Lecture 30.

Relativity of interfering and galloping waves: SWR and SWQ II.

$$
\text { (Ch. 4-6 of Unit } 2 \text { 4.12.12) }
$$

Unmatched amplitudes giving galloping waves
Standing Wave Ratio (SWR) and Standing Wave Quotient (SWQ)
Analogy with group and phase
Analogy between wave galloping, Keplarian IHO orbits, and optical polarization
Waves that go back in time - The Feynman-Wheeler Switchback

1st Quantization: Quantizing phase variables ω and k
Understanding how quantum transitions require "mixed-up" states
Closed cavity vs Ring cavity
Lecture 30 ended here

Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that we now allow to be unmatched. $\quad\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates $\left(k_{\Sigma}, \omega_{\Sigma}\right)$ and half-difference group rates $\left(k_{\Delta}, \omega_{\Delta}\right)$.

$$
\begin{aligned}
& k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 \\
& \omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2
\end{aligned}
$$

$$
\begin{aligned}
& k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
& \omega_{\Delta}=\left(\omega_{\rightarrow-}-\omega_{\leftarrow}\right) / 2
\end{aligned}
$$

Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that we now allow to be unmatched. $\quad\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates $\left(k_{\Sigma}, \omega_{\Sigma}\right)$ and half-difference group rates $\left(k_{\Delta}, \omega_{\Delta}\right)$.

$$
\begin{aligned}
& k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 \\
& \omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2
\end{aligned}
$$

$$
k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2
$$

$$
\omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
$$

Also important is amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.
Detailed wave motion depends on standing-wave-ratio $S W R$ or the inverse standing-wave-quotient $S W Q$.

$$
\operatorname{SWR}=\frac{\left(A_{\rightarrow}-A_{\leftarrow}\right)}{\left(A_{\rightarrow}+A_{\leftarrow}\right)} \quad S W Q=\frac{\left(A_{\rightarrow}+A_{\leftarrow}\right)}{\left(A_{\rightarrow}-A_{\leftarrow}\right)}
$$

Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that we now allow to be unmatched. $\quad\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates $\left(k_{\Sigma}, \omega_{\Sigma}\right)$ and half-difference group rates $\left(k_{\Delta}, \omega_{\Delta}\right)$.

$$
\begin{aligned}
& k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 \\
& \omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2
\end{aligned}
$$

$$
k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2
$$

$$
\omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
$$

Also important is amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$.
Detailed wave motion depends on standing-wave-ratio $S W R$ or the inverse standing-wave-quotient $S W Q$.

$$
S W R=\frac{\left(A_{\rightarrow}-A_{\leftarrow}\right)}{\left(A_{\rightarrow}+A_{\leftarrow}\right)} \quad S W Q=\frac{\left(A_{\rightarrow}+A_{\leftarrow}\right)}{\left(A_{\rightarrow}-A_{\leftarrow}\right)}
$$

These are analogous to frequency ratios for group velocity $V_{\text {group }}<c$ and its inverse that is phase velocity $V_{\text {phase }}>c$.

$$
V_{\text {group }}=\frac{\omega_{\Delta}}{k_{\Delta}}=\frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}-k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)} \quad V_{\text {phase }}=\frac{\omega_{\Sigma}}{k_{\Sigma}}=\frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(k_{\rightarrow}+k_{\leftarrow}\right)}=c \frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}
$$

$$
\frac{V_{\text {group }}}{c}=\frac{c}{V_{\text {phase }}}
$$

Fig. 6.1 Monochromatic (1-frequency) 2-CW wave space-time patterns.
(a) $\mathrm{E}_{\leftarrow}=0.2 \quad$ SWR $=43 / 5$ $\mathrm{E}_{\rightarrow}=0.8$
(b) $\mathrm{E}_{\leftarrow}=0.4 \quad S W R=+1 / 5$

2-frequency cases
(c) $\mathrm{E}_{\leftarrow}=0.5 \quad S W R=0$

$\omega_{\rightarrow}=4 c, k \rightarrow=4$
$\omega_{\leftarrow}=1 c, k_{\leftarrow}=-1$
$u_{\text {GROUP }} / c=3 / 5$
$u_{\text {PHASE }} / c=5 / 3$
(d) $\mathrm{E}_{\leftarrow}=0.6$

(e) $\mathrm{E}_{\leftarrow}=0.8$
$\mathrm{E}_{\rightarrow}=0.2 \quad S W R=-3 / 5$
Fig. 6.2 Dichromatic (2-frequency) 2-CW wave space-time patterns.

pure standing wave
left galloping waves

Fig. 6.3 (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 6.1. (h-i) Kepler anomalies.

Fig. 6.1 Monochromatic (1-frequency) 2-CW wave space-time patterns.
(a) $\mathrm{E}_{\leftarrow}=0.2 \quad S W R=+3 / 5$ $\mathrm{E}_{\rightarrow}=0.8$
(b) $\mathrm{E}_{\leftarrow}=0.4$
$S W R=-1 / 5$

$$
E_{\rightarrow}=0.6
$$

2-frequency cases

$\omega_{\rightarrow}=4 c, k \rightarrow=4$
$\omega_{\leftarrow}=1 c, k_{\leftarrow}=-1$
$u_{\text {GROUP }} / c=3 / 5$
$u_{\text {PHASE }} / c=5 / 3$
(d) $\mathrm{E}_{\leftarrow=0.6}$

(e) $\quad \mathrm{E}_{\leftarrow}=0.8$
$\mathrm{E}_{\rightarrow}=0.2 \quad S W R=-3 / 5$
Fig. 6.2 Dichromatic (2-frequency) 2-CW wave space-time patterns.

Fig. 6.3 (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 6.1. (h-i) Kepler anomalies.

Analogy between wave galloping, Keplarian IHO orbits, and optical polc
We'll show wave galloping is analogous to Keplarian orbital motion of angles $\omega \cdot t$ and ϕ of orbits.

$$
\tan \phi(t)=\frac{b}{a} \tan \omega \cdot t
$$

$$
\tan \phi(t)=\frac{b}{a} \tan \omega \cdot t
$$

The eccentric anomaly time derivative of ϕ (angular velocity) gallops between $\omega \cdot b / a$ and $\omega \cdot a / b$.

$$
\dot{\phi}=\frac{d \phi}{d t}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{\sec ^{2} \phi}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{1+\tan ^{2} \phi}=\frac{\omega \cdot b / a}{\cos ^{2} \omega t+(b / a)^{2} \cdot \sin ^{2} \omega t}=\left\{\begin{array}{l}
\omega \cdot b / a \text { for: } \omega t=0, \pi, 2 \pi \ldots \\
\omega \cdot a / b \quad \omega t=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
$$

Kepler anomaly relations $\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}=S W R \cdot \tan \omega t$
The eccentric anomaly time derivative of ϕ (angular velocity) gallops between $\omega \cdot b / a$ and $\omega \cdot a / b$.

$$
\dot{\phi}=\frac{d \phi}{d t}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{\sec ^{2} \phi}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{1+\tan ^{2} \phi}=\frac{\omega \cdot b / a}{\cos ^{2} \omega t+(b / a)^{2} \cdot \sin ^{2} \omega t}=\left\{\begin{array}{l}
\omega \cdot b / a \text { for: } \omega t=0, \pi, 2 \pi \ldots \\
\omega \cdot a / b \quad \omega t=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
$$

The product of angular moment r^{2} and $\dot{\phi}$ is orbital momentum, a constant proportional to ellipse area. Kepler anomaly relations

$$
r^{2} \frac{d \phi}{d t}=\text { constant }=\left(a^{2} \cos ^{2} \omega t+b^{2} \cdot \sin ^{2} \omega t\right) \frac{d \phi}{d t}=\omega \cdot a b
$$

$$
\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}=S W R \cdot \tan \omega t
$$

The product of angular moment r^{2} and $\dot{\phi}$ is orbital momentum, a constant proportional to ellipse area. Kepler anomaly relations

$$
r^{2} \frac{d \phi}{d t}=\text { constant }=\left(a^{2} \cos ^{2} \omega t+b^{2} \cdot \sin ^{2} \omega t\right) \frac{d \phi}{d t}=\omega \cdot a b
$$

$$
\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}=S W R \cdot \tan \omega t
$$

Consider galloping wave zeros of a monochromatic wave having $S W R=1 / 5$.

$$
S W R=+0.2
$$

$$
\begin{aligned}
& 0=\operatorname{Re} \Psi(x, t)=\operatorname{Re}\left[A_{\rightarrow} e^{i\left(k_{0} x-\omega_{0} t\right)}+A_{\leftarrow} e^{i\left(-k_{0} x-\omega_{0} t\right)}\right] \text { where: } \omega_{\rightarrow}=\omega_{0}=\omega_{\leftarrow}=c k_{0}=-c k_{\leftarrow} \\
& 0=A_{\rightarrow}\left[\cos k_{0} x \cos \omega_{0} t+\sin k_{0} x \sin \omega_{0} t\right]+A_{\leftarrow}\left[\cos k_{0} x \cos \omega_{0} t-\sin k_{0} x \sin \omega_{0} t\right] \\
& \left(A_{\rightarrow}+A_{\leftarrow}\right)\left[\cos k_{0} x \cos \omega_{0} t\right]=-\left(A_{\rightarrow}-A_{\leftarrow}\right)\left[\sin k_{0} x \sin \omega_{0} t\right]
\end{aligned}
$$

$$
\begin{aligned}
& \text { Analogy between wave galloping, Keplarian IHO orbits, and optical polarization, y, mp, mean } \\
& \text { Analogy between wave galloping, Keplarian IHO orbits, and optical polarization } \rightarrow x=a-A--A, x \text { anomaly } \\
& \text { We'll show wave galloping is analogous to Keplarian orbital motion of angles } \omega^{\prime} t \text { and } \phi \text { of orbits } \\
& \tan \phi(t)=\frac{b}{a} \tan \omega \cdot t \\
& \text { The eccentric anomaly time derivative of } \phi \text { (angular velocity) gallops between } \omega \cdot b / a \text { and } \omega \cdot a / b \text {. } \\
& \dot{\phi}=\frac{d \phi}{d t}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{\sec ^{2} \phi}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{1+\tan ^{2} \phi}=\frac{\omega \cdot b / a}{\cos ^{2} \omega t+(b / a)^{2} \cdot \sin ^{2} \omega t}=\left\{\begin{array}{l}
\omega \cdot b / a \text { for: } \omega t=0, \pi, 2 \pi \ldots \\
\omega \cdot a / b \quad \omega t=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \text { Analogy between wave galloping, Keplarian IHO orbits, and optical polarization, y,_ mean } \\
& \text { Analogy between wave galloping, Keplarian IHO orbits, and optical polarization } \quad \text { mean } \\
& \text { Well show wave galloping is analogous to Keplarian orbital motion of angles } \omega \cdot t \text { and } \phi \text { of orbits } \\
& \tan \phi(t)=\frac{b}{a} \tan \omega \cdot t \\
& \text { The eccentric anomaly time derivative of } \phi \text { (angular velocity) gallops between } \omega \cdot b / a \text { and } \omega \cdot a / b \text {. } \\
& \dot{\phi}=\frac{d \phi}{d t}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{\sec ^{2} \phi}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{1+\tan ^{2} \phi}=\frac{\omega \cdot b / a}{\cos ^{2} \omega t+(b / a)^{2} \cdot \sin ^{2} \omega t}=\left\{\begin{array}{l}
\omega \cdot b / a \text { for: } \omega t=0, \pi, 2 \pi \ldots \\
\omega \cdot a / b \quad \omega t=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
\end{aligned}
$$

The product of angular moment r^{2} and $\dot{\phi}$ is orbital momentum, a constant proportional to ellipse area. Kepler anomaly relations

$$
r^{2} \frac{d \phi}{d t}=\text { constant }=\left(a^{2} \cos ^{2} \omega t+b^{2} \cdot \sin ^{2} \omega t\right) \frac{d \phi}{d t}=\omega \cdot a b
$$

$$
\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}=S W R \cdot \tan \omega t
$$

Consider galloping wave zeros of a monochromatic wave having $S W R=1 / 5$.

$$
S \overline{W R}=+0.2
$$

$$
\begin{aligned}
& 0=\operatorname{Re} \Psi(x, t)=\operatorname{Re}\left[A_{\rightarrow} e^{i\left(k_{0} x-\omega_{0} t\right)}+A_{\leftarrow} e^{i\left(-k_{0} x-\omega_{0} t\right)}\right] \text { where: } \omega_{\rightarrow}=\omega_{0}=\omega_{\leftarrow}=c k_{0}=-c k_{\leftarrow} \\
& 0=A_{\rightarrow}\left[\cos k_{0} x \cos \omega_{0} t+\sin k_{0} x \sin \omega_{0} t\right]+A_{\leftarrow}\left[\cos k_{0} x \cos \omega_{0} t-\sin k_{0} x \sin \omega_{0} t\right] \\
& \left(A_{\rightarrow}+A_{\leftarrow}\right)\left[\cos k_{0} x \cos \omega_{0} t\right]=-\left(A_{\rightarrow}-A_{\leftarrow}\right)\left[\sin k_{0} x \sin \omega_{0} t\right]
\end{aligned}
$$

Space $k_{0} x$ varies with time $\omega_{0} t$ in the same way that eccentric anomaly ϕ varies with $\omega \cdot t$.

$$
\left.\tan k_{0} x=-S W R \cdot \cot \omega_{0} t=S W R \cdot \tan \omega_{0} \bar{t}\right) \text { where: } \omega_{0} \bar{t}=\omega_{0} t-\pi / 2
$$

$$
E_{\leftarrow}=0.4, \quad E_{\rightarrow}=0.6
$$

The eccentric anomaly time derivative of ϕ (angular velocity) gallops between $\omega \cdot b / a$ and $\omega \cdot a / b$.

$$
\dot{\phi}=\frac{d \phi}{d t}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{\sec ^{2} \phi}=\omega \cdot \frac{b}{a} \frac{\sec ^{2} \omega t}{1+\tan ^{2} \phi}=\frac{\omega \cdot b / a}{\cos ^{2} \omega t+(b / a)^{2} \cdot \sin ^{2} \omega t}=\left\{\begin{array}{l}
\omega \cdot b / a \text { for: } \omega t=0, \pi, 2 \pi \ldots \\
\omega \cdot a / b \quad \omega t=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
$$

The product of angular moment r^{2} and $\dot{\phi}$ is orbital momentum, a constant proportional to ellipse area. Kepler anomaly relations

$$
r^{2} \frac{d \phi}{d t}=\text { constant }=\left(a^{2} \cos ^{2} \omega t+b^{2} \cdot \sin ^{2} \omega t\right) \frac{d \phi}{d t}=\omega \cdot a b
$$

$$
\tan \phi(t)=\frac{y}{x}=\frac{b \sin \omega t}{a \cos \omega t}=S W R \cdot \tan \omega t
$$

Consider galloping wave zeros of a monochromatic wave having $S W R=1 / 5$,

$$
S W R=+0.2
$$

$$
\begin{aligned}
& 0=\operatorname{Re} \Psi(x, t)=\operatorname{Re}\left[A_{\rightarrow} e^{i\left(k_{0} x-\omega_{0} t\right)}+A_{\leftarrow} e^{i\left(-k_{0} x-\omega_{0} t\right)}\right] \text { where: } \omega_{\rightarrow}=\omega_{0}=\omega_{\leftarrow}=c k_{0}=-c k_{\leftarrow} \\
& 0=A_{\rightarrow}\left[\cos k_{0} x \cos \omega_{0} t+\sin k_{0} x \sin \omega_{0} t\right]+A_{\leftarrow}\left[\cos k_{0} x \cos \omega_{0} t-\sin k_{0} x \sin \omega_{0} t\right] \\
& \left(A_{\rightarrow}+A_{\leftarrow}\right)\left[\cos k_{0} x \cos \omega_{0} t\right]=-\left(A_{\rightarrow}-A_{\leftarrow}\right)\left[\sin k_{0} x \sin \omega_{0} t\right]
\end{aligned}
$$

Space $k_{0 x}$ varies with time $\omega_{0} t$ in the same way that eccentric anomaly ϕ varies with $\omega \cdot t$.

$$
\left.\tan k_{0} x=-S W R \cdot \cot \omega_{0} t=S W R \cdot \tan \omega_{0} \bar{t}\right) \text { where: } \omega_{0} \bar{t}=\omega_{0} t-\pi / 2
$$

Speed of galloping wave zeros is the time derivative of root location x in units of light velocity c.

$$
\mathrm{E}_{\leftarrow}=0.4, \quad \mathrm{E}_{\rightarrow}=0.6
$$

$$
\frac{d x}{d t}=c \cdot S W R \frac{\sec ^{2} \omega_{0} \bar{t}}{\sec ^{2} k_{0} x}=\frac{c \cdot S W R}{\cos ^{2} \omega_{0} \bar{t}+S W R^{2} \cdot \sin ^{2} \omega_{0} \bar{t}}=\left\{\begin{array}{l}
c \cdot S W R \text { for: } \bar{t}=0, \pi, 2 \pi \ldots \\
c \cdot S W Q \quad \bar{t}=\pi / 2,3 \pi / 2, \ldots
\end{array}\right.
$$

Wave-Zero Speed-Limits

Standing Wave Ratio SWR and Quotient SWQ

$$
S W R=\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right) /\left(\underset{\text { Wave zeros }}{\mathrm{E}_{\rightarrow}}+\mathrm{E}_{\leftarrow}\right)=1 / S W Q
$$

$$
\begin{array}{lll}
\text { SWK K } \\
\text { SWR } \\
5
\end{array}
$$

$$
\mathrm{E}_{\leftarrow}=0.5, \mathrm{E}_{\rightarrow}=0.5
$$

Wave-Zero Speed-Limits

Standing Wave Ratio SWR and Quotient SWQ $S W R=\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right) /\left(\mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}\right)=1 / S W Q$

Wave zeros
Wave zeros "galloping'
$S W R=1 / 5$

$S W R=0$

$$
\mathrm{E}=0.4, \mathrm{E}=0.6
$$

$S W R=+1$

SWR $=1 / 5$ is analogous to (5-to-1) Right Elliptic Polarization

SWR $=0$ is analogous to (1,0)
x-Plane Linear Polarization

SWR $=-1$ is analogous to (1,-i) Left Circular Polarization

Waves that go back in time - The Feynman-Wheeler Switchback
Minkowski Zero-Grids are Spacetime Switchbacks for $-u_{\text {GROUP }}<S W R<0$

Group-zero speed

$\omega_{\rightarrow}=4 c$	$\omega_{\leftarrow}=1 c$
$k_{\rightarrow}=4$,	$k_{\leftarrow}=-1$
$u_{\text {GROUP }}=c 3 / 5$	
$u_{\text {PHASE }}=c 5 / 3$	

At High Speed 2-CW Modes Look More Like 1-CW Beams $\quad \psi=\mathrm{E} \sqrt{\frac{\varepsilon_{0}}{h \nu}}$
Various combinations of opposite-k 1-CW beams occur with open boundaries.
E -wave: $\mathrm{E}=\mathrm{E}_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+\mathrm{E}_{\leftarrow} \mathrm{e}^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}$ is related to Ψ-wave $: \Psi=\psi_{\rightarrow} \mathrm{e}^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+\psi_{\leftarrow} \mathrm{e}^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}$
Standing Wave Ratio (or Quotient) $S W R=\left(\mathrm{E}_{\rightarrow}-\mathrm{E}_{\leftarrow}\right) /\left(\mathrm{E}_{\rightarrow}+\mathrm{E}_{\leftarrow}\right)=1 / S W Q$

Wave Group (or Phase) Velocity 1-frequency case : $\omega_{\rightarrow}=2 c, k_{\rightarrow}=2, \omega_{\leftarrow}=2 c, k_{\leftarrow}=-2$ gives: $u_{\text {GROUP }}=0$ and $u_{\text {PHASE }}=\infty$

2-frequency case : $\omega_{\rightarrow}=4 c, k_{\rightarrow}=4$, a

$u_{\text {PHASE }} / c=5 / 3$

$$
\begin{array}{|ccccccc|ccc|ccc|ccc}
\mathrm{E}_{\leftarrow}=0.4, & \mathrm{E}_{\rightarrow}=1.0 & \mathrm{E}_{\leftarrow}=0.4, & \mathrm{E}_{\rightarrow}=0.6 & \mathrm{E}_{\leftarrow}=0.5, & \mathrm{E}_{\rightarrow}=0.5 & \mathrm{E}_{\leftarrow}=0.6, & \mathrm{E}_{\rightarrow}=0.4 & \mathrm{E}_{\leftarrow}=1.0, \quad \mathrm{E}_{\rightarrow}=0.4 \\
\hline
\end{array}
$$

1st Quantization: Quantizing phase variables ω and k

Understanding how quantum transitions require "mixed-up" states Closed cavity us Ring cavity

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only)
Some
$n=2$

$$
n=3
$$

$$
n=4
$$

$$
n=1.7
$$

$n=2.59$
wrong color again!

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$

$$
n=4
$$

(+ integers only)

Some

$n=2$

$$
n=3
$$

NOT OK numbers: $n=0.67$

$n=2.59$

$$
n=4
$$

NOTE: We're using "false-color" here.

[^0]
Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only)

Some

NOT OK numbers: $n=0.67$

$n=2$

$$
n=3
$$

$$
n=4
$$

$$
n=1.7
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left.\left|E_{1}>,\right| E_{2}\right\rangle,\left|E_{3}\right\rangle, \mid E_{4}>, \ldots$ That's the only way you get any light in or out of the system to "see" it.

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only)
Some
NOT OK numbers: $n=0.67$

$n=2$

$$
n=3
$$

$$
n=4
$$

$$
n=1.7
$$

NOTE: We're using "false-color" here.

This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left|E_{1}\right\rangle,\left|E_{2}\right\rangle,\left|E_{3}\right\rangle,\left|E_{4}\right\rangle, \ldots$ That's the only way you get any light in or out of the system to "see" it.

$$
\begin{aligned}
& \text { frequency } \omega_{32}=\left(E_{3}-E_{2}\right) / \hbar \\
& \text { frequency } \omega_{21}=\left(E_{2}-E_{1}\right) / \hbar
\end{aligned}
$$

These eigenstates are the only ways the system can "play dead"... ... "sleep with the fishes"...

Quantized ω and k Counting wave kink numbers

If everything is made of waves then we expect quantization of everything because waves only thrive if integral numbers n of their "kinks" fit into whatever structure (box, ring, etc.) they're supposed to live. The numbers n are called quantum numbers. OK box quantum numbers: $n=1$
(+ integers only) Some
NOT OK numbers: $n=0.67$

$n=1.7$

$$
n=3
$$

$$
n=4
$$

wrong color again!

NOTE: We're using "false-color" here.
Rings tolerate a zero (kinkless) quantum wave but require \pm integral wave number. OK ring quantum numbers: $m=0$
$m= \pm 1$

Bohr's models of atomic spectra (1913-1923) are beginnings of quantum wave mechanics built on Planck-Einstein (1900-1905) relation $E=h v$. DeBroglie relation $p=h \lambda$ comes around 1923.

Lecture 30 ended here

2nd Quantization: Quantizing amplitudes ("photons", "vibrons", and "what-ever-ons") Introducing coherent states (What lasers use)

Analogy with (ω, k) wave packets
Wave coordinates need coherence

Quantized Amplitude Counting "photon" number

Planck's relation $E=N h v$ began as a tenative axiom to explain low-T light. Then he tried to disavow it! Einstein picked it up in his 1905 paper. Since then its use has grown enormously and continues to amaze, amuse (or bewilder) all who study it. A current view is that it represents the quantization of optical field amplitude. We picture this below as N-photon wave states for each box-mode of m wave kinks.

$N_{2}=0$

$m=2 \quad m=3 \quad m=4$
Quantized Wavenumber ("kink" or momentum number)

[^0]: This doesn't mean a system's energy can't vary continuously between "OK" values $E_{1}, E_{2}, E_{3}, E_{4}, \ldots$ In fact its state can be a linear combination of any of the "OK" waves $\left|E_{1}>,\left|E_{2}>,\right| E_{3}\right\rangle, \mid E_{4}>, \ldots$

