Lecture 35.
 Serial Compton scattering and accelerating frames II

(Ch. 7-8 of Unit 2 4.24.12)

Serial Compton scattering and acceleration plot
Geometric construction
Compton wavelength and formulae Lecture 34 review
Some numerology: Which is bigger...H-atom or an electron?
Bouncing pulse wave (PW) vs (CW) shrinking laser
Wave frames of varying acceleration
Relativistic acceleration
Optical "Einstein elevator" and flying-saucer-trailer
Biggest mystery of all: Pair production

Serial Compton scattering and acceleration plot
\longrightarrow Geometric construction
Compton wavelength and formulae
Some numerology: Which is bigger...H-atom or an electron? Bouncing pulse wave ($P W$) vs (CW) shrinking laser

Serial Compton scattering and acceleration plot Geometric construction
\rightarrow Compton wavelength and formulae
Some numerology: Which is bigger...H-atom or an electron? Bouncing pulse wave (PW) vs (CW) shrinking laser
$\tanh \rho_{1}=1 / 3$
$\tanh \rho_{2}=3 / 5$
$e^{\rho_{2}}=2$
$\sinh \rho_{2}=3 / 4$
$\omega_{6} \sinh \rho_{2}=3$

$$
\sinh \rho_{2}=3 / 4
$$

$$
\begin{aligned}
& \omega_{4_{2} \leftarrow 2_{0}}= \\
& \omega_{4} \sinh \rho_{2} \\
& =e^{+\rho_{2}} \omega_{2} \sinh \rho_{2} \\
& =3 / 2
\end{aligned}
$$

$\omega_{2_{4} \leftarrow 4_{2}}=$
$\omega_{0} \sinh \rho_{2}$
$=e^{-\rho_{2}} \omega_{2} \sinh \rho_{2}$
$=3 / 8$

Compton FIN

$\tanh \rho_{3}=7 / 9$
$e^{\rho_{3}}=2 \sqrt{2}$
$\tanh \rho_{4}=15 / 17$
$e^{\rho_{4}}=4$

Compton IN
Compton Wavelength formula
$\lambda_{I N}-\lambda_{F I N}=\lambda_{2_{4} \leftarrow 4_{2}}-\lambda_{4_{2} \leftarrow 2_{0}}=2 \pi c\left(\frac{1}{\omega_{2_{4} \leftarrow 4_{2}}}-\frac{1}{\omega_{4_{2} \leftarrow 2_{0}}}\right)$
$=2 \pi c\left(\frac{1}{e^{-\rho_{2}} \omega_{2} \sinh \rho_{2}}-\frac{1}{e^{+\rho_{2}} \omega_{2} \sinh \rho_{2}}\right)$
$=2 \pi c\left(\frac{1}{e^{-\rho_{2}}}-\frac{1}{e^{+\rho_{2}}}\right) \frac{1}{\omega_{2} \sinh \rho_{2}}$
$=\frac{2 \pi c}{\omega_{2}}\left(\frac{e^{+\rho_{2}}-e^{-\rho_{2}}}{1}\right) \frac{1}{\sinh \rho_{2}}$
$=\frac{2 \pi c}{\omega_{2}}(2)=\frac{2 \pi c \hbar}{M_{2} c^{2}}(2)=\frac{2 \pi \hbar}{M_{2} c}(2)=\frac{h}{M_{2} c}(2)$
$=2 \cdot$ Compton wavelength $=2 \cdot \frac{h}{M_{2} c}$

Serial Compton scattering and acceleration plot Geometric construction Compton wavelength and formulae
\rightarrow Some numerology: Which is bigger...H-atom or an electron? Bouncing pulse wave (PW) vs (CW) shrinking laser

Fig.8A. 2 Various electron radii and their relative sizes related by fine-structure constant $\alpha=1 / 137$.
Bohr model has electron orbiting at radius r so centrifugal force balances Coulomb attraction to the opposite charged proton.

$$
\frac{m_{e} v^{2}}{r}=\frac{e^{2}}{4 \pi \varepsilon_{0} r^{2}} \quad \text { or: } \quad \frac{m_{e} e^{2} r^{2}}{r}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \quad \text { or: } \quad r=\frac{4 \pi \varepsilon_{0} m_{e} v^{2} r^{2}}{e^{2}}=\frac{4 \pi \varepsilon_{0}\left(m_{e} v r\right)^{2}}{m_{e} e^{2}}=\frac{4 \pi \varepsilon_{0} \ell^{2}}{m_{e} e^{2}}
$$

Bohr hypothesis: orbital momentum ℓ is a multiple N of \hbar or

$$
\ell=m_{e} v r=N \hbar \quad(N=1,2, \ldots) .
$$

This gives the atomic Bohr radius $a_{0}=0.05 \mathrm{~nm}$

$$
r=\frac{.4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e^{2}} N^{2}\left(=r_{B o h r}=5.28 \cdot 10^{-11} m .=0.528 \ddot{A} \text { for } N=1\right)
$$

Fig.8A. 2 Various electron radii and their relative sizes related by fine-structure constant $\alpha=1 / 137$.
Bohr model has electron orbiting at radius r so centrifugal force balances Coulomb attraction to the opposite charged proton.

$$
\frac{m_{e} v^{2}}{r}=\frac{e^{2}}{4 \pi \varepsilon_{0} r^{2}} \quad \text { or: } \quad \frac{m_{e} \nu^{2} r^{2}}{r}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \quad \text { or: } \quad r=\frac{4 \pi \varepsilon_{0} m_{e} \nu^{2} r^{2}}{e^{2}}=\frac{4 \pi \varepsilon_{0}\left(m_{e} \nu r\right)^{2}}{m_{e} e^{2}}=\frac{4 \pi \varepsilon_{0} \ell^{2}}{m_{e} e^{2}}
$$

Bohr hypothesis: orbital momentum ℓ is a multiple N of \hbar or

$$
\ell=m_{e} v r=N \hbar \quad(N=1,2, \ldots) .
$$

This gives the atomic Bohr radius $a_{0}=0.05 \mathrm{~nm}$

$$
r=\frac{.4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e^{2}} N^{2}\left(=r_{B o h r}=5.28 \cdot 10^{-11} m .=0.528 \ddot{A} \text { for } N=1\right)
$$

It also implies rear-relativistic electron orbit speed v that is fraction $1 / N$ of $0.073 c$.

$$
\frac{v}{c}=\frac{\ell}{m_{e} r c}=\frac{N \hbar}{m_{e} r_{B o h r} c}=\frac{N \hbar}{m_{e} c} \frac{m_{e} e^{2}}{4 \pi \varepsilon_{0} \hbar^{2} N^{2}}=\frac{1}{N} \frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c} \quad\left(=7.29 \cdot 10^{-3}=\frac{1}{137 .} \text { for } N=1\right)
$$

The dimensionless ratio $\alpha=e 2 /\left(4 \pi \varepsilon_{0} \hbar c\right)=1 / 137.036$ is called the fine-structure constant α.

Fig.8A. 2 Various electron radii and their relative sizes related by fine-structure constant $\alpha=1 / 137$.
Bohr model has electron orbiting at radius r so centrifugal force balances Coulomb attraction to the opposite charged proton.

$$
\frac{m_{e} v^{2}}{r}=\frac{e^{2}}{4 \pi \varepsilon_{0} r^{2}} \quad \text { or: } \quad \frac{m_{e} \nu^{2} r^{2}}{r}=\frac{e^{2}}{4 \pi \varepsilon_{0}} \quad \text { or: } \quad r=\frac{4 \pi \varepsilon_{0} m_{e} \nu^{2} r^{2}}{e^{2}}=\frac{4 \pi \varepsilon_{0}\left(m_{e} \nu r\right)^{2}}{m_{e} e^{2}}=\frac{4 \pi \varepsilon_{0} \ell^{2}}{m_{e} e^{2}}
$$

Bohr hypothesis: orbital momentum ℓ is a multiple N of \hbar or

$$
\ell=m_{e} v r=N \hbar \quad(N=1,2, \ldots) .
$$

This gives the atomic Bohr radius $a_{0}=0.05 \mathrm{~nm}$

$$
r=\frac{.4 \pi \varepsilon_{0} \hbar^{2}}{m_{e} e^{2}} N^{2}\left(=r_{B o h r}=5.28 \cdot 10^{-11} m .=0.528 \ddot{A} \text { for } N=1\right)
$$

It also implies rear-relativistic electron orbit speed v that is fraction $1 / N$ of $0.073 c$.

$$
\frac{v}{c}=\frac{\ell}{m_{e} r c}=\frac{N \hbar}{m_{e} r_{B o h r} c}=\frac{N \hbar}{m_{e} c} \frac{m_{e} e^{2}}{4 \pi \varepsilon_{0} \hbar^{2} N^{2}}=\frac{1}{N} \frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c} \quad\left(=7.29 \cdot 10^{-3}=\frac{1}{137 .} \text { for } N=1\right)
$$

The $\underline{\text { dimensionless }}$ ratio $\alpha=e^{2 /\left(4 \pi \varepsilon_{0} \hbar c\right)=1 / 137.036}$ is called the fine-structure constant α.

Now, some numerology of Dirac's electron radius involving zwitterbewegung where $\omega_{\text {zitterbewegung }}=2 \mathrm{mc} 2 / \hbar=1.56 \cdot 10^{21}($ radian $) \mathrm{Hz}$
$\omega_{\text {zitterbewegung }} r=c \quad$ or $\quad r_{\text {Dirac }}=c / \omega_{\text {zitterbewegung }}=\hbar / 2 m c=1.93 \cdot 10^{-13} \mathrm{~m}$ relates to the Compton wavelength $\lambda=\hbar / m c=3.8616 \cdot 10^{-13} \mathrm{~m}$

Reduced Compton wavelength: $2 \pi \lambda=h / m c=2.4263 \cdot 10^{-12}$ or Compton "circumference"

Fig.8A. 2 Various electron radii and their relative sizes related by fine-structure constant $\alpha=1 / 137$.

The classical radius of the electron defined by setting its electrostatic PE to $m_{e} c^{2}$:

$$
e^{2} /\left(4 \pi e_{0} r_{\text {classical }}\right)=m_{e} c^{2} \quad \text { or } \quad r_{\text {classical }}=e^{2} /\left(4 \pi e_{0} m_{e} c^{2}\right)=2.8 \cdot 10^{-15} \mathrm{~m} .
$$

Another fine-structure ratio to $r_{\text {Bohr }}$.

$$
\frac{r_{\text {Classical }}}{r_{\text {Bohr }}}=\frac{e^{2} / 4 \pi \varepsilon_{0} m_{e} c^{2}}{4 \pi \varepsilon_{0} \hbar^{2} / m_{e} e^{2}}=\left(\frac{e^{2}}{4 \pi \varepsilon_{0} \hbar c}\right)^{2}=\left(\frac{1}{137 .}\right)^{2}
$$

As a final numerological exercise, find angular momentum $\ell=m_{e} v r$ of fictitious "zitterbewegung" orbit inside the electron.
With $v=c$ and $r=r_{\text {Dirac }}$ the following is obtained.

$$
\begin{aligned}
\ell & =m_{e} c r_{\text {Dirac }}=m_{e} c \hbar /\left(2 m_{e} c\right) \\
& =\hbar / 2
\end{aligned}
$$

Now, some numerology of Dirac's electron radius involving $z_{\text {witterbewegung }}$ where $\omega_{\text {zitterbewegung }}=2 \mathrm{mc}^{2 / \hbar}=1.56 \cdot 10^{21}($ radian $) \mathrm{Hz}$ $\omega_{\text {zitterbewegung }} r=c \quad$ or $\quad r_{\text {Dirac }}=c / \omega_{\text {ziterbewegung }}=\hbar / 2 m c=1.93 \cdot 10^{-13} \mathrm{~m}$ relates to the Compton wavelength $\lambda=\hbar / \mathrm{mc}=3.8616 \cdot 10^{-13} \mathrm{~m}$

(Some crazy "thing"
going c around a
circle!)

Serial Compton scattering and acceleration plot Geometric construction
Compton wavelength and formulae
Some numerology: Which is bigger...H-atom or an electron?
\rightarrow Bouncing pulse wave $(P W)$ vs $(C W)$ shrinking laser

(a) PW bouncing ball (shift $e^{\rho}=2$) (b) CW accordian node squeeze:

Fig. 7.8 Space-time nets (a) PW zigzag paths bounce. (b) CW nodes squeeze like an accordian.

Wave frames of varying acceleration
\rightarrow Relativistic acceleration

Optical "Einstein elevator" and flying-saucer-trailer Biggest mystery of all: Pair production

Acceleration by chirping laser pairs Varying acceleration (General case)

Only green-light is seen by observers on the green accelerated trajectory

Varying local acceleration $\rho=\rho(\tau)$

$$
u=\frac{d x}{d t}=c \tanh (\tau)
$$

$$
\begin{aligned}
& \frac{d t}{d \tau}=\cosh \rho(\tau) \\
& c t=c \int \cosh \rho(\tau) d \tau
\end{aligned}
$$

$\frac{d x}{d \tau}=\frac{d x}{d t} \frac{d t}{d \tau}=c \tanh \rho(\tau) \cosh \rho(\tau)=c \sinh \rho(\tau)$ $x=c \int \sinh \rho(\tau) d \tau$

Constant local acceleration $\rho=\frac{g \tau}{c} \quad$ "Einstein Elevator"

$$
\begin{aligned}
c t & =c \int \cosh \frac{g \tau}{c} d \tau & x & =c \int \sinh \frac{g \tau}{c} d \tau \\
& =\frac{\mathrm{c}^{2}}{\mathrm{~g}} \sinh \frac{g \tau}{c} & & =\frac{\mathrm{c}^{2}}{\mathrm{~g}} \cosh \frac{g \tau}{c}
\end{aligned}
$$

Fig. 8.1 Optical wave frames by red-and-blue-chirped lasers (a)Varying acceleration (b)Constant g

Fig. 8.2 Accelerated reference frames and their trajectories painted by chirped coherent light

$$
\begin{align*}
& x=c \int \sinh \left(\frac{g \tau}{c}\right) d \tau=\frac{c^{2}}{g} \cosh \left(\frac{g \tau}{c}\right) \tag{8.3b}\\
& c t=c \int \cosh \left(\frac{g \tau}{c}\right) d \tau=\frac{c^{2}}{g} \sinh \left(\frac{g \tau}{c}\right) \tag{8.3a}
\end{align*}
$$

Paths closer to the left hand blue-chirping laser have a higher g than flatter ones nearer the red-chirping one.
Each hyperbola has different but fixed location ℓ, color ω, and artificial gravity g that, by (8.3), are proper invariants of each path.

$$
\begin{equation*}
x^{2}-(c t)^{2}=\ell^{2}, \quad \text { where: } \quad \ell=c^{2} / g \tag{8.4}
\end{equation*}
$$

Frequency ω and acceleration g vary inversely with the path's proper location ℓ relative to origin.

$$
\begin{equation*}
\omega \ell=\omega c^{2} / g=\omega_{0} c^{2} / g_{0}=\text { const } . \tag{8.5}
\end{equation*}
$$

Rapidity $\rho=g \tau / c$ in (8.3) has proper time be a product of hyperbolic radius ℓ in (8.4) and "angle" ρ.

$$
\begin{equation*}
c \tau=\rho c^{2} / g=\ell \rho \tag{8.6}
\end{equation*}
$$

This is analogous to a familiar circular arc length formula $s=r \phi$. Both have a singular center.

Wave frames of varying acceleration
Relativistic acceleration
Optical "Einstein elevator" and flying-saucer-trailer \longrightarrow Biggest mystery of all: Pair production

Fig. 8.3 Dirac matter-antimatter dispersion relations and pair-creation-destruction processes.

Tuesday, April 24, 2012

