
Lecture 26. 
Introduction to Relativistic Classical and Quantum Mechanics

(Ch. 2-5 of Unit 2   4.03.12)

Group vs. phase velocity and tangent contacts  
Reviewing “Sin-Tan Rosetta” geometry 

How optical CW group and phase properties give relativistic mechanics 
Three kinds of mass (Einstein rest mass, Galilean momentum mass, Newtonian inertial mass) 

What’s the matter with light?
  Bohr-Schrodinger (BS) approximation throws out Mc2

Deriving relativistic quantum Lagrangian-Hamiltonian relations
Feynman’s flying clock and phase minimization

Geometry of relativistic mechanics

(Includes Lecture 25 review)
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Introducing the “Sin-Tan Rosetta Stone”

https://www.uark.edu/ua/pirelli/php/hyper_constrct.php

NOTE: Angle φ is now called stellar aberration angle σ

Fig. C.2-3
and

Fig. 5.4
in Unit 2
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More about the
“Sin-Tan Rosetta”

Note identities
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Group vs. phase velocity and tangent contacts

(From Fig. 2.3.4)

GGrroouupp vveelloocciittyy u aanndd pphhaassee vveelloocciittyy c2/u
aarree hhyyppeerrbboolliicc ttaannggeenntt ssllooppeess

Newtonian speed u~cρ
Relativistic
group wave
speed u=c tanh ρ

LLooww ssppeeeedd aapppprrooxxiimmaattiioonn

33−

== BB==22ϖ

433221100--11

4

--22

BB ccoosshh ρ

BB ssiinnhh ρ
BB ee--ρ ck

ω

== 22BB==442ϖ

Δω

c Δk

PP
GG

BB ee++ρ

G
hyperbolas

P hyperbolas
c line

cc

ω

ck

u

c
u

c dω =dcckk
cckk
ω=

Group velocity

k=BB ssiinnhh ρ
ω=BB ccoosshh ρ

ω =cckk
cc
uu

Phase velocity

== BBϖ

Rare but important case where

with LARGE Δk
(not infinitesimal)

dω
dk =

Δω
Δk

PP
Δω

c Δk

cc
uu

BB ssiinnhh ρ

BB ccoosshh ρ

Rapidity ρ approaches u/c

Lecture 25 ended here 
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Group vs. phase velocity and tangent contacts
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Start with low speed approximations :   ω = Bcoshρ = B(1+2

1 ρ2 + ...)   where: ρ  u
c
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cp'=hck'
cctt

cctt''

Energy
E=hω

Momentum
cp=hck

Mc2

ωm=49ω1

76543210-1-2-3-4-4-6
m

36

25
16
9
4

(a) Einstein-Planck Dispersion

(b) DeBroglie-Bohr Dispersion

E'=hω'
E2 - c2p2 =(Mc2)2

photon: M=0
E = c p

E = p2/2M

E = B m2

tachyon:

Bohr - Schrodinger Dispersion

Einstein - Planck Dispersion
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Mrest(γ)=0                       Mmom(γ)=p/c=k/c=ω/c2                           Meff(γ)=∞

Equations (4.11) in Unit 2

Three kinds of mass for photon γ  in CW relativistic theory  
What’s the matter with light?

(1)Einstein rest mass               (2)  Galilean momentum mass                 (3) Newtonian inertial mass
      Mrest=                                         Mmom=p/u=                                             Mmom=F/a=

 

ω proper

c2
 

k
dω
dk  


d 2ω
dk 2

A 2-CW 600THz cavity has zero total momentum p, but each photon adds a tiny mass Mγ to it.

  Mγ=ω/c2=ω  (1.2·10-51)kg·s=  4.5·10-36kg     (for: ω = 2π·600THz ) 

A 1-CW state has no rest mass, but 1-photon momentum is a non-zero value pγ=Mγ c. (Galilean revemge II.)

  pγ=k=ω/c=ω  (4.5·10-43)kg·m=1.7·10-27kg·m·s-1  (for: ω = 2π·600THz )
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Bohr-Schrodinger (BS) approximation throws out Mc2

E =
Mc2

1− u2 / c2
= Mc2 coshρ = Mc2 1+ sinh2 ρ = Mc2( )2 + cp( )2

E = Mc2( )2 + cp( )2⎡

⎣
⎢

⎤

⎦
⎥
1/2

≈ Mc2 + 1
2M

p2 BS−approx⎯ →⎯⎯⎯⎯
1
2M

p2

The BS claim: may shift energy origin  (E=Mc2, cp=0) to (E=0, cp=0). (Frequency is relative!)

cp'=hck'
cctt

cctt''

Energy
E=hω

Momentum
cp=hck

Mc2

ωm=49ω1

76543210-1-2-3-4-4-6
m

36

25
16
9
4

(a) Einstein-Planck Dispersion

(b) DeBroglie-Bohr Dispersion

E'=hω'
E2 - c2p2 =(Mc2)2

photon: M=0
E = c p

E = p2/2M

E = B m2

tachyon:

Bohr - Schrodinger Dispersion

Einstein - Planck Dispersion

=dk
dω

k
ω

Group velocity u=Vgroup       is a differential quantity unaffected by origin shift. 

Phase velocity     =Vphase is greatly reduced by deleting Mc2 from E=ω. 

It slows from Vphase=c2/u to a sedate sub-luminal speed of Vgroup/2. 

ω BS (k) = k 2

2M
    gives:   v phase=

ω BS

k
= k

2M

and:   vgroup=
dω BS

dk
= k
M
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(a) Hamiltonian

Momentum p

P
P′

P′′

-L
-L′
-L′′

L(q,q)

Velocity u=q

Q
Q′
Q′′

-H

-H′

-H′′

H
H′

H′′
L
L′
L′′

H

H′

H′′

slope:

slope:

∂H
∂p

= q
= u

∂L
∂q

= p

(b) LagrangianH(q,p)

radius = Mc2

O

O

Light cone u=1=c
has infiniteH

and zero L

Fig. 5.1. Geometry of contact transformation between relativistic (a) Hamiltonian (b) Lagrangian

Deriving relativistic quantum Lagrangian-Hamiltonian relations

dΦ = kdx − ω dt=  −µ  dτ = -(Mc2/) dτ. dτ = dt √(1-u2/c2)=dt sech ρ  

Differential action:                                 
is Planck scale     times differential phase: dS = dΦ  

For constant u the Lagrangian is: L =−µτ  = -Mc2√(1-u2/c2)= -Mc2sech ρ = -Mc2 

Start with phase     and set k=0 to get product of proper frequency                 and proper timeΦ  µ = Mc2/ τ

 dS = Ldt = p·dx − H·dt = k·dx − ω ·dt = dΦ
 

cosσ
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cosσ
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cosσ

 L= p· x − H = p·u − H...with Poincare invariant:
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Fig. 5.2 “True” paths carry extreme phase and fastest clocks. Light-cone has only stopped clocks.

Fig. 5.3 Quantum waves interfere constructively on “True” path but mostly cancel elsewhere.

Feynman’s flying clock and phase minimization
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--LL ==BB sseecchh ρ
RReesstt

EEnneerrggyy

BB ==MMcc22

HH

BB

--LL

VVeelloocciittyy aabbeerrrraattiioonn

aannggllee φ

33−

433221100--11

4

--22

BB ccoosshh ρ

BB ee--ρ
cp

H=E

BB

BB ee++ρ

BB sseecchh ρ

22

11

BBlluuee sshhiiffttRReedd sshhiifftt

(a) Geometry of relativistic transformation
and wave based mechanics

(b) Tangent geometry (u/c=3/5)

(c) Basic construction given u/c=45/53

u/c =3/5
u/c =1

cp =3/4

H =5/4

-L =4/5

cp =45/28

H =53/28

-L=28/45

e-ρ=1/2e-ρ=2/7

(d) u/c=3/5

11

1 1

bb--cciirrccllee

g-circle

p-circle

Fig. 5.5 
Relativistic wave mechanics geometry. 
(a) Overview. 

(b-d) Details of contacting tangents.
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