈1| r̄2 r̄2 ī1 r̄1 ī3 1 ī2

〈i1| = 〈1| r̄2̄i3 ī1 r̄2 ī3 r̄1 ī2 1

(113)

⇒ 〈H〉 =

|1〉 |i3〉 |r1〉 |i2〉 |r2〉 |i1〉
〈1| r0 i3 r2 i2 r1 i1

〈i3| i3 r0 i2 r2 i1 r1

〈r1| r1 i2 r0 i1 r2 i3

〈i2| i2 r1 i1 r0 i3 r2

〈r2| r2 i1 r1 i3 r0 i2

〈i1| i1 r2 i3 r1 i2 r0

Figure 21. Induced representation C2↑D3 base wave states at vertex points p = 0, 1, and 2.
(a) 02↑D3 bases Px|rp〉

√
2; (b) 12↑D3 bases Py|rp〉

√
2.

C2 ordered products in Equation (113) help reduce H-matrix in Equation (71) to a direct sum of C2

induced reps (d02⊕d12)↑D3 in Equation (114). Upper (02)-array in Equation (114) uses σ-orbital bases
|rpx〉 in Figure 21a while π-orbital bases |rpy〉 in Figure 21b span the (12)-array.
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〈H〉 =

|02 ↑0
x〉 |02 ↑1

x〉 |02 ↑2
x〉

∣∣12 ↑0
y

〉 ∣∣12 ↑1
y

〉 ∣∣12 ↑2
y

〉

〈0x| r0 + i3 r2 + i2 r1 + i1 · · ·
〈1x| r1 + i2 r0 + i1 r2 + i3 · · ·
〈2x| r2 + i1 r1 + i3 r0 + i2 · · ·〈

0
y

∣∣ · · · r0 − i3 r2 − i2 r1 − i1〈
1
y

∣∣ · · · r1 − i2 r0 − i1 r2 − i3〈
2
y

∣∣ · · · r2 − i1 r1 − i3 r0 − i2

(114)

Any group component of Equation (114) or combination thereof is a possible tunneling matrix.
Submatrices d02(g)↑D3 shown for g=r1, i1, and i3 reflect the effect of these operators on states in
Figure 21a and similarly for d12(g)↑D3 in Figure 21b.

〈
r1r̄

1
〉

= r1

· · 1 · · ·
1 · · · · ·
· 1 · · · ·
· · · · · 1

· · · 1 · ·
· · · · 1 ·

,
〈
i1̄i1
〉

= i1

· · 1 · · ·
· 1 · · · ·
1 · · · · ·
· · · · · -1
· · · · -1 ·
· · · -1 · ·

,

〈
i3̄i3
〉

= i3

1 · · · · ·
· · 1 · · ·
· 1 · · · ·
· · · -1 · ·
· · · · · -1
· · · · -1 ·

(115)

The 02 correlation in Equation (102) implies d02↑D3 reduces further to D3 irreps A1⊕E that label
the lower band of Figure 19. Meanwhile d12↑D3 reduces to irreps A2⊕E that label the upper band of
Figure 19. Equation (91) shows A1⊕A2⊕E⊕E.

7. Octahedral Symmetry Analysis

Octahedral-cubic rotational symmetry O operations are modeled in Figure 22. Rotation inversion
symmetry Oh=O×Ci operations are modeled in Figure 23. In each case the larger g-symbols (such as r̃1

on top of Figure 22) label position ket states (such as |̃r1〉=r̃1|1〉) while smaller g-symbols label axes of
rotation inO (such as i6 on top facing edge of Figure 22 labeling that 180◦ rotation) or planes of reflection
in Oh (such as the σx just above the z-axis on facing plane of Figure 23 labeling the x-plane reflection).

Figure 22 is an “O-group slide-rule” since product i6 · r̃1 can be viewed as operator i6 flipping a
wave in position |̃r1〉 onto position |Rz〉, that is, i6|̃r1〉=|Rz〉 giving product i6 · r̃1=Rz. Figure 23 is an
“Oh-group slide-rule” (that does O products, too) and just as easily gives product σx · r̃1=s̃2 all without
knowing what r̃1 or s̃2 do. (As explained below, r1 is 120◦ rotation about [111] axis and r̃1 is its inverse
located on the [1̄1̄1̄]-axis while r̃2 is on the [111̄] axis. s̃2 is r̃2 multiplied by inversion I·[111]=[1̄1̄1̄]. )
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Figure 22. O operators distributed in cosets of C4 ⊃ C2.

Note i6-transform of state |r1〉 (example: i6|r1〉=|R̃y〉) differs from an i6-transform of operator r1

(example: i6·r1·i6−1=r3
2). The latter is divined easily by “slide-rule” as i6 flips r1’s axis onto r3

2’s.
Three CartesianC4 axes of anti-clockwise 90◦ rotations Rx, Ry, and Rz define directions [100], [010],

and [001], respectively. Their inverses R̃x=R3
x, R̃y=R3

y, and R̃z=R3
z are also 90◦ rotations but around

negative axes [1̄00], [01̄0], and [001̄]. A shorthand notation for 180◦ Cartesian rotations is ρx=R2
x, ρy=R2

y,
and ρz=R2

z. Trigonal C3 axes of anti-clockwise 120◦ rotations r1, r2, r3, and r4 lie along [111], [1̄1̄1],
[1̄11], and [1̄11̄], respectively, while axes of inverses r̃1=r2

1, r̃2=r2
2, r̃3=r2

3, and r̃4=r2
4 lie along the opposite

directions [1̄1̄1̄], [111̄], [11̄1̄], and [11̄1], respectively.
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Figure 23. Oh operators distributed in cosets of C4v ⊃ C2v.

There are six C2 axes of 180◦ rotations i1, i2, i3, i4, i5, and i6 located along [101], [1̄01], [110], [1̄10],
[011], and [01̄1], respectively. This completes the five classes of O: [1], [r1..4, r̃1..4], [ρxyz], [Rxyz, R̃xyz],
and [i1..6]. Including the rotations with inversion I yields five more classes of Oh: [I], [s1..4, s̃1..4], [ρxyz],
[Sxyz, S̃xyz], and [σ1..6] where s1..4=I · r1..4, [σxyz]=[I · ρxyz], [Sxyz]=[I ·Rxyz], and [σ1..6]=[I · i1..6]. σ’s
are mirror-plane reflections in Figure 23.

The “slide-rules” in Figures 22, 23 also help evaluate class products and construct left and right
cosets of local symmetry subgroups. Three of the largest cyclic subgroups of O are tetragonal C4

such as C4=[1,Rz,R
2
z=ρz,R

3
z=R̃z] displayed on the Rz-face of the cube in Figure 22. In Figure 23

the same face displays local symmetry C4v=[1, ρz,Rz, R̃z, σ4, σx, σ3, σy] that contains C4 plus pairs of
diagonal mirror reflections [σ4=I·i4, σ3=I·i3] and Cartesian mirror reflections [σx=I·ρx, σy=I·ρy]. Each
pair [σx, σy] and [σ3, σ4] is a C4v class as is rotation pair [Rz, R̃z] or, singly, 1 and ρz. The other five
cube faces display cosets of the tetragonal subgroups C4v⊃C4 of Oh⊃O.
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Figure 22 shows six O-cosets g·C4 of C4=[1,Rz, ρz, R̃z]. Opposite ρx-face has coset
ρx·C4=[ρx, i4, ρy, i3] in that order. The r1-face shows coset r1·C4=[r1, i1, r4,Ry] in upper right of
Figure 22, and the opposite r2-face has coset r2·C4=[r2, i2, r3, R̃y]. Top and bottom faces have cosets
r̃1·C4=[̃r1, R̃x, r̃3, i6] and r̃2·C4=[̃r2,Rx, r̃4, i5].

Each g·C4-coset element g·Rp
z (p = 0..3) transforms the 1-face to the same g-face and orients it

according to a C4 element Rp
z as it permutes the list of its elements accordingly. Each face may be

labeled by any element g·Rp
z in its coset. An i-class labeling by 1, i3(or i4), i1, i2, i6, and i5 of C4 cosets

in Figure 22 is as good as any other.
Figure 23 shows six Oh-cosets of C4v (counting C4v itself) in a geometric display that also shows

eight trigonal cosets of C3v⊃C3-[111] and twelve dihedral cosets of C2v⊃C2-[101]. Figure 24 shows
three symmetry points of Figure 23 forming a triangular cell with sides that are on reflection planes.

Figure 24. Oh local symmetry (a) C4v; (b) C3v; (c) C2v.

An order-8 axial symmetry C4v lies on the tetragonal-z-[001]-axis of a cube face or octahedral vertex.
An order-6 C3v lies on the trigonal-[111]-axis of a cube vertex or octahedral face. Finally, there is
a dihedral-C2v [110]-axis of a cube or octahedral edge. Lines between the axes have bilateral local
reflection symmetry Cv(y)=[1, σy], Cv(2)=[1, σ2], or Cv(4)=[1, σ4], fundamental symmetry operations
whose products generate all others. Figure 24 is like a reduced Brillouin Zone of the Oh lattice.

Each subgroup spawns a coset space and a set of induced representations of full Oh symmetry that
generalize the C3v induced representations in Equation (115) and base kets sketched in Figure 21.
Correlation tables between O or Oh and its subgroups L⊂G tell which O or Oh irreps, states, and energy
levels arise from each coset space. As local symmetry reduces and its order ◦L decreases, the coset
dimension d=◦G/◦L grows proportionally with a corresponding increase in number of irreps and levels
in L↑G-induced representation cluster spaces. Examples are given below for G=O and in Section 8 for
G=Oh.
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7.1. Octahedral Characters and Subgroup Correlations

Spectral class resolution of O generalizes that of D3 in Equation (75) to give character array
Equation (116).

O group

χακg
g = 1

r1−4

r̃1−4

ρxyz
Rxyz

R̃xyz

i1−6

α = A1 1 1 1 1 1

A2 1 1 1 −1 −1

E 2 −1 2 0 0

T1 3 0 −1 1 −1

T2 3 0 −1 −1 1

(116)

Cyclic subgroup C4(Rp
z), C3(rp1), and C2 characters correlate toO according to arrays in Equation (117).

O ⊃ C4 04 14 24 34

A1 ↓ C4 1 · · ·
A2 ↓ C4 · · 1 ·
E ↓ C4 1 · 1 ·
T1 ↓ C4 1 1 · 1

T2 ↓ C4 · 1 1 1

O ⊃ C3 03 13 23

A1 ↓ C3 1 · ·
A2 ↓ C3 1 · ·
E ↓ C3 · 1 1

T1 ↓ C3 1 1 1

T2 ↓ C3 1 1 1

O ⊃ C2(i1) 02 12

A1 ↓ C2 1 ·
A2 ↓ C2 · 1

E ↓ C2 1 1

T1 ↓ C2 1 2

T2 ↓ C2 2 1

O ⊃ C2(ρz) 02 12

A1 ↓ C2 1 ·
A2 ↓ C2 1 ·
E ↓ C2 2 ·
T1 ↓ C2 1 2

T2 ↓ C2 1 2

(117)

Equivalent subgroup correlations O⊃H and O⊃gHg−1 share elements in the same O-classes and have
one correlation array. Thus all three C4 local symmetries have one correlation table in Equation (117),
as do all four C3 subgroups. However, O⊃C2(ρz) and O⊃C2(i1) correlations differ since i1 and ρz have
different O-class and characters in Equation (116).

Projectors Pα
jk and irreps Dα

jk of O depend on choice of local symmetry just as D3 projector splitting
in Equation (78) or (79) depends on choice of correlation D3⊃C2 in Equation (104) or D3⊃C3 in
Equation (103), respectively. Sub-labels (j, k) range over C2 values [02, 12] or else C3 values [03, 13, 23]
while a tetragonal correlation O⊃C4 will use sub-labels (j, k)= [04, 14, 24, 34].

The m4 or else m3 unambiguously defines all O states since no O⊃C4 or O⊃C3 correlation numbers
in Equation (117) exceed unity. However, O⊃C2(i1) correlations cannot distinguish all three sub-levels
of T1 or T2 wherever a number 2 appears, and the O⊃C2(ρz) correlation leaves the E sub-levels
unresolved, as well. A full Oh labeling resolves the first ambiguity as shown below, but we consider
the unambiguous O⊃C4 case first. (C4 resolves C2(ρz) ambiguities.)
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7.1.1. Resolving Commuting O⊃C4 Local Symmetry Subalgebra: Rank = ρ(O) = 10

The C4 correlation table in Equation (117) shows how invariant class projectors Pα (expanded below
in terms of O characters χακg in table shown in Equation (116)) will split into irrep projectors Pα

m4m4

when hit by C4 local symmetry projectors pm4 . The latter pm are expanded in terms of C4 operators Rp
z

weighted by character eigenvalues φm4
p = (χm4

p )∗ using Equations (57) and (59).

1 ·Pα = (p04 +p14 +p24 +p34) ·Pα

1 ·PA1 = PA1
0404

+0 +0 +0

1 ·PA2 = 0 +0 +PA2
2424

+0

1 ·PE = PE
0404

+0 +PE
2424

+0

1 ·PT1 = PT1
0404

+PT1
1414

+0 +PT1
3434

1 ·PT2 = 0 +PT2
1414

+PT2
2424

+PT2
3434

(118)

The five class projectors Pα are O-invariant and commute with all twenty-four O-operators
(1, r1, r2, ...i5, i6). So do the five class operators (κ0, κrk , κρk , κRk , κik) in which each Pα is expanded as
follows. (Recall D3 classes in Equation (75).)

Pα =
`α

◦O

5∑

k=0

χαkκk = where: α = A1, A2, E, T1, or T2

=
`α

24

[
χα0 1 + χακr(r1 + r2 + ....+ r̃4) + χακρ(ρx + ρy + ρz)

+χακR(Rx + Ry + ....+ R̃z) + χακi(i1 + i2 + ....+ i6)
]

(119)

Each of the `α irrep projectors Pα
n4n4

is obtained from its invariant Pα by product Pαpn4=pn4P
α

following Equation (118) with each of four C4 local symmetry projector pm4 .

pm4 =
3∑

p=0

e2πim·p/4

4
Rp
z =





p04 = (1 + Rz + ρz + R̃z)/4

p14 = (1 + iRz − ρz − iR̃z)/4

p24 = (1−Rz + ρz − R̃z)/4

p34 = (1− iRz − ρz + iR̃z)/4

(120)

As the five (O-centrum=5) projectors Pα split into ten (O-rank=10) sub-projectors Pα
n4n4

, the five O
class sums κg split into ten C4-invariant sub-class sums ck(k=1..10).

◦O

`α
·Pα

n4n4
=

10∑

k=0

Dα∗

n4n4
(gk)ck

where: Dα
n4n4

(gk) = Dα
n4n4

(Rp†
z gkR

p
z) (121)

The resulting ten products
◦O
`α

Pα
n4n4

are listed in Equation (122) of diagonal
irrep coefficients Dα

n4n4
(gk) in terms of twenty-four group elements gk that have

been sorted into ten sub-classes that have C4(z) local symmetry. The ten
irrep projectors Pα

n4n4
are C4 local-invariant, that is, they commute with four

C4-operators (1,Rz,R
2
z = ρz,R

3
z = R̃z) but not the whole O group like the Pα do. The ten

sub-class-sum operators ck, into which each Pα
n4n4

is expanded in Equation (122), are each individually
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invariant to Rp
z, that is Rp

zck=ckR
p
z, and Dα

n4n4
(gk) is the same for all gk in sub-class ck. Note that a

sum of `α rows belonging to Pα
n4n4

between horizontal lines in Equation (122) yields corresponding
character values χαk=traceDα(gk) in O-character array Equation (116) and effectively “unsplits” the
sub-classes.

P
(α)
n4n4(O ⊃ C4) 1 r1r2r̃3r̃4 r̃1r̃2r3r4 ρxρy ρz RxR̃xRyR̃y Rz R̃z i1i2i5i6 i3i4

24 ·PA1
0404

1 1 1 1 1 1 1 1 1 1

24 ·PA2
2424

1 1 1 1 1 −1 −1 −1 −1 −1

12 ·PE
0404

1 − 1
2̄ − 1

2̄ 1 1 − 1
2̄ 1 1 − 1

2̄ 1

12 ·PE
2424

1 − 1
2̄ − 1

2̄ 1 1 + 1
2̄ −1 −1 + 1

2̄ −1

8 ·PT1
1414

1 − i
2̄ + i

2̄ 0 −1 + 1
2̄ −i +i − 1

2̄ 0

8 ·PT1
3434

1 + i
2̄ − i

2̄ 0 −1 + 1
2̄ +i −i − 1

2̄ 0

8 ·PT1
0404

1 0 0 −1 1 0 1 1 0 −1

8 ·PT2
1414

1 + i
2̄ − i

2̄ 0 −1 − 1
2̄ −i +i + 1

2̄ 0

8 ·PT2
3434

1 − i
2̄ + i

2̄ 0 −1 − 1
2̄ +i −i + 1

2̄ 0

8 ·PT2
2424

1 0 0 −1 1 0 −1 −1 0 1

(122)

Without evaluating Equation (122), one may find ten O⊃C4 sub-classes by simply inspecting
Figure 22 for operations in each O-class that transform into each other by C4 operations Rp

z only. The
O-class of eight 120◦ rotations rk split into two sub-classes, one [r1, r2, r̃3, r̃4] whose axes intersect four
corners of the +z front square, and the other [r̃1, r̃2, r3, r4] whose axes similarly frame the −z back
square. The class of six diagonal 180◦ rotations ik split into a sub-class [i1, i2, i5, i6] whose two-sided
axes bisect edges of the ?z squares, and sub-class [i3, i4] whose axes are perpendicular to z-axis and
bisect edges of ?xy side squares. The 180◦ rotational class [ρx, ρy, ρz] splits similarly into sub-classes
[ρx, ρy] and [ρz] with axes perpendicular and along, respectively, the Rz axis. The 90◦ class splits, as
indicated in the top row of Equation (122), into a sub-class of four perpendicular xy-axial rotations and
separate sub-classes for Rz and R̃z.

The inverse to Equation (121) expresses the ten subclasses in terms of the ten diagonal irrep projectors
using the same (albeit, conjugated) array of Dα

n4n4
(gk). However, column and row labels must switch

and acquire different coefficients.

ck
◦ck

=
10∑

k=0

Dα
n4n4

(gk)P
α

n4n4
=

10∑

k=0

Dα
n4n4

(ck)
◦ck

P
α

n4n4
(123)

7.1.2. Resolving D-matrices with C4 Local Symmetry

Off-diagonal Dα
m4n4

(gk) matrices derive from products of diagonal irrep projectors in Equation (122)
using Equation (82b) repeated here.

Pα
j,j · g ·Pα

k,k = Dα
j,k(g)Pα

j,k (124)
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Scalar A1 and pseudo-scalar A2 are given first then E, T1, and T2 irrep matrices for the fundamental
ik-class of O.

DA1
0404

(ikik) = i1 + i2 + i3 + i4 + i5 + i6

DA2
2424

(ikik) = −(i1 + i2 + i3 + i4 + i5 + i6)
(125)

DE(ikik) =

04 24

04 −1
2
(i1 + i2 + i5 + i6) + i3 + i4

√
3

2
(i1 + i2 − i5 − i6)

24 h.c. 1
2
(i1 + i2 + i5 + i6)− i3 − i4

(126)

DT∗1 (ikik) 14 34 04

14 − 1
2 (i1 + i2 + i5 + i6) − 1

2 (i1 + i2 − i5 − i6) − 1√
2
(i1 − i2 ) +

i√
2
(i5 − i6)

−i(i3 − i4)

34 h.c. − 1
2 (i1 + i2 + i5 + i6) + 1√

2
(i1 − i2 ) +

i√
2
(i5 − i6)

04 h.c. h.c. −(i3 + i4)

DT∗2 (ikik) 14 34 24

14 + 1
2 (i1 + i2 + i5 + i6) + 1

2 (i1 + i2 − i5 − i6) + 1√
2
(i1 − i2 ) +

i√
2
(i5 − i6)

−i(i3 − i4)

34 h.c. + 1
2 (i1 + i2 + i5 + i6) − 1√

2
(i1 − i2 ) +

i√
2
(i5 − i6)

04 h.c. h.c. +(i3 + i4)

(127)

Symmetry of C4⊂O subclass [i1, i2, i5, i6] and [i3, i4] would demand equality of parameters for each.

i1 = i2 = i5 = i6 ≡ i1256 ≡ iI, and, i3 = i4 ≡ i34 ≡ iII (128)

Setting each parameter to the inverse of its sub-class order (ik=1/(◦cik)) reduces each matrix to diagonal
form and gives the diagonal Dα

n4n4
(gk) given in Equation (122). Classes r, ρ, R behave similarly.

7.1.3. Resolving Hamiltonians with C4 Local Symmetry

An octahedral Hamiltonian H =
∑24

k=1 gkḡk with local C4(z) symmetry is resolved by sorting gk into
its C4(z) sub-classes ck and then into P

α

n4n4
whose coefficients are the desired H eigenvalues εαn4

. Zero
off-diagonal Hα

m4n4
= 0 and C4-local symmetry conditions shown in Equation (128) arise from

Equation (122) consistent with Figure 22. Tunneling parameter i1256=iI
from +z-axis to its 1st-neighbor ±x or ±y axes may dominate flip-tunneling
i34 = iII to 2nd neighbor-z-axis. The i-columns of Equation (122)
(or matrix diagonals in Equations (125)–(127)) give iI and iII contributions to eigenvalues εαn4

listed in the in-column of Table 11. Clusters (εA1
04
, εT104

, εE04) through (εT234
, εT134

) are plotted in Figure 25 for
select values of parameters iI = i1256 and iII = i34.

One expects the parameter iII for 2nd-neighbor tunneling to be exponentially smaller than iI for
adjacent tunneling so the (iII = 0)-cases are drawn first in Figure 25. While the i-class operations
are most fundamental (all operations are generated by products of ik) other operations also generate
1st-neighbor transformation. Three class parameters Rxy(90◦), rI(120◦) , and iI(180◦) label 1st-neighbor
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inter-C4 axial tunneling paths that have the same iI-level patterns and splitting ratios as (iII=0)-cases in
Figure 25 but with differing sign. (Signs differ since each sub-class eigenvalue set must be orthogonal to
all others as shown below.) Level patterns in Figure 25 are reflected in spectral patterns of Figure 26 if
both ground and excited vibe-rotor states have similar RES-shape. However, only C4z sub-class iI(180◦)
patterns (with iI < 0) exhibit spectral ordering (A1T1E)(T2T1)(ET2A2)(T2T1) on the left hand side
of Figure 26 that is maintained even as levels re-cluster into patterns (T1ET2)(T1ET2)(A2T2T1A1)

of C3[111] local symmetry across the separatrix break on the right-hand side of Figure 26 as analyzed
below [8,37]. O-crystal-field wavefunctions for either case tend to follow a Bohr-orbital progression
s(A1), p(T1), d(E, T2), f(T1, A2, T2), g(E, T1, T2, A1), ... In general, ordering is sensitive to RES-shape
and tensor rank as discussed later.

Table 11. Splittings of O ⊃ C4 given sub-class structure.

O ⊃ C4 0◦ rn120◦ ρn180◦ Rn90◦ in180◦

04 · rI = Re r1234

mI = Im r1234

· Rz = ReRz

Iz = ImRz

iI = i1256

iII = i34

εA1
04

= g0 +8rI +2ρxy + ρz +4Rxy + 2Rz +4iI + 2iII

εT104
g0 0 −2ρxy + ρz +2Rz −2iII

εE04 g0 −2rI +2ρxy + ρz −2Rxy −Rz −2iI + 2iII

14 · · · · ·
εT214

g0 +2mI −ρz −Rxy − 2Iz +2iI

εT114
g0 −2mI −ρz +Rxy − 2Iz −2iI

24 · · · · ·
εE24 g0 −2rI +2ρxy + ρz +2Rxy −Rz +2iI − 2iII

εT224
g0 0 −2ρxy + ρz −2Rz +2iII

εA2
24

g0 +8rI +2ρxy + ρz −4Rxy − 2Rz −4iI − 2iII

34 · · · · ·
εT234

g0 −2mI −ρz −Rxy + 2Iz +2iI

εT134
g0 +2mI −ρz +Rxy + 2Iz −2iI

Figure 25. O i-class level clusters of C4 local symmetry (a) 04; (b) 14; (c) 24; (d) 34.

For an isolated three-level (ATE)-cluster of local symmetry 04 or else 24 the splitting pattern requires
only two parameters. This could be either the 180◦(iI,iII) or the 90◦(Rxy,Rz) class pair in Table 11. The
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120◦-class, lacking 180◦ flips, has just one real parameter rI. Parameters iI, Rxy, and rI each split (ATE)
by 2:1 ratio but differ in sign.

Local symmetry 14 and 34 each have two-level (TT ) clusters that require just one splitting parameter,
say iI, or elseRxy. Complex parametersRz and Iz of the 90◦ Rn-class and the ρn(180◦)-class in Table 11
may play minor roles in most C4 clusters but are necessary in order that the whole set be orthonormal
and complete.

Figure 26. Excerpts of SF6 ν4P (88) superfine spectral cluster structure in 16µm region
(Missing: K4=82...88).

7.1.4. Orthogonality-Completeness of Local Symmetry Parameters

Equation (122) expands P
(α)
nn by Equation (83) in group operators (1, r1, r2, ...i6). It acts on |1〉 to

give |(α)
n4n4〉 eigenkets in Equation (129).

∣∣(α)
nn

〉
= P(α)

nn |1〉
√
◦G

`α
=

√
`α

◦G

◦G∑

b=1

D(α)∗
nn (gb)gb |1〉

=

√
`α

◦G

◦G∑

b=1

D(α)∗
nn (gb) |gb〉 (129)
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AnO-symmetric H matrix is a sum of dual operators (1̄, r̄1, r̄2, ...̄i6) with coefficients ga=ε0, r1, r2, ..., i6.
Local symmetry C4 or C3 reduces the sum to ρG=10 sub-class terms c̄a=ḡa+ḡ′a+... each sharing a
coefficient ga=g′a...

H =

◦G∑

a=1

gaḡa =

ρG∑

a=1

gac̄a (130)

From these arise expansions like Table 11 of H eigenvalues εαn4
in terms of its coefficients ga. Dual

commutation gjḡk=ḡkgj makes P
(α)
nn and H commute. Duality relation in Equation (94) leads to a

Dα∗-weighted sum of ga analogous to sum in Equation (129) of |ga〉.

εαn =
〈

(α)
nn

∣∣H
∣∣(α)
nn

〉
= 〈1|P(α)

nnHP(α)
nn |1〉

◦G

`α
= 〈1|HP(α)

nn |1〉
◦G

`α
= 〈1|

◦G∑

a=0

gaḡa

◦G∑

b=0

D(α)∗
nn (gb)gb |1〉

= 〈1|
◦G∑

a=0

ga

◦G∑

b=0

D(α)∗
nn (gb)gbg

−1
a |1〉 =

◦G∑

a=0

gaD
(α)∗
nn (ga) =

ρG∑

a=1

D(α)∗
nn (ga)

◦caga

(131)

Each C4 sub-class of order ◦ca has ◦ca equal terms gaD
(α)∗
nn (ga) = g′aD

(α)∗
nn (g′a) =. . . expanding

eigenvalue εαn4
. Rank-of-group ρG = 10 is the number of eigenvalues and of expansion terms

◦cagaD
(α)∗
nn (ga) in Equation (131) or Table 11. Each of ten eigenvalues εαn4

=(εA1 , εA2 , ..., εT234
) expand

to ten C4-local tunneling parameters ga=(ε0, rI, rII, ..., iII) and vice-versa.

ga = 〈1|H |ga〉 = 〈1|Hga |1〉 =
∑

α

`α∑

j

`α∑

k

D
(α)
jk (ga) 〈1|HPα

jk |1〉

=
∑

α

`α∑

n

D(α)
nn (ga) 〈1|HPα

nn |1〉 =
∑

α

`α∑

n

D(α)
nn (ga)

`α

◦G
εαn

(132)

One might count twelve real parameters in Table 11 since both pairs (rI,r̃I) and (Rz,R̃z) are complex,
unlike RI = R̃I, which are real. If H is a Hermitian array (H = H†) it should only require ten, the rank
of O, for its ten distinct real eigenvalues and the parameter pairs must be complex conjugates.

With no conjugation symmetry, such as for a unitary O ⊃ C4-symmetric matrix, the R and r

parameters may be complex and unrelated to R̃ and r̃, and resulting extra real parameters are then
needed. Symmetry parameter dimension matches eigensolution dimension for each local symmetry as
shown in Figure 27.

7.1.5. Resolving Hamiltonians with C3 Local Symmetry

The previous two sections have detailed of symmetry-based level clustering and cluster splitting for
C4. In Figure 26 these are the lower energy clusters of SF6 for ν4 P (88). Given the previous two
sections, it is possible to find the splittings of the C3 sub-group quickly. Starting with Equation (117)
and Equation (118) one can build the irreducible representations necessary to create the Pα

n3n3
for the

new sub-group. At this point, one can create a table analogous to Table 11. Such a table for C3 is shown
in Table 12. The C3 clustering fits patterns of (A1, A2, T2, T2) and two of (E, T1, T2), each with a total



Int. J. Mol. Sci. 2013, 14 785

degeneracy of 8. As before in Figure 25, the splittings in C3 make different patterns depending on which
tunneling parameters are active. This is demonstrated in Figure 28.

Figure 27. O⊂L-local symmetry eigenmatrix parameters (a–e) L=C4,...,C1 (f-j)
L=O,D4,...,D2.



Int. J. Mol. Sci. 2013, 14 786

Table 12. Splittings of O ⊃ C3 given sub-class structure.

O ⊃ C3 0◦ rn120◦ ρn180◦ Rn90◦ in180◦

03 · rI = Re(r1) iI = Im(r1)

rII = Re(r234) iI = Im(r234)
ρ = ρxyz

Rn = Re(Rxyz)

In = Im(Rxyz)

iI = i136

iII = i245

εA1
03

g0 2rI + 6rII 3ρ 6Rn 3iI + 3iI

εA2
03

g0 2rI + 6rII 3ρ −6Rn −3iI − 3iII

εT103
g0 2rI − 2rII −ρ 2Rn iI − 3iII

εT203
g0 2rI − 2rII −ρ −2Rn −iI + 3iII

13

εE13 g0 −rI +
√

3iI − 3rII + 3
√

3iII 3ρ 0 0

εT113
g0 −rI +

√
3iI + rII −

√
3iII −ρ 2Rn + 2

√
3In −2iI

εT213
g0 −rI +

√
3iI + rII −

√
3iII −ρ −2Rn − 2

√
3In 2iI

23

εE23 g0 −rI −
√

3iI − 3rII − 3
√

3iII 3ρ 0 0

εT123
g0 −rI −

√
3iI + rII +

√
3iII −ρ 2Rn − 2

√
3In −2iI

εT223
g0 −rI −

√
3iI + rII +

√
3iII) −ρ −2Rn + 2

√
3In 2iI

Figure 28. O i-class and ρ-class level clusters of C3 local symmetry given different
tunneling parameters.

7.1.6. Octahedral Splitting for a Range of Local Symmetry C1⊂C2...⊂O

As the order ◦L of local symmetry L⊂G decreases there are proportionally fewer types of local
symmetry irrep dλ(L) and hence fewer types of energy level cluster since each cluster is defined by its
induced representation dλ(L)↑G. There is a proportional increase in total number `λ↑G=(`λ)◦G/◦L of
levels in each eigenvalue cluster. However, G-symmetry degeneracy limits the total number of distinct
eigenvalues from all clusters to be global rank ρ(G) or less, no matter what local symmetry is in effect.
Octahedral rank is ρ(O)=10=`A1+`A2+`E+`T1+`T2 where `α gives both the global degeneracy of each
level type and the number of times it appears.

The number of H-matrix parameters equals the number of distinct eigenvalues as long as all
eigenvectors are determined by global-local symmetry, that is, each entry is 0 or 1 in the G⊃L
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correlation array. Diagonal eigenmatrix forms are shown in Figure 27a,b for C4⊂O and C3⊂O for
which all bases states are distinctly labeled. Multiple correlation (≥ 2) occurs if L-symmetry is too
small to determine some of the ◦G eigenbases. Then the H-matrix must have extra parameters that fix
vectors through diagonalization.

This happens for theC2(i1) ⊂O symmetry whose correlation array in Equation (117) assigns the same
C2 label to two bases of T1 and of T2. (Two C2 symmetries 02 and 12 cannot distinctly label three bases.)
Figure 22 shows C2(i1) splits O into fourteen sub-classes: (1), (r1r̃4), (r2r̃2), (r3r̃3), (r4r̃1), (ρxρz),
(ρy), (RxRz), (R̃xR̃z), (RyR̃y),(i1), (i2), (i3i5), (i4i6). The C2⊂O sub-classes form a non-commutative
algebra and cannot be resolved so easily as C3⊂O or C4⊂O into commuting idempotent combinations
like Equation (123).

Spectral resolution of fourteen C2(i1)⊂O sub-classes requires more than rank number ρ(O)=10 of
diagonal commuting O idempotents Pα

nn. To fully determine C2 basis, two off-diagonal pairs PT1
ab=PT1†

ba

and PT2
ab=PT2†

ba of non-commuting nilpotent projectors are needed to finish C2-labeling of T -triplets.
Adding these four gives fourteen projectors with their fourteen parameter coefficients ε` shown in
Figure 27c to fully define general C2(i1)⊂O H-operators. (However, only twelve of the fourteen
parameters are independent for Hermitian Ha,b=H∗b,a.)

The other class of C2 symmetry has similar problems. Local C2(ρz)⊂O symmetry requires projector
pairs PT1

ab=PT1†
ba and PT2

ab=PT2†
ba , too, but then another nilpotent pair PE

ab=PE†
ba must be added to label

repeated E bases in array Equation (117). This gives sixteen C2(ρz) sub-classes to resolve and sixteen
parameters sketched in Figure 27d. (Hermitian H=H† matrices for C2(ρz)⊂O have thirteen free
parameters.)

For the lowest local symmetry C1=[1] (i.e., no local symmetry) sub-classes are completely split
since every O-operator is invariant to 1 as C1 provides no distinguishing labeling, and all twenty-four
O-projectors (Σα(`α)2=24) are active in its resolution. The 24-parameterH-matrix resolution is sketched
in Figure 27e. Each parameter εa for a=1, ..., 24 is a combination of 24 products Dα∗

j,k(gp)gp (p=1, ..., 24)
of irrep and group element coefficient gp as given in Equation (90) or (131). (If H is Hermitian the
number of free parameters reduces to Σα`

α(`α+1)=17.)
For O’s highest local symmetry, namely O itself, there is no splitting of the Σα(`α)0=5 invariant

idempotents Pα that resolve the five O classes. Then H has five independent parameters and five
eigenvalues of degeneracy (`α)2. This 5-parameter resolution is sketched in Figure 27f. Total level
degeneracy for sub-matrix eigenvalues are listed below each one, and show less splitting than Abelian
cases listed in Figure 27a–e.

Any non-Abelian local symmetry such as L = D4 also fails to split Pα into a full number `α of
components Pα

nn if O irrep-(α) correlates with multi-dimensional L-irreps. By splitting out less than the
full rank number ρ(O)=10 of idempotent projectors Pα

nn, the resulting number of independent H matrix
parameters reduces accordingly. The 8-parameter resolution for an H-matrix with D4⊂O is sketched in
Figure 27g and similarly for D3⊂O in Figure 27h. Two kinds of D2⊂O in Figure 27i,j share degeneracy
sums with the Abelian cases.

Each matrix display lists exact degeneracy `α due to global symmetry O but not the cluster
quasi-degeneracy `λ↑G due to local symmetry induced representation dλ(L)↑G. The latter is found
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by summing global degeneracy `α of all states |αa,λ〉 with the same local symmetry λ as per Frobenius
reciprocity in Equation (106). The result is integer `λ↑G=(`λ)◦G/◦L mentioned above.

8. Spectral Resolution of full Oh Symmetry

Including inversion I and reflection operations σn allows parity correlations between even-g (gerade)
and odd-u (ungerade) states. Two classes ofC2 subgroups lie inO and appear in separateC2-correlations
in Equation (117). In the following Oh correlations Equation (133), the two types of C2v subgroups have
separate tables. The first subgroup Ci

2v=[1, σy, i1, σ2] is the one of the three local symmetries shown in
Figure 12 while the second Cz

2v=[1, ρz, σy, σx] is just a subgroup of local symmetry C4v as would be
C34

2v=[1, ρz, σ3, σ4].

Oh ↓ C4v A′ B′ A′′ B′′ E

A1g ↓ C4v 1 · · · ·
A2g ↓ C4v · 1 · · ·
Eg ↓ C4v 1 1 · · ·
T1g ↓ C4v · · 1 · 1

T2g ↓ C4v · · · 1 1

A1u ↓ C4v · · 1 · ·
A2u ↓ C4v · · · 1 ·
Eu ↓ C4v · · 1 1 ·
T1u ↓ C4v 1 · · · 1

T2u ↓ C4v · 1 · · 1

,

C3v A′ A′′ E

A1g 1 · ·
A2g · 1 ·
Eg · · 1

T1g · 1 1

T2g 1 · 1

A1u · 1 ·
A2u 1 · ·
Eu · · 1

T1u 1 · 1

T2u · 1 1

,

Ci
2v A′ B′ A′′ B′′

A1g 1 · · ·
A2g · 1 · ·
Eg 1 1 · ·
T1g · 1 1 1

T2g 1 · 1 1

A1u · · 1 ·
A2u · · · 1

Eu · · 1 1

T1u 1 1 · 1

T2u 1 1 1 ·

,

Cz
2v A′ B′ A′′ B′′

A1g 1 · · ·
A2g 1 · · ·
Eg 2 · · ·
T1g · 1 1 1

T2g · 1 1 1

A1u · · 1 ·
A2u · · 1 ·
Eu · · 2 ·
T1u 1 1 · 1

T2u 1 1 · 1

(133)

The local symmetry Ci
2v⊂Oh unambiguously defines all states in its correlation array while the other C2v

symmetries fail to split the Eg and Eu sub-species. The former lead to complete eigenvalue formulae.
The latter may not.

8.1. Resolving Hamiltonians with C2v Local Symmetry

As the order of the local sub-group symmetry goes down, the degeneracy and complexity of the
rotational cluster must increase. Oh⊃C2v clusters are 12 fold degenerate and come in 4 cluster species.
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Matrices describing this system are larger, but O⊃C2 will show many of the same effects. To actually
resolve the doubled T1 or T2 triplets of O⊃C2 requires distinguishing the u and g versions of each. The
C2 clusters are 12 fold degenerate, but they are also easily displayed.

As noted earlier,O⊃D3⊃C2 andO⊃D4⊃C2 local symmetries give identical cluster degeneracies and
groupings, but with cluster splittings and structure dependent on the sub-group chain. Though it neglects
inversion, Figure 27 indicates that there are several different types of O⊃C2 (and, thus Oh⊃C2v local
sub-group symmetries). Examples given here involve the O ⊃D4⊃C2(i4) sub-group chain.

Compared with O⊃C4 and O⊃C3, the splittings of O⊃C2 are relatively simple to calculate since the
terms in Equation (131) will be real. Creating splitting tables for C2 is done in the same way as for
Tables 11 and 12. It is shown in Table 13.

Table 13. Splittings of O ⊃ C2(i4) given sub-class structure.

O ⊃ D4

⊃ C2(i4)
0◦ rn120◦ ρn180◦ Rn90◦ in180◦

02

εA1
02

g0 4r12 + 4r34 2ρxy + ρz 4Rxy + 2Rz 4i1256 + i3 + i4

εE02 g0 −2r12 − 2r34 2ρxy + ρz −2Rxy + 2Rz −2i1256 + i3 + i4

εT102
g0 −2r12 + 2r34 −ρz 2Rxy −2i1256 − i3 + i4

ε
T2E
02

g0 2r12 − 2r34 −ρz −2Rxy 2i1256 − i3 + i4

ε
T2A1
02

g0 0 −2ρxy + ρz −2Rz i3 + i4

12

εA2
12

g0 4r12 + 4r34 2ρxy + ρz −4Rxy − 2Rz −4i1256 − i3 − i4
εE12 g0 −2r12 − 2r34 2ρxy + ρz 2Rxy − 2Rz 2i1256 − i3 − i4
ε
T1E
12

g0 2r12 − 2r34 −ρz 2Rz −2i1256 + i3 − i4
ε
T1A2
12

g0 0 −2ρxy + ρz −2Rz −i3 − i4
ε
T2E
12

g0 −2r12 + 2r34 −ρz −2Rxy 2i1256 + i3 − i4

8.1.1. Local Sub-Group Tunneling Matrices and Their Inverse

Table 13 can be further broken apart to demonstrate how one can create an automated process
to evaluate the tunneling splittings for O⊃C2 local-symmetry structures. What will result is
a transformation between cluster-splitting energy and tunneling parameters. The inverse of this
transformation is also easily defined.

Equation (131) produces Table 13, but even after combining splittings from each subclass, repetition
exists. We show the two steps to convert Table 13 into the transformation matrix just described. First we
assume that only nm levels may interact with themselves, e.g., that a 12 cluster may not interact with a
02 cluster. Second we recognize that only half of the subclasses are needed to fully define the possible
splittings, the others simply repeat the same information. Table 13 shows this for the 02 cluster. Looking
at the A1 level in the 02 cluster, one can see that the subclasses 1, rn, ρn make a vector {1, 4, 4, 2, 1}
while the Rn, in subclasses make a vector {4, 2, 4, 1, 1}. These vectors are reordered versions of each
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other. Thus only one is needed. The A2 level in the 12 cluster shows the same similarity, but the Rn, in

now contain a negative sign.
By using only the minimum number of splitting parameters and including only a single cluster gives a

condensed version of Table 13 that acts as a transformation that inputs symmetry-based tunneling values
and outputs energy levels. Such a table is shown in Table 14. A simple inverse of the matrix in Table 14
will produce the transformation giving tunneling parameters for a given set of cluster energy splittings,
as shown in Table 15.

Table 14. Matrix that converts tunneling strengths to cluster splitting energies.

02 1 r12, i1256 r34, Rxy ρxy, Rz ρz, i3

εA1
02

1 4 4 2 1

εE02 1 −2 −2 2 1

εT102
1 −2 2 0 −1

εT2E,02 1 2 −2 0 −1

εT2A1,02
1 0 0 −2 1

Table 15. Matrix that converts cluster splitting energies to tunneling strengths.

02 εA1
02

εE02 εT102
εT2E,02 εT2A1,02

1 1
12

1
6

1
4

1
4

1
4

r12, i1256
1
12

− 1
12
−1

8
1
8

0

r34, Rxy
1
12

− 1
12

1
8

−1
8

0

ρxy, Rz
1
12

1
6

0 0 −1
4

ρz, i3
1
12

1
6

−1
4
−1

4
1
4

There are multiple ways to use Tables 14 and 15. Among the most useful is to use the columns of
Table 14 as a predictor of possible splitting patterns. Using the inverse matrix to find spectroscopic
tunneling parameters from cluster splittings may also become a useful and automated process.

An example demonstrates this process for a model (4, 6)-octahedral-Hecht spherical-top Hamiltonian
Equation (134) with varying spectroscopic parameters. The terms T [4] and T [6] model rotational
distortions written in an octahedral basis of fourth and sixth order respectively in J . The parameter
θ is varied to explore the different relative contributions of T [4] and T [6] while keeping them normalized.
Because T [4] and T [6] each have octahedral symmetry, Equation (134) represents all possible octahedral
pure rotational Hamiltonians up to sixth order.

H = BJ2 + cos(θ)T [4] + sin(θ)T [6] (134)

As noted in Section 3 cluster structure location and the RES shape will change significantly as the
Hamiltonian parameters change in Equation (134) as Figure 29 (a copy of Figure 6) shows by plotting
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rotational energy levels of Equation (134) for changing θ with corresponding RES at points along the θ
axis. RES plots in the figure demonstrate how the phase-space changes as θ varies.

RES diagrams in Figure 29 along with the cluster degeneracy indicate where in the parameter-space
C2 clusters exist. The lowest 02(C2)↑O cluster in Figure 29 for θ between 18◦ and 132◦ labels a
kaleidoscope of 12 waves each with C2 local symmetry. Its superfine levels are magnified about
100 times in the central inside plot of Figure 30 which has been adjusted to show level splittings
but not whole cluster shifting. (The θ-dependent cluster center-of-energy is subtracted.) The locally
antisymmetric 12(C2)↑O clusters contain quite similar superfine structure but with A2 replacing A1 and
T1 switched with T2.

Figure 29. J=30 Energy levels and RES plots for T [4,6]vs.[4,6] mix-angle θ with T [4]

levels above φ=0◦ (extreme left), T [6] levels at θ=90◦ (center), and −T [4] levels at θ=180◦

(extreme right). C4 local symmetry and 6-fold level clusters dominate at θ=17◦ while C3

type 8-fold level clusters dominate at θ=132◦. In between these extremes areC2 type 12-fold
level clusters particularly around θ=80◦ where a C3 − C4 level-cluster-crossing of the top
14 levels occurs.
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At certain θ-points in Figure 30 levels of different symmetry cross and one of three distinctive
splitting patterns emerge. These points occur periodically as indicated by vertical lines that are
(starting form left side) solid, dotted, dashed, dotted, solid, dotted, dashed, solid, and so forth across the
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plot. The three distinctive εα-energy level patterns for species α=(A1, E, T1, T2, T2) are given by vectors
εdash=(0, 0, 0, 1,−1), εdot=(2,−1, 1, 1,−1) and εsolid=(2,−1, 1, 0,−1), respectively. These repetitious
patterns seem to persist even outside of the marked-off sections to the very ends of the C2 cluster region
at θ'18◦ and θ'132◦ where they grow slightly but maintain their respective superfine ratio patterns and
degeneracy. The matrix in Table 15 transforms each of the three εα-vectors in Figure 30 into a vector
of O-defined sub-class tunneling amplitudes gr. These are evaluated for clusters at several values of
parameter θ used in T [4,6] Hamiltonian Equation (134). Proportioned values of the tunneling amplitudes
gr for the three distinctive cases are listed in the inset legend of Figure 30 based on Tables 14 and 15.

Figure 30. The plot focuses on the lowest 02(C2)↑O cluster in the previous energy plot
(Figure 29) of the T [4,6] Hamiltonian for J = 30. The inside plot has been magnified
100 times. The inside diagram also centers the levels around their center-of-energy, showing
only the splittings and ignoring the shifts of the cluster. Symmetry species are colored as
before: A1: red, A2: orange, E2 : green, T1: dark blue, and T2: light blue. The vertical lines
on inside plot draw attention to specific clustering patterns described in the text. 12(C2)↑O
clusters have similar superfine structure but with A2 replacing A1 and T1 switched with T2.
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Legend

Dotted-line and solid-line curve patterns appear alternately flipped in sign. Dotted-line patterns have
a crossing (T1,T2) pair while the solid-line patterns have a crossing (T2,E) pair.

Solid-line patterns appear to be centered on quasi-hyperbolic avoided-level-crossing episodes
involving the pair of repeated T2 tensor species of O. The ordering (A1, T1, T2, E, T2) of solid-line
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superfine level patterns reflects Bohr-like orbital ordering (s, p, d, f, ..) of orbital momentum and occurs
only when there is just one non-zero sub-class of tunneling parameter, namely that of sub-class (r34 or
equivalent Rxy) that affects tunneling between nearest-neighbor C2 valleys.

Dashed-line pattern level curve slopes appear to alternate (+) and (–) signs and exhibit maximum
separation of repeated T2-species surrounding a degenerate (A1, T1, E)-sextet crossing midway in
between. Such triple-point crossings are quite remarkable. They appear repeatedly in Figure 30 and
persist even at low-J as seen for J=4 in Figure 8c. Higher 12(C2)↑O clusters show similar triple points
made of (A2, T2, E)-sextets.

Such crossings are quite ironic if we recall that it was (A1T1E), (A2T2E), and (T1T2) clusters
noted by Lea, Leask, and Wolf [20] and later Dorney and Watson [21] that led to a theory
involving induced representations K4(C4)↑O including 04(C4)↑O=A1⊕T1⊕E, 24(C4)↑O=A2⊕T2⊕E,
and ±14(C4)↑O=T1⊕T2. (Recall C4 columns of Equation (117) and reciprocity Equation (106)). This
theory uses an inter-C4-axial tunneling model [22,23] with a single ad.hoc. tunneling parameter that
predicts a 2:1-splitting ratio for (ATE) clusters. C4-axial tunneling cluster splitting dies exponentially
as body momentum-K approaches J (Recall Figure 26) and thus C4(ATE) levels never actually cross.

However, the C2(ATE) levels in Figure 30 clearly do so and with quite the opposite 1:2-spltting ratio.
It is ironic that the more elegant ortho-complete multi-path tunneling models, while useful in exposing
these crossings, seem at a loss to explain them, particularly given that they were first noted by Lea,
Leask, and Wolf so very long ago!

It would be easy to write off such (ATE) triple-crossings and particularly the (T1T2) or (ET )
double-crossings as “accidental” degeneracy. Indeed, all but the latter occur for special values of a
complete set of sub-class parameters. However, Figure 30 clearly shows that each type of crossing
belong to a periodic structure that is unlikely to be just an accident.

Clearly there is still much to learn about multi-path tunneling models in general and the octahedral
ones in particular. Here we can only offer a potentially elegant way to treat these kinds of
high-symmetry cases.

9. Examples of Rovibronic Energy Eigenvalue Surfaces (REES) and J-Clusters

Semiclassical treatment of rovibronic or rovibrational states provides some insight into the transition
between lab-coupled and body-coupled vibronic momentum that are related in Equation (8) through
Equation (10b) of Sections 1 and 2. The first semiclassical analysis of fundamental coupling in high-J
octahedral molecules was done for ν2E [38] and ν3T1 [39] bands in 1978 and for overtone ν2 + ν3

“hot-bands” in 1979 [40].
These methods are similar in philosophy to those described in Section 2 that approximate tensor

eigenvalues with Legendre formulas and thereby construct rotational energy based on a semiclassical
J-vector. However, the more general approach differs in that it builds an N -by-N matrix of such
formulas that takes account of quantum rovibronic coupling between N vibronic (or vibrational) states,
that is, a 2-by-2 matrix for the ν2E system, a 3-by-3 matrix for the ν3T1 system, and a 5-by-5 matrix for
the ν2 + ν3 system.
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The resulting N eigenvalues provide points on N nested Rovibronic Energy Eigenvalue Surfaces
(REES) for each direction of the semiclassical J-vector. Visualization of P , Q, and R state mixing in
ν3T1 bands by 3-sheet REES was done using the high-resolution 3D-graphics at Los Alamos in 1987 and
reported in 1988 [25]. Interesting features of the ν3T1 REES include conical intersections that occur for
zero scalar Coriolis coupling. These are analogous to well known conical intersections of Jahn–Teller
PES that lend insight into BOA breakdown of single adiabatic surfaces. The following contains two
examples of REES models. The first is a simplified internal rotation model involving a 2-sheet REES,
and the second is an excerpt of a recent study of the ν3/2ν4 dyad of CF 4 that involves a 9-sheet REES.

9.1. Rotor-With-Gyro Model of Internal Rotation

A first application by Ortigosa and Hougen [17] of REES to visualize molecules with internal rotation
is related to a simple rotor-with-gyro model [25,41] based on the three lowest rank tensors possible,
namely the scalar (rank-0), the vector (rank-1), and the tensor (rank-2). The prolate symmetric top RES
in Figure 1 is an example of a scalar-tensor combination. A vector RES lacks J-inversion symmetry,
that is, time reversal symmetry, so it is forbidden for normal molecules that have no intrinsic dynamic
chirality such as embedded spin S. We consider how to include an S in a way that preserves overall
T symmetry.

Total momentum J=R+S is the sum of rotor momentum R and gyro spin S. J is conserved in lab
frame but R and S are not. If gryo is body-frame-fixed by frictionless bearing then rotor gyro-coupling
does no work and is an ignorably constant HRS . S and |J| are conserved in body frame but J and R

are not.

HR+S(bod−fixed) = AR2
x +BR2

y + CR2
z +HS +HRS (135)

Replacing bare-rotor momentum R=J-S gives the following with a new constant spin energy H ′RS .

HR,S(bod−fixed) = A (Jx − Sx)
2 +B (Jy − Sy)

2 + C (Jz − Sz)
2 +HRS

= AJ2
x +BJ2

y + CJ2
z − 2AJxSx − 2BJySy − 2CJzSz +H ′RS

(136)

The simplest classical theory of the rotor-R-gyro-S momentum dynamics involves superimposed RES
plots, one for +S and one for -S in Figure 31; A composite RES with T symmetry. If J and +S align
(anti-align) then |R|=|J-S|, rotor energy Equation (135), and rotor-gyro relative velocity are
minimized (maximized) (Thus, gyro-compass alignment with Earth rotation is seen to be relativistic
quantum effect!).

A quantum theory of multiple RES involves mixing extreme cases |J± S|. An elementary quantum
gyro-spin is a two-state spin-1/2 with a 2-by-2 Hamiltonian matrix found by inserting quantum spin
S=σ/2 matrices into Equation (136) to give Equation (137). Gyro-rotor dynamics involves REES
obtained from eigensolutions of the following 2-by-2 matrix for each body-based J-vector Euler
orientation (β, γ).
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HR,S(quantized) = AJ2
x +BJ2

y + CJ2
z − AJxσx −BJyσy − CJzσz + const.

=

(
RErotor − JC cos β −AJ cos γ sin β − iBJ sin γ sin β

−AJ cos γ sin β + iBJ sin γ sin β RErotor + JC cos β

)

where: RErotor = J2(Acos2γsin2β +Bsin2γsin2β + Ccos2β)

(137)

Eigensolutions of matrix form Equation (137) transform classical RES Figure 31 into quantum REES
Figure 32 that has conical intersections or avoided crossing points replacing lines of classical surface
intersections in the former Figure 31. Also, individual sheets of REES have J-inversion symmetry (or T
symmetry) that individual RES lack. Where the RES of Figure 31 are well separated their shape is not
so different from that of REES in Figure 32. Differences show up near the intersection lines where the
two RES approach resonance. In this resonance region the REES is deformed extremely from rank-1 or
rank-2 tensor shape of the separate RES, and there arises greater mixing of the extreme |±S| base-states.

Figure 31. Views of classical rotor-gyro RES for spin +S (yellow) and −S (gray).

Figure 32. Same views of quantum REES for rotor with gyro spin operator S=σ/2.
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9.2. REES of CF 4 in ν3/2ν4 Dyad

The first practical REES application includes 9-sheet displays of the ν3/2ν4 dyad of CF 4 recently
shown by Boudon etal. [2]. This large scale numerical analysis may be summarized by a revealing plot
of dyad eigenlevels as a function of J = 0 to 70 in Figure 33. This includes colored lines representing the
REES values for J located on C4 axes (shaded red), C3 axes (shaded blue), or C2 axes (shaded green).

Each of the symmetry axes may take turns as central loci for clusters of their type of local symmetry
C2, C3, or C4, or else, they may sit on a REES separatrix or saddle point between two or more different
types of clusters. A third option involves C1 clusters that have no rotation axis point but are likely
to belong to vertical xyz-plane reflection symmetry Cv = [1, ρz] or diagonal-plane reflection symmetry
Cd = [1, i3]. These label clusters of 24 levels associated with 24 equivalent REES hills or valleys.

Figure 33. (After Boudon et.al. [2].) (J≤70) rotational levels of ν3/2ν4.
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A final option involves true-C1 clusters with no local symmetry whatsoever and 48 REES hills or
valleys. So far this extreme type has not been identified, but one may speculate that it may actually
become most common at extremely high J .

A common ordering noted before on the left hand side of Figure 29 (pure T [4]) and in Figure 26
(16µ region of SF6) is (C3-valley→C2-saddle→C4-hill). It is present in the lowest REES band of
Figure 33. An inverted version of the common ordering appears clearly in the 2nd band whose REES is
cubic in Figure 34.

A cutaway view at J = 57 of the first five REES sheets shows glimpses of the first two REES deep
inside of Figure 34. The second sheet has cubic topography similar to the inverted T [4] RES on the right
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hand side of Figure 29 (pure (−)T [4]). However, the first and lowest REES for J = 57 is practically
spherical with all 2J + 1=115 levels and clusters crushed in Figure 33 into near degeneracy!

After the first two REES sheets the cluster topography become more complicated with multiple
conical intersections and avoided crossing points.

On the 5th sheet of the (J = 57)ν3/2ν4 REES are found examples of C1-local symmetry valleys as
shown in Figure 34. (The upper four sheets are made invisible.) Each C1 loop occupies an area that
is comparable to the minimum uncertainty (J = K)-cone shown on vertical C4 axis of the figure and a
nascent 24-level cluster of type 12(C2)↑O should be present in the level spectrum.

The symmetry details in this rovibrational spectra and the potential richness of quantum dynamics it
represents should be quite evident from the few examples glimpsed here. We seem to be just scratching
the surface of quantum systems of a great but potentially comprehensible complexity.

Figure 34. (After Boudon et.al. [2].) A rare (J=57)12(C2)↑O structure on fifth REES.

10. Summary and Conclusions

Semiclassical methods for visualizing and analyzing rovibrational dynamics of symmetric polyatomic
molecules have been reviewed. This includes improved understanding of RES and REES phase spaces
and development of more powerful symmetry methods to calculate tunneling dynamics of symmetric
molecules that are highly resonant. A group-table-matrix analysis of intrinsic vs. extrinsic symmetry
duality (The “Mock-Mach-Principles” Equation (95) and Equation (94) of wave relativity.) leads to
generalizing character relations between group classes and irreducible representation into sub-character
relations between sub-classes and induced representations Equation (131) and (132). These provide
ortho-complete parameter relations (Tables 11–15) for complex tunneling path lattices that determine
molecular fine, superfine, and hyperfine spectra. The methods may be extensible to fluxional atomic and
molecular systems.
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Appendix

A. Classical D3 Modes: Local C2 and C3 Symmetry Examples

Local symmetry theory applies to classical vibrational modes as well as to quantum tunneling.
Examples of classical D3 modes given below help clarify global-vs-local symmetry and geometry of
group projection. For example, D3 modes defined by local C2(i3) in Figure 20 are to be compared with
quantum waves in Figure 19. Each mode ket |αjk〉 has the same coefficients Dα?

jk (g) for projections in
Equation (78) as the waves do, but the mode shapes clearly display a vector geometry.

In particular, global x-vector modes |E1
xx〉 and |E1

xy 〉 (left E1 column in figure) “point” along global
x-direction while y-vector modes |E1

yx 〉 and |E1
yy 〉 (right E1 column) “point” along global y-direction. Each

global pair [|E1
x` 〉, |E1

y` 〉](` = x, y) is projected to be an i3-symmetric-antisymmetric pair like lab unit
vectors [|x〉,|y〉] (Recall Equation (78)).

|x〉 = P03 |1〉
√

2 = (|1〉+ |i3〉) /
√

2 , |y〉 = P13 |1〉
√

2 = (|1〉 − |i3〉) /
√

2 (138)

This exposes easy derivations of E-irrep DE1
jk (g)=〈j|g|k〉 in Equation (89). Irreps in Equation (87)

such as DE1
jk (r) for 120◦-rotation r simply contain direction cosines 〈j|r|k〉=êj•êr·k of rotated vectors

[r|x〉,r|y〉] relative to original [|x〉,|y〉] (Note transpose of equation array to matrix array).

r |x〉 = −1
2
|x〉+

√
3

2
|y〉

r |y〉 = −
√

3
2
|x〉 − 1

2
|y〉

}
implies :

{
DE(r) =

(
〈x| r |x〉 〈x| r |y〉
〈y| r |x〉 〈y| r |y〉

)
=

(
−1

2
−
√

3
2

+
√

3
2
−1

2

)

(139)

This also fixes local transformations. Local x-vector modes |E1
xx〉 and |E1

yx 〉 (lower E1 row in
figure) “point” along local x-axes that are local radial lines while local y-vector modes |E1

xy 〉 and |E1
yy 〉

(upper E1 row) “point” along local y-axes that are local angular lines. If global symmetry meets local
anti-symmetry as in |E1

xy 〉 (or vice-versa in |E1
yx 〉), a zero appears on the i3-axis in Figure 20. Singlet

modes |A1
xx 〉 and |A2

yy 〉 avoid such conflicts by being all one or the other.
For group-defined cases like Figure 20, symmetry arguments alone determine normal modes that

usually require diagonalizing a K-matrix (below) just as tunneling states (Figure 19) usually require
diagonalizing an H-matrix.

A.1. Comparing K-Matrix and H-Matrix Formulation

Classical modes are eigenvectors of force-field matrix K or operator K that is a linear function of
spring constants (k0, etc. in Figure 35) for a harmonic approximate potential V (x) that is a quadratic
K-form of coordinates xa based on sixD3-labeled axes x̂a or |a〉 shown in Figure 20. Each K component
Kab=〈a|K|b〉 is a sum over spring k-constants that connect axis-xa to axis-xb multiplied by factor
(k̂a•x̂a)(k̂b•x̂b) for projecting spring k’s end vectors k̂a and k̂b onto x̂a and x̂b at respective connections.
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(A straight-line spring has equal k̂a=k̂b. Curvilinear springs must only have k̂-ends with equal sense
(→→) or (←←) of spring direction. Either direction gives the same Kab).

V (x) =
∑

(k)

1

2
〈x|K |x〉 where: |x〉 =

∑

a

xa |a〉 , (a, b) = (1, r1, r2, i1, i2, i3)

=
1

2

∑

a,b

Kabxaxa where: Kab =





∑
(k)

k
2
(k̂a • x̂a)2 if : a = b

−∑
(k)

k(k̂a • x̂a)(k̂b • x̂b) if : a 6= b

(140)

This sum of harmonic Hooke (kx2/2)-potentials has diagonal Kaa terms followed by off-diagonal terms
(Kab= Kba).

V (x) =
∑

(k)

k

2
(∆`k)

2 =
∑

(k)

k

2

∑

a,b

(k̂a • xa − k̂b • xb)2

=
∑

(k)

k

2

∑

a

(k̂a • x̂a)2x2
a −

∑

(k)

k
∑

a6=b

(k̂a • x̂a)(k̂b • x̂b)xaxb

(141)

Figure 35. X3 spring models with local symmetry: (a) D3⊃C2(i3); (b) Mixed.

The classical equation of coupled harmonic motion is a Newtonian F= M·a relation of a
n-dimensional force vector F, acceleration vector a, and mass operator M. The latter is a
unit-matrix-multiple M ·1 for the D3-symmetric case treated here. The driving force F is a (-)derivative
of potential Equation (140) that becomes a K-matrix expression.

−M∂2
t x

a =
∂V

∂xa
=
∑

b

Kabx
b (142)

It is instructive to compare this classical equation of motion to that of Schrodinger’s equation for
quantum motion.

i~∂tψa =
∑

b

Habψ
b (143)

Squaring quantum time generator i~∂t=H yields equations having classical form Equation (142) with
K=H2 and M=~2.

−~2∂2
t ψ

a =
∑

b

Kabψ
b where: K = H2 (144)
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The (H/~)-eigenvalues are quantum angular frequencies εm/~=ωm. The (K/M )-eigenvalues are
classical squared angular frequencies km/M=ω2

m. The former is Planck’s oscillator frequency relation
ε=~ω. The latter is Hooke’s relation k/M=ω2. Apart from normalization, eigenvectors of quantumH are
identical to those of classical K and either eigenvalue set corresponds to the respective energy spectrum.

A.2. Comparing K-Matrix and H-Matrix Eigensolutions for Local D3⊃C2(i3)

The preceding relates eigensolutions Equations (92) and (93) of quantum Hamiltonian H-matrix in
(71) with those of a classical K-matrix. In particular, eigenvectors of H found using D-matrices in
Equation (89) or (139) also serve as mode-eigenkets in Figure 20 that diagonalize a D3⊃C2(i3)-locally-
symmetric K-matrix. With this symmetry, K cannot couple radial (local-x) and angular (local-y) modes
and is left with just four independent real group-based parameters ga=r0, r1, i12, and i3 allowed for
D3⊃C2(i3)-symmetric H in Equation (93). These relate to four spring kh-constants in Figure 35a.

Only 1st-row parameters gb=〈1|K|gb〉=K1b of the force matrix Kab are needed for the spring model
in Figure 35a. That model includes kr(angular) and ki(radial) constants for internal connections between
masses. The k3(angular) and k0(radial) constants represent external connections between each mass and
an outside lab frame.

Generic group parameters gb=H1b, labeled [r0, r1, r2, i1, i2, i3] for the H-matrix in Equation (71), are
now applied to gb=K1b. The gb are to be related to spring-constants kj using coordinate-spring projection
cosine factors (k̂1 • x̂1)(k̂b • x̂b) in Equations (140) and (141). The usual harmonic limit assumes small
vibrational amplitudes (xb�1) for which direction of spring end vectors k̂1 or k̂b do not vary to 1st-order,
and so, for lab-fixed x̂a the Kab are constants.

|gb〉 |1〉 |r1〉 |r2〉 |i1〉 |i2〉 |i3〉

〈1|K |gb〉 =

ki/2

+kr

+k3

+k0/2

ki/2

−kr/2
+0

+0

ki/2

−kr/2
+0

+0

ki/2

+kr/2

+0

+0

ki/2

+kr/2

+0

+0

ki/2

−kr
−k3

+k0/2

(145)

One may visualize each −K1b as the acceleration of x1 due to setting a (tiny) unit xb in Equation (142).
Diagonal -K11 must be negative or else x1 blows up. Higher order anharmonic terms are needed
to describe effects of rotating k̂b or x̂b and such models are likely to suffer from classical stochastic
(chaotic) motion.

Substitution of generic ga from Equation (145) into reduced D3⊃C2(i3)-symmetric H-matrix in
Equation (92) or (93) gives K-matrix eigenvalues Kα

`` due to each spring ki, kr, k3, or k0 in Figure 35a
separately or together. Modes in Figure 20 remain eigenmodes for all values of four spring constants ki,
kr, k3, and k0 since none can mix local x-and-y-symmetry.

KA1
xx = r0 + r1 + r*

1 + i1 + i2 + i3 = k0 + 3ki

KA2
yy = r0 + r1 + r*

1 - i1 - i2 - i3 = 3k3(
K

E

xx K
E

xy

K
E

yx K
E

yy

)
=

1

2

(
2r0 - r1 - r*

1 - i1 - i2 + 2i3
√

3( - r1 + r*
1 - i1 + i2)√

3(−r*
1 + r1 - i1 + i2) 2r0 - r1 - r*

1 + i1 + i2 - 2i3

)
=

(
k0 0

0 k3 + 2kr

)

(146)
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Any set of four K-matrix eigenvalues kA1 , kA2 , kEx , and kEy is arithmetically possible by adjusting the
four spring constants. However, their arrangement in Figure 20 (this was drawn to match tunneling
states in Figure 19) is impossible without negative k-values that would give classical instability. As
shown below, free ring molecules often have A1-stretching modes among the highest frequencies. In
contrast, tunneling amplitudes are often negative so their A1 states lie low. As a rule, fewer quantum
nodes imply lower energy.

A.3. K-Matrix Eigensolutions for Broken Local Symmetry

In some ways the direct-k1-connection spring model of Figure 35b is quite the opposite of the
D3⊃C2(i3) model just treated since it involves maximal (50-50) mixing of x and y local symmetry.
Below are recalculated generic gb=〈1|K|gb〉 in terms of direct spring-constants k1 using (141) with
projection cosines listed in Figure 35b.

|gb〉 |1〉 |r1〉 |r2〉 |i1〉 |i2〉 |i3〉

〈1|K |gb〉 =

k1(cos2 75◦

+ cos2 15◦)

= k1

k1 cos 75◦

· cos 15◦

=
k1

4

k1 cos 15◦

· cos 75◦

=
k1

4

k1 cos 15◦

· cos 15◦

=
k1(2−

√
3)

4

k1 cos 75◦

· cos 75◦

=
k1(2 +

√
3)

4

k1(cos2 75◦

− cos2 15◦)

=
k1

2
(147)

Again, a substitution of generic ga from Equation (147) into reduced H-matrix Equation (93) gives a
reduced K-matrix like Equation (146), but now the E-symmetry submatrix is not diagonal.

KA1
xx = 3k1

KA2
yy = 0

(
K

E

xx K
E

xy

K
E

yx K
E

yy

)
=

(
3k1
4

3k1
4

3k1
4

3k1
4

) (148)

Eigenvectors of the E-submatrix are symmetric (+) and antisymmetic (−) mixtures of x and y local
symmetry states.

K

∣∣∣∣∣
E

g(−)

〉
= K

(∣∣∣∣∣
E

gx

〉
−
∣∣∣∣∣
E

gy

〉)
1√
2

=
3k1

2

∣∣∣∣∣
E

g(−)

〉
,

K

∣∣∣∣∣
E

g(+)

〉
= K

(∣∣∣∣∣
E

gx

〉
+

∣∣∣∣∣
E

gy

〉)
1√
2

= 0

∣∣∣∣∣
E

g(+)

〉
, g = (x, y).

(149)

Figure 36 shows (50-50 ±)-mixing due to k1. It distinguishes genuine vector modes (|Ex,(−)〉 or |Ey,(−)〉)
and the scalar breathing mode (|A1

x,x〉) from non-genuine (low or zero-frequency) vector modes of pure x
or y-translation (|Ex,(+)〉 or |Ey,(+)〉) and rigid rotation (pseudo-scalar |A2

y,y〉). The i3-local symmetry is wiped
out by direct connection-k1.

In order to reestablish approximate D3⊃C2(i3)-local-symmetry there needs to be a C2(i3)-“locale”
provided by lab-grounded potential springs such as those with constants k3 and k0 in Figure 35a. Adding
these in the form of Equation (146) to Equation (148) causes a transition between the two extremes. If
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the difference (k3 + 2kr − k0) between eigenvalues Equation (146) begins to dominate the off-diagonal
component (3k1/4) of Equation (148), then mixed E-modes of Figure 36 begin to recover D3⊃C2(i3)

locality seen in Figure 20 .
Meanwhile the constant k3 that determines eigenvalue kA2

y,y does not affect locality for either of the
singlet A1 or A2 modes. Singlet eigenvectors are non-negotiable as long as master symmetry D3 holds.

Figure 36. Mixed-local symmetry modes of direct-k1-coupled X3 model in Figure35b.

A.4. K-Matrix Eigensolutions for D3⊃C3 Symmetry

Another choice for D3 local symmetry is the C3 subgroup of Equation (79) corresponding to a strong
chiral perturbation by internal rotation, spin, or B-field. The E-submatrix in Equation (146) with zero
generic reflection parameters (i1=i2=i3=0) may take a purely chiral C3 form if the generic rotation
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parameters r1 and r2=r?1 are purely imaginary corresponding to velocity dependent force ( r1=ir and
r2=-ir. Here K is assumed Hermitian self-conjugate as was H).

KA1
xx = r0

KA2
yy = r0(

K
E

xx K
E

xy

K
E

yx K
E

yy

)
=

(
r0 −ir

√
3

+ir
√

3 r0

)

r1 = ir = −r∗2
i1 = i2 = i3 = 0

(150)

C3 E-eigenvectors have local x± iy=(±1)3 combinations that exhibit purely circular right R=(+1)3

and left L=(−1)3 polarization orbits of C3 symmetry shown in Figure 37 (Recall C3 splitting in
Equation (79)).

Figure 37. D3⊃C3-local symmetry modes of X3 molecule.
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K
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E
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〉
= K
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E

gx

〉
+ i

∣∣∣∣∣
E

gy
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1√
2
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√
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E

g(+1)3

〉
,
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E
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E
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− i
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E
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〉)
1√
2

= −r
√

3

∣∣∣∣∣
E

g(−1)3

〉
, g = (x, y).

(151)

Pure C3 symmetry is a normal subgroup and restricts kA1
x,x and kA2

y,y to become degenerate. Both the
scalar |A1

03,03
〉 and pseudoscalar |A2

03,03
〉 state are both labeled equally by (0)3 symmetry. Local symmetry

effectively goes global in the pure C3-case where all internal coupling is zero.
Any internal or external parameters may split the A1-A2 degeneracy and mix the C3 states to

form elliptical polarization orbits. This is most efficiently calculated using U(2) analysis similar to
Equation (137).
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