Lecture 32.

Relativity of interfering and galloping waves: SWR and SWQ IV. (Ch. 4-6 of Unit 2 4.17.12)

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony Magnetic B-field is relativistic effect Lecture 31 ended here

Review of Lecture 31

Relating photons to Maxwell energy density and Poynting fluxField Energy = $|\mathbf{E}|^2 \varepsilon_0$ Relativistic variation and invariance of frequency (ω ,k) and amplitudes $1/4\pi\varepsilon_0 = 9 \cdot 10^9$ How probability ψ -waves and flux ψ -waves evolved $1/4\pi\varepsilon_0 = 9 \cdot 10^9$ Properties of amplitude $\psi^*\psi$ -squaresMore on unmatched amplitudes AND unmatched frequencies AND unmatched quanta

The Ship-Barn-and-Butler saga of confused causality (More about galloping) *Review of Lecture 30*

Ist Quantization: Quantizing phase variables ω *and* k*Understanding how quantum transitions require "mixed-up" states Closed cavity vs Ring cavity*

If everything is made of waves then we expect *quantization* of everything because waves only thrive if *integral* numbers *n* of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers *n* are called *quantum numbers*. <u>OK box quantum numbers: n=1 n=2 n=3 n=4</u>

This doesn't mean a system's energy can't vary <u>continuously</u> between "OK" values E_1 , E_2 , E_3 , E_4 ,...

If everything is made of waves then we expect *quantization* of everything because waves only thrive if *integral* numbers *n* of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers *n* are called *quantum numbers*. *OK box quantum numbers*: n=1 n=2 n=3 n=4

This doesn't mean a system's energy can't vary <u>continuously</u> between "OK" values E_1 , E_2 , E_3 , E_4 ,... In fact its state can be a linear combination of any of the "OK" waves $|E_1\rangle$, $|E_2\rangle$, $|E_3\rangle$, $|E_4\rangle$,...

If everything is made of waves then we expect *quantization* of everything because waves only thrive if *integral* numbers *n* of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers *n* are called *quantum numbers*. *OK box quantum numbers*: n=1 n=2 n=3 n=4

This doesn't mean a system's energy can't vary <u>continuously</u> between "OK" values E_1 , E_2 , E_3 , E_4 ,... In fact its state can be a linear combination of any of the "OK" waves $|E_1\rangle$, $|E_2\rangle$, $|E_3\rangle$, $|E_4\rangle$,... That's the only way you get any light in or out of the system to "see" it. $|E_4\rangle$

frequency
$$\hbar \omega_{32} = E_3 - E_2$$

frequency $\hbar \omega_{21} = E_2 - E_1$

If everything is made of waves then we expect *quantization* of everything because waves only thrive if *integral* numbers *n* of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers *n* are called *quantum numbers*. *OK box quantum numbers:* n=1 n=2 n=3 n=4

This doesn't mean a system's energy can't vary <u>continuously</u> between "OK" values E_1 , E_2 , E_3 , E_4 ,... In fact its state can be a linear combination of any of the "OK" waves $|E_1\rangle$, $|E_2\rangle$, $|E_3\rangle$, $|E_4\rangle$,... That's the only way you get any light in or out of the system to "see" it. $|E_4\rangle$

frequency
$$\omega_{32} = (E_3 - E_2)/\hbar$$
 $E_2 > 0$
frequency $\omega_{21} = (E_2 - E_1)/\hbar$

These eigenstates are the only ways the system can "play dead"... ... " sleep with the fishes"...

If everything is made of waves then we expect *quantization* of everything because waves only thrive if *integral* numbers *n* of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers *n* are called *quantum numbers*. *OK box quantum numbers*: n=1 n=2 n=3 n=4

NOTE: We're using "false-color" here.

Rings tolerate a *zero* (kinkless) quantum wave but require $\pm integral$ wave number.

Bohr's models of *atomic spectra (1913-1923)* are beginnings of *quantum wave mechanics* built on *Planck-Einstein (1900-1905)* relation E=hv. *DeBroglie* relation $p=h/\lambda$ comes around 1923.

2nd Quantization: Quantizing amplitudes ("photons", "vibrons", and "what-ever-ons") Introducing coherent states (What lasers use) Analogy with (ω,k) wave packets Wave coordinates need coherence

Analogy:

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator Amplitude Packet) that is more like a *classical wave oscillation* with more *localization* in field amplitude.

<u>Coherent States(contd.)</u> Spacetime wave grid is impossible without coherent states

Pure photon number N-states would make useless spacetime coordinates

Coherent- α -states are defined by continuous amplitude-packet parameter α whose square is average photon number $\overline{N} = |\alpha|^2$. Coherent-states make better spacetime coordinates for larger $\overline{N} = |\alpha|^2$.

Coherent-state uncertainty in photon number (and mass) varies with amplitude parameter $\Delta N \sim \alpha \sim \sqrt{N}$ so a coherent state with $\overline{N} = |\alpha|^2 = 10^6$ only has a 1-in-1000 uncertainty $\Delta N \sim \alpha \sim \sqrt{N} = 1000$.

Relativistic effects on charge, current, and Maxwell Fields
 Current density changes by Lorentz asynchrony
 Magnetic B-field is relativistic effect

(+) Charge fixed (-) Charge moving to left (*Negative current density*)
(+) Charge density is Equal to the (-) Charge density

(+) Charge fixed (-) Charge moving to right (*Negative current density*)
(+) Charge density is Equal to the (-) Charge density

(+) Charge density is *Less* than (-) Charge density

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony Magnetic B-field is relativistic effect

Unit square: (u/c) / 1 = x(+)/y(v/c) / 1 = y/x(-)

Magnetic B-field is relativistic effect!

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2\rho}{r} \right], \text{ where: } \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \frac{N \cdot m^2}{Coul.}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_p}{r}$$

$$I/4\pi\varepsilon_0 = 9 \cdot 10^9$$

$$c^2 = 9 \cdot 10^9$$

$$I/(4\pi\varepsilon_0 c^2) = 10^{-7}$$

$$f (attracts)$$

Magnetic B-field is relativistic effect!

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2\rho}{r} \right], \text{ where: } \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \frac{N \cdot m^2}{Coul.}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right)$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right)$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right)$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1$$

 Relating photons to Maxwell energy density and Poynting flux Relativistic variation and invariance of frequency (ω,k) and amplitudes How probability ψ-waves and flux ψ-waves evolved Properties of amplitude ψ*ψ-squares More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta

Light Energy and Flux 2-CW vs 1-CW-light What if head-on CW's $v_A = 1200THz$ and $v_B = 300THz$ pair-up in a 2-CW-light beam? $\begin{array}{c} Group \ velocity \\ u=c \frac{\upsilon_A - \upsilon_B}{\upsilon_A + \upsilon_B} = c_5^2 \end{array} \qquad \begin{array}{c} & & & \\$ They form a rest frame going $u = c \frac{\upsilon_A - \upsilon_B}{\upsilon_A + \upsilon_R} = 3c/5$ with a mean or base color $\upsilon_0 = \sqrt{(\upsilon_A - \upsilon_R)}$ $(v_0 = B = 600 THz \text{ is green here. Neither has this singly.}) All observers agree on <math>v_0$ since all shift-products $bv_A rv_B$ equal $(v_0)^2$ due to Doppler-time-symmetry (b=1/r). Single *CW*'s get *invariant* properties if they pair-up. The $v_A - v_B$ pairing above makes a number \overline{N} of *invariant mass quanta* $M_1 = hv_0/c^2 = 4.42 \cdot 10^{-36} kg$ where the number \overline{N} is invariant, too. \overline{N} is Planck's *photon number* for the cavity rest energy $E = \overline{Nh}v_0$.

Light Energy and Flux 2-CW vs 1-CW-light What if head-on CW's $v_A = 1200THz$ and $v_B = 300THz$ pair-up in a 2-CW-light beam? *(Ultraviolet 1200THz) (Ultraviolet 1200THz) A Group velocity* $u=c \frac{\upsilon_A - \upsilon_B}{\upsilon_A + \upsilon_B} = c_5^3$ *Green 600THz* $u=c \frac{\upsilon_A - \upsilon_B}{\upsilon_A + \upsilon_B} = 3c/5$ with a mean or base color $\upsilon_0 = \sqrt{(\upsilon_A \upsilon_B)}$ $(v_0 = B = 600 THz \text{ is green here. Neither has this singly.}) All observers agree on <math>v_0$ since all shift-products $bv_A rv_B$ equal $(v_0)^2$ due to Doppler-time-symmetry (b=1/r). Single *CW*'s get *invariant* properties if they pair-up. The $v_A - v_B$ pairing above makes a number \overline{N} of *invariant mass quanta* $M_1 = h v_0 / c^2 = 4.42 \cdot 10^{-36} kg$ where the number \overline{N} is invariant, too. \overline{N} is Planck's *photon number* for the cavity rest energy $E = \overline{Nh} v_0$. Relating Planck's E to Maxwell's Density U=E/VMaxwell field energy E, a product of mean-square electric field $\langle E^2 \rangle$, volume of

cavity *V*, and constant $\varepsilon_0 = 8.854 \cdot 10^{-12} C^2 / N \cdot m^2$, approximates Planck's energy $\overline{Nh}\upsilon_0$.

 $E = \langle \mathsf{E}^2 \rangle_{\mathcal{V}} \varepsilon_0 = \overline{\mathcal{N}}_0 \quad Maxwell-Planck \ Energy \qquad \qquad U = \langle \mathsf{E}^2 \rangle_{\mathcal{E}_0} = \overline{\mathcal{N}}_0 \vee_0 / V \quad Maxwell-Planck \ Density$

Field Energy = $|\mathbf{E}|^2 \varepsilon_0$ $1/4\pi \varepsilon_0 = 9 \cdot 10^9$

Light Energy and Flux 2-CW vs 1-CW-light What if head-on CW's $v_A = 1200THz$ and $v_B = 300THz$ pair-up in a 2-CW-light beam? *(Ultraviolet 1200THz) (Ultraviolet 1200THz) (Ultraviolet 1200THz) A Group velocity* $u=c\frac{\upsilon_{A}-\upsilon_{B}}{\upsilon_{A}+\upsilon_{B}}=c\frac{3}{5}$ *Green 600THz* v_{B} *(Near Infrared 300THz) B (Near Infrared 300THz) B (Near Infrared 300THz) C Completed 200THz) Completed 200THz)* $(v_0 = B = 600 THz$ is green here. Neither has this singly.) All observers agree on v_0 since all shift-products $bv_A rv_B$ equal $(v_0)^2$ due to Doppler-time-symmetry (b=1/r). Single *CW*'s get *invariant* properties if they pair-up. The $v_A - v_B$ pairing above makes a number \overline{N} of *invariant mass quanta* $M_1 = h v_0 / c^2 = 4.42 \cdot 10^{-36} kg$ where the number \overline{N} is invariant, too. \overline{N} is Planck's *photon number* for the cavity rest energy $E = \overline{Nh} v_0$. Relating Planck's E to Maxwell's Density U=E/VMaxwell field energy E, a product of mean-square electric field $\langle E^2 \rangle$, volume of

cavity V, and constant $\varepsilon_0 = 8.854 \cdot 10^{-12} C^2 / N \cdot m^2$, approximates Planck's energy $\overline{Nh}\upsilon_0$.

 $E = \langle E^2 \rangle V_{\mathcal{E}_0} = \overline{N} h \upsilon_0 \quad Maxwell-Planck \ Energy \qquad U = \langle E^2 \rangle \varepsilon_0 = \overline{N} h \upsilon_0 / V \quad Maxwell-Planck \ Density$ Example: Let a $\frac{l}{4} \mu m$ -cube cavity (Half-wave at 600Thz) have $\overline{N} = 10^{10}$ photons in volume $V = (\frac{l}{4} 10^{-6} m)^3$. Energy per photon: $h \upsilon_0 = 4 \cdot 10^{-19} \text{J} = 2.5 \text{ eV}$ E-field per photon: $E_1 = \sqrt{(h \upsilon_0 / V \varepsilon_0)} = 7.6 \cdot 10^3 \text{V/m}$ E-field of \overline{N} photons: $E_N = 7.6 \cdot 10^{13} \text{V/m}$

Energy and Flux (contd) 2-CW- vs 1-CW-light

Planck E = Nhv relation allows us to interpret our *N*-quantized 2-*CW* mode as a box or *cavity* of $N_{\text{(more-or-less†)}}$ photons where N is invariant to speed *u* of box.

Energy and Flux (contd) 2-CW- vs 1-CW-light

Planck E=Nhv relation allows us to interpret our *N*-quantized 2-*CW* mode as a box or *cavity* of $N_{\text{(more-or-less†)}}$ photons where N is invariant to speed *u* of box.

If we open the box our 2-CW mode "divorces" into two separate 1-CW beams of $N/2_{(more-or-less)}$ photons. Each beam has <u>NO</u> rest frame and <u>NO</u> numbers invariant to <u>u</u>.

Energy and Flux (contd) 2-CW- vs 1-CW-light

Planck E = Nhv relation allows us to interpret our *N*-quantized 2-*CW* mode as a box or *cavity* of $N_{\text{(more-or-less†)}}$ photons where N is invariant to speed *u* of box.

If we open the box our 2-CW mode "divorces" into two separate 1-CW beams of $N/2_{(more-or-less)}$ photons. Each beam has <u>NO</u> rest frame and <u>NO</u> numbers invariant to <u>u</u>.

Relating Poynting's Intensity S=cU to Planck's Flux

Poynting intensity *S* is a product of c=2.99792458m/s and density *U*. It approximates Planck's energy E=Nhv times *c* and divided by cavity volume *V*.

S = cU = (Nc/V)hv = nhv Poynting-Planck Flux (Watts per square meter)

The photon-count rate is n=Nc/V (per square meter per second) and hv is energy (per count).

Relating photons to Maxwell energy density and Poynting flux Relativistic variation and invariance of frequency (ω ,k) and amplitudes How probability ψ -waves and flux ψ -waves evolved Properties of amplitude $\psi^*\psi$ -squares More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta

 v_3

 υ_2

Ń

ck

Frequency and Amplitude Variance 2-CW-light vs 1-CW-light 2-CW modes have invariance

Maxwell-Planck energy *E* is photon number $N(m^{-3})$ times 2-*CW*-frequency υ_1 . Invariant to ρ $E = \langle U \rangle \cdot V = \varepsilon_0 \langle E^2 \rangle \cdot V = \varepsilon_0 \langle E_{2-CW}^* E_{2-CW} \rangle \cdot V = h N \upsilon_1 = h \upsilon_N$

Photon number *N* and rest-frame frequencies $v_1...v_N$ are invariant to rapidity ρ and occupy (ω ,*ck*)-*hyperbolas* in per-spacetime.

 v_2

 $\boldsymbol{\upsilon}_{1}$

X

Frequency and Amplitude Variance2-CW-light vs 1-CW-light2-CW modes have invarianceMaxwell-Planck energy E is photon number $N(m^{-3})$ times 2-CW-frequency v_1 .Invariant to ρ Number N(m^{-3})Number N(m^{-3})Nu

 $E = \langle U \rangle \cdot V = \varepsilon_0 \langle \mathsf{E}^2 \rangle \cdot V = \varepsilon_0 \langle \mathsf{E}_{2-\mathsf{CW}} * \mathsf{E}_{2-\mathsf{CW}} \rangle \cdot V = h \mathcal{N} \upsilon_1 = h \upsilon_{\mathsf{N}}$

Photon number *N* and rest-frame frequencies $v_1...v_N$ are invariant to rapidity ρ and occupy (ω ,*ck*)-*hyperbolas* in per-spacetime.

 $\frac{1-CW \text{ beams lack invariance}}{Planck-Poynting flux S is count rate } n = Nc/V(m^{-2}s^{-1}) \text{ times } 1-CW-frequency } \upsilon_{o} \text{ or } \upsilon_{o}.$ Count rate *n* and frequency υ Doppler shift by $b=e^{\pm\rho}$ factors and occupy $(\omega=\pm ck)$ -baselines. Shifts by $b=e^{\pm2\rho}$ $S_{-}=cU_{-}=c\varepsilon_{0}\langle E^{2}\rangle=c\varepsilon_{0}\langle E_{1-cw}^{-}\times E_{1-cw}^{-}\rangle=hn_{-}$ υ_{-} Shifts by $r=e^{-2\rho}$ Shifts by $r=e^{-2\rho}$ Note: $E_{1-cw}^{+}\langle c\varepsilon_{0}/h\rangle=\sqrt{(n_{c}, \upsilon_{o})}$ is geometric mean of amplitude frequency n_{o} and phase frequency υ_{o} . Important result below:

Amplitudes of 1-CW "exponentiate" just like frequency, and intensity does at twice the rate (A double-double whammy!)

 $\frac{1-CW \text{ beams lack invariance}}{Planck-Poynting flux S is count rate <math>n=Nc/V(m^{-2}s^{-1})$ times 1-CW-frequency υ_{o} or υ_{o} . Count rate n and frequency υ Doppler shift by $b=e^{\pm\rho}$ factors and occupy $(\omega=\pm ck)$ -baselines. Shifts by $b=e^{\pm2\rho}$ $S_{-}=cU_{-}=c\varepsilon_{0}\langle E^{2}\rangle = c\varepsilon_{0}\langle E_{1-CW}^{+}\times E_{1-CW}^{+}\rangle = hn_{-}\upsilon_{-}$ Shifts by $r=e^{-2\rho}$ Shifts by $r=e^{-2\rho}$ Note: $E_{1-CW}^{+}\sqrt{(c\varepsilon_{0}/h)} = \sqrt{(n_{-}\upsilon_{-})}$ is geometric mean of amplitude frequency n_{-} and phase frequency υ_{-} .

Relating photons to Maxwell energy density and Poynting flux Relativistic variation and invariance of frequency (ω,k) and amplitudes How probability ψ-waves and flux ψ-waves evolved Properties of amplitude ψ*ψ-squares More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta

<u>How Probability Amplitudes</u> Ψ or Ψ <u>Come About</u> (An optical view) Maxwell-Planck-Poynting flux $S = cU = c\varepsilon_0 |\mathsf{E}|^2 = c\varepsilon_0 \mathsf{E}^*\mathsf{E} = nh\upsilon$ has count rate $n = Nc/V(m^{-2}s^{-1})$ If each E-field amplitude factor is scaled by a factor $\sqrt{\frac{c\varepsilon_0}{h\upsilon}} = \sqrt{\frac{\varepsilon_0}{h\kappa}}$ the result is a *flux probability amplitude* $\Psi = \mathsf{E}\sqrt{\frac{c\varepsilon_0}{h\upsilon}}$ whose square equals flux count rate $n(m^{-2}s^{-1})$.

$$\Psi^*\Psi = n \quad (m^{-2}s^{-1})$$

A fixed probability amplitude $\psi = E \sqrt{\frac{\varepsilon_0}{hv}}$ has square equal to N/V (particles per volume).

 $\psi^*\psi = N/V \quad (m^{-3})$

<u>How Probability Amplitudes</u> Ψ or Ψ <u>Come About</u> (An optical view) Maxwell-Planck-Poynting flux $S = cU = c\varepsilon_0 |\mathsf{E}|^2 = c\varepsilon_0 \mathsf{E}^*\mathsf{E} = n\hbar\upsilon$ has count rate $n = Nc/V(m^{-2}s^{-1})$ If each E-field amplitude factor is scaled by a factor $\sqrt{\frac{c\varepsilon_0}{h\upsilon}} = \sqrt{\frac{\varepsilon_0}{h\kappa}}$ the result is a *flux probability amplitude* $\Psi = \mathsf{E}\sqrt{\frac{c\varepsilon_0}{h\upsilon}}$ whose square equals flux count rate $n(m^{-2}s^{-1})$.

$$\psi^* \psi = n \quad (m^{-2}s^{-1})$$

A fixed probability amplitude $\psi = E \sqrt{\frac{\varepsilon_0}{hv}}$ has square equal to N/V (particles per volume).

 $\psi^*\psi = N/V \quad (m^{-3})$

*Here's how to answer Planck's worry about photons Q: How can classical oscillator energy (Amplitude)*²(*frequency*)² *jive with linear Planck law* S=nhv?

A: Let amplitude ψ or ψ contain inverse square root of frequency: $\psi = E\sqrt{\frac{c\varepsilon_0}{h\upsilon}}$ the "quantum amplitude" $Energy \sim |A|^2 \upsilon^2$ where vector potential **A** defines electric field: $\mathbf{E} = \frac{\partial \mathbf{A}}{\partial t} = i\omega \mathbf{A} = 2\pi i\upsilon \mathbf{A}$ $Energy \sim |A|^2 \upsilon^2 = |A\sqrt{\upsilon}|^2 \upsilon = \left|\frac{E}{2\pi\upsilon}\sqrt{\upsilon}\right|^2 \upsilon = \left|\frac{E}{2\pi\sqrt{\upsilon}}\right|^2 \upsilon \sim \left|E\sqrt{\frac{c\varepsilon_0}{h\upsilon}}\right|^2 = nh\upsilon$ <u>How Probability Amplitudes</u> Ψ or Ψ <u>Come About</u> (An optical view) Maxwell-Planck-Poynting flux $S = cU = c\varepsilon_0 |\mathsf{E}|^2 = c\varepsilon_0 \mathsf{E}^*\mathsf{E} = n\hbar\upsilon$ has count rate $n = Nc/V(m^{-2}s^{-1})$ If each E-field amplitude factor is scaled by a factor $\sqrt{\frac{c\varepsilon_0}{h\upsilon}} = \sqrt{\frac{\varepsilon_0}{h\kappa}}$ the result is a *flux probability amplitude* $\Psi = \mathsf{E}\sqrt{\frac{c\varepsilon_0}{h\upsilon}}$ whose square equals flux count rate $n(m^{-2}s^{-1})$.

$$\psi^* \psi = n \quad (m^{-2}s^{-1})$$

A fixed probability amplitude $\psi = E\sqrt{\frac{\varepsilon_0}{h\nu}}$ has square equal to *N/V* (particles per volume).

$$\psi^*\psi = N/V \quad (m^{-3})$$

Probability Waves $\Psi(x,t)$ (More optical views)

Optical E-field amplitudes like $E(x,t) = E_0 e^{i(kx-\omega t)}$ vary with space x and time t. So do scaled $\psi(x,t)$ amplitudes whose sum- Σ (integral- \int) over cells ΔV (or dV) must be particle number N. For 1-particle systems (N=1) this is the *unit norm* rule.

$$\Sigma_{j}\psi(x_{j},t)^{*}\psi(x_{j},t)\Delta V_{j}=N$$
 or: $\int \psi(x,t)^{*}\psi(x,t)dV=N$

<u>How Probability Amplitudes</u> Ψ or Ψ <u>Come About</u> (An optical view) Maxwell-Planck-Poynting flux $S = cU = c\varepsilon_0 |\mathsf{E}|^2 = c\varepsilon_0 \mathsf{E}^*\mathsf{E} = n\hbar\upsilon$ has count rate $n = Nc/V(m^{-2}s^{-1})$ If each E-field amplitude factor is scaled by a factor $\sqrt{\frac{c\varepsilon_0}{h\upsilon}} = \sqrt{\frac{\varepsilon_0}{h\kappa}}$ the result is a *flux probability amplitude* $\Psi = \mathsf{E}\sqrt{\frac{c\varepsilon_0}{h\upsilon}}$ whose square equals flux count rate $n(m^{-2}s^{-1})$.

$$\psi^* \psi = n \quad (m^{-2}s^{-1})$$

A fixed probability amplitude $\psi = E\sqrt{\frac{\varepsilon_0}{h\nu}}$ has square equal to *N/V* (particles per volume).

$$\psi^*\psi = N/V \quad (m^{-3})$$

Probability Waves $\Psi(x,t)$ (More optical views)

Optical E-field amplitudes like $E(x,t)=E_0e^{i(kx-\omega t)}$ vary with space x and time t. So do scaled $\psi(x,t)$ amplitudes whose sum- Σ (integral- \int) over cells ΔV (or dV) must be particle number N. For 1-particle systems (N=1) this is the *unit norm* rule.

 $\Sigma_{j} \Psi(x_{j},t)^{*} \Psi(x_{j},t) \Delta V_{j} = N$ or: $\int \Psi(x,t)^{*} \Psi(x,t) dV = N$

Born interpreted $\psi(x,t)^*\psi(x,t)$ as *probable expectation* of particle count. Schrodinger objected to the *probability wave* interpretation that is now accepted and called the Schrodinger theory. A relativistic wave view lends merit to his objections.

Transformation of SWR (or SWQ) and u_{GROUP} (or u_{PHASE}) is a non-linear transformation $SWR' = \frac{E'_{\rightarrow} - E'_{\leftarrow}}{E'_{\rightarrow} + E'_{\leftarrow}} = \frac{b^2 E_{\rightarrow} - E_{\leftarrow}}{b^2 E_{\rightarrow} + E_{\leftarrow}} = \frac{(1+\beta)E_{\rightarrow} - (1-\beta)E_{\leftarrow}}{(1+\beta)E_{\rightarrow} + (1-\beta)E_{\leftarrow}} = \frac{(E_{\rightarrow} - E_{\leftarrow}) + \beta(E_{\rightarrow} + E_{\leftarrow})}{(E_{\rightarrow} + E_{\leftarrow}) + \beta(E_{\rightarrow} - E_{\leftarrow})} = \frac{SWR + \beta}{1+\beta \cdot SWR}$ SWR (or SWQ) Transformation $u_{GROUP} \text{ (or } u_{PHASE} \text{) Transformation}$ $u_{GROUP} (\text{ or } u_{PHASE} \text{) Transformation}$ $u_{GROUP} (c = \frac{u_{GROUP} - c + \beta}{1+W_{GROUP} - B_{\leftarrow}} = \frac{(u_{GROUP} + u)/c}{1+u_{GROUP} - B_{\leftarrow}}$

$$SWR (or SWQ) Transformation \qquad u_{GROUP} (or u_{PHASE}) Transformation
SWR' = \frac{SWR + \beta}{1 + SWR \cdot \beta} = \frac{SWR + u/c}{1 + SWR \cdot u/c} \qquad u'_{GROUP} / c = \frac{u_{GROUP} / c + \beta}{1 + u_{GROUP} \cdot \beta/c} = \frac{(u_{GROUP} + u)/c}{1 + u_{GROUP} \cdot u/c^2}$$
Both are restatements of hyperbolic trig identity: $tanh(a+b) = \frac{tanh(a) + tanh(b)}{1 + tanh(a) \cdot tanh(b)}$ last term is ignorable if both a and b are small
Velocity addition is non-linear but rapidity addition is always linear: $\rho_{a+b} = \rho_a + \rho_b$

Unequal amplitudes and Unequal frequencies Suppose a general 2-CW Ψ -wave: $\Psi = \Psi_{\rightarrow} e^{i(k_{\rightarrow}x-\omega_{\rightarrow}t)} + \Psi_{\leftarrow} e^{i(k_{\leftarrow}x-\omega_{\leftarrow}t)}$ where probable count is $N_{\rightarrow} = |\Psi_{\rightarrow}|^2$ for *right* and $N_{\leftarrow} = |\Psi_{\leftarrow}|^2$ for *left*-going beams.

Unequal amplitudes and Unequal frequencies Suppose a general 2-CW Ψ -wave: $\Psi = \psi e^{i(k_x - \omega_t)} + \psi e^{i(k_x - \omega_t)}$ where probable count is $N_=|\psi_{\perp}|^2$ for *right* and $N_=|\psi_{\perp}|^2$ for *left*-going beams. Amplitudes $(\psi_{\rightarrow} = \sqrt{\frac{\varepsilon_0}{\hbar\omega}} E_{\rightarrow}, \psi_{\leftarrow} = \sqrt{\frac{\varepsilon_0}{\hbar\omega}} E_{\leftarrow})$ of frequencies $(\omega_{\rightarrow} = ck_{\rightarrow}, \omega_{\leftarrow} = ck_{\leftarrow})$ determine right count N left count Nprobable momentum-flux $\langle p \rangle = \langle \hbar k \rangle = |\psi_{\downarrow}|^2 \hbar k_{\downarrow} - |\psi_{\downarrow}|^2 \hbar k_{\downarrow}$ $= \frac{\varepsilon_0}{\hbar\omega} |\mathbf{E}_{\rightarrow}|^2 \hbar k_{\rightarrow} - \frac{\varepsilon_0}{\hbar\omega} |\mathbf{E}_{\leftarrow}|^2 \hbar k_{\leftarrow} = \frac{\varepsilon_0}{c} (|\mathbf{E}_{\rightarrow}|^2 - |\mathbf{E}_{\leftarrow}|^2)$ probable energy-flux $\langle E \rangle = \langle \hbar \omega \rangle = |\psi_{\perp}|^2 \hbar \omega_{\perp} + |\psi_{\perp}|^2 \hbar \omega_{\perp}$ $= \frac{\varepsilon_0}{\hbar\omega} |\mathbf{E}_{\mathbf{A}}|^2 \hbar\omega_{\mathbf{A}} + \frac{\varepsilon_0}{\hbar\omega} |\mathbf{E}_{\mathbf{A}}|^2 \hbar\omega_{\mathbf{A}} = \varepsilon_0 (|\mathbf{E}_{\mathbf{A}}|^2 + |\mathbf{E}_{\mathbf{A}}|^2)$

Unequal amplitudes and Unequal frequencies Suppose a general 2-CW Ψ -wave: $\Psi = \Psi e^{i(k_x - \omega_t)} + \Psi e^{i(k_x - \omega_t)}$ where probable count is $N_=|\psi_{\perp}|^2$ for *right* and $N_=|\psi_{\perp}|^2$ for *left*-going beams. Amplitudes $(\psi_{\rightarrow} = \sqrt{\frac{\varepsilon_0}{\hbar\omega}} E_{\rightarrow}, \psi_{\leftarrow} = \sqrt{\frac{\varepsilon_0}{\hbar\omega}} E_{\leftarrow})$ of frequencies $(\omega_{\rightarrow} = ck_{\rightarrow}, \omega_{\leftarrow} = ck_{\leftarrow})$ determine right count N left count Nprobable momentum-flux $\langle p \rangle = \langle \hbar k \rangle = |\psi_{\downarrow}|^2 \hbar k_{\downarrow} - |\psi_{\downarrow}|^2 \hbar k_{\downarrow}$ $= \frac{\varepsilon_0}{\hbar\omega} |\mathbf{E}_{\rightarrow}|^2 \hbar k_{\rightarrow} - \frac{\varepsilon_0}{\hbar\omega} |\mathbf{E}_{\leftarrow}|^2 \hbar k_{\leftarrow} = \frac{\varepsilon_0}{c} (|\mathbf{E}_{\rightarrow}|^2 - |\mathbf{E}_{\leftarrow}|^2)$ probable energy-flux $\langle E \rangle = \langle \hbar \omega \rangle = |\psi_{\perp}|^2 \hbar \omega_{\perp} + |\psi_{\perp}|^2 \hbar \omega_{\perp}$ $= \frac{\varepsilon_0}{\hbar\omega} |\mathbf{E}_{\mathbf{A}}|^2 \hbar\omega_{\mathbf{A}} + \frac{\varepsilon_0}{\hbar\omega} |\mathbf{E}_{\mathbf{A}}|^2 \hbar\omega_{\mathbf{A}} = \varepsilon_0 (|\mathbf{E}_{\mathbf{A}}|^2 + |\mathbf{E}_{\mathbf{A}}|^2)$ Invariant hyperbola $\langle E \rangle^2 - c^2 \langle p \rangle^2 = 4\varepsilon_0 |\mathbf{E}|^2 \varepsilon_0 |\mathbf{E}|^2 = \hbar^2 \omega_\omega (4N_N)^2 = (\hbar \omega N)^2 = (2\varepsilon_0 \overline{\mathbf{E}}^2)^2$

Unequal amplitudes and Unequal frequencies Suppose a general 2-CW Ψ -wave: $\Psi = \Psi \left[e^{i(k_x - \omega_y)} + \Psi \right] e^{i(k_x - \omega_y)}$ where probable count is $N_=|\psi_{\perp}|^2$ for *right* and $N_=|\psi_{\perp}|^2$ for *left*-going beams. Amplitudes $(\psi_{\rightarrow} = \sqrt{\frac{\varepsilon_0}{\hbar\omega}} E_{\rightarrow}, \psi_{\leftarrow} = \sqrt{\frac{\varepsilon_0}{\hbar\omega}} E_{\leftarrow})$ of frequencies $(\omega_{\rightarrow} = ck_{\rightarrow}, \omega_{\leftarrow} = ck_{\leftarrow})$ determine right count $N \rightarrow$ left count $N \rightarrow$ probable momentum-flux $\langle p \rangle = \langle \hbar k \rangle = |\overline{\psi}|^2 \hbar k_{\perp} - |\overline{\psi}|^2 \hbar k_{\perp}$ $= \frac{\varepsilon_0}{\hbar\omega} |\mathsf{E}_{\rightarrow}|^2 \hbar k_{\rightarrow} - \frac{\varepsilon_0}{\hbar\omega} |\mathsf{E}_{\leftarrow}|^2 \hbar k_{\leftarrow} = \frac{\varepsilon_0}{c} (|\mathsf{E}_{\rightarrow}|^2 - |\mathsf{E}_{\leftarrow}|^2)$ probable energy-flux $\langle E \rangle = \langle \hbar \omega \rangle = |\psi_{\perp}|^2 \hbar \omega_{\perp} + |\psi_{\perp}|^2 \hbar \omega_{\perp}$ $= \frac{\varepsilon_0}{\hbar\omega} |\mathbf{E}_{\mathbf{A}}|^2 \hbar\omega_{\mathbf{A}} + \frac{\varepsilon_0}{\hbar\omega} |\mathbf{E}_{\mathbf{A}}|^2 \hbar\omega_{\mathbf{A}} = \varepsilon_0 (|\mathbf{E}_{\mathbf{A}}|^2 + |\mathbf{E}_{\mathbf{A}}|^2)$ Invariant hyperbola $\langle E \rangle^2 - c^2 \langle p \rangle^2 = 4\epsilon_0 |\mathbf{E}_{\rightarrow}|^2 \epsilon_0 |\mathbf{E}_{\rightarrow}|^2 = \hbar^2 \omega_{\rightarrow} \omega_{-} 4 N_{-} N_{-} = (\hbar \omega \overline{N})^2 = (2\epsilon_0 \overline{E}^2)^2$ In Center-of-Momentum (COM) frame In Isochromatic (ISOC) frame $[\mathbf{E'} = \mathbf{E'} = \mathbf{E'}_{\leftarrow}]$ speed is $u_{COM} = c \frac{\mathbf{E}_{\rightarrow} - \mathbf{E}_{\leftarrow}}{\mathbf{E}_{\rightarrow} + \mathbf{E}}$ $[\omega' = \overline{\omega} = \omega']$ speed is $u_{ISO} = c \quad \frac{\omega}{\omega} = c$ Mean color Mean amplitude *u*_{COM} u/_{ISOC} $\overline{\omega} = \sqrt{\omega} \overline{\omega}$ $E = \sqrt{E E}$ $\hbar \overline{\omega} \overline{N}$ Unequal amplitudes but Equal frequencies Equal amplitudes but Unequal frequencies Mean count *ħck* Hyberbola drops as E_{\perp} and E_{\perp} become <u>un</u>equal /pirelli/php/amplitude_probability 52 Wednesday, April 18, 2012

The Ship-Barn-and-Butler saga of confused causality (More about galloping)

Fig. 2.B.10 Lighthouse plot of two Happenings

www.uark.edu/ua/pirelli/php/amplitude_probability_4.php

Waves that go back in time - The Feynman-Wheeler Switchback

