Lecture 36.
 Introduction to classical oscillation and resonance I.

(Ch. 1 of Unit 3 4.26.12)
1D forced-damped-harmonic oscillator equations and Green's function solutions
Linear harmonic oscillator equation of motion.
Linear damped-harmonic oscillator equation of motion.
Frequency retardation and amplitude damping
Linear forced-damped-harmonic oscillator equation of motion.
Phase lag and amplitude resonance
Properties of Green's function solutions and their physical behavior Quality factors and geometry of resonance

Complete Green's Solution for the FDHO (Forced-Damped-Harmonic Oscillator) Beat, lifetimes, and quality factor effects end of Lecture 36
Approximate Lorentz-Green's Function for high quality FDHO (Quantum propagator)

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear

harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=\quad F_{\text {restore }}
$$

Linear

harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=\quad F_{\text {restore }}
$$

held back by a harmonic (linear) restoring force $\longrightarrow F_{\text {restore }}=-k z,\left(k=\omega_{0}^{2} m\right)$,

Fig. 3.2.2 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Fig. 3.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Coordinate $z=z(t)$ is the response coordinate for a particle of mass m and charge e

Fig. 3.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Fig. 3.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Coordinate $z=z(t)$ is the response coordinate for a particle of mass m and charge e

$$
\frac{d^{2} z}{d t^{2}}=\frac{F_{\text {damping }}}{m}+\frac{F_{\text {restore }}}{m}
$$

$$
\frac{d^{2} z}{d t^{2}}+2 \Gamma \frac{d z}{d t}+\omega_{0}^{2} z \stackrel{\text { Set: } z}{=0}=z(t)=A e^{-i \omega t}
$$

$$
\left[(-i \omega)^{2}+2 \Gamma(-i \omega)+\omega_{0}^{2}\right] e^{-i \omega t}=0
$$

$$
\omega^{2}+2 i \Gamma \omega-\omega_{0}^{2}=0
$$

Solve for: $\omega=\omega_{ \pm}$
held back by a harmonic (linear) restoring force $\longrightarrow F_{\text {damping }}=-b \frac{d z}{d t}$
retarded by frictional damping force $\longrightarrow F_{\text {restore }}=-k z$

$$
\begin{aligned}
\omega_{ \pm} & =\frac{-2 i \Gamma \pm \sqrt{-4 \Gamma^{2}+4 \omega_{0}^{2}}}{2} \\
& =-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
z(t) & =e^{-i\left(-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{\left(-\Gamma \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{-\Gamma t} e^{ \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}} t}
\end{aligned}
$$

Fig. 3.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Solve for: $\omega=\omega_{ \pm}$

$\begin{aligned} \omega_{ \pm} & =\frac{-2 i \Gamma \pm \sqrt{-4 \Gamma^{2}+4 \omega_{0}^{2}}}{2} \\ & =-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\end{aligned}$
Solution:

$$
\begin{aligned}
z(t) & =e^{-i\left(-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{\left(-\Gamma \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{-\Gamma t} e^{ \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}} t} \\
& =e^{-\Gamma t} e^{ \pm i \omega_{\Gamma} t}
\end{aligned}
$$

Fig. 3.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Coordinate $z=z(t)$ is the response coordinate for a particle of mass m and charge e

Fig. 3.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$

Trick:

$$
\frac{d^{2} z}{d t^{2}}+2 \Gamma \frac{d z}{d t}+\omega_{0}^{2} z \stackrel{\text { Set: } z=z(t)=A e^{-i \omega t}}{\substack{0 \\\left[(-i \omega)^{2}+2 \Gamma(-i \omega)+\omega_{0}^{2}\right] e^{-i \omega t}=0}}
$$

$$
\omega^{2}+2 i \Gamma \omega-\omega_{0}^{2}=0
$$

Solve for: $\omega=\omega_{ \pm}$

$$
\begin{aligned}
\omega_{ \pm} & =\frac{-2 i \Gamma \pm \sqrt{-4 \Gamma^{2}+4 \omega_{0}^{2}}}{2} \\
& =-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}
\end{aligned}
$$

Solution:

$$
\begin{aligned}
z(t) & =e^{-i\left(-i \Gamma \pm \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{\left(-\Gamma \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}}\right) t} \\
& =e^{-\Gamma t} e^{ \pm i \sqrt{\omega_{0}^{2}-\Gamma^{2}} t} \\
& =e^{-\Gamma t} e^{ \pm i \omega^{\Gamma} t}
\end{aligned}
$$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Oscillator

Figures of Merit:
Time required to to reduce amplitude to 5%

Easy-to-recall 5% approximation:

$$
e^{-3} \cong 0.05
$$

$$
t_{5 \%}=\frac{3}{\Gamma}=\frac{3}{0.2}=15
$$

Fig. 3.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Oscillator

Figures of Merit:
Time required to to reduce amplitude to 5% (or 4.321%)

Easy-to-recall 5% approximation: More precise one:

$$
\begin{array}{rlr}
e^{-3} \cong 0.05 & e^{-\pi} \cong 0.04321 \\
t_{5 \%}=\frac{3}{\Gamma}=\frac{3}{0.2}=15 & t_{4.321 \%}=\frac{\pi}{\Gamma}=\frac{\pi}{0.2}=15.708
\end{array}
$$

$$
z(t)=e^{-\Gamma t} e^{ \pm i \omega_{\Gamma} t}
$$

Time

Fig. 3.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}
$$

Oscillator

Figures of Merit:
Number N of oscillations to reduce amplitude to 5% (or 4.321%)

Easy-to-recall 5% approximation: More precise one:

$$
\begin{gathered}
e^{-3} \cong 0.05 \quad e^{-\pi} \cong 0.04321 \\
N_{5 \%}=\frac{\omega_{\Gamma} \cdot t_{5 \%}}{2 \pi}=\frac{3 \omega_{\Gamma}}{2 \pi \Gamma} \sim \frac{\omega_{\Gamma}}{2 \Gamma} \\
t_{4.321 \%}=\frac{\pi}{\Gamma}=\frac{\pi}{0.2}=15.708
\end{gathered}
$$

Fig. 3.2.3 Phasor z and corresponding coordinate versus time plot for $\omega_{0}=2 \pi$ and $\Gamma=0.2$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Solving for $z_{\text {stimumus }}(t)$ given $a_{\text {stimulus }}$:

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

Linear forced-damped-harmonic oscillator equation of motion.

$$
F_{\text {total }}(t)=m \frac{d^{2} z}{d t^{2}}=F_{\text {damping }}+F_{\text {restore }}+F_{\text {stimulus }}
$$

$$
\frac{d^{2} z}{d t^{2}}=\frac{F_{\text {damping }}}{m}+\frac{F_{\text {restore }}}{m}+\frac{F_{\text {stimulus }}}{m}
$$

$$
\frac{d^{2} z}{d t^{2}}+2 \Gamma \frac{d z}{d t}+\omega_{0}^{2} z=a_{\text {stimulus }}=\frac{e}{m} E(t)
$$

Solving for $z_{\text {stimpuss }}(t)$ given $a_{\text {stimulus }}: \quad\left(\frac{d^{2}}{d t^{2}}+2 \Gamma \frac{d}{d t}+\omega_{0}^{2}\right) z=a_{\text {stimulus }}$
Pretty crazy? But not so crazy if

$$
a_{\text {sitimulus }}(\mathrm{t})=\left|a_{\text {sitimusus }}\right| \mathrm{s}^{-\mathrm{i} \omega_{s \text { sitimulust }}}=\left|a_{s}\right| \mathrm{e}^{-i \omega_{s} t}
$$

$$
\begin{aligned}
& z_{\text {stimulus }}=\frac{1}{-\omega_{s}^{2}-i 2 \Gamma \omega_{s}+\omega_{0}^{2}} a_{s} e^{-i \omega_{s} t} \\
& z_{s} e^{-i \omega_{s} t}=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} a_{s} e^{-i \omega_{s} t} \\
& G_{\omega_{0}}\left(\omega_{s}\right) \cdot a_{s}
\end{aligned}
$$

Green's Function for the F-D-H Oscillator (FDHO)

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 3.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)
$$

Real and imaginary parts of the rectangular form of G :

$$
\begin{aligned}
& \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}} \\
& \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned}
$$

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 3.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| e^{i \rho}
$$

Real and imaginary parts of the rectangular form of G :

$$
\begin{aligned}
& \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}} \\
& \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned}
$$

Magnitude $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$ and polar angle ρ of the polar form of G :

$$
\begin{aligned}
& \left|G_{\omega_{0}}\left(\omega_{s}\right)\right|=\frac{1}{\sqrt{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}} \\
& \rho=\tan ^{-1}\left(\frac{2 \Gamma \omega_{s}}{\omega_{0}^{2}-\omega_{s}^{2}}\right)
\end{aligned}
$$

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 3.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| e^{i \rho}
$$

Real and imaginary parts of the rectangular form of G :
Magnitude $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$ and polar angle ρ of the polar form of G :
$\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}$
$\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|=\frac{1}{\sqrt{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}}$
$\operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}$

$$
\rho=\tan ^{-1}\left(\frac{2 \Gamma \omega_{s}}{\omega_{0}^{2}-\omega_{s}^{2}}\right)
$$

Initial time $t=0$
Imaginary Axis Stimulus

Fig. 3.2.5 Oscillator response and stimulus phasors rotate rigidly at angular rate ω_{s}.

Green's Function for the FDHO (Forced-Damped-Harmonic Oscillator)

Fig. 3.2.4 Black-box diagram of oscillator response to monochromatic stimulus

$$
\left.G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}}=\operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)+i \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| e^{i \rho} \right\rvert\,
$$

Real and imaginary parts of the rectangular form of G :
Magnitude $\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|$ and polar angle ρ of the pqlar form of G :

$$
\begin{aligned}
& \operatorname{Re} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{\omega_{0}^{2}-\omega_{s}^{2}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}} \\
& \operatorname{Im} G_{\omega_{0}}\left(\omega_{s}\right)=\frac{2 \Gamma \omega_{s}}{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}
\end{aligned}
$$

$$
\left|G_{\omega_{0}}\left(\omega_{s}\right)\right|=\frac{1}{\sqrt{\left(\omega_{0}^{2}-\omega_{s}^{2}\right)^{2}+\left(2 \Gamma \omega_{s}\right)^{2}}}
$$

$$
\rho=\tan ^{-1}\left(\frac{2 \Gamma \omega_{s}}{\omega_{0}^{2}-\omega_{s}^{2}}\right)
$$

Fig. 3.2.5 Oscillator response and stimulus phasors rotate rigidly at angular rate $\omega_{\text {s }}$.

$$
A A F=\frac{\text { Resonant response }}{\text { DC response }}=\frac{\left|G_{\omega_{0}}\left(\omega_{s}=\omega_{0}\right)\right|}{\left|G_{\omega_{0}}(0)\right|}=\frac{1 /\left(2 \Gamma \omega_{0}\right)}{1 / \omega_{0}^{2}}=\frac{\omega_{0}}{2 \Gamma} \equiv q \quad \text { (angular quality factor) }
$$

Fig. 3.2.7 Comparing Lorentz-Green resonance region for (a) $\Gamma=0.2$ and (b) $\Gamma=0.1$.
Maximum and minimum points of $\operatorname{Re} G(\omega)$ and inflection points of $\operatorname{Im} G(\omega)$ are near region boundaries $\omega^{\text {FWHM }}(\pm)=\omega_{0} \pm \Gamma$.

Complete Green's Solution for the FDHO (Forced-Damped-Harmonic Oscillator)

$$
\begin{aligned}
z(t) & =z_{\text {transient }}(t)+z_{\text {response }}(t) \equiv z_{\text {decaying }}(t)+z_{\text {steady state }}(t) \\
& =A e^{-\Gamma t} e^{-i \omega_{\Gamma} t}+G_{\omega_{0}}\left(\omega_{s}\right) a(0) e^{-i \omega_{s} t} \\
& =A e^{-\Gamma t} e^{-i \omega_{\Gamma} t}+\left|G_{\omega_{0}}\left(\omega_{s}\right)\right| a(0) e^{-i\left(\omega_{s} t-\rho\right)}
\end{aligned}
$$

Known as "homogeneous" solution (no force) Let's you set initial or boundary conditions

Stimulus: $A s=0.50000=6.2832$
Response: $\mathrm{R}=0.1989 \rho=1.5708$

(c)

Fig. 3.2.8 On Resonance $\left(\omega_{\mathrm{s}}=\omega_{0}=2 \pi\right.$ and $\left.\Gamma=0.2\right)$.

Fig. 3.2.8 Below Resonance (c)Response z-phasor lags $\rho=8.05^{\circ}$ behind stimulus F-phasor. $\left(\omega_{\mathrm{s}}=5.03, \omega_{0}=2 \pi, \Gamma=0.2\right)$. (d) Time plots of $\operatorname{Re} z(t)$ and $\operatorname{Re} F(t)$. Beats are barely visible.

Approximate Lorentz-Green's Function for high quality FDHO (Quantum propagator)

$$
G_{\omega_{0}}\left(\omega_{s}\right)=\frac{1}{\omega_{0}^{2}-\omega_{s}^{2}-i 2 \Gamma \omega_{s}} \xrightarrow[\omega_{s} \rightarrow \omega_{0}]{\longrightarrow} \frac{1}{2 \omega_{s}} \frac{1}{\omega_{0}-\omega_{s}-i \Gamma} \approx \frac{1}{2 \omega_{0}} \frac{1}{\Delta-i \Gamma}=\frac{1}{2 \omega_{0}} L(\Delta-i \Gamma)
$$

Define complex detuning-decay $\delta=\Delta-i \Gamma$ variable δ is defined with the real detuning $\quad \Delta=\omega_{0}-\omega_{s}$

$$
\begin{aligned}
L(\Delta-i \Gamma) & =\frac{1}{\Delta-i \Gamma}=\operatorname{Re} L \quad+i \operatorname{Im} L \quad=\frac{\Delta}{\Delta^{2}+\Gamma^{2}}+i \frac{\Gamma}{\Delta^{2}+\Gamma^{2}}=|L|^{2} \Delta+i|L|^{2} \Gamma \\
& =|L| e^{i \rho}=|L| \cos \rho+i|L| \sin \rho=\frac{\cos \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}}+i \frac{\sin \rho}{\sqrt{\Delta^{2}+\Gamma^{2}}} \text { where: }|L|=\frac{1}{\sqrt{\Delta^{2}+\Gamma^{2}}}
\end{aligned}
$$

$|L|=\frac{1}{\Gamma} \sin \rho$
Ideal Lorentz-Green's functions
$|L|=\frac{1}{\Delta} \cos \rho$

Fig. 3.2.13 Ideal Lorentzian in inverse rate space. (Smith life-time $1 / \Gamma$ vs. beat-period $1 / \Delta$ coordinates)
Constant Δ and Γ curves in Fig. 3.2.13 are orthogonal circles of $1 / z$-dipolar coordinates. Recall Fig. 1.10.11.

