Lecture 29.

Relativity of interfering and galloping waves: SWR and SWQ I. (Ch. 4-6 of Unit 2 4.10.12)

Wave guide and cavity dynamics in space-time ($x_{0}, x_{1}, x_{2}, x_{3}$) and per-space-time ($\omega_{0}, c k_{1}, c k_{2}, c k_{3}$)
Above cut-off: Group vs. phase velocity
Below cut-off: Evanescent waves
Cavity eigenfunctions and eigenvalues
Galloping waves due to unmatched amplitudes
Standing Wave Ratio (SWR) and Standing Wave Quotient (SWQ)

Waveguide dispersion and geometry

2-Dimensional wave mechanics: guided waves and dispersion in the "Hall of Mirrors"

Any two or three-dimensional wave will be seen to exceed the c-limit when it approaches an axis obliquely. It happens for plane waves. The phase velocities along coordinate axes are given by

$$
v_{x}=\omega / k_{x}, \quad v_{y}=\omega / k_{y}, \quad v_{z}=\omega / k_{z}
$$

Each of the components ($k x, k_{y}, k_{z}$) must be less than or equal to magnitude $k=\sqrt{ }\left(k x^{2}+k y^{2}+k z{ }^{2}\right)$.
Thus, all the component phase velocities equal or exceed the phase velocity ω / k which is c for light!
A water waves exceeds c if it breaks parallel to shore so 'break-line" moves infinitely fast with $k_{x}=0$.

Consider 'Hall of Mirrors" with two parallel mirrors on either side of the x-axis be separated by a distance $y=W$.
The South wall will be at $y=-W / 2$ and the North wall at $y=W / 2$. (z-axis or "up" is into the page here.)
The Hall should have a floor and ceiling at $z= \pm H / 2$ as discussed later. Here waves move in $x y$-plane only.

Fig. 6B.1 A "hall of mirrors" model for an optical wave guide of width W.
$\mathrm{E}(\mathbf{r}, t)=\quad \exp i\left(\mathbf{k}^{(+)} \cdot \mathbf{\bullet}-\omega t\right) \quad+\quad \exp i(\mathbf{k}(-) \cdot \mathbf{r}-\omega t)$
$=\exp i(k x \cos \gamma+k y \sin \gamma-\omega t)+\exp i(k x \cos \gamma-k y \sin \gamma-\omega t)$
$=\exp i(k x \cos \gamma-\omega t)[\exp i(k y \sin \gamma)+\exp i(-k y \sin \gamma)]$
$=e i(k x \cos \gamma-\omega t)[2 \cos (k y \sin \gamma)]$ guide phase wave and group wave

TE boundary conditions make group be zero on metal walls $y= \pm W / 2$.

$$
0=2 \cos (k(W / 2) \sin \gamma), \text { or: } k(W / 2) \sin \gamma=\pi / 2, \text { or: } \sin \gamma=\pi /(k W)
$$

Suppose input \mathbf{k}-vector $\left.\mathbf{k}{ }^{+}\right)$enters at angle $+\gamma$.
$\mathbf{k}(+)=\left(k(+)_{x}, k(+)_{y}, 0\right)=(k \cos \gamma, k \sin \gamma, 0)$
Assume $\mathrm{T}_{\text {ranserse }} \mathrm{Elcectric}$-mode. It always has \mathbf{E} polarized parallel to $x z$ plane
y-reflected mirror image has \mathbf{k}-vector $\mathbf{k}(-)$ at angle $-\gamma$.
$\mathbf{k}(-)=\left(k(-)_{x}, k(-)_{y}, 0\right)=(k \cos \gamma,-k \sin \gamma, 0)$.

Waveguide dispersion and geometry

Fig. 6 B. 1 A "hall of mirrors" model for an optical wave guide of width W.
$\mathrm{E}(\mathbf{r}, t)=\exp i(\mathbf{k}(+) \cdot \mathbf{r}-\omega t) \quad+\quad \exp i(\mathbf{k}(-) \cdot \mathbf{r}-\omega t)$
$=\exp i(k x \cos \gamma+k y \sin \gamma-\omega t)+\exp i(k x \cos \gamma-k y \sin \gamma-\omega t)$ $=\exp i(k x \cos \gamma-\omega t)[\exp i(k y \sin \gamma)+\exp i(-k y \sin \gamma)]$ $=e^{i(k x \cos \gamma-\omega t)}[2 \cos (k y \sin \gamma)]$ guide phase wave and group wave

Suppose input \mathbf{k}-vector $\mathbf{k}(-)$ enters at angle $+\gamma$. $\mathbf{k}^{(+)}=\left(k(+)_{x}, k(+) y, 0\right)=(k \cos \gamma, k \sin \gamma, 0)$
y-reflected mirror image has \mathbf{k}-vector $\mathbf{k}(-)$ at angle $-\gamma$. $\mathbf{k}(-)=\left(k(-)_{x}, k(-) y, 0\right)=(k \cos \gamma,-k \sin \gamma, 0)$.

TE boundary conditions make group be zero on metal walls $y= \pm W / 2$. $0=2 \cos (k(W / 2) \sin \gamma)$, or: $k(W / 2) \sin \gamma=\pi / 2$, or: $\sin \gamma=\pi /(k W)$

Condition $k^{(+)} y=k \sin \gamma=\pi / W$ gives dispersion function $\omega(k x)$ or ω vs. $k x$ relation

Waveguide dispersion and geometry

$$
\omega=k c=c \sqrt{ }\left(k_{x}^{2}+k_{y}^{2}+k_{z}^{2}\right)=c \sqrt{ }\left(k_{x}^{2}+\pi^{2} / W^{2}\right)=\sqrt{ }\left(c^{2} k_{x}^{2}+\omega_{c u t^{2}}^{2}\right)
$$

Fig. 6B.8 Thales geometry of cavity or waveguide mode

Waveguide dispersion and geometry

Fig. 6B.8 Thales geometry of cavity or waveguide mode
(Lecture 28 ends here)

Waveguide dispersion and geometry

$$
\omega=k c=\sqrt{ }\left(c^{2} k_{x}^{2}+\omega_{c u t^{2}}^{2}\right)
$$

$\xrightarrow{\text { Group } V \text { Velocity }=0.71 \mathrm{c}}$

Fig. 6 B. 3 Right moving guide wave with $\gamma=45^{\circ}, V_{\text {phase }}=\sqrt{ } 2 c, V$ group $=c / \sqrt{ } 2$.

$\xrightarrow{\text { Group Velocity }=0.50 \mathrm{c}}$

Below cut-off:Evanescent waves

Consider angular frequency below the so-called cut-off value $\omega_{\text {cut }}$ from (6B.5b).

$$
\omega_{c u t}=\pi c / W
$$

Then the wave vector $k x$ will go thru zero to becomes imaginary.

$$
k_{x}=\sqrt{ }\left(\omega^{2}-\pi^{2} c^{2} / W^{2}\right)
$$

This affects the the usual propagating wave $\Psi=\exp i\left(k_{x} x-\omega t\right)$ rather severely.
Instead of propagating nicely, we get a so-called evanescent wave $\Psi=\exp \left(-\mu_{x} x\right) \exp i(-\omega t)$
It decays exponentially with distance x inside wave guide with decay rate constant $\mu_{x}=\sqrt{ }\left(\pi^{2} c^{2} / W^{2}-\omega^{2}\right)=i k x$

Hall of Mirrors capped by a pair of doors at $x=0$ and $x=L$ becomes a wave cavity of length L.
The doors demand the wave electric field be zero at x-boundaries as well as along the walls. New boundary conditions:

$$
k_{x}=k \cos \gamma=n_{x} \pi / L \quad\left(n_{x}=1,2, \ldots\right)
$$

Frequency bands are broken into discrete "quantized" values $\omega_{n x} n y$, one for each pair of integers or "quantum numbers" n_{x} and $n y$.

$$
\omega_{n x} n y=k c=c \sqrt{ }\left(k x^{2}+k y^{2}+k z^{2}\right)=c \sqrt{ }\left(n x^{2} \pi^{2} / L^{2}+n y^{2} \pi^{2} / W^{2}\right)
$$

Fig. 6B.7 Cavity modes for three lowest quantum numbers
Fig. 6B. 6 Cavity mode dispersion diagram showing overlapping and discrete ω and k values.

Galloping waves due to unmatched amplitudes

2-CW dynamics has two 1-CW amplitudes A_{\rightarrow} and A_{\leftarrow} that we now allow to be unmatched. $\quad\left(A_{\rightarrow} \neq A_{\leftarrow}\right)$

$$
A_{\rightarrow} e^{i\left(k_{\rightarrow} x-\omega_{\rightarrow} t\right)}+A_{\leftarrow} e^{i\left(k_{\leftarrow} x-\omega_{\leftarrow} t\right)}=e^{i\left(k_{\Sigma} x-\omega_{\Sigma} t\right)}\left[A_{\rightarrow} e^{i\left(k_{\Delta} x-\omega_{\Delta} t\right)}+A_{\leftarrow} e^{-i\left(k_{\Delta} x-\omega_{\Delta} t\right)}\right]
$$

Waves have half-sum mean-phase rates $\left(k_{\Sigma}, \omega_{\Sigma}\right)$ and half-difference group rates $\left(k_{\Delta}, \omega_{\Delta}\right)$.

$$
\begin{array}{ll}
k_{\Sigma}=\left(k_{\rightarrow}+k_{\leftarrow}\right) / 2 & k_{\Delta}=\left(k_{\rightarrow}-k_{\leftarrow}\right) / 2 \\
\omega_{\Sigma}=\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right) / 2 & \omega_{\Delta}=\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right) / 2
\end{array}
$$

Also important is amplitude mean $A_{\Sigma}=\left(A_{\rightarrow}+A_{\leftarrow}\right) / 2$ and half-difference $A_{\Delta}=\left(A_{\rightarrow}-A_{\leftarrow}\right) / 2$
Detailed wave motion depends on standing-wave-ratio $S W R$ or the inverse standing-wave-quotient $S W Q$.

$$
S W R=\frac{\left(A_{\rightarrow}-A_{\leftarrow}\right)}{\left(A_{\rightarrow}+A_{\leftarrow}\right)} \quad S W Q=\frac{\left(A_{\rightarrow}+A_{\leftarrow}\right)}{\left(A_{\rightarrow}-A_{\leftarrow}\right)}
$$

These are analogous mean frequency ratios for group velocity and its inverse that is phase velocity.

$$
V_{\text {group }}=\frac{\omega_{\Delta}}{k_{\Delta}}=c \frac{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)} \quad V_{\text {phase }}=\frac{\omega_{\Sigma}}{k_{\Sigma}}=c \frac{\left(\omega_{\rightarrow}+\omega_{\leftarrow}\right)}{\left(\omega_{\rightarrow}-\omega_{\leftarrow}\right)}
$$

Fig. 6.3 (a-g) Elliptic polarization ellipses relate to galloping waves in Fig. 6.1. (h-i) Kepler anomalies.

Fig. 6.1 Monochromatic (1-frequency) 2-CW wave space-time patterns.
(a) $\mathrm{E}_{\leftarrow}=0.2 \quad S W R=+3 / 5$ $\mathrm{E}_{\rightarrow}=0.8$
(b) $\mathrm{E}_{\leftarrow}=0.4$
$S W R=-1 / 5$

$$
E_{\rightarrow}=0.6
$$

2-frequency cases

$\omega_{\rightarrow}=4 c, k \rightarrow=4$
$\omega_{\leftarrow}=1 c, k_{\leftarrow}=-1$
$u_{\text {GROUP }} / c=3 / 5$
$u_{\text {PHASE }} / c=5 / 3$
(d) $\mathrm{E}_{\leftarrow=0.6}$

Fig. 6.2 Dichromatic (2-frequency) 2-CW wave space-time patterns.

