Lecture 24.

Relativity of lightwaves and Lorentz-Minkowski coordinates III.

(Ch. 0-3 of Unit 2 3.29.12)
4. Einstein-Lorentz symmetry
(Includes Lecture 23 review)
What happened to Galilean symmetry? (It moved to "gauge" space!)
Thale's construction and Euclid's means
Lecture 23 ended (about) here
Time reversal symmetry gives hyperbolic invariants
per-space-time hyperbola
space-time hyperbola
Phase invariance
5. That "old-time" relativity (Circa 600BCE- 1905CE)
("Bouncing-photons" in smoke \& mirrors and Thales, again) The Ship and Lighthouse saga Lecture 24 ended (about) here A politically incorrect analogy of rotational transformation and Lorentz transformation The straight scoop on "angle" and "rapidity" (They're area!) Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
How Minkowski's space-time graphs help visualize relativity Group vs. phase velocity and tangent contacts

4. Einstein-Lorentz symmetry

What happened to Galilean symmetry? (It moved to "gauge" space!)
Thale's construction and Euclid's means
Time reversal symmetry gives hyperbolic invariants per-space-time hyperbola
space-time hyperbola
Phase invariance

Euclid's 3-means (300 BC) Geometric "heart" of wave mechanics

Thales (580BC) rectangle-in-circle Relates to wave interference by (Galilean) phasor angular velocity addition

Fig. 3.3a Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units).

Half-Sum \& Difference Rules of Phase Relativity (contd.)

The detailed trigonometry of half-sum $\&$ difference angles is shown below.
The wave is factored into a product of group and phase waves.

Main Result: Factoring algebraic sums helps to locate wave zeros.

Sum is zeroed by either factor. Each factor's zero line is a spacetime coordinate line.
4. Einstein-Lorentz symmetry

What happened to Galilean symmetry? (It moved to "gauge" space!) Thale's construction and Euclid's means
Time reversal symmetry gives hyperbolic invariants per-space-time hyperbola space-time hyperbola
Phase invariance

Euclidian wave geometry with time-reversal symmetry imply

 dispersion hyperbolas: $\omega=n \mathrm{~B} \cosh \rho$
$L a b$ frame area...
equals

by time-reversal axiom: $r=1 / b$

$B \cosh \rho=\left(B e^{+\rho}+B e^{-\rho}\right) / 2$

ILASER IIAB FRAMDE
ATOM FRAME vIEW Of LASER WANES
atom speed -u
∞
LaserPer-Spacetime

AtomPer-Spacetime
ω^{\prime} versus $c k^{\prime}$

4. Einstein-Lorentz symmetry

What happened to Galilean symmetry? (It moved to "gauge" space!) Thale's construction and Euclid's means
Time reversal symmetry gives hyperbolic invariants per-space-time hyperbola space-time hyperbola
Phase invariance

$$
\binom{c k}{\omega}=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)\binom{c k^{\prime}}{\omega^{\prime}} \quad\binom{x}{c t}=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)\binom{x^{\prime}}{c t^{\prime}}
$$

Hyperbolic invariants to Lorentz transformation

Per-space-time invariant:
Space-time invariant:
$\left(c \tau_{0}\right)^{2}=(c t)^{2}-x^{2}=\left(c t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}$
$\boldsymbol{\tau}_{0}$ is called "proper time" or "age":

$$
\binom{c k}{\omega}=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)\binom{c k^{\prime}}{\omega^{\prime}} \quad\binom{x}{c t}=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)\binom{x^{\prime}}{c t^{\prime}}
$$

Hyperbolic invariants to Lorentz transformation

Per-space-time invariant:
Space-time invariant:
$\left(c \tau_{0}\right)^{2}=(c t)^{2}-x^{2}=\left(c t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}$
$\begin{aligned} & \tau_{0} \text { is called "proper time" or "age": } \\ & \tau_{0}=t \sqrt{1-\frac{x^{2}}{(c t)^{2}}}=t^{\prime} \sqrt{1-\frac{x^{\prime 2}}{(c t)^{2}}} \\ &=t \sqrt{1-\frac{u^{2}}{c^{2}}}=t^{\prime} \sqrt{1-\frac{u^{\prime 2}}{c^{2}}}\end{aligned}$

$$
\binom{c k}{\omega}=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)\binom{c k^{\prime}}{\omega^{\prime}} \quad\binom{x}{c t}=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)\binom{x^{\prime}}{c t^{\prime}}
$$

Hyperbolic invariants to Lorentz transformation

Per-space-time invariant:
Space-time invariant:
$\left(c \tau_{0}\right)^{2}=(c t)^{2}-x^{2}=\left(c t^{\prime}\right)^{2}-\left(x^{\prime}\right)^{2}$

$$
\boldsymbol{\tau}_{0} \text { is called "proper time" or "age": }
$$

$$
\omega_{0}=\omega \sqrt{1-\frac{k^{2}}{(c \omega)^{2}}}=\omega^{\prime} \sqrt{1-\frac{k^{\prime 2}}{\left(c \omega^{\prime}\right)^{2}}}
$$

$$
=\omega \sqrt{1-\frac{u^{2}}{c^{2}}}=\omega^{\prime} \sqrt{1-\frac{u^{\prime 2}}{c^{2}}}
$$

The "grand-daddy-of 'em all" invariant

Phase invariance:

$$
\Phi_{0}=k \cdot x-\omega \cdot t=k^{\prime} \cdot x^{\prime}-\omega^{\prime} \cdot t^{\prime}
$$

Proof: ?

$$
\binom{c k}{\omega}=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)\binom{c k^{\prime}}{\omega^{\prime}} \quad\binom{x}{c t}=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)\binom{x^{\prime}}{c t^{\prime}}
$$

Hyperbolic invariants to Lorentz transformation

Per-space-time invariant:
Space-time invariant:

$\boldsymbol{\tau}_{0}$ is called "proper time" or "age":

$$
\begin{aligned}
\omega_{0} & =\omega \sqrt{1-\frac{k^{2}}{(c \omega)^{2}}}=\omega^{\prime} \sqrt{1-\frac{k^{\prime 2}}{\left(c \omega^{\prime}\right)^{2}}} \\
& =\omega \sqrt{1-\frac{u^{2}}{c^{2}}}=\omega^{\prime} \sqrt{1-\frac{u^{\prime 2}}{c^{2}}}
\end{aligned}
$$

ω_{0} is called "proper frequency" or rate of "aging"

The "grand-daddy-of 'em all" invariant
Phase invariance:

Proof:

$$
\binom{c k}{\omega}=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)\binom{c k^{\prime}}{\omega^{\prime}} \quad\binom{x}{c t}=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)\binom{x^{\prime}}{c t^{\prime}}
$$

Hyperbolic invariants to Lorentz transformation

Per-space-time invariant:
Space-time invariant:

$\boldsymbol{\tau}_{0}$ is called "proper time" or "age":

$$
\begin{aligned}
\omega_{0} & =\omega \sqrt{1-\frac{k^{2}}{(c \omega)^{2}}}=\omega^{\prime} \sqrt{1-\frac{k^{\prime 2}}{\left(c \omega^{\prime}\right)^{2}}} \\
& =\omega \sqrt{1-\frac{u^{2}}{c^{2}}}=\omega^{\prime} \sqrt{1-\frac{u^{\prime 2}}{c^{2}}}
\end{aligned}
$$

ω_{0} is called "proper frequency" or rate of "aging",
"grand-daddy-of 'em all" invariant

The "grand-daddy-of 'em all" invariant
Phase invariance:

5. That "old-time" relativity (Cira 600BCE- 909SE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Happening 0.5:
Ship Time $t^{\prime}=\Delta=? ?$

Comparing Ship and Lighthouse views: Happening tables

Happening 0: Ship passes Main Lighthouse.		Happening 1: Ship gets hit by first blink from Main Lighthouse.	
Happening 2: Main Lighthouse blinks second time.			
(Lighthouse space)	$x=0$	$x=-1.00 c$	$x=0$
(Lighthouse time)	$t=0$	$t=2.00$	$t=2.00$
(Ship space)	$x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=c \Delta$
(Ship time)	$t^{\prime}=0$	$t^{\prime}=1.75$	$t^{\prime}=2 \Delta=2.30$

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Happening 0.5:
Main Lite blinks first time.

Ship Time $t^{\prime}=\Delta=? ? ?$

$$
c^{2} \Delta^{2}=c^{2}+v^{2} \Delta^{2}
$$

$$
\left(c^{2}-v^{2}\right) \Delta^{2}=c^{2}
$$

Comparing Ship and Lighthouse views: Happening tables

Happening 0: Ship passes Main Lighthouse.		Happening 1: Ship gets hit by first blink from Main Lighthouse.	
Happening 2: Main Lighthouse blinks second time.			
(Lighthouse space)	$x=0$	$x=-1.00 c$	$x=0$
(Lighthouse time)	$t=0$	$t=2.00$	$t=2.00$
(Ship space)	$x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=c \Delta$
(Ship time)	$t^{\prime}=0$	$t^{\prime}=1.75$	$t^{\prime}=2 \Delta=2.30$

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

The ship and lighthouse saga
Happening 0.5:
Main Lite blinks first time.

Ship Time $t^{\prime}=\Delta=1 / \sqrt{ }\left(1-v^{2} / c^{2}\right)=\cosh \rho$ $c^{2} \Delta^{2}=c^{2}+v^{2} \Delta^{2}$

$$
\left(c^{2}-v^{2}\right) \Delta^{2}=c^{2}
$$

Comparing Ship and Lighthouse views: Happening tables

Happening 0: Ship passes Main Lighthouse.		Happening 1: Ship gets hit by first blink from Main Lighthouse.	
Happening 2: Main Lighthouse blinks second time.			
(Lighthouse space)	$x=0$	$x=-1.00 c$	$x=0$
(Lighthouse time)	$t=0$	$t=2.00$	$t=2.00$
(Ship space)	$x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=c \Delta$
(Ship time)	$t^{\prime}=0$	$t^{\prime}=1.75$	$t^{\prime}=2 \Delta=2.30$

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

The ship and lighthouse saga

Comparing Ship and Lighthouse views: Happening tables

Ship Time $t^{\prime}=\Delta=1 / \sqrt{ }\left(1-v^{2} / c^{2}\right)=\cosh \rho=1.15$ $c^{2} \Delta^{2}=c^{2}+v^{2} \Delta^{2}$

$$
\left(c^{2}-v^{2}\right) \Delta^{2}=c^{2}
$$

$$
\Delta^{2}=\frac{c^{2}}{\left(c^{2}-v^{2}\right)}=\frac{1}{\left(1-v^{2} / c^{2}\right)}
$$

For $u / c=1 / 2$,

Happening 0: Ship passes Main Lighthouse.		Happening 1: Ship gets hit by first blink from Main Lighthouse.	Happening 2: Main Lighthouse blinks second time.
(Lighthouse space)	$x=0$	$x=-1.00 c$	$x=0$
(Lighthouse time)	$t=0$	$t=2.00$	$t=2.00$
(Ship space)	$x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=c \Delta$
(Ship time)	$t^{\prime}=0$	$t^{\prime}=1.75$	$t^{\prime}=2 \Delta=2.30$

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$.

Fig. 2.A.3 Happening 1 (1st blink hits ship) and 2 (2nd blink at Main) both happen at $t=2$. Lecture 24 ended here

5. That "old-time" relativity (Cira 600BCE- 909SE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
A politically incorrect analogy of rotational transformation and Lorentz transformation
The straight scoop on "angle" and "rapidity" (They're area!)
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B. 1 Town map according to a "tipsy" surveyor.

Object 0:	Object 1:	Object 2: Town Square.	
Saloon.	Gun Shoppe.		
(US surveyor $)$	$x=0$	$x=0.5$	$x=0$
	$y=0$	$y=1.0$	$y=1.0$
(French surveyor) $x^{\prime}=0$	$x^{\prime}=0$	$x^{\prime}=-0.45$	
	$y^{\prime}=0$	$y^{\prime}=1.1$	$y^{\prime}=0.89$

A politically incorrect analogy of rotational transformation and Lorentz transformation

Fig. 2.B.1 Town map according to a "tipsy" surveyor. Fig. 2.B.2 Diagram and formulas for reconciliation of the two surveyor's data.

Object 0: Town Square.		Object 1: Saloon.	Object 2: Gun Shoppe.
(US surveyor)	$\begin{aligned} & x=0 \\ & y=0 \end{aligned}$	$\begin{aligned} & x=0.5 \\ & y=1.0 \end{aligned}$	$\begin{aligned} & x=0 \\ & y=1.0 \end{aligned}$
(2nd surveyor)	$\begin{aligned} & x^{\prime}=0 \\ & y^{\prime}=0 \end{aligned}$	$\begin{aligned} x^{\prime} & =0 \\ y^{\prime} & =1.1 \end{aligned}$	$\begin{aligned} & x^{\prime}=-0.45 \\ & y^{\prime}=0.89 \end{aligned}$

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta=\frac{x}{\sqrt{1+\frac{b^{2}}{c^{2}}}}+\frac{-(b / c) y}{\sqrt{1+\frac{b^{2}}{c^{2}}}} \\
& y^{\prime}=x \sin \theta+y \cos \theta=\frac{(b / c) x}{\sqrt{1+\frac{b^{2}}{c^{2}}}}+\frac{y}{\sqrt{1+\frac{b^{2}}{c^{2}}}}
\end{aligned}
$$

(a) Rotation Transformation and Invariants
$x=1.65$
$y=-0.85$
$x^{2}+y^{2}=3.43$
$x^{\prime}=1.00$
$y^{\prime}=-1.56$
$x^{2}+y^{2}=3.43$

$$
\begin{aligned}
& x^{\prime}=x \cos \theta-y \sin \theta=\frac{x}{\sqrt{1+\frac{b^{2}}{c^{2}}}}+\frac{-(b / c) y}{\sqrt{1+\frac{b^{2}}{c^{2}}}} \\
& y^{\prime}=x \sin \theta+y \cos \theta=\frac{(b / c) x}{\sqrt{1+\frac{b^{2}}{c^{2}}}}+\frac{y}{\sqrt{1+\frac{b^{2}}{c^{2}}}}
\end{aligned}
$$

(b) Lorentz Transformation and Invariants

$$
\begin{aligned}
& x=1.5453 \\
& c t=0.9819 \\
& x^{2}-(c t)^{2}=1.42 \\
& x^{\prime}=2.3512 \\
& c t^{\prime}=2.0260 \\
& x^{2}-\left(c t^{\prime}\right)^{2}=1.42
\end{aligned}
$$

.

$$
\begin{aligned}
x^{\prime} & =\frac{x}{\sqrt{1-\frac{v^{2}}{c^{2}}}}+\frac{\frac{v}{c} c t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=x \cosh \rho+y \sinh \rho \\
c t^{\prime} & =\frac{\frac{v}{c} x}{\sqrt{1-\frac{v^{2}}{c^{2}}}}+\frac{c t}{\sqrt{1-\frac{v^{2}}{c^{2}}}}=x \sinh \rho+y \cosh \rho
\end{aligned}
$$

5. That "old-time" relativity (Cira 600BCE- 999SE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
A politically incorrect analogy of rotational transformation and Lorentz transformation
$\xrightarrow{1}$ The straight scoop on "angle" and "rapidity" (They're area!)
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts

The straight scoop on "angle" and "rapidity" (They're area!)

The "Area" being calculated is the total gray area between hyperbola pairs, X axis, and sloping u-line

The straight scoop on "angle" and "rapidity" (They're area!)

The "Area" being calculated is the total gray area between hyperbola pairs, X axis, and sloping u-line
$\sinh ^{2} \theta=\left(\frac{e^{\theta}-e^{-\theta}}{2}\right)^{2}=\frac{1}{4}\left(e^{2 \theta}+e^{-2 \theta}-2\right)=\frac{\cosh 2 \theta-1}{2}$
$\frac{\text { Area }}{2}=\frac{1}{2} \sinh \theta \cosh \theta-\int \sinh \theta d(\cosh \theta)$
$\sinh \theta \cosh \theta=\left(\frac{e^{\theta}-e^{-\theta}}{2}\right)\left(\frac{e^{\theta}+e^{-\theta}}{2}\right)=\frac{1}{4}\left(e^{2 \theta}-e^{-2 \theta}\right)=\frac{1}{2} \sinh 2 \theta$

The straight scoop on "angle" and "rapidity" (They're area!)

The straight scoop on "angle" and "rapidity" (They're area!)

Amazing result: Area $=\theta=\rho$ is rapidity

5. That "old-time" relativity (Cira boobek- 905 CE)

("Bouncing-photons" in smoke \& mirrors and Thales, again)
The Ship and Lighthouse saga
A politically incorrect analogy of rotational transformation and Lorentz transformation The straight scoop on "angle" and "rapidity" (They're area!)
Introducing the "Sin-Tan Rosetta Stone" (Thanks, Thales!)
How Minkowski's space-time graphs help visualize relativity
Group vs. phase velocity and tangent contacts
(a) Circlular Functions (plane geometry)

Introducing the "Sin-Tan Rosetta Stone"

