Lecture 24.
Relativity of lightwaves and Lorentz-Minkowski coordinates I11.

(Ch. 0-3 of Unit 2 3.29.12)
4. Einstein-Lorentz symmetry (Includes Lecture 23 review)
What happened to Galilean symmetry? (It moved to “gauge’ Space/)
Thale's construction and Euclid s means e(cture 23 ended whow here
Time reversal symmetry gives hyperbolic invariants
per-space-time hyperbola
space-time hyperbola

Phase invariance

5. That “old-time” relativity (Circa 600BCE- 1905CE)
(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga Lectur e 24 ended (abouy here

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

How Minkowski'’s space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts
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Euclid's 3-means (300 BC) Thales (580BC) rectangle-in-circle

Geometric “heart” of wave mechanics Relates to wave interference by (Galilean)

phasor angular velocity addition

geometric |® y Y
mean: /,’/> )
1/2 difference A
[1- 4] it - s Rey
m/ean \ half—dlfﬁérence=group phase
2 [4-11=3/2 4+1
AHALF-
DIFFERENCE )| Jrequency

/ 3/2

3
1 4 (units of 300THz)

Linear velocity Vo, Oup/c::u/c

IS (HALF-DIFF./ )=3/5

Sites for animation:

http://www.uark.edu/ua/pirelli/php/means_1.php

http://www.uark.edu/ua/pirelli/php/half sum 2.php

Lecture 23 ended here
Fig. 3.3a Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units).
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http://www.uark.edu/ua/pirelli/php/means_1.php
http://www.uark.edu/ua/pirelli/php/means_1.php
http://www.uark.edu/ua/pirelli/php/half_sum_2.php
http://www.uark.edu/ua/pirelli/php/half_sum_2.php

(a) Sum of Wave Phasor Array

Group|pr Beat: Node IS(DE 26105 Sites for animations.
\

http://www.uark.edu/ua/pirelli/php/means_1.php

http://www.uark.edu/ua/pirelli/php/half sum_5.php

CNCNCINENC NN X NN NN NEAN ka3
VA NANANY A ANV AWANAS N A S A WA/

(b) Typical Phasor Sum: (c) Phasor-relative views

Red phasor?/\v% X A moves relative to B
5 __A
\ P Sum: W =W, g 4

= 73 ;\/ Galileo s revenge!

i )B Now we use Galilean relativity

PLUS — 7 /\\\ /,/ to add angular velocity, that is
/ ) o frequency wa and wp, in phase

Sln . 0
o | )/ NS A BTVA Vg

Yp=
CosOL K . ) or “gauge ”Spa(}e. NO “C'lin/Zit”
J (@=B) B moves relative to A ,
Green phasor A Jlo=py2 evident. (So far at 18-fig. precision.)

[ (0B -

7

-

EQUALS: ¥, s7VatVp

I/// /
/Nwﬂ)/z N\ Vs

Fig. 3.1 Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors.
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http://www.uark.edu/ua/pirelli/php/means_1.php
http://www.uark.edu/ua/pirelli/php/half_sum_5.php
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Half-Sum & szference Rules of Phase Relativity (contd.)

) \ : : )\ i ;.w.-“);-"\' :

The detailed trigonometry of halt-sum & difference angles is shm\ n below.

The wave is factored into a product of group and phase waves. -
e
7’
mmm e e — e ————————— - 7
: cosf3
|___COosOL___ -
o
A (0H3)/2
+
3
3
L

H[cos(o+3)/2] 3
Main Result: Factoring algebraic sums helps to locate wave zeros.
cosat+cosp = 2cos(o—p)/2 . [cos(o+[3)/2]

sinak+sin3 = 2cos(o—)/2 . [sin (o+3)/2]

Sum m >@ multzpl ied \/\/\/\ / phase

Sum is zeroed by either factor. Each facton S Zero Ime is a spacetime coordinate line.

<Home> <Back> <Next>

www.uark.edu/ua/pirelli/php/half sum S.php
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4. Einstein-Lorentz symmetry

What happened to Galilean symmetry? (it moved to “gauge” space!)
Thale s construction and Euclid s means
I*Time reversal symmetry gives hyperbolic invariants
per-space-time hyperbola
space-time hyperbola
Phase invariance
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Euclidian wave geometry with time-reversal symmetry imply

dispersion hyperbolas: w=nBcosh Lab
D 3% \P .
ared...

per-time

Doppler | Atom frame area...
red-shift

f L equals
' e PB=rB-_
/.

b
by time-reversal axiom: r =1/b

Dogglgr
_:Iueﬁh'ft ...that implies
e"P B=bB hyperbolic invariants
rb=1
[ BeP ]
3 sinh\p\ , per-space 5
1 2 .- ’
- Be+.0 ’ >4 ck
B sinh p = (B e"P-B ¢P)/2 B coshp=(BeP+BeP)2
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R HHHICED A2 HH— 4

LASER LAB FRAME ATOM FRAME view of LASER WAVE,

atg speed -u zE ,

LaserPer-Spacetime AtomPer-Spacetime
M) versus Ck (D, versus Ck,

- \ 00T

3—-1900THz

S

750THz or 400nm

600THz or 500nm

500THz or 600nm
400THz or 750nm

\> Laser per-space

ck

4
Atom per-space

ck’

Fig. 3.5 Dispersion hyperbolas for 2-CW interference (a) Laser lab view. (b)Atom frame view.
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4. Einstein-Lorentz symmetry

What happened to Galilean symmetry? (it moved to “gauge” space!)
Thale s construction and Euclid's means

Time reversal symmetry gives hyperbolic invariants
per-space-time hyperbola
space-time hyperbola

* Phase invariance
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ck | | coshp sinhp ck’
w | | sinhp coshp @’

x | | coshp sinhp x
¢t ) | sinhp coshp ct’

Hyperbolic invariants to Lorentz transformation

Per-space-time invariant:
w, =0’ —(ck)’ =" —(ck’)

wo 1s called “proper frequency” or rate of “aging”

Space-time invariant:
(cTy))’ =(ct)’ —x* =(ct’)’ = (x")

To is called “proper time” or “age”:
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ck | | coshp sinhp ck’ x | | coshp sinhp X
w | | sinhp coshp @’ ¢t ) | sinhp coshp ct’

Hyperbolic invariants to Lorentz transformation

Per-space-time invariant: Space-time invariant:
2 2 2 7N\2 7N\2
w; =" —(ck)’ =" —(ck’)’ (cTy)” =(ct)" —x" =(ct’)” = (X)
wo 1s called “proper frequency” or rate of “aging” To is called “proper time” or “age”:
\a)():a)\/l— £ 2=a)'\/1_ K : \Tozt 1- x2=l" 1- X,Z
(cw) (ca’) N\ (o) " (et

2 72 2 72
u u u u
=w,[l-— =0\ |1-— =z*/1——2=zq/1— .
C C C C
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ck | | coshp sinhp ck’ x | | coshp sinhp X
w | | sinhp coshp @’ ¢t ) | sinhp coshp ct’

Hyperbolic invariants to Lorentz transformation

Per-space-time invariant: Space-time invariant:
2 2 2 7N\2 7N\2
w; =" —(ck)’ =" —(ck’)’ (cTy)” =(ct)" —x" =(ct’)” = (X)
wo 1s called “proper frequency” or rate of “aging” To is called “proper time” or “age”:
\ a)():a)\/l_ . 2 Zw,\/l_ “ 2 \ T =t |1—
(cw) (cw’) (ct)’ (ct )

2 ’72
u u
=W 1——2 =w’,[1- 5 —t«/l——
C

The “grand-daddy-of ‘em all” invariant

Phase invariance:

O, =kx—wt=k"x"—w"t

F

Proof: ?
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ck | | coshp sinhp ck’ x | | coshp sinhp X
w | | sinhp coshp @’ ¢t ) | sinhp coshp ct’

Hyperbolic invariants to Lorentz transformation

Per-space-time invariant: Space-time invariant:
2 2 2 7N\2 7N\2
w; =" —(ck)’ =" —(ck’)’ (cTy)” =(ct)" —x" =(ct’)” = (X)
wo 1s called “proper frequency” or rate of “aging” To is called “proper time” or “age”:
\ a)():w\/l_ k 2 Zw,\/l_ k, 2 \ T =t |1—
(cw) (cw’) (ct)’ (ct )

2 72
u , u
= 1——2 =w',[1- " w/ 1—

The “grand-daddy-of ‘em all” invariant

Phase invariance:

D, =kx-01=k"' -0t
Proof: ck’ - x’ — @ -ct
/ x-cosh ct-sinh / MOSh
Cck-cosh | ckoccosh?  ckcrcoshssinh | ckesinh | ckecsinh?  checr-sinh-cosh
w-sinh | w-x-sinh-cosh  @-ct-sinh” w-cosh | w-x-cosh-sinh  w-ct-cosh’
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ck | | coshp sinhp ck’ x | | coshp sinhp X
w | | sinhp coshp @’ ¢t ) | sinhp coshp ct’

Hyperbolic invariants to Lorentz transformation

Per-space-time invariant: Space-time invariant:
2 2 2 7N\2 7N\2
w; =" —(ck)’ =" —(ck’)’ (cTy)” =(ct)" —x" =(ct’)” = (X)
wo 1s called “proper frequency” or rate of “aging” To is called “proper time” or “age”:
\a)():a)\/l— £ 2=a)'\/1_ K : \Tozt 1- x2=l" 1- X,Z
(cw) (ca’) N\ (o) " (et

2 72 2 72
u u u u
=w,[l-— =0\ |1-— =z*/1——2=zq/1— .
C C C C

The “grand-daddy-of ‘em all” invariant

Phase invariance:

(I)O =kx—m1= k,.x, o a\) .t, ck-x-cosh®— ck-x-sinh® = ck-x
Proof: ck” - x’ — W’ >t' w-ct-sinh”— w-ct-cosh® = —w -t
/ x-cosh ct-sinh / MCOSh
“ckcosh | chucosh®  ciclueshsfih | chsinh | ckvsinh® cRristrcosh
®-sinh | @-xSmkcosh  @-ct-sinh’ ®-cosh Mh @ -ct-cosh”
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5. That “old-time” FeldtiVilj/ (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

How Minkowski'’s space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts
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The ship and lighthouse saga

Lighthouse t= 1.00
Ship v/c(rel.to Ithse )=-0.50

Lighthouse t= w/

0 th\blink wave
(Frqm North)

from Main hits ship)[” /\at Main Lighthous
\

Tl

i 1st blink wave
\ - (From,Main)
0 th blink wave

Comparing Ship and Lighthouse views: Happening table (From,Main)

Ship v/c(rel.to Ithse.)=-0.50

1st blink Wave
(From Noyth)

. NAorth Lighthouse
BN
Happening 1 Happening 2
(1st blink wave (2nd blink happens

RN

1.0

Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10

(Lighthouse time) t =0 t = 2.00 t = 2.00

(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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The ship and lighthouse saga

Lighthouse t= 1.00

Ship v/c(rel.to Ithse )=-0.50

Comparing Ship and Lighthouse views: Happening tables\

\thp:

Happening 0.5:
Main Lite

blinks first time. P
Lighthouse: x =0 ///
Lighthouse: ¢ =1.00 /
/
//
Shlp: x/ =0 7 /W%\

AP

i
¢
;
North
f \
: 7
72
/ Shiptime t'= 1.15 i
3 N
3 Ship v/c(rel to Ithse )=-0.50
% | ! - !
Y Ship
Y L 1 1 ‘Q‘
X
\.\’hip vic(rel 1o obs.)= 000 w

AN
AN
kN

MainiLig

Happening 1: Ship gets hit by

Happening 2: Main Lighthouse

Happening O:

Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10
(Lighthouse time) t =0 t = 2.00 t = 2.00
(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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The ship and lighthouse saga

Lighthouse t= 1.00

Ship v/c(rel.to Ithse )=-0.50

Happening 0.5:
Main Lite
blinks first time.

Ship Time t'= A =?77?

Lighthouse: x =0
Lighthouse: ¢ =1.00

Ship: x' =0
Ship: ' =A=2??

N

€ cA=V(c*HV2A?)

Lo

Comparing Ship and Lighthouse views.: Happening tables

Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10

(Lighthouse time) t =0 t = 2.00 t = 2.00

(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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The ship and lighthouse saga

Lighthouse t= 1.00

Ship v/c(rel.to Ithse )=-0.50

Happening 0.5:
Main Lite
blinks first time.

Ship Time t'= A =?77?

AA? =t +V°A°

Lighthouse: x =0
Lighthouse: ¢ =1.00

(Cz_vz)Az — 2

Ship: x' =0
Ship: ' =A=2??

N

€ cA=V(c*HV2A?)

Lo

Comparing Ship and Lighthouse views.: Happening tables

Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10

(Lighthouse time) t =0 t = 2.00 t = 2.00

(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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The ship and lighthouse saga Happening 0.5:
Main Lite

blinks first time.

A =+ 17N

(Cz_vz)Az — 2

Lighthouse: x =0
Lighthouse: ¢ =1.00

Ship Time /= A =1N(1-v?/c?) = cosh p

Lighthouse t= 1.064~ TN

Ship v/c(rel.to Ithse )=-0.50

Ship: x' =0
Ship: ' =A=2??

Comparing Ship and Lighthouse views.: Happening tables

Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10

(Lighthouse time) t =0 t = 2.00 t = 2.00

(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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The ship and lighthouse saga | Happening 0.5: Ship Time t'= A =1~ (1-v?/c?) = cosh p = 1.15
Main Lite A2 = % +12A2

blinks first time. (= v?)a? =¢
Lighthouse: x =0 , 2 1
Lighthouse: ¢ =1.00 A= (Cz —v2) ( _ 22

Shig: X =0 l\
Ship: {=A=113 ¢ A=(c2+v2A2)

Lighthouse t= 1.064~ TN

Ship v/c(rel.to Ithse )=-0.50

Foru/c=1/2
Comparing Ship and Lighthouse views.: Happening tables A =1/ \/(] -1/ 4) =2/ \/3 =1.15..
Happening O: Happening 1: Ship gets hitby ~ |[Happening 2: Main Lighthouse
Ship passes Main Lighthouse.  (first blink from Main Lighthouse. blinks second time.
(Lighthouse space) x =10 x=-1.00c x=10
(Lighthouse time) t =0 t = 2.00 t = 2.00
(Ship space) x'=0 x'= 0 xX'=cA
(Ship time) =0 = 1.75 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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Lighthouse t= w/

0 th\blink wave
(Frqm North)

Ship v/c(rel.to Ithse.)=-0.50

1st blink Wave
(From Noith)

N

- i VA\
Happening 1 Happening 2
(1st blink wave (2nd blink happens

from Main hits ship)[”

€ cA=V(c*HV2A?)

Ship Time = A =1N(1-v¥/c?) = cosh p = 1.15

i 1st blink wave
- (From,Main)

0 th blink wave

(From,Main) ~Comparing Ship and Lighthouse views: / Happening tables

For u/c=1/2
A =IN(1-1/4)=2N3=1.15..

»

Happening O:

Ship passes Main Lighthouse.

Happening 1: Ship gets hit by
first blink from Main Lighthouse.

Happening 2: Main Lighthouse
blinks second time.

(Lighthouse space) x =10 x=-1.00c x=10
(Lighthouse time) t =0 t = 2.00 t = 2.00
(Ship space) x'=0 x'= 0 xX'=cA

(Ship time) =0 =175 = 2A =230

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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Lighthouse t=

blink wave
m North)

0 th
(Frd

Ship v/c(rel.to Ithse.)=-0.50

1st blink Wave
(From Noith)

] 3
Happening 1 Happening 2
(1st blink wave (2nd blink happens

from Main hits ship)[”

1st blink wave
(From,Main)

0 th blink wave

(From,Main) ~Comparing Ship and Lighthouse views:

Ship Time = A =1N(1-v¥/c?) = cosh p = 1.15

N

€ cA=V(c*HV2A?)

Happening tables

For u/c=1/2
A =IN(1-1/4)=2N3=1.15..

»

Happening O:

Ship passes Main Lighthouse.

Happening 1: Ship gets hit by
first blink from Main Lighthouse.

Happening 2: Main Lighthouse
blinks second time.

(Lighthouse space) x =10 x = -vc/(c-v) x=10
(Lighthouse time) t =0 t = c/(c-v) t = 2.00
(Ship space) x'=0 xX'= 0 x = 2vA
(Ship time) =10 { = (vtc)Ac = 2A

Fig. 2.4.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.

Lecture 24 ended here

Friday, March 30, 2012
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5. That “old-time” FeldtiVilj/ (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

How Minkowski'’s space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts
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A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor.

Y
Yl

Object 2 _f/ ™ : Object 1
(Gun Shoppe) ~"~- i (Saloon)

Object O: Object 1: Object 2:
Town Square. Saloon. Gun Shoppe.
(US surveyor)  x=10 x= 0.5 x= 0
y =10 y= 1.0 y= 1.0
(French surveyor) x’ = 0 x'= xX'= -0.45
V' =0 y'= 1.1 y'=0.89
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A politically incorrect analogy of rvotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Y ——— -
v = X' cos ' sl -
Y X=x'cos0+y'sind -ty sin O—-—x' cos O

. . =-x'sin®+vy' cos O
Obiect 2 - - y=-xsnury .
jec ~ \ Object 1 ~

(Gun Shoppe) ~“" i (Saloon)

_ cos 0 = =
; X' I + =
% sin @ = —B/¢
; 1 + ﬁ
CZ
—\b/c
Object O: Object 1: Object 2: x’=xcosO— ysinf = X - + ( )2)/
Town Square. Saloon. Gun Shoppe. - b 14 b
(US surveyor)  x=10 x= 0.5 x= 0 c? c2
y=20 y= 1.0 y= 1.0 (b/c)x
(2nd surveyor) — x =0 x'= x'=-0.45 y' =xsin@+ ycos6 = =+ J -
y'=0 y'= 11 y'= 0.89 1+b_2 /1+b_2
c c
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(a) Rotation Transformation y'
and Invariants

b/ c
x"=xcosf— ysinf =
’ , bZ
LS ,<< 3 1+_
= 165 : (b/c)
.41'= -0.85 - _) Yy’ =xsinf + ycosO = . -
Yol = 343 X ’ /1_|_b_ /1_,_17_
x'= 71.00 :
yv'=-156 - —
- ra 2:::':?;&«11(}—:(:““* ] 3_— (()).52. 5
X yE = 347 élu:xk'-kcl-(); 05774 " @40= 0.5236
(b) Lorentz Transformatign )
and Invariants \:
B B . | v
3 B —ct
x' = + = = xcosh p+ ysinh p
(% 1- ﬁ 1- ﬁ
Q xl;. K 2 62 Cz
v =/5453 ~ |
cr=0.9819 ' N ~ xsinh p+ ycosh p

Wo-fetf = 142
x'=235/2

‘\t'
ct'=2.0260
9 9 viic X'Relag¥@io X = -05 0= -{.5493
L _sopt)E — 2 vic X Relative to O =0 0= 0
: /(/) / 4- viie X'Relativeto O =-05 0+0'= -0.5493
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5. That “old-time” FeldtiVilj/ (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga

A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)

Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

How Minkowski'’s space-time graphs help visualize relativity

Group vs. phase velocity and tangent contacts
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The straight scoop on “angle’ and “rapidity” (They re area!)

The “Area’” being calculated is the

W\'\“e total gray area between hyperbola
y/xxtanh 0 =y/c | | pairs, X axis, and sloping u-line
1.0 o il flo | X
| y=sinh 0
———=x=cosh 0
Area 1 1

= Ebase -altitude — area under curve = Exy — [y dx
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The straight scoop on “angle” and “rapidity” (They re area!)

The “Area’” being calculated is the

e fotal gray area between hyperbola
W gray Vp
y/Xxtanh 0 =wv/c | pairs, X axis, and sloping u-line
J y=sinh 0O
————x=cosh 0
Area 1 , 1 ’ e —e7? ’ l{ 729 _og cosh26 -1
= — base - altitude — area under curve = — xy — | y dx sinh” 6 = — —(e +e 7Y — 2) —
2 2 2 2 4 2
Area 1
= —sinh O cosh6— [sinh O d(cosh 6 O_e 0 [ el +e7?
2 S COS JSln (COS ) Sinhe COShQ _ [e 2@ ](6 ‘|'2€ _ i(@ze . 8_29) — %Sinh 20
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The straight scoop on “angle” and “rapidity” (They re area!)

The “Area’” being calculated is the

W\W\@ fotal gray area between hyperbola
y/xxtanh 0 =y/c | | pairs, X axis, and sloping u-line
1.0 Lol f1lo | X
J y=sinh O
———=x=cosh 0
Area 1 . 1 o el —ef ’ 1({ 20 2 cosh20 —1
= — base - altitude — area under curve = — xy — | y dx sinh” 6 = — —(e +e eV 2) —
2 2 2 2 4 2
Area 1 . e o _ -0\ 6, -6
_2s1nhecosh0 jsmh@d(cosh@) sinhOcosth(e 2e ](e +e 29—6_20)=%Sinh29
Area 1 . , 1 . / cosh20 —1
=3 sinh 6 coshf — | sinh*#@ d6 = " sinh26 — | > do [coshaB dO = 1 sinh a0
a
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The straight scoop on “angle” and “rapidity” (They re area!)

The “Area’” being calculated is the

W\W\@ fotal gray area between hyperbola
y/xxtanh 0 =y/c | | pairs, X axis, and sloping u-line
-1.0 N ...; 0 | X
J y=sinh O
———=x=cosh 0
Area 1 . 1 el —ef ’ 1 cosh26 —1
= —base - altitude — area under curve = —xy — [ y dx sinhZ 0 = — _(329 +e 20 _ 2) —
2 2 2 2 4 2
Area 1 . e o -6\ 6, -6
_2s1nhecosh9 jsmh@d(cosh@) sinh@coshez{e e ][e +e (eze—e_ze):%sinhw
Area 1 . , 1 . / cosh26—1
= ESIIthCOShQ— jsmh2 dO = Zsmh 20— | > do [coshaB dO = lsinha@
a

Amazing result: Area = 0 =p is rapidity
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5. That “old-time” relativily (Circa 600BCE- 1905CE)

(“Bouncing-photons” in smoke & mirrors and Thales, again)
The Ship and Lighthouse saga
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on “angle” and “rapidity” (They re area!)
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)
How Minkowski'’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
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Introducing the “Sin-Tan Rosetta Stone”

(a) Circlular Functions [Sjj\
L 1,0 cotp

(plane geometry)

Circlular arc area
¢ =().895d=angle
sin @ =(.7792
cos @ =0.6267
tan ¢ =1.2433
csc @ =1.2833
sec @ =1.53955
cot ¢ =0.8043

T,
tang

Fig. C.2-3
and
Fig. 5.4
in Unit 2
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Introducing the “Sin-Tan Rosetta Stone”

(a) Circlular Functions
(plane geomeiry)

_—'-'_'_'_'_
T

coshp

s

N

x(space)

Circlular arc area
¢ =(.893d=nngle
. L0 _cotp sin ¢ =0.7792

cos ¢ =0.6267
tan @ =1.2433
cse @ =1.2833
sec @ =1.53955
col ¢ =0.8043
o

Liuig

Pl 1 h.'!l

i

Hyperbolic arc area
p =104 3d=ramdity
sinh p=1.2433
cosh p =1.5955
tanh p =0.7792
csch p =.5043
sech p =.6267
coth p=1.2833

time,

ew

v . \(b) Hyperbolic Functions
spacetime geometry)

1

e*P

Fig. C.2-3
and
Fig. 5.4
in Unit 2
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