Lecture 32.

Relativity of interfering and galloping waves: SWR and SWQ IV.

$$
\text { (Ch. 4-6 of Unit } 2 \text { 4.17.12) }
$$

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
Magnetic B-field is relativistic effect Lecture 31 ended here
Relating photons to Maxwell energy density and Poynting flux
Relativistic variation and invariance of frequency (ω, k) and amplitudes
Review of Lecture 31

How probability ψ-waves and flux ψ-waves evolved
Properties of amplitude $\psi^{*} \psi$-squares
More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta
The Ship-Barn-and-Butler saga of confused causality
(More about galloping)

Review of Lecture 30

1st Quantization: Quantizing phase variables ω and k

Understanding how quantum transitions require "mixed-up" states Closed cavity vs Ring cavity

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$

$$
n=2
$$

$$
n=3
$$

$$
n=4
$$

(+ integers only)

Some

NOT OK numbers: $n=0.67$

$$
n=1.7
$$

wrong color again!

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$

$$
n=4
$$

(+ integers only)

Some

$n=2$

$$
n=3
$$

NOT OK numbers: $n=0.67$

$n=2.59$

$$
n=4
$$

NOTE: We're using "false-color" here.

[^0]
Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only)

Some

NOT OK numbers: $n=0.67$

$n=2$

$$
n=3
$$

$$
n=4
$$

$$
n=1.7
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left.\left|E_{1}>,\right| E_{2}\right\rangle,\left|E_{3}\right\rangle, \mid E_{4}>, \ldots$ That's the only way you get any light in or out of the system to "see" it.

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only)
Some
NOT OK numbers: $n=0.67$

$n=2$

$$
n=3
$$

$$
n=4
$$

$$
n=1.7
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left.\left|E_{1}>,\right| E_{2}\right\rangle,\left|E_{3}\right\rangle, \mid E_{4}>, \ldots$ That's the only way you get any light in or out of the system to "see" it.

$$
\begin{aligned}
& \text { frequency } \omega_{32}=\left(E_{3}-E_{2}\right) / \hbar \\
& \text { frequency } \omega_{21}=\left(E_{2}-E_{1}\right) / \hbar
\end{aligned}
$$

These eigenstates are the only ways the system can "play dead"... ... "sleep with the fishes"...

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only) Some
NOT OK numbers: $n=0.67$

$n=1.7$

$$
n=3
$$

$$
n=4
$$

wrong color again!

NOTE: We're using "false-color" here.
Rings tolerate a zero (kinkless) quantum wave but require \pm integral wave number. OK ring quantum numbers: $m=0$
$m= \pm 1$

Bohr's models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics built on Planck-Einstein (1900-1905) relation $E=h v$. DeBroglie relation $p=h \lambda$ comes around 1923.

2nd Quantization: Quantizing amplitudes ("photons", "vibrons", and "what-ever-ons") Introducing coherent states (What lasers use)

Analogy with (ω, k) wave packets
Wave coordinates need coherence

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

$N_{2}=0$

$m=2 \quad m=3 \quad m=4$
Quantized Wavenumber ("kink" or momentum number)

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Boosted observers see distorted frequencies and lengths, but will agree on the numbers n and N of mode nodes and photons.

This is how light waves can "fake" some of the properties of classical "things" such as invariance or object permanence.

It takes at least $T W O C W$'s to achieve such invariance. One CW is not enough and cannot have non-zero invariant N. Invariance is an interference effect that needs at least two-to-tango!

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

We saw how adding CW's (Continuous Waves $m=1,2,3 \ldots$) can make $P W$ (Pulse Wave) or $W P$ (Wave Packet) that is more like a classical "thing" with more localization in space x and time t.

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator Amplitude Packet) that is more like a classical wave oscillation with more localization in field amplitude.

Pure photon states have localized (certain) N but delocalized (uncertain) amplitude and phase. $O A P$ states have delocalized (uncertain) N but more localized (certain) amplitude and phase.

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

Pure photon number N-states would make useless spacetime coordinates

Coherent- α-states are defined by continuous amplitude-packet parameter α whose square is average photon number $\bar{N}=|\alpha|^{2}$. Coherent-states make better spacetime coordinates for larger $\bar{N}=|\alpha|^{2}$.

Quantum field coherent α-states

$\bar{N}=100$
$\Delta N=10$

$\bar{N}=10^{6}$
$\Delta N=10^{3}$

$\bar{N}=10^{10}$
$\Delta N=10^{5}$

Classical limit

Coherent-state uncertainty in photon number (and mass) varies with amplitude parameter $\Delta N \sim \alpha \sim \sqrt{N}$ so a coherent state with $\bar{N}=|\alpha|^{2}=10^{6}$ only has a 1-in-1000 uncertainty $\Delta N \sim \alpha \sim \sqrt{ } N=1000$.

Relativistic effects on charge, current, and Maxwell Fields \rightarrow Current density changes by Lorentz asynchrony
 Magnetic B-field is relativistic effect

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony

Observer velocity is zero relative to $(+)$ line of charge
wire appears
neutral
$(+)$ Charge fixed (-) Charge moving to left (Negative current density)
$(+)$ Charge density is Equal to the (-) Charge density

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony

$(+)$ Charge fixed (-) Charge moving to right (Negative current density)
$(+)$ Charge density is Equal to the (-) Charge density

(repulsive to +)

Observer velocity

$(+)$ Charge fixed (-) Charge moving to left (Negative current density)
$(+)$ Charge density is Less than (-) Charge density
is $(-)$ relative to $(+)$ line of charge

wire appears
negative (-)
(attractive to +)

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony
\rightarrow Magnetic B-field is relativistic effect

Unit square: $(\mathrm{u} / \mathrm{c}) / 1=\mathrm{x}(+) / \mathrm{y}$

$$
(\mathrm{v} / \mathrm{c}) / 1=\mathrm{y} / \mathrm{x}(-)
$$

Magnetic B-field is relativistic effect!

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$
\begin{array}{ll}
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \rho}{r}\right], \text { where: } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{Coul} .} & 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9} \\
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{r}\left(-\frac{u v}{c^{2}} \rho(+)\right)\right]=-\frac{2 q v \rho(+) u}{4 \pi \varepsilon_{0} c^{2} r}=-2 \times 10^{-7} \frac{I_{q} I_{\rho}}{r} & \begin{array}{l}
c^{2}=9 \cdot 10^{-16} \\
1 /\left(4 \pi \varepsilon_{0} c^{2}\right)=10
\end{array}
\end{array}
$$

Magnetic B-field is relativistic effect!

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$
\begin{array}{ll}
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \rho}{r}\right], \quad \text { where: } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{Coul} .} & 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9} \\
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{r}\left(-\frac{u v}{c^{2}} \rho(+)\right)\right]=-\frac{2 q v \rho(+) u}{4 \pi \varepsilon_{0} c^{2} r}=-2 \times 10^{-7} \frac{I_{q} I_{\rho}}{r} & \begin{array}{l}
c^{2}=9 \cdot 10^{-16} \\
1 /\left(4 \pi \varepsilon_{0} c^{2}\right)=10^{-7}
\end{array}
\end{array}
$$

\rightarrow Relating photons to Maxwell energy density and Poynting flux

Relativistic variation and invariance of frequency (ω, k) and amplitudes
How probability ψ-waves and flux ψ-waves evolved
Properties of amplitude $\psi^{*} \psi$-squares
More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta

Light Energy and Flux 2-CW vs $1-C W$-light

What if head-on CW's $v_{A}=12007 \mathrm{Tzz}$ and $v_{B=300 T H z}$ pair-up in a 2-CW-light beam?

They form a rest frame going $u=c \frac{v_{A}-v_{B}}{v_{A}+v_{B}} 3 c / 5$ with a mean or base color $v_{0}=v\left(v_{A} v_{B}\right)$ $\left(v_{0}=B=600 \mathrm{THz}\right.$ is green here. Neither has this singly.)

Light Energy and Flux 2-CW vs $1-C W$-light

They form a rest frame going $u=c \frac{v_{A} A}{v_{A}+v_{B}}+3 c / 5$ with a mean or base color $v_{0}=v\left(v_{A} v_{B}\right)$ $\left(v_{0}=B=600 \mathrm{THz}\right.$ is green here. Neither has this singly.) All observers agree on v_{0} since all shift-products $b v_{A} r v_{B}$ equal $\left(v_{0}\right)^{2}$ due to Doppler-time-symmetry ($b=1 / r$). Single $C W$'s get invariant properties if they pair-up. The $v_{A}{ }^{-v_{B}}$ pairing above makes a number \bar{N} of invariant mass quanta $M_{l}=h v_{0} / c^{2}=4.42 \cdot 10^{-36} \mathrm{~kg}$ where the number \bar{N} is invariant, too. \bar{N} is Planck's photon number for the cavity rest energy $E=\bar{N} h v_{0}$.

Light Energy and Flux 2-CW vs $1-C W$-light

What if head-on CW's $v_{A}=1200 \pi \mathrm{THz}$ and $v_{B=300 T H z}$ pair-up in a $2-\mathrm{CW}$-light beam?

They form a rest frame going $u=c \frac{v_{A} A}{v_{A}+v_{B}}+3 c / 5$ with a mean or base color $v_{0}=v\left(v_{A} v_{B}\right)$ $\left(v_{0}=B=600 \mathrm{THz}\right.$ is green here. Neither has this singly.) All observers agree on v_{0} since all shift-products $b v_{A} r v_{B}$ equal $\left(v_{0}\right)^{2}$ due to Doppler-time-symmetry ($b=1 / r$). Single $C W$'s get invariant properties if they pair-up. The $v_{A}{ }^{-v_{B}}$ pairing above makes a number \bar{N} of invariant mass quanta $M_{l}=h v_{0} / c^{2}=4.42 \cdot 10^{-36} \mathrm{~kg}$ where the number \bar{N} is invariant, too. \bar{N} is Planck's photon number for the cavity rest energy $E=\bar{N} h v_{0}$. Relating Planck's E to Maxwell's Density $U=E / V$
Maxwell field energy E, a product of mean-square electric field $\left\langle\mathrm{E}^{2}\right\rangle$, volume of cavity V, and constant $\varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}$, approximates Planck's energy $\overline{\mathrm{N}} h \mathrm{v}_{0}$.

$$
E=\left\langle\mathrm{E}^{2}\right\rangle_{\varepsilon_{0}}=\bar{N} h v_{0} \text { Maxwell-Planck Energy } \quad U=\left\langle\mathrm{E}^{2}\right\rangle \varepsilon_{0}=\bar{N} h v_{0} V \text { Maxwell-Planck Density }
$$

$$
\text { Field Energy }=|\mathrm{E}|^{2} \varepsilon_{0} \quad 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9}
$$

Light Energy and Flux 2-CW vs $1-C W$-light

What if head-on CW's $v_{A}=1200 T \mathrm{Tzz}$ and $v_{B=300 T H z}$ pair-up in a $2-C W$-light beam?

They form a rest frame going $u=c \frac{v_{A}-v_{B}}{v_{A} A} v_{B}=3 c / 5$ with a mean or base color $v_{0}=v\left(v_{A} v_{B}\right)$ $\left(v_{0}=B=600 T H z\right.$ is green here. Neither has this singly.) All observers agree on v_{0} since all shift-products $b v_{A} r v_{B}$ equal $\left(v_{0}\right)^{2}$ due to Doppler-time-symmetry ($b=1 / r$). Single $C W$'s get invariant properties if they pair-up. The $v_{A}{ }^{-v_{B}}$ pairing above makes a number \bar{N} of invariant mass quanta $M_{l}=h v_{0} / c^{2}=4.42 \cdot 10^{-36} \mathrm{~kg}$ where the number \bar{N} is invariant, too. \bar{N} is Planck's photon number for the cavity rest energy $E=\bar{N} h v_{0}$.
Relating Planck's E to Maxwell's Density $U=E / V$
Maxwell field energy E, a product of mean-square electric field $\left\langle\mathrm{E}^{2}\right\rangle$, volume of cavity V, and constant $\varepsilon_{0}=8.854 \cdot 10^{-12} \mathrm{C}^{2} / \mathrm{N} \cdot \mathrm{m}^{2}$, approximates Planck's energy $\overline{\mathrm{N}} h \mathrm{v}_{0}$.

$$
E=\left\langle\mathrm{E}^{2}\right\rangle \nu \varepsilon_{0}=\bar{N} h \omega_{0} \text { Maxwell-Planck Energy } \quad U=\left\langle\mathrm{E}^{2}\right\rangle \varepsilon_{0}=\bar{N} h \nu_{0} / V \text { Maxwell-Planck Density }
$$

Example: Let a $\frac{1}{4} \mu m$-cube cavity (Half-wave at 600 Thz) have $\bar{N}=10^{10}$ photons in volume $V=\left(\frac{1}{4} 10^{-6} \mathrm{~m}\right)^{3}$.

Energy per photon: $h v_{0}=4 \cdot 10^{-19} \mathrm{~J}=2.5 \mathrm{eV}$
E-field per photon: $\mathrm{E}_{1}=\sqrt{ }\left(h v_{0} / V \varepsilon_{0}\right)=7.6 \cdot 10^{3} \mathrm{~V} / \mathrm{m}$

Energy of \bar{N} photons: $\bar{N} h v_{0}=4 \cdot 10^{-9} \mathrm{~J}=25 \mathrm{GeV}$
E-field of \bar{N} photons: $\mathrm{E}_{\mathrm{N}}=7.6 \cdot 10^{13} \mathrm{~V} / \mathrm{m}$

Energy and Flux (contd) 2-CW-vs 1-CW-light
Planck $E=N h v$ relation allows us to interpret our N-quantized $2-\mathrm{CW}$ mode as a box or cavity of $N_{\text {(moreor-esss) }}$ photons where N is invariant to speed u of box.

Planck $E=N h v$ relation allows us to interpret our N-quantized $2-\mathrm{CW}$ mode as a box or cavity of $N_{\text {(moreor-esss) }}$ photons where N is invariant to speed u of box.

If we open the box our $2-C W$ mode "divorces" into two separate $1-C W$ beams of $N / 2_{\text {(more-or-ess }}$ photons. Each beam has $\underline{N O}$ rest frame and $\underline{N O}$ numbers invariant to u.

Planck $E=N h v$ relation allows us to interpret our N-quantized $2-\mathrm{CW}$ mode as a box or cavity of $N_{\text {(more-orlesss })}$ photons where N is invariant to speed u of box.

If we open the box our 2-CW mode "divorces" into two separate $1-C W$ beams of $N / 2_{\text {(more-orlesss }}$ photons. Each beam has $\underline{N O}$ rest frame and $\underline{N O}$ numbers invariant to u.

Relating Poynting's Intensity $S=c U$ to Planck's Flux
Poynting intensity S is a product of $c=2.99792458 \mathrm{~m} / \mathrm{s}$ and density U. It approximates Planck's energy $E=N h v$ times c and divided by cavity volume V.

$$
S=c U=(N c / V) h v=n h v \quad \text { Poynting-Planck Flux } \quad \text { (Watts per square meter) }
$$

The photon-count rate is $n=N c / V$ (per square meter per second) and $h v$ is energy (per count).

Relating photons to Maxwell energy density and Poynting flux
Relativistic variation and invariance of frequency (ω, k) and amplitudes
How probability ψ-waves and flux ψ-waves evolved
Properties of amplitude $\psi^{*} \psi$-squares
More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta

Frequency and Amplitude Variance 2-CW-light vs 1-CW-light
2-CW modes have invariance
Maxwell-Planck energy E is photon number $N\left(m^{-3}\right)$ times 2-CW-frequency v_{1}.
Invariant to ρ

$$
E=\langle U\rangle \cdot V=\varepsilon_{0}\left\langle\mathrm{E}^{2}\right\rangle \cdot V=\varepsilon_{0}\left\langle\mathrm{E}_{2-\mathrm{cw}}{ }^{*} \mathrm{E}_{2-\mathrm{cw}}\right\rangle \cdot V=h N v_{1}=h v_{\mathrm{N}}
$$

Photon number N and rest-frame frequencies $v_{1} \ldots v_{\mathrm{N}}$ are invariant to rapidity ρ and occupy $(\omega$, ck)-hyperbolas in per-spacetime.

Frequency and Amplitude Variance 2-CW-light vs 1-CW-light

2-CW modes have invariance

Maxwell-Planck energy E is photon number $N\left(m^{-3}\right)$ times 2-CW-frequency v_{1}.
Invariant to ρ
Each is ρ-invariant

$$
E=\langle U\rangle \cdot V=\varepsilon_{0}\left\langle\mathrm{E}^{2}\right\rangle \cdot V=\varepsilon_{0}\left\langle\mathrm{E}_{2-\mathrm{cw}}{ }^{*} \mathrm{E}_{2-\mathrm{cw}}\right\rangle \cdot V=h N v_{1}=h v_{\mathrm{N}}
$$

Photon number N and rest-frame frequencies $v_{1} \ldots v_{N}$ are invariant to rapidity ρ and occupy $(\omega, c k)$-hyperbolas in per-spacetime.

1-CW beams lack invariance (have "variance" ala' Doppler) Planck-Poynting flux S is count rate $n=N c / V\left(m^{-2} s^{-1}\right)$ times 1 -CW-frequency v_{\leftarrow} or v_{\rightarrow}. Count rate n and frequency v Doppler shift by $b=e^{ \pm \rho}$ factors and occupy $(\omega= \pm c k)$-baselines.

Note: $\mathrm{E}_{1-\mathrm{CW}}^{\leftrightarrow} \sqrt{ }\left(c \varepsilon \varepsilon_{0} / h\right)=\sqrt{ }\left(n_{\leftrightarrow}^{\cup} \leftrightarrow\right)$ is geometric mean of amplitude frequency n_{\leftrightarrow} and phase frequency ν_{\leftrightarrow}.

Important result below:

Amplitudes of 1-CW "exponentiate" just like frequency, and intensity does at twice the rate
(A double-double whammy!)

1-CW beams lack invariance (have "variance" ala' Doppler) Planck-Poynting flux S is count rate $n=N c / V\left(m^{-2} s^{-1}\right)$ times $1-C W$-frequency v_{\leftarrow} or v_{\rightarrow}. Count rate n and frequency v Doppler shift
 by $b=e^{ \pm \rho}$ factors and occupy ($\omega= \pm c k$)-baselines.

$$
\begin{aligned}
& \text { Shifts by } \begin{array}{r}
\mathrm{b}=\mathrm{e}^{+2 \rho} \\
\stackrel{y}{S}=c U_{\rightarrow} \\
S_{\rightarrow}
\end{array}=c \varepsilon_{0}\left\langle\mathrm{E}^{2}\right\rangle=c \varepsilon_{0}\left\langle\mathrm{E}_{1-\mathrm{CW}} * \mathrm{E}_{1-\mathrm{CW}}\right\rangle=h n_{\rightarrow}^{\text {Each blue shifts by } \mathrm{b}=\mathrm{e}^{+\rho}}
\end{aligned}
$$

Note: $\mathrm{E}_{1-\mathrm{CW}}^{\leftrightarrow} \sqrt{ }\left(c \varepsilon \varepsilon_{0} / h\right)=\sqrt{ }\left(n_{\leftrightarrow}{ }_{\leftrightarrow}\right)$ is geometric mean of amplitude frequency n_{\leftrightarrow} and phase frequency ν_{\leftrightarrow}.

Relating photons to Maxwell energy density and Poynting flux Relativistic variation and invariance of frequency (ω, k) and amplitudes
How probability ψ-waves and flux ψ-waves evolved
Properties of amplitude $\psi^{*} \psi$-squares
More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta

How Probability Amplitudes ψ or ψ Come About (An optical view)

Maxwell-Planck-Poynting flux $S={ }_{c} U=c \varepsilon_{0}|\mathrm{E}|^{2}=c \varepsilon_{0} \mathrm{E} \mathrm{E}=n h v$ has count rate $n=N c / V\left(m^{-2} s^{-1}\right)$ If each E-field amplitude factor is scaled by a factor $\sqrt{\frac{c \varepsilon_{0}}{h o}}=\sqrt{\frac{\varepsilon_{0}}{h \mathrm{k}}}$ the result is a flux probability amplitude $\psi=\mathrm{E} \sqrt{\frac{c_{0}}{h 0}}$ whose square equals flux count rate $n\left(m^{-2} s^{-1}\right)$.

$$
\psi^{*} \psi=n \quad\left(m^{-2} s^{-1}\right)
$$

A fixed probability amplitude $\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}$ has square equal to N / V (particles per volume).

$$
\psi^{*} \psi=N / V \quad\left(m^{-3}\right)
$$

$\underline{\text { How Probability Amplitudes }} \psi \underline{\text { or }} \psi$ Come About (An optical view)
Maxwell-Planck-Poynting flux $S={ }_{c} U=c \varepsilon_{0}|\mathrm{E}|^{2}=c \varepsilon_{0} \mathrm{E} \mathrm{E}=n h \nu$ has count rate $n=N c / V\left(m^{-2} s^{-1}\right)$ If each E-field amplitude factor is scaled by a factor $\sqrt{\frac{c \varepsilon_{0}}{h \nu}}=\sqrt{\frac{\varepsilon_{0}}{h \kappa}}$ the result is a flux probability amplitude $\psi=\mathrm{E} \sqrt{\frac{c \varepsilon_{0}}{h v}}$ whose square equals flux count rate $n\left(\mathrm{~m}^{-2} \mathrm{~s}^{-1}\right)$.

$$
\psi^{*} \psi=n \quad\left(m^{-2} s^{-1}\right)
$$

A fixed probability amplitude $\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}$ has square equal to N / V (particles per volume).

$$
\psi^{*} \psi=N / V \quad\left(m^{-3}\right)
$$

Here's how to answer Planck's worry about photons

$Q:$ How can classical oscillator energy (Amplitude) ${ }^{2}(f r e q u e n c y)^{2}$ jive with linear Planck law $S=n h v$?
A: Let amplitude ψ or ψ contain inverse square root of frequency: $\psi=E \sqrt{\frac{c \varepsilon_{0}}{h v}}$ the "quantum amplitude" Energy $\sim|A|^{2} v^{2}$ where vector potential \mathbf{A} defines electric field: $\mathbf{E}=\frac{\partial \mathbf{A}}{\partial t}=i \omega \mathbf{A}=2 \pi i v \mathbf{A}$

$$
\text { Energy } \sim|A|^{2} v^{2}=|A \sqrt{v}|^{2} v=\left|\frac{E}{2 \pi v} \sqrt{v}\right|^{2} v=\left|\frac{E}{2 \pi \sqrt{v}}\right|^{2} v \sim\left|E \sqrt{\frac{c \varepsilon_{0}}{h v}}\right|^{2}=n h v
$$

How Probability Amplitudes ψ or ψ Come About (An optical view)
Maxwell-Planck-Poynting flux $S={ }_{c} U=c \varepsilon_{0}|\mathrm{E}|^{2}=c \varepsilon_{0} \mathrm{E} \mathrm{E}=n h \nu$ has count rate $n=N c / V\left(m^{-2} s^{-1}\right)$ If each E-field amplitude factor is scaled by a factor $\sqrt{\frac{c \varepsilon_{0}}{h v}}=\sqrt{\frac{\varepsilon_{0}}{h \kappa}}$ the result is a flux probability amplitude $\psi=\mathrm{E} \sqrt{\frac{c \varepsilon_{0}}{h 0}}$ whose square equals flux count rate $n\left(m^{-2} s^{-1}\right)$.

$$
\psi^{*} \psi=n \quad\left(m^{-2} s^{-1}\right)
$$

A fixed probability amplitude $\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}$ has square equal to N / V (particles per volume).

$$
\psi^{*} \psi=N / V \quad\left(m^{-3}\right)
$$

Probability Waves $\psi(x, t)$ (More optical views)
Optical E-field amplitudes like $\mathrm{E}(x, t)=\mathrm{E}_{0} \mathrm{e}^{i(k x-\omega t)}$ vary with space x and time t. So do scaled $\psi(x, t)$ ampliudes whose sum- Σ (integral- \int) over cells ΔV (or $d V$) must be particle number N. For 1-particle systems $(N=1)$ this is the unit norm rule.

$$
\Sigma_{j} \psi\left(x_{j}, t\right)^{*} \psi\left(x_{j}, t\right) \Delta V_{j}=N \quad \text { or: } \quad \int \psi(x, t)^{*} \psi(x, t) d V=N
$$

How Probability Amplitudes ψ or ψ Come About (An optical view)

Maxwell-Planck-Poynting flux $S={ }_{c} U=c \varepsilon_{0}|\mathrm{E}|^{2}=c \varepsilon_{0} \mathrm{E} \mathrm{E}=n h v$ has count rate $n=N c / V\left(m^{-2} s^{-1}\right)$ If each E-field amplitude factor is scaled by a factor $\sqrt{\frac{c \varepsilon_{0}}{h o}}=\sqrt{\frac{\varepsilon_{0}}{h \mathrm{k}}}$ the result is a flux probability amplitude $\psi=\mathrm{E} \sqrt{\frac{c \varepsilon_{0}}{h \nu}}$ whose square equals flux count rate $n\left(m^{-2} s^{-1}\right)$.

$$
\psi^{*} \Psi=n \quad\left(m^{-2} s^{-1}\right)
$$

A fixed probability amplitude $\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}$ has square equal to N / V (particles per volume).

$$
\psi^{*} \psi=N / V \quad\left(m^{-3}\right)
$$

Probability Waves $\psi(x, t)$ (More optical views)
Optical E-field amplitudes like $\mathrm{E}(x, t)=\mathrm{E}_{0} \mathrm{e}^{i(k x-\omega t)}$ vary with space x and time t. So do scaled $\psi(x, t)$ ampliudes whose sum- Σ (integral- \int) over cells ΔV (or $d V$) must be particle number N. For 1-particle systems $(N=1)$ this is the unit norm rule.

$$
\Sigma_{j} \psi\left(x_{j}, t\right)^{*} \psi\left(x_{j}, t\right) \Delta V_{j}=N \quad \text { or: } \quad \int \psi(x, t)^{*} \psi(x, t) d V=N
$$

Born interpreted $\psi(x, t)^{*} \psi(x, t)$ as probable expectation of particle count. Schrodinger objected to the probability wave interpretation that is now accepted and called the Schrodinger theory. A relativistic wave view lends merit to his objections.

Doppler Transformation of 2-CW Modes
Doppler shift of opposite-k 1-CW beams. As derived before phases are invariant: $\left(k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}=k x-\omega t\right)$

E -wave: $\mathrm{E}=\mathrm{E}_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\lrcorner} t\right)}+\mathrm{E}_{\leftarrow} \mathrm{e}^{i\left(k_{\star} x-\omega_{\leftarrow} t\right)}$

Ψ-wave: $\Psi=\psi_{\rightarrow} \mathrm{e}^{i\left(k_{\lrcorner} x-\omega_{\lrcorner} t\right)}+\psi_{\leftarrow} \mathrm{e}^{i\left(k_{\hookrightarrow} x-\omega_{\leftarrow} t\right)}$

$$
\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}\left[\begin{array}{r}
\text { scaled blue shift } \\
\psi_{\rightarrow}^{\prime} \\
= \\
=\sqrt{\mathrm{b}} \\
=\mathrm{e}^{+\rho / 2} \psi_{\rightarrow}
\end{array} \begin{array}{r}
\text { scaled red shift } \\
\psi_{\leftarrow}^{\prime}=\sqrt{\mathrm{r}} \\
=\psi_{\leftarrow} \\
=\mathrm{e}^{-\rho / 2} \psi_{\leftarrow}
\end{array}\right.
$$

Doppler Transformation of 2-CW Modes
Doppler shift of opposite-k l-CW beams. As derived before phases are invariant: $\left(k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}=k x-\omega t\right)$

E -wave: $\mathrm{E}=\mathrm{E}_{\hookrightarrow} \mathrm{e}^{i\left(k_{\lrcorner} x-\omega_{\lrcorner} t\right)}+\mathrm{E}_{\leftarrow} \mathrm{e}^{i\left(k_{九}-x-\omega_{\leftarrow} t\right)}$

Ψ-wave: $\Psi=\psi_{\rightarrow} \mathrm{e}^{i\left(k_{\lrcorner} x-\omega_{\lrcorner} t\right)}+\psi_{\leftarrow} \mathrm{e}^{i\left(k_{\star} x-\omega_{\star} t\right)}$

$$
\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}} \quad \begin{array}{r}
\text { scaled blue shift } \\
\psi_{\rightarrow}^{\prime}=\sqrt{\mathrm{b}} \quad \psi_{\rightarrow} \\
=\mathrm{e}^{+\rho / 2} \psi_{\rightarrow}
\end{array} \begin{array}{r}
\text { scaled red shift } \\
\psi_{\leftarrow}^{\prime}=\sqrt{\mathrm{r}} \psi_{\leftarrow} \\
=\mathrm{e}^{-\rho / 2} \psi_{\leftarrow}
\end{array}
$$

$$
b^{2}=\frac{1+\beta}{1-\beta}=\frac{1+\tanh \rho}{1-\tanh \rho}
$$

Doppler Transformation of 2-CW Modes
Doppler shift of opposite- $k 1-C W$ beams. As derived before phases are invariant: $\left(k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}=k x-\omega t\right)$

E -wave: $\mathrm{E}=\mathrm{E}_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\lrcorner} t\right)}+\mathrm{E}_{\leftarrow} \mathrm{e}^{i\left(k_{\star} x-\omega_{\leftarrow} t\right)}$

$$
\begin{array}{r}
\text { blue shift } \\
\mathrm{E}_{\rightarrow}^{\prime}=\mathrm{b} \mathrm{E}_{\rightarrow} \\
=\mathrm{e}^{+\rho} \mathrm{E}_{\rightarrow}
\end{array} \quad \begin{array}{r}
\text { red shift } \\
\mathrm{E}_{\leftarrow}^{\prime}=\mathrm{r} \mathrm{E}_{\leftarrow} \\
=\mathrm{e}^{-\rho} \mathrm{E}_{\leftarrow}
\end{array}
$$

Ψ-wave: $\Psi=\psi_{\rightarrow} \mathrm{C}^{i\left(k_{-} x-\omega_{-} t\right)}+\Psi_{\leftarrow} \mathrm{e}^{i\left(k_{-} x-\omega_{\leftarrow} t\right)}$

$$
\psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}} \quad \begin{array}{r}
\text { scaled blue shift } \\
\psi_{\rightarrow}^{\prime} \\
=\sqrt{\mathrm{b}} \psi_{\rightarrow} \\
= \\
=\mathrm{e}^{+\rho / 2} \psi_{\rightarrow}
\end{array}
$$

Parameters related to relative velocity u :

$$
\beta=u / c=\tanh \rho=\frac{\sinh \rho}{\cosh \rho}=\frac{\mathrm{e}^{+\rho}-\mathrm{e}^{-\rho}}{\mathrm{e}^{+\rho}+\mathrm{e}^{-\rho}}=\frac{b^{2}-1}{b^{2}+1}
$$

$$
b^{2}=\frac{1+\beta}{1-\beta}=\frac{1+\tanh \rho}{1-\tanh \rho}
$$

Transformation of $S W R$ (or $S W Q$) and $u_{\text {GROUP }}$ (or $u_{\text {PHASE }}$) is a non-linear transformation $S W R^{\prime} \xlongequal[\mathrm{E}_{\rightarrow}^{\prime}]{\mathrm{E}_{\rightarrow}^{\prime}}+-\mathrm{E}^{\prime}+\mathrm{E}_{\leftarrow}^{\prime}=\frac{b^{2} \mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}}{b^{2} \mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}}=\frac{(1+\beta) \mathrm{E}_{\rightarrow}-(1-\beta) \mathrm{E}_{\leftarrow}}{(1+\beta) \mathrm{E}_{\rightarrow}+(1-\beta) \mathrm{E}_{\leftarrow}}=\frac{\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right)+\beta\left(\mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}\right)}{\left(\mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}\right)+\beta\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right)}=\frac{S W R+\beta}{1+\beta \cdot S W R}$

SWR (or SWQ) Transformation

$$
S W R^{\prime}=\frac{S W R+\beta}{1+S W R \cdot \beta}=\frac{S W R+u / c}{1+S W R \cdot u / c}
$$

$$
\begin{gathered}
u_{\text {GROUP }}\left(\text { or } u_{\text {PHASE }}\right) \text { Transformation } \\
u_{\text {GROUP }}^{\prime} / c=\frac{u_{\text {GROUP }} / c+\beta}{1+u_{\text {GROUP }}+\beta / c}=\frac{\left(u_{\text {GROUP }}+u\right) / c}{1+u_{\text {GROUP }} \cdot u / c^{2}}
\end{gathered}
$$

Doppler Transformation of 2-CW Modes

Doppler shift of opposite- $k 1-C W$ beams. As derived before phases are invariant: $\left(k^{\prime} x^{\prime}-\omega^{\prime} t^{\prime}=k x-\omega t\right)$

E -wave: $\mathrm{E}=\mathrm{E}_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\lrcorner} t\right)}+\mathrm{E}_{\leftarrow} \mathrm{e}^{i\left(k_{\star} x-\omega_{\leftarrow} t\right)}$

$$
\begin{array}{r}
\hline \text { blue shift } \\
\mathrm{E}_{\rightarrow}^{\prime} \\
=\mathrm{b} \mathrm{E}_{\rightarrow} \\
=\mathrm{e}^{+\rho} \mathrm{E}_{\rightarrow}
\end{array} \quad\left[\begin{array}{r}
\text { red shift } \\
\mathrm{E}_{\leftarrow}^{\prime}=\mathrm{r} \mathrm{E}_{\leftarrow} \\
=\mathrm{e}^{-\rho} \mathrm{E}_{\leftarrow}
\end{array}\right.
$$

Ψ-wave: $\Psi=\psi_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+\psi_{\leftarrow} \mathrm{e}^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}$

$$
\begin{array}{r}
\text { scaled blue shift } \\
\psi^{\prime}=\sqrt{\mathrm{b}} \\
=\psi_{\rightarrow} \\
=\mathrm{e}^{+\rho / 2} \psi_{\rightarrow}
\end{array} \begin{array}{r}
\text { scaled red shift } \\
\psi_{\leftarrow}^{\prime}=\sqrt{\mathrm{r}}
\end{array} \psi_{\leftarrow}+\mathrm{e}^{-\rho / 2} \psi_{\leftarrow}
$$

$$
b^{2}=\frac{1+\beta}{1-\beta}=\frac{1+\tanh \rho}{1-\tanh \rho}
$$

Transformation of $S W R($ or $S W Q)$ and $u_{\text {GROUP }}\left(\right.$ or $\left.u_{\text {PHASE }}\right)$ is a non-linear transformation $S W R^{\prime}=\underset{\mathrm{E}_{\rightarrow}^{\prime}}{\mathrm{E}_{\rightarrow}^{\prime}}+\mathrm{E}^{\prime} \stackrel{\mathrm{E}_{\leftarrow}^{\prime}}{\prime}=\frac{b^{2} \mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}}{b^{2} \mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}}=\frac{(1+\beta) \mathrm{E}_{\rightarrow}-(1-\beta) \mathrm{E}_{\leftarrow}}{(1+\beta) \mathrm{E}_{\rightarrow}+(1-\beta) \mathrm{E}_{\leftarrow}}=\frac{\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right)+\beta\left(\mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}\right)}{\left(\mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}\right)+\beta\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right)}=\frac{S W R+\beta}{1+\beta \cdot S W R}$

SWR (or SWQ) Transformation
$S W R^{\prime}=\frac{S W R+\beta}{1+S W R \cdot \beta}=\frac{S W R+u / c}{1+S W R \cdot u / c}$
$u_{\text {GROUP }}\left(\right.$ or $u_{\text {PHASE }}$) Transformation
$u_{\text {GROUP }}^{\prime} / c=\frac{u_{\text {GROUP }} / c+\beta}{1+u_{\text {GROUP }} \cdot \beta / c}=\frac{\left(u_{\text {GROUP }}+u\right) / c}{1+u_{\text {GROUP }} \cdot u / c^{2}}$
Both are restatements of hyperbolic trig identity: $\tanh (a+b)=\frac{\tanh (a)+\tanh (b)}{1+}$
$1+\tanh (a) \cdot \tanh (b)$
last term is ignorable if both a and b are small
Velocity addition is non-linear but rapidity addition is always linear: $\rho_{\mathrm{a}+\mathrm{b}}=\rho_{\mathrm{a}}+\rho_{\mathrm{b}}$

Unequal amplitudes and Unequal frequencies

Suppose a general 2-CW Ψ-wave: $\Psi=\psi_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+\psi_{\leftarrow} \mathrm{e}^{i\left(k_{\star} x-\omega_{\leftarrow} t\right)}$
where probable count is $N_{\rightarrow}=\left|\psi_{\rightarrow}\right|^{2}$ for $\overrightarrow{r i g h t}$ and $N_{\leftarrow}=\left|\psi_{\leftarrow}\right|^{2}$ for $\overrightarrow{l e f t}$-going beams.

Unequal amplitudes and Unequal frequencies
І川川ゅ川！川！川！
Suppose a general 2－CW Ψ－wave：$\Psi=\psi_{\rightarrow} \mathrm{e}^{i\left(k_{-} x-\omega_{\dashv} t\right)}+\psi_{\longleftarrow} \mathrm{e}^{i\left(k_{_} x-\omega_{\leftarrow} t\right)}$ where probable count is $N_{\rightarrow}=\left|\psi_{\rightarrow}\right|^{2}$ for $\overrightarrow{r i g h t}$ and $N_{\leftarrow}=\left|\psi_{\leftarrow}\right|^{2}$ for left $\overline{\text { loing }}$ beams．
Amplitudes $\left(\psi_{\rightarrow}=\sqrt{\frac{\varepsilon_{0}}{\hbar \omega_{\lrcorner}}} E_{\rightarrow}, \psi_{\leftarrow}=\sqrt{\frac{\varepsilon_{0}}{\hbar \omega_{\leftarrow}}} E_{\leftarrow}\right)$ of frequencies $\left(\omega_{\lrcorner}=c k_{\hookrightarrow}, \omega_{\leftarrow}=c k_{\leftarrow}\right)$ determine

$$
\begin{aligned}
\text { probable momentum-flux }\langle p\rangle=\langle\hbar k\rangle & =\overbrace{\left|\Psi_{\rightarrow}\right|^{2}} \hbar k_{\rightarrow}-\overbrace{\left|\psi_{\leftarrow} \leftarrow\right|^{2}} \hbar k_{\leftarrow} \text { right count } N \\
& =\frac{\varepsilon_{0}}{\hbar \omega_{\rightarrow}}\left|E_{\rightarrow}\right|^{2} \hbar k_{\rightarrow}--\frac{\varepsilon_{0}}{\hbar \omega_{\leftarrow}}\left|E_{\leftarrow}\right|^{2} \hbar k_{\leftarrow}=\frac{\varepsilon_{0}}{c}\left(\left|\mathrm{E}_{\rightarrow}\right|^{2}-\left|\mathrm{E}_{\leftarrow}\right|^{2}\right) \\
\text { probable energy-flux }\langle E\rangle=\langle\hbar \omega\rangle & =\left|\psi_{\rightarrow}\right|^{2} \hbar \omega_{\rightarrow}+\left|\psi_{\leftarrow}\right|^{2} \hbar \omega_{\leftarrow} \\
& =\frac{\varepsilon_{0}}{\hbar \omega}\left|\mathrm{E}_{\rightarrow}\right|^{2} \hbar \omega_{\rightarrow}+\frac{\varepsilon_{0}}{\hbar \omega \omega_{\leftarrow}}\left|\mathrm{E}_{\leftarrow}\right|^{2} \hbar \omega_{\leftarrow}=\varepsilon_{0}\left(\left|\mathrm{E}_{\rightarrow}\right|^{2}+\left|\mathrm{E}_{\leftarrow}\right|^{2}\right)
\end{aligned}
$$

Unequal amplitudes and Unequal frequencies

Suppose a general 2-CW Ψ-wave: $\Psi=\psi_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\lrcorner} t\right)}+\psi_{\leftarrow} \mathrm{e}^{i\left(k_{\star} x-\omega_{\leftarrow} t\right)}$
where probable count is $N_{\rightarrow}=\left|\psi_{\rightarrow}\right|^{2}$ for $\overrightarrow{r i g h t}$ and $N_{\leftarrow}=\left|\psi_{\leftarrow}\right|^{2}$ for left-going beams.
Amplitudes $\left(\psi_{\rightarrow}=\sqrt{\frac{\varepsilon_{0}}{\hbar \omega_{\rightarrow}}} \mathrm{E}_{\rightarrow}, \psi_{\leftarrow}=\sqrt{\frac{\varepsilon_{0}}{\hbar \omega_{\leftarrow}}} \mathrm{E}_{\leftarrow}\right)$ of frequencies $\left(\omega_{\hookrightarrow}=c k_{\hookrightarrow}, \omega_{\leftarrow}=c k_{\leftarrow}\right)$ determine
right count $\mathrm{N}_{\rightarrow} \quad$ left count N_{5}

$$
\begin{aligned}
\text { probable momentum-flux }\langle p\rangle=\langle\hbar k\rangle & =\overbrace{\left|\psi_{\rightarrow}\right|^{2}} \hbar k_{\rightarrow}-\overbrace{\left|\psi_{\leftarrow}\right|^{2}} \hbar k_{\leftarrow} \\
& =\frac{\varepsilon_{0}}{\hbar \omega_{\rightarrow}}\left|\mathrm{E}_{\rightarrow}\right|^{2} \hbar k_{\rightarrow}-\frac{\varepsilon_{0}}{\hbar \omega_{\leftarrow}}\left|\mathrm{E}_{\leftarrow}\right|^{2} \hbar k_{\leftarrow}=\frac{\varepsilon_{0}}{c}\left(\left|\mathrm{E}_{\rightarrow}\right|^{2}-\left|\mathrm{E}_{\leftarrow}\right|^{2}\right) \\
\text { probable energy-flux }\langle E\rangle=\langle\hbar \omega\rangle & =\left|\psi_{\rightarrow}\right|^{2} \hbar \omega_{\rightarrow}+\left|\psi_{\leftarrow}\right|^{2} \hbar \omega_{\leftarrow} \\
& =\frac{\varepsilon_{0}}{\hbar \omega \mid}\left|\mathrm{E}_{\rightarrow}\right|^{2} \hbar \omega_{\rightarrow}+\frac{\varepsilon_{0}}{\hbar \omega_{\leftarrow}}\left|\mathrm{E}_{\leftarrow}\right|^{2} \hbar \omega_{\leftarrow}=\varepsilon_{0}\left(\left|\mathrm{E}_{\rightarrow}\right|^{2}+\left|\mathrm{E}_{\leftarrow}\right|^{2}\right)
\end{aligned}
$$

Invariant hyperbola $\langle E\rangle^{2}-\mathrm{c}^{2}\langle p\rangle^{2}=4 \varepsilon_{0}\left|\mathrm{E}_{\rightarrow}\right|^{2} \varepsilon_{0}\left|\mathrm{E}_{\leftarrow}\right|^{2}=\hbar^{2} \omega_{\rightarrow} \omega_{\leftarrow} 4 \mathrm{~N}_{\rightarrow} \mathrm{N}_{\leftarrow}=(\hbar \bar{\omega} \overline{\mathrm{N}})^{2}=\left(2 \varepsilon_{0} \bar{E}^{2}\right)^{2}$

Suppose a general 2-CW Ψ-wave: $\Psi=\psi_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\lrcorner}, t\right)}+\psi_{\leftarrow} \mathrm{e}^{i\left(k_{\star} x-\omega_{\leftarrow} t\right)}$
where probable count is $N_{\rightarrow}=\left|\psi_{\rightarrow}\right|^{2}$ for $\overrightarrow{r i g h t}$ and $N_{\leftarrow}=\left|\psi_{\leftarrow}\right|^{2}$ for $\widehat{\text { left }}$-going beams.
Amplitudes $\left(\psi_{\rightarrow}=\sqrt{\frac{\varepsilon_{0}}{\hbar \omega_{\omega}}} E_{\rightarrow}, \psi_{\leftarrow} \leftarrow \sqrt{\frac{\varepsilon_{0}}{\hbar \omega_{\leftarrow}}} E_{\leftarrow}\right)$ of frequencies $\left(\omega_{\hookrightarrow}=c k_{\hookrightarrow}, \omega_{\leftarrow}=c k_{\leftarrow}\right)$ determine right count N_{\rightarrow} left count N^{\prime}
probable momentum-flux $\langle p\rangle=\langle\hbar k\rangle=\overbrace{\left|\Psi_{\rightarrow}\right|^{2}}^{\overrightarrow{2}} \hbar k_{\rightarrow-}-\overbrace{\left|\Psi_{\leftarrow}\right|^{2}}^{\leftarrow} \hbar k_{\leftarrow}$

$$
=\frac{\varepsilon_{0}}{\hbar \omega_{\rightarrow}}\left|\mathrm{E}_{\rightarrow}\right|^{2} \hbar k_{\rightarrow}-\frac{\varepsilon_{0}}{\hbar \omega_{\leftarrow}}\left|\mathrm{E}_{\leftarrow}\right|^{2} \hbar k_{\leftarrow}=\frac{\varepsilon_{0}}{c}\left(\left|\mathrm{E}_{\rightarrow}\right|^{2}-\left|\mathrm{E}_{\leftarrow}\right|^{2}\right)
$$

probable energy-flux

$$
\langle E\rangle=\langle\hbar \omega\rangle=\left|\psi_{\rightarrow}\right|^{2} \hbar \omega_{\rightarrow}+\left|\psi_{\leftarrow}\right|^{2} \hbar \omega_{\leftarrow}
$$

$$
=\frac{\varepsilon_{0}}{\hbar \omega}\left|\mathrm{E}_{\rightarrow}\right|^{2} \hbar \omega_{\rightarrow}+\left.\frac{\varepsilon_{0}}{\hbar \omega_{L}} \mathrm{E}_{\leftarrow}\right|^{2} \hbar \omega_{\leftarrow}=\varepsilon_{0}\left(\left|\mathrm{E}_{\rightarrow}\right|^{2}+\left|\mathrm{E}_{\leftarrow}\right|^{2}\right)
$$

Invariant hyperbola $\langle E\rangle^{2}-\mathrm{c}^{2}\langle p\rangle^{2}=4 \varepsilon_{0}\left|\mathrm{E}_{\rightarrow}\right|^{2} \varepsilon_{0}\left|\mathrm{E}_{\leftarrow}\right|^{2}=\hbar^{2} \omega_{\rightarrow} \omega_{\leftarrow} \leftarrow \mathrm{N}_{\rightarrow} \mathrm{N}_{\leftarrow}=\left(\hbar \overline{ } \overline{)^{2}}\right)^{2}=\left(2 \varepsilon_{0} \mathrm{E}^{2}\right)^{2}$
In Center-of-Momentum (COM) frame In Isochromatic (ISOC) frame
$\left[\mathrm{E}_{\rightarrow}^{\prime}=\overline{\mathrm{E}}=\mathrm{E}_{\leftrightarrow}^{\prime}\right]$ speed is $u_{\text {COM }}=\bar{E}_{\rightarrow--E_{\bullet}}^{\mathrm{E}_{\rightarrow}+\mathrm{E}_{-}}$

Mean amplitude
$E=\sqrt{E_{\rightarrow} E_{\leftarrow}}$

Equal amplitudes but Unequal frequencies
Hyberbola drops as E_{\rightarrow} and E_{\leftarrow} become unequal

$\hbar c k \quad \begin{aligned} & \frac{\text { Mean count }}{\mathrm{N}}=\sqrt{4 \mathrm{~N}_{\rightarrow} \mathrm{N}^{2}}\end{aligned}$

The Ship-Barn-and-Butler saga of confused causality
(More about galloping)

Fig. 2.B. 10 Lighthouse plot of two Happenings

Fig. 2.B. 11 Ship plot of two Happenings

Waves that go back in time - The Feynman-Wheeler Switchback
Minkowski Zero-Grids are Spacetime Switchbacks for $-u_{\text {GROUP }}<S W R<0$

Group-zero speed

$\omega_{\rightarrow}=4 c$	$\omega_{\leftarrow}=1 c$
$k_{\rightarrow}=4$,	$k_{\leftarrow}=-1$
$u_{\text {GROUP }}=c 3 / 5$	
$u_{\text {PHASE }}=c 5 / 3$	

[^0]: This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left|E_{1}>,\left|E_{2}>,\right| E_{3}\right\rangle, \mid E_{4}>, \ldots$

