Lecture 31.

Relativity of interfering and galloping waves: SWR and SWQ III.

$$
\text { (Ch. 4-6 of Unit } 2 \text { 4.15.12) }
$$

1st Quantization: Quantizing phase variables ω and k
Review of Lecture 30
Understanding how quantum transitions require "mixed-up" states
Closed cavity vs Ring cavity

2nd Quantization: Quantizing amplitudes ("photons", "vibrons", and "what-ever-ons")
Introducing coherent states (What lasers use)
Analogy with (ω, k) wave packets
Wave coordinates need coherence

$$
\text { Field Energy }=|\mathrm{E}|^{2} \varepsilon_{0} \quad 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9}
$$

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony
Magnetic B-field is relativistic effect
Lecture 31 ended here

Review of Lecture 30

1st Quantization: Quantizing phase variables ω and k

Understanding how quantum transitions require "mixed-up" states Closed cavity vs Ring cavity

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$

$$
n=2
$$

$$
n=3
$$

$$
n=4
$$

(+ integers only)

Some

NOT OK numbers: $n=0.67$

$n=2.59$

$$
n=4
$$

NOTE: We're using "false-color" here.

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only)
Some
NOT OK numbers: $n=0.67$

$n=2$

$$
n=3
$$

$$
n=4
$$

$$
n=4
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left|E_{1}>,\left|E_{2}>,\left|E_{3}>,\right| E_{4}>, \ldots\right.\right.$

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only)

Some

NOT OK numbers: $n=0.67$

$n=2$

$$
n=3
$$

$$
n=4
$$

$$
n=1.7
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left.\left|E_{1}>,\right| E_{2}\right\rangle,\left|E_{3}\right\rangle, \mid E_{4}>, \ldots$ That's the only way you get any light in or out of the system to "see" it.

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only)
Some
NOT OK numbers: $n=0.67$

$$
n=1.7
$$

$n=2$

$$
n=3
$$

$$
n=4
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left|E_{1}\right\rangle,\left|E_{2}\right\rangle,\left|E_{3}\right\rangle,\left|E_{4}\right\rangle, \ldots$ That's the only way you get any light in or out of the system to "see" it.

$$
\begin{aligned}
& \text { frequency } \omega_{32}=\left(E_{3}-E_{2}\right) / \hbar \\
& \text { frequency } \omega_{21}=\left(E_{2}-E_{1}\right) / \hbar
\end{aligned}
$$

These eigenstates are the only ways the system can "play dead"... ... "sleep with the fishes"...

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only) Some
NOT OK numbers: $n=0.67$

$n=1.7$

$$
n=3
$$

$$
n=4
$$

$n=2.59$
wrong color again!

NOTE: We're using "false-color" here.
Rings tolerate a zero (kinkless) quantum wave but require \pm integral wave number. OK ring quantum numbers: $m=0$
$m= \pm 1$

Bohr's models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics built on Planck-Einstein (1900-1905) relation $E=h v$. DeBroglie relation $p=h / \lambda$ comes around 1923.

2nd Quantization: Quantizing amplitudes ("photons"," vibrons", and "what-ever-ons") Introducing coherent states (What lasers use)

Analogy with (ω, k) wave packets
Wave coordinates need coherence

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

$N_{2}=0$

$m=2 \quad m=3 \quad m=4$
Quantized Wavenumber ("kink" or momentum number)

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

Boosted observers see distorted frequencies and lengths, but will agree on the numbers n and N of mode nodes and photons.

This is how light waves can "fake" some of the properties of classical "things" such as invariance or object permanence.

It takes at least $T W O C W$'s to achieve such invariance. One CW is not enough and cannot have non-zero invariant N. Invariance is an interference effect that needs at least two-to-tango!

Coherent States: Oscillator Amplitude Packets analogous to Wave Packets

We saw how adding CW's (Continuous Waves $m=1,2,3 \ldots$) can make $P W$ (Pulse Wave) or $W P$ (Wave Packet) that is more like a classical "thing" with more localization in space x and time t.

Adding photons (Quantized amplitude $N=0,1,2 \ldots$) can make a CS (Coherent State) or OAP (Oscillator Amplitude Packet) that is more like a classical wave oscillation with more localization in field amplitude.

Pure photon states have localized (certain) N but delocalized (uncertain) amplitude and phase. $O A P$ states have delocalized (uncertain) N but more localized (certain) amplitude and phase.

Coherent States(contd.) Spacetime wave grid is impossible without coherent states

Pure photon number N-states would make useless spacetime coordinates

Coherent- α-states are defined by continuous amplitude-packet parameter α whose square is average photon number $\bar{N}=|\alpha|^{2}$. Coherent-states make better spacetime coordinates for larger $\bar{N}=|\alpha|^{2}$.

Quantum field coherent α-states

$\bar{N}=100$
$\Delta N=10$

$\bar{N}=10^{6}$
$\Delta N=10^{3}$

$\bar{N}=10^{10}$
$\Delta N=10^{5}$

Classical limit

Coherent-state uncertainty in photon number (and mass) varies with amplitude parameter $\Delta N \sim \alpha \sim \sqrt{N}$ so a coherent state with $\bar{N}=|\alpha|^{2}=10^{6}$ only has a 1-in-1000 uncertainty $\Delta N \sim \alpha \sim \sqrt{ } N=1000$.

Relativistic effects on charge, current, and Maxwell Fields \rightarrow Current density changes by Lorentz asynchrony
 Magnetic B-field is relativistic effect

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony

Observer velocity is zero relative to $(+)$ line of charge
wire appears
neutral
$(+)$ Charge fixed (-) Charge moving to left (Negative current density)
$(+)$ Charge density is Equal to the (-) Charge density

Relativistic effects on charge, current, and Maxwell Fields
Current density changes by Lorentz asynchrony

$(+)$ Charge fixed (-) Charge moving to right (Negative current density)
$(+)$ Charge density is Equal to the (-) Charge density

(repulsive to +)

Observer velocity

$(+)$ Charge fixed (-) Charge moving to left (Negative current density)
$(+)$ Charge density is Less than (-) Charge density
is (-) relative to $(+)$ line of charge

wire appears
negative (-)
(attractive to +)

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony

- Magnetic B-field is relativistic effect

Unit square: $(\mathrm{u} / \mathrm{c}) / 1=\mathrm{x}(+) / \mathrm{y}$

$$
(\mathrm{v} / \mathrm{c}) / 1=\mathrm{y} / \mathrm{x}(-)
$$

Magnetic B-field is relativistic effect!

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$
\begin{array}{ll}
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \rho}{r}\right], \text { where: } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{\mathrm{~N} \cdot \mathrm{~m}^{2}}{\mathrm{Coul} .} & 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9} \\
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{r}\left(-\frac{u v}{c^{2}} \rho(+)\right)\right]=-\frac{2 q v \rho(+) u}{4 \pi \varepsilon_{0} c^{2} r}=-2 \times 10^{-7} \frac{I_{q} I_{\rho}}{r} & \begin{array}{l}
c^{2}=9 \cdot 10^{-16} \\
1 /\left(4 \pi \varepsilon_{0} c^{2}\right)=10
\end{array}
\end{array}
$$

Magnetic B-field is relativistic effect!

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$
\begin{array}{ll}
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2 \rho}{r}\right], \quad \text { where: } \frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \frac{N \cdot m^{2}}{\text { Toul. }} & 1 / 4 \pi \varepsilon_{0}=9 \cdot 10^{9} \\
F=q E=q\left[\frac{1}{4 \pi \varepsilon_{0}} \frac{2}{r}\left(-\frac{u v}{c^{2}} \rho(+)\right)\right]=-\frac{2 q v \rho(+) u}{4 \pi \varepsilon_{0} c^{2} r}=-2 \times 10^{-7} \frac{I_{q} I_{\rho}}{r} & \begin{array}{l}
c^{2}=9 \cdot 10^{-16} \\
1 /\left(4 \pi \varepsilon_{0} c^{2}\right)=10^{-7}
\end{array}
\end{array}
$$

\rightarrow Relating photons to Maxwell energy density and Poynting flux

Relativistic variation and invariance of frequency (ω, k) and amplitudes
How probability ψ-waves and flux ψ-waves evolved
Properties of amplitude $\psi^{*} \psi$-squares
More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta

