
Lecture 24. 
Relativity of lightwaves and Lorentz-Minkowski coordinates III.

(Ch. 0-3 of Unit 2   3.29.12)
4. Einstein-Lorentz symmetry

What happened to Galilean symmetry? (It moved to “gauge” space!)
Thale’s construction and Euclid’s means

Time reversal symmetry gives hyperbolic invariants
per-space-time hyperbola
space-time hyperbola

Phase invariance

5. That “old-time” relativity (Circa 600BCE- 1905CE) 
(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga    
A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on “angle” and “rapidity” (They’re area!)
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

How Minkowski’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts  

Lecture 23 ended (about) here 

(Includes Lecture 23 review)

Lecture 24 ended (about) here 
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Fig. 3.3a Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units). 
Lecture 23 ended here 

http://www.uark.edu/ua/pirelli/php/means_1.php
http://www.uark.edu/ua/pirelli/php/half_sum_2.php

frequency

Sites for animation:
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Fig. 3.1 Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors.

http://www.uark.edu/ua/pirelli/php/means_1.php

http://www.uark.edu/ua/pirelli/php/half_sum_5.php

Sites for animations:

Galileo’s revenge!
Now we use Galilean relativity
to add angular velocity, that is 
frequency ωa and ωb, in phase 
or “gauge”space. No “c-limit” 
evident. (So far at 18-fig. precision.)
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www.uark.edu/ua/pirelli/php/half_sum_5.php
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Hyperbolic invariants to Lorentz transformation
Per-space-time invariant:                             Space-time invariant:  

ω 0
2 =ω 2 − (ck)2 =ω′2 − (ck′)2 (cτ 0 )

2 = (ct)2 − x2 = (ct′)2 − (x′)2

ω0 is called “proper frequency” or rate of “aging”          τ0 is called “proper time” or “age”:  
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Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.

Happening 0:
Ship passes Main Lighthouse.

Happening 1: Ship gets hit by
first blink from Main Lighthouse.

Happening 2: Main Lighthouse
blinks second time.

(Lighthouse space)       x = 0
(Lighthouse time)         t  = 0

              x = - 1.00 c
              t  =   2.00 
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              t  =   2.00 
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              t′=   2Δ  = 2.30

Comparing Ship and Lighthouse views: Happening tables 
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The ship and lighthouse saga 
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For u/c=1/2 
Δ =1/√(1-1/4)=2/√3=1.15..

The ship and lighthouse saga 
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Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.
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Comparing Ship and Lighthouse views:      Happening tables 

Ship Time t′= Δ =1/√(1-v2/c2) = cosh ρ = 1.15

For u/c=1/2 
Δ =1/√(1-1/4)=2/√3=1.15..
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Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at t=2.

Comparing Ship and Lighthouse views:      Happening tables 

Ship Time t′= Δ =1/√(1-v2/c2) = cosh ρ = 1.15

For u/c=1/2 
Δ =1/√(1-1/4)=2/√3=1.15..

Happening 0:
Ship passes Main Lighthouse.

Happening 1: Ship gets hit by
first blink from Main Lighthouse.

Happening 2: Main Lighthouse
blinks second time.

(Lighthouse space)       x = 0
(Lighthouse time)         t  = 0

              x = -vc/(c-v)
              t  =   c/(c-v)

              x =  0
              t  =   2.00 

(Ship space)                 x′ = 0
(Ship time)                   t′ = 0
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              x′ =  2vΔ
              t′ =   2Δ  

Lecture 24 ended  here 
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Object 0:
Town Square.

Object 1: 
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(US surveyor )       x = 0
                              y = 0

              x =   0.5
              y =  1.0

              x =   0
              y =  1.0 

(French surveyor) x′ = 0
                             y′ = 0

              x′=   0
              y′=  1.1

              x′=  -0.45
              y′=  0.89  

A politically incorrect analogy of rotational transformation and Lorentz transformation
Fig. 2.B.1 Town map according to a "tipsy" surveyor.
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Object 0:
Town Square.

Object 1: 
Saloon.

Object 2: 
Gun Shoppe.

(US surveyor )       x = 0
                              y = 0

              x =   0.5
              y =  1.0

              x =   0
              y =  1.0 

(2nd surveyor)      x′ = 0
                             y′ = 0

              x′=   0
              y′=  1.1

              x′=  -0.45
              y′=  0.89  

Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.
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The straight scoop on “angle” and “rapidity” (They’re area!)

x=cosh θ
y=sinh θ

y/x=tanh θ = v/c

Area
2

= 1
2
base ⋅altitude− area under curve = 1

2
xy − y dx∫

The “Area” being calculated is the
total gray area between hyperbola
pairs, X axis, and sloping u-line

u-line
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Amazing result: Area = θ  =ρ is rapidity

The “Area” being calculated is the
total gray area between hyperbola
pairs, X axis, and sloping u-line

u-line

32Friday, March 30, 2012



5. That “old-time” relativity (Circa 600BCE- 1905CE) 
(“Bouncing-photons” in smoke & mirrors and Thales, again)

The Ship and Lighthouse saga    
A politically incorrect analogy of rotational transformation and Lorentz transformation

The straight scoop on “angle” and “rapidity” (They’re area!)
Introducing the “Sin-Tan Rosetta Stone” (Thanks, Thales!)

How Minkowski’s space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

33Friday, March 30, 2012



Introducing the “Sin-Tan Rosetta Stone”

Fig. C.2-3
and

Fig. 5.4
in Unit 2
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