Lecture 31.

Relativity of interfering and galloping waves: SWR and SWQ III. (Ch. 4-6 of Unit 2 4.15.12)

1st Quantization: Quantizing phase variables ω and k Understanding how quantum transitions require "mixed-up" states Closed cavity vs Ring cavity

2nd Quantization: Quantizing amplitudes ("photons", "vibrons", and "what-ever-ons") Introducing coherent states (What lasers use) Analogy with (ω,k) wave packets Wave coordinates need coherence

Field Energy = $|\mathbf{E}|^2 \varepsilon_0$ $1/4\pi \varepsilon_0 = 9 \cdot 10^9$

Review of Lecture 30

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony Magnetic B-field is relativistic effect

Lecture 31 ended here

Review of Lecture 30

Ist Quantization: Quantizing phase variables ω *and* k*Understanding how quantum transitions require "mixed-up" states Closed cavity vs Ring cavity*

If everything is made of waves then we expect *quantization* of everything because waves only thrive if *integral* numbers *n* of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers *n* are called *quantum numbers*. <u>OK box quantum numbers: n=1 n=2 n=3 n=4</u>

This doesn't mean a system's energy can't vary <u>continuously</u> between "OK" values E₁, E₂, E₃, E₄,...

If everything is made of waves then we expect *quantization* of everything because waves only thrive if *integral* numbers *n* of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers *n* are called *quantum numbers*. *OK box quantum numbers:* n=1 n=2 n=3 n=4

This doesn't mean a system's energy can't vary <u>continuously</u> between "OK" values E_1 , E_2 , E_3 , E_4 ,... In fact its state can be a linear combination of any of the "OK" waves $|E_1\rangle$, $|E_2\rangle$, $|E_3\rangle$, $|E_4\rangle$,...

If everything is made of waves then we expect *quantization* of everything because waves only thrive if *integral* numbers *n* of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers *n* are called *quantum numbers*. *OK box quantum numbers*: n=1 n=2 n=3 n=4

This doesn't mean a system's energy can't vary <u>continuously</u> between "OK" values E_1 , E_2 , E_3 , E_4 ,... In fact its state can be a linear combination of any of the "OK" waves $|E_1\rangle$, $|E_2\rangle$, $|E_3\rangle$, $|E_4\rangle$,... That's the only way you get any light in or out of the system to "see" it. $|E_4\rangle$

frequency
$$\hbar \omega_{32} = E_3 - E_2$$
 frequency $\hbar \omega_{21} = E_2 - E_1$

If everything is made of waves then we expect *quantization* of everything because waves only thrive if *integral* numbers *n* of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers *n* are called *quantum numbers*. *OK box quantum numbers:* n=1 n=2 n=3 n=4

This doesn't mean a system's energy can't vary <u>continuously</u> between "OK" values E_1 , E_2 , E_3 , E_4 ,... In fact its state can be a linear combination of any of the "OK" waves $|E_1\rangle$, $|E_2\rangle$, $|E_3\rangle$, $|E_4\rangle$,... That's the only way you get any light in or out of the system to "see" it. $|E_4\rangle$

frequency
$$\omega_{32} = (E_3 - E_2)/\hbar$$
 $E_2 > 1/\hbar$
frequency $\omega_{21} = (E_2 - E_1)/\hbar$

These eigenstates are the only ways the system can "play dead"... ... " sleep with the fishes"...

If everything is made of waves then we expect *quantization* of everything because waves only thrive if *integral* numbers *n* of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers *n* are called *quantum numbers*. *OK box quantum numbers*: n=1 n=2 n=3 n=4

NOTE: We're using "false-color" here.

Rings tolerate a *zero* (kinkless) quantum wave but require $\pm integral$ wave number.

Bohr's models of *atomic spectra (1913-1923)* are beginnings of *quantum wave mechanics* built on *Planck-Einstein (1900-1905)* relation E=hv. *DeBroglie* relation $p=h/\lambda$ comes around 1923.

2nd Quantization: Quantizing amplitudes ("photons", "vibrons", and "what-ever-ons") Introducing coherent states (What lasers use) Analogy with (ω,k) wave packets Wave coordinates need coherence

Analogy:

Adding photons (Quantized amplitude N=0,1,2...) can make a CS (Coherent State) or OAP (Oscillator Amplitude Packet) that is more like a *classical wave oscillation* with more *localization* in field amplitude.

<u>Coherent States(contd.)</u> Spacetime wave grid is impossible without coherent states

Pure photon number N-states would make useless spacetime coordinates

Coherent- α -states are defined by continuous amplitude-packet parameter α whose square is average photon number $\overline{N} = |\alpha|^2$. Coherent-states make better spacetime coordinates for larger $\overline{N} = |\alpha|^2$.

Classical limit

Coherent-state uncertainty in photon number (and mass) varies with amplitude parameter $\Delta N \sim \alpha \sim \sqrt{N}$ so a coherent state with $\overline{N} = |\alpha|^2 = 10^6$ only has a 1-in-1000 uncertainty $\Delta N \sim \alpha \sim \sqrt{N} = 1000$.

Relativistic effects on charge, current, and Maxwell Fields
 Current density changes by Lorentz asynchrony
 Magnetic B-field is relativistic effect

(+) Charge fixed (-) Charge moving to left (*Negative current density*)
(+) Charge density is Equal to the (-) Charge density

(+) Charge fixed (-) Charge moving to right (*Negative current density*)
(+) Charge density is Equal to the (-) Charge density

(+) Charge density is *Less* than (-) Charge density

Relativistic effects on charge, current, and Maxwell Fields Current density changes by Lorentz asynchrony Magnetic B-field is relativistic effect

Unit square: (u/c) / 1 = x(+)/y(v/c) / 1 = y/x(-)

Magnetic B-field is relativistic effect!

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2\rho}{r} \right], \text{ where: } \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \frac{N \cdot m^2}{Coul.}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_p}{r}$$

$$I/4\pi\varepsilon_0 = 9 \cdot 10^9$$

$$c^2 = 9 \cdot 10^9$$

$$I/(4\pi\varepsilon_0 c^2) = 10^{-7}$$

$$f (attracts)$$

Magnetic B-field is relativistic effect!

The electric force field \mathbf{E} of a charged line varies inversely with radius. The Gauss formula for force in mks units :

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2\rho}{r} \right], \text{ where: } \frac{1}{4\pi\varepsilon_0} = 9 \times 10^9 \frac{N \cdot m^2}{Coul.}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{2}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right] = -\frac{2 qv \rho(+)u}{4\pi\varepsilon_0 c^2 r} = -2 \times 10^{-7} \frac{I_q I_\rho}{r}$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right)$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right]$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right)$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1}{r} \left(-\frac{uv}{c^2} \rho(+) \right)$$

$$F = qE = q \left[\frac{1}{4\pi\varepsilon_0} \frac{1$$

Relating photons to Maxwell energy density and Poynting flux Relativistic variation and invariance of frequency (ω,k) and amplitudes How probability ψ-waves and flux ψ-waves evolved Properties of amplitude ψ*ψ-squares More on unmatched amplitudes AND unmatched frequencies AND unmatched quanta