Lecture 23.

Relativity of lightwaves and Lorentz-Minkowski coordinates II.

(Ch. 0-3 of Unit 2 3.27.12)

3. Spectral theory of Einstein-Lorentz relativity (Includes Lecture 22 review) Applying Doppler Shit ts to per-space-time (ck, ω) graph Lecture 22 ended (about) here CW Minkowski space-time coordinates ($x, c t$) and PW grids

Relating $\underline{\text { Doppler }} \underline{\text { Sh i ts }} b$ or $r=1 / b$ to velocity u / c or rapidity ρ

Lorentz transformation

Lorentz length-contraction and Einstein time-dilation
4. Einstein-Lorentz symmetry

What happened to Galilean symmetry? (It moved to "gauge" space!)
Thale's construction and Euclid's means
Lecture 23 ended here
Time reversal symmetry gives hyperbolic invariants
per-space-time hyperbola
space-time hyperbola
Phase invariance
5. That "old-time" relativity ("Bouncing-photons" smoke \& mirrors)

The ship and lighthouse saga

3. Spec rall theory of Einstein-Lorentz relativity

Applying Dope er Shatir to per-space-time (cli, w) graph
CWW Minkowshi space-time coordinates (x, ct) and PWI grids
Relating Dope er Shis b or $r=1 / b$ to velocity w/c or rapidity ρ Loventz transformation

Lorentz length-contraction and Einstein time-dilation

Deriving Spacetime and per-spacetime coordinate geometry by:
(1) Evenson CW axiom "All colors go c" keeps \mathbf{K}_{A} and \mathbf{K}_{B} on their baselines.
(2) Time-Reversal axiom: $r=1 / b$
(3) Half-Sum Phase $\mathbf{P}=(\mathbf{R}+\mathbf{L}) / 2$ and Half-Difference Group $\mathbf{G}=(\mathbf{R}-\mathbf{L}) / 2$

LASER LAB FIRAME

AtomPer-Spacetime
ATOM FRAMEE vIEW OF LASER WAIVES

$$
\omega^{\prime} \text { versus } c k^{\prime} 4 \mid 1200 \mathrm{THz}-\omega^{\prime} 1=2.0 \cdot(2)=4
$$

$$
750 \mathrm{THz} \text { or } 400 \mathrm{~mm}
$$

600 K
500THz' ow 600 mm
400THz or 75 , $\omega^{\prime} 3$
$\substack{\left.\mathbf{K}_{B} \mathbf{N}^{2} \\-1,1\right)\left.^{\text {Halved }}\right|^{0} \\ \text { 3rd base distance }}$

3. Spec rall theory of Einstein-Lorentz relativity

Applying Dopper er Shetir to per-space-time (cli, ω) graph
CWW Minkowski space-time coordinates (x,ct) and PWI grids
Relating Doperer Shici b or $r=1 / b$ to velocity w/c or rapidity ρ Lorentz transformation

Lorentz length-contraction and Einstein time-dilation

Deriving Spacetime and per-spacetime coordinate geometry by:
(1) Evenson CW axiom"All colors go c" keeps \mathbf{K}_{A} and \mathbf{K}_{B} on their baselines.
(2) Time-Reversal axiom: $r=1 / b$
(3) Half-Sum Phase $\mathbf{P}=(\mathbf{R}+\mathbf{L}) / 2$ and Half-Difference Group $\mathbf{G}=(\mathbf{R}-\mathbf{L}) / 2$

600THz

LASER LAB FRAME
LaserPer-Spacetime

 ATOM FRAME vIEW of LASN NWENES AtomPer-Spacetime

Deriving Spacetime and per-spacetime coordinate geometry by:
(1) Evenson CW axiom"All colors go c" keeps \mathbf{K}_{A} and \mathbf{K}_{B} on their baselines.
(2) Time-Reversal axiom: $r=1 / b$
(3) Half-Sum Phase $\mathbf{P}=(\mathbf{R}+\mathbf{L}) / 2$ and Half-Difference Group $\mathbf{G}=(\mathbf{R}-\mathbf{L}) / 2$

600 H
 LASSRR IABB FRAME
 LaserPer-Spacetime

600112
 $\overline{=}$ GOONTH

 AtomPer-Spacetime
(2) Time-Reversal axiom: $r=1 / b$
(3) Half-Sum Phase $\mathrm{P}=(\mathbf{R}+\mathrm{L}) / 2$ and Half-Difference Group $\mathrm{G}=(\mathrm{R}-\mathrm{L}$

LaserPer-Spacetime
versus CR

Tuesday, March 27, 2012

Deriving Spacetime and per-spacetime coordinate
(1) Evenson CW axiom"All colors go c" keeps K_{A} and K_{B} on their baselines.
(2) Time-Reversal axiom: $r=1 / b$
(3) Half-Sum Phase $\mathrm{P}=(\mathrm{R}+\mathrm{L}) / 2$ and Half-D

| 6007 aton speed $-u$ | $\overline{\underline{\underline{\underline{2}}}}$ |
| :---: | :---: | :---: | :---: |

LaserPer-Spacetime

(a) Laser "Baseball Diamond'

(b) Laser group and phase wavevectors (Per-space-time Cartesian lattice)

(c) Laser Coherent Wave (CW) paths (Space-time Cartesian grid)

(d) Laser Pulse Wave (PW) Paths (Space-time Diamond grid)

(a) Boosted Laser "Baseball Diamond"

(c) (u=3c/5)-Boosted CW paths
(Space-time Minkowski grid)

b) Boosted group and phase wavevectory

(d) Boosted PW Paths (Rectangular grid)

Laser lab views
atom speed $-u=-\frac{3}{5} c$

Atom views (sees lab going $+u=\frac{3}{5} c$)

Lecture 22 ended $_{\text {(approximately) }}$ here

3. Spec rall theory of Einstein-Lorentz relativity

Applying Dope er Shefir to per-space-time (cli, ω) graph
CWW Minkowski space-time coordinates (x, c t) and PWW grids
\Rightarrow Relating Doperer Shis bor $r=1 / b$ to velocity u / c or rapidity ρ Lorentz transformation

Lorentz length-contraction and Einstein time-dilation

Spectral development: Note $\mathrm{B}=2.0$ here.
Euclidian Geometry for Per-spacetime Relativity

$\mathrm{B} \sinh \rho=\left(\mathrm{Be}^{+\rho},-\mathrm{Be}^{-\rho}\right) / 2$
$B \cosh \rho=\left(B e^{+\rho}+B e^{-\rho}\right) / 2$

$b=1 / r=e^{+\rho}=\cosh \rho+\sinh \rho$
$r=1 / b=e^{-\rho}=\cosh \rho-\sinh \rho$

Spectral development: Note B=2.0 here.

Euclidian Geometry for Per-spacetime Relativity

Key Definition of Rapidity ρ Doppler blue shift:
$\mathrm{B} b=\mathrm{B} e^{+\rho}$
Doppler red shift:
$\mathrm{Br}=\mathrm{B} e^{-\rho}$

Key Results:
$\omega \quad$ vs. ck
"winks" vs. "kinks"
$\omega=\mathrm{B} \cosh \rho$
$c k=\mathrm{B} \sinh \rho$
$\frac{\text { group velocity: }}{c k}=\frac{u}{c}=\tanh \rho$
$\frac{\omega}{\text { phase velocity: }}$
$\frac{\omega}{c k}=\frac{c}{u}=\operatorname{coth} \rho$

Deriving relations between Do pler Shi ts bor $r=1 / b$ and velocity u / c or rapidity ρ :

$$
\begin{aligned}
& b=1 / r=e^{+\rho}=\cosh \rho+\sinh \rho \\
& r=1 / b=e^{-\rho}=\cosh \rho-\sinh \rho
\end{aligned}
$$

Spectral development: Note B=2.0 here.
Euclidian Geometry for Per-spacetime Relativity

Key Definition of Rapidity ρ Doppler blue shift:
$\mathrm{B} b=\mathrm{B} e^{+} \rho$
Doppler red shift:
$\mathrm{B} r=\mathrm{B} e^{-\rho}$

Spectral development: Note B=2.0 here.

Euclidian Geometry for Per-spacetime Relativity

relative speed \sim slope $u / c=\sinh \rho / \cosh \rho=\tanh \rho$

| Key Definition |
| :--- | :--- | :--- | :--- | :--- |
| of Rapidity ρ |
| Doppler blue shift: |
| $\mathrm{Bb}=\mathrm{Be}+\rho$ |

$$
\begin{array}{|ll}
\text { Deriving relations between Dorpler Shi ts } b \text { or } r=1 / b \text { and velocity } u / c \text { or rapidity } \rho \text { : } \\
\begin{array}{ll}
b=1 / r=e^{+\rho}=\cosh \rho+\sinh \rho & b r=1=(\cosh \rho+\sinh \rho)(\cosh \rho-\sinh \rho) \\
r=1 / b=e^{-\rho}=\cosh \rho-\sinh \rho & 1=\cosh ^{2} \rho-\sinh ^{2} \rho \\
\frac{b-1 / b}{b+1 / b}=\frac{\sinh \rho}{\cosh \rho}=\tanh \rho=\frac{u}{c}=\frac{b^{2}-1}{b^{2}+1}=\frac{1-r^{2}}{1+r^{2}} & \frac{1}{\cosh ^{2} \rho}=1-\frac{\sinh ^{2} \rho}{\cosh ^{2} \rho}=1-\frac{u^{2}}{c^{2}}
\end{array}
\end{array}
$$

Spectral development: Note B=2.0 here.

Euclidian Geometry for Per-spacetime Relativity

relative speed \sim slope $u / c=\sinh \rho / \cosh \rho=\tanh \rho$

| Key Definition |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| of Rapidity ρ |
| Doppler blue shift: |
| $\mathrm{Bb}=\mathrm{Be}+\rho$ |

Deriving relations between Dompler Shi ts bor $r=1 / b$ and velocity u / c or rapidity ρ :

$$
\begin{array}{lcrl}
b=1 / r=e^{+\rho}=\cosh \rho+\sinh \rho & b r=1=(\cosh \rho+\sinh \rho)(\cosh \rho-\sinh \rho) & \cosh \rho=\frac{1}{\sqrt{1-u^{2} / c^{2}}}, \\
r=1 / b=e^{-\rho}=\cosh \rho-\sinh \rho & 1=\cosh ^{2} \rho-\sinh ^{2} \rho & \sinh \rho=\cosh \rho \tanh \rho=\frac{u / c}{\sqrt{1-u^{2} / c^{2}}}
\end{array}
$$

Spectral development: Note B=2.0 here.
Euclidian Geometry for Per-spacetime Relativity

Key Definition of Rapidity ρ Doppler blue shift:
$\mathrm{B} b=\mathrm{B} e^{+\rho}$
Doppler red shift:
$\mathrm{B} r=\mathrm{B} e^{-\rho}$

Spectral development: Note B=2.0 here.
Euclidian Geometry for Per-spacetime Relativity

relative speed \sim slope $u / c=\sinh \rho / \cosh \rho=\tanh \rho$

| Key Definition Atom Per-time |
| :--- | :--- | :--- | :--- | :--- | :--- |
| of Rapidity ρ |
| Doppler blue shift: |
| $\mathrm{Bb}=\mathrm{Be}+\rho$ |

Deriving relations between Donpler Shi ts bor $r=1 / b$ and velocity u / c or rapidity ρ :

$$
\begin{array}{lll}
b=1 / r=e^{+\rho}=\cosh \rho+\sinh \rho \\
r=1 / b=e^{-\rho}=\cosh \rho-\sinh \rho & \cosh \rho=\frac{1}{\sqrt{1-u^{2} / c^{2}}}, & b=\cosh \rho+\sinh \rho=\frac{1+u / c}{\sqrt{1-u^{2} / c^{2}}}=\sqrt{\frac{1+u / c}{1-u / c}} \\
\frac{b-1 / b}{b+1 / b}=\frac{\sinh \rho}{\cosh \rho}=\tanh \rho=\frac{u}{c}=\frac{b^{2}-1}{b^{2}+1}=\frac{1-r^{2}}{1+r^{2}} & \sinh \rho=\frac{u / c}{\sqrt{1-u^{2} / c^{2}}} & r=\cosh \rho-\sinh \rho=\sqrt{\frac{1-u / c}{1+u / c}}
\end{array}
$$

3. Spec rall theory of Einstein-Lorentz relativity

Applying Dopper in sher to per-space-time (ch, ω) graph
CWW Minkowshi space-time coordinates ($x, c t$) and PWI grids Relating Doperer shili bor $r=1 / b$ to velocity u / c or rapidity ρ Loventz transformation

Lorentz length-contraction and Einstein time-dilation

Lorentz transform

 from "la申" vectors \mathbf{G} and \mathbf{P} to:
Lorentz transform

 from "lap" vectors\mathbf{G} and \mathbf{P} to "atom" vectors:
$\mathbf{G}^{\prime}=\mathbf{G} \cosh \rho+\mathbf{P} \sinh \rho$
$\mathbf{P}^{\prime}=\mathbf{G} \sinh \rho+\mathbf{P} \cosh \rho$

Lorentz transform from "lab" vectors G and P to "atom" vectors: $\mathbf{G}^{\prime}=\mathbf{G} \cosh \rho+\mathbf{P} \sinh \rho$
$\mathbf{G}=\mathbf{G}^{\prime} \cosh \rho-\mathbf{P}^{\prime} \sinh \rho$
$\mathbf{P}^{\prime}=\mathbf{G} \sinh \rho+\mathbf{P} \cosh \rho$
$\mathbf{P}=-\mathbf{G}^{\prime} \sinh \rho+\mathbf{P}^{\prime} \cosh \rho$

Lorentz transform from "lab" vectors G and P to "atom" vectors:

$\mathbf{G}^{\prime}=\mathbf{G} \cosh \rho+\mathbf{P} \sinh \rho$

$\mathbf{P}^{\prime}=\mathbf{G} \sinh \rho+\mathbf{P} \cosh \rho$
$\mathbf{G}=\mathbf{G}^{\prime} \cosh \rho-\mathbf{P}^{\prime} \sinh \rho$
$\mathbf{P}=-\mathbf{G}^{\prime} \sinh \rho+\mathbf{P}^{\prime} \cosh \rho$

A"professional" notation: (Dirac's bra-kets $\langle\mathbf{A} \mid \mathbf{B}\rangle=\delta_{A, B}$ and: $|\mathbf{A}\rangle\langle\mathbf{A}|+|\mathbf{B}\rangle\langle\mathbf{B}|=\mathbf{1}$) Lorentz transformation operator L $L|\mathbf{G}\rangle=\left|\mathbf{G}^{\prime}\right\rangle=|\mathbf{G}\rangle\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle+|\mathbf{P}\rangle\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle$ $L|\mathbf{P}\rangle=\left|\mathbf{P}^{\prime}\right\rangle=|\mathbf{G}\rangle\left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle+|\mathbf{P}\rangle\left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle$
$\left(\begin{array}{cc}\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle \\ \left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle\end{array}\right)=\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right)=\left(\begin{array}{cc}\langle\mathbf{G}| L|\mathbf{G}\rangle & \langle\mathbf{G}| L|\mathbf{P}\rangle \\ \langle\mathbf{P}| L|\mathbf{G}\rangle & \langle\mathbf{P}| L|\mathbf{P}\rangle\end{array}\right)=$
$=\left(\begin{array}{cc}\frac{1}{\sqrt{1-u^{2} / c^{2}}} & \frac{u / c}{\sqrt{1-u^{2} / c^{2}}} \\ \frac{u / c}{\sqrt{1-u^{2} / c^{2}}} & \frac{1}{\sqrt{1-u^{2} / c^{2}}}\end{array}\right)$

Lorentz transform from "lab" vectors G and P to "atom" vectors:

$\mathbf{G}^{\prime}=\mathbf{G} \cosh \rho+\mathbf{P} \sinh \rho$

$\mathbf{P}^{\prime}=\mathbf{G} \sinh \rho+\mathbf{P} \cosh \rho$
$\mathbf{G}=\mathbf{G}^{\prime} \cosh \rho-\mathbf{P}^{\prime} \sinh \rho$
$\mathbf{P}=-\mathbf{G}^{\prime} \sinh \rho+\mathbf{P}^{\prime} \cosh \rho$
A "professional" notation: (Dirac's bra-kets $\langle\mathbf{A} \mid \mathbf{B}\rangle=\delta_{A, B}$ and: $|\mathbf{A}\rangle\langle\mathbf{A}|+|\mathbf{B}\rangle\langle\mathbf{B}|=1$) Lorentz transformation operator L $L|\mathbf{G}\rangle=\left|\mathbf{G}^{\prime}\right\rangle=|\mathbf{G}\rangle\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle+|\mathbf{P}\rangle\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle$ $L|\mathbf{P}\rangle=\left|\mathbf{P}^{\prime}\right\rangle=|\mathbf{G}\rangle\left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle+|\mathbf{P}\rangle\left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle$ INVERSE Lorentz transformation L^{-1}
$L^{-1}\left|\mathbf{G}^{\prime}\right\rangle=|\mathbf{G}\rangle=\left|\mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{G}\right\rangle+\left|\mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{G}\right\rangle$ $L^{-1}\left|\mathbf{P}^{\prime}\right\rangle=|\mathbf{P}\rangle=\left|\mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{P}\right\rangle+\left|\mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{P}\right\rangle$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle \\
\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)=\left(\begin{array}{cc}
\langle\mathbf{G}| L|\mathbf{G}\rangle & \langle\mathbf{G}| L|\mathbf{P}\rangle \\
\langle\mathbf{P}| L|\mathbf{G}\rangle & \langle\mathbf{P}| L|\mathbf{P}\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{1-u^{2} / c^{2}}} & \frac{u / c}{\sqrt{1-u^{2} / c^{2}}} \\
\frac{u / c}{\sqrt{1-u^{2} / c^{2}}} & \frac{1}{\sqrt{1-u^{2} / c^{2}}}
\end{array}\right) \\
& \left(\begin{array}{cc}
\left\langle\mathbf{G}^{\prime} \mid \mathbf{G}\right\rangle & \left\langle\mathbf{G}^{\prime} \mid \mathbf{P}\right\rangle \\
\left\langle\mathbf{P}^{\prime} \mid \mathbf{G}\right\rangle & \left\langle\mathbf{P}^{\prime} \mid \mathbf{P}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cosh \rho & -\sinh \rho \\
-\sinh \rho & \cosh \rho
\end{array}\right)=\left(\begin{array}{ll}
\left\langle\mathbf{G}^{\prime}\right| L^{-1}\left|\mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G}^{\prime}\right| L^{-1}\left|\mathbf{P}^{\prime}\right\rangle \\
\left\langle\mathbf{P}^{\prime}\right| L^{-1}\left|\mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P}^{\prime}\right| L^{-1}\left|\mathbf{P}^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{1-u^{2} / c^{2}}} & \frac{-u / c}{\sqrt{1-u^{2} / c^{2}}} \\
\frac{-u / c}{\sqrt{1-u^{2} / c^{2}}} & \frac{1}{\sqrt{1-u^{2} / c^{2}}}
\end{array}\right)
\end{aligned}
$$

Lorentz transform from "lab" vectors G and P to "atom" vectors:

$\mathbf{G}^{\prime}=\mathbf{G} \cosh \rho+\mathbf{P} \sinh \rho$

$\mathbf{P}^{\prime}=\mathbf{G} \sinh \rho+\mathbf{P} \cosh \rho$
$\mathbf{G}=\mathbf{G}^{\prime} \cosh \rho-\mathbf{P}^{\prime} \sinh \rho$
$\mathbf{P}=-\mathbf{G}^{\prime} \sinh \rho+\mathbf{P}^{\prime} \cosh \rho$

A "professional" notation: (Dirac's bra-kets $\langle\mathbf{A} \mid \mathbf{B}\rangle=\delta_{A, B}$ and: $\left.|\mathbf{A}\rangle\langle\mathbf{A}|+|\mathbf{B}\rangle\langle\mathbf{B}|=1\right)$ Lorentz transformation operator L $L|\mathbf{G}\rangle=\left|\mathbf{G}^{\prime}\right\rangle=|\mathbf{G}\rangle\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle+|\mathbf{P}\rangle\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle$ $L|\mathbf{P}\rangle=\left|\mathbf{P}^{\prime}\right\rangle=|\mathbf{G}\rangle\left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle+|\mathbf{P}\rangle\left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle$ INVERSE Lorentz transformation L^{-1}
$L^{-1}\left|\mathbf{G}^{\prime}\right\rangle=|\mathbf{G}\rangle=\left|\mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{G}\right\rangle+\left|\mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{G}\right\rangle$ $L^{-1}\left|\mathbf{P}^{\prime}\right\rangle=|\mathbf{P}\rangle=\left|\mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{P}\right\rangle+\left|\mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{P}\right\rangle$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle \\
\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)=\left(\begin{array}{cc}
\langle\mathbf{G}| L|\mathbf{G}\rangle & \langle\mathbf{G}| L|\mathbf{P}\rangle \\
\langle\mathbf{P}| L|\mathbf{G}\rangle & \langle\mathbf{P}| L|\mathbf{P}\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{1-u^{2} / c^{2}}} & \frac{u / c}{\sqrt{1-u^{2} / c^{2}}} \\
\frac{u / c}{\sqrt{1-u^{2} / c^{2}}} & \frac{1}{\sqrt{1-u^{2} / c^{2}}}
\end{array}\right) \\
& \left(\begin{array}{cc}
\left\langle\mathbf{G}^{\prime} \mid \mathbf{G}\right\rangle & \left\langle\mathbf{G}^{\prime} \mid \mathbf{P}\right\rangle \\
\left\langle\mathbf{P}^{\prime} \mid \mathbf{G}\right\rangle & \left\langle\mathbf{P}^{\prime} \mid \mathbf{P}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cosh \rho & -\sinh \rho \\
-\sinh \rho & \cosh \rho
\end{array}\right)=\left(\begin{array}{ll}
\left\langle\mathbf{G}^{\prime}\right| L^{-1}\left|\mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G}^{\prime}\right| L^{-1}\left|\mathbf{P}^{\prime}\right\rangle \\
\left\langle\mathbf{P}^{\prime}\right| L^{-1}\left|\mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P}^{\prime}\right| L^{-1}\left|\mathbf{P}^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{1-u^{2} / c^{2}}} & \frac{-u / c}{\sqrt{1-u^{2} / c^{2}}} \\
\frac{-u / c}{\sqrt{1-u^{2} / c^{2}}} & \frac{1}{\sqrt{1-u^{2} / c^{2}}}
\end{array}\right)
\end{aligned}
$$

Q:How do you transform components (g, p) to $\left(g^{\prime}, p^{\prime}\right)$ for any vector: $|\mathbf{V}\rangle=g|\mathbf{G}\rangle+p|\mathbf{P}\rangle=g^{\prime}\left|\mathbf{G}^{\prime}\right\rangle+p^{\prime}\left|\mathbf{P}^{\prime}\right\rangle={ }_{\text {etc. }}$.

Lorentz transform from "lab" vectors G and P to "atom" vectors:

$\mathbf{G}^{\prime}=\mathbf{G} \cosh \rho+\mathbf{P} \sinh \rho$

$\mathbf{P}^{\prime}=\mathbf{G} \sinh \rho+\mathbf{P} \cosh \rho$
$\mathbf{G}=\mathbf{G}^{\prime} \cosh \rho-\mathbf{P}^{\prime} \sinh \rho$
$\mathbf{P}=-\mathbf{G}^{\prime} \sinh \rho+\mathbf{P}^{\prime} \cosh \rho$

A "professional" notation: (Dirac's bra-kets $\langle\mathbf{A} \mid \mathbf{B}\rangle=\delta_{A, t, B}$ and: $|\mathbf{A}\rangle\langle\mathbf{A}|+|\mathbf{B}\rangle\langle\mathbf{B}|=1$) Lorentz transformation operator L $L|\mathbf{G}\rangle=\left|\mathbf{G}^{\prime}\right\rangle=|\mathbf{G}\rangle\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle+|\mathbf{P}\rangle\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle$ $L|\mathbf{P}\rangle=\left|\mathbf{P}^{\prime}\right\rangle=|\mathbf{G}\rangle\left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle+|\mathbf{P}\rangle\left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle$ INVERSE Lorentz transformation L^{-1}
$L^{-1}\left|\mathbf{G}^{\prime}\right\rangle=|\mathbf{G}\rangle=\left|\mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{G}\right\rangle+\left|\mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{G}\right\rangle$ $L^{-1}\left|\mathbf{P}^{\prime}\right\rangle=|\mathbf{P}\rangle=\left|\mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{P}\right\rangle+\left|\mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{P}\right\rangle$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle \\
\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)=\left(\begin{array}{cc}
\langle\mathbf{G}| L|\mathbf{G}\rangle & \langle\mathbf{G}| L|\mathbf{P}\rangle \\
\langle\mathbf{P}| L|\mathbf{G}\rangle & \langle\mathbf{P}| L|\mathbf{P}\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{1-u^{2} / c^{2}}} & \frac{u / c}{\sqrt{1-u^{2} / c^{2}}} \\
\frac{u / c}{\sqrt{1-u^{2} / c^{2}}} & \frac{1}{\sqrt{1-u^{2} / c^{2}}}
\end{array}\right) \\
& \left(\begin{array}{cc}
\left\langle\mathbf{G}^{\prime} \mid \mathbf{G}\right\rangle & \left\langle\mathbf{G}^{\prime} \mid \mathbf{P}\right\rangle \\
\left\langle\mathbf{P}^{\prime} \mid \mathbf{G}\right\rangle & \left\langle\mathbf{P}^{\prime} \mid \mathbf{P}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cosh \rho & -\sinh \rho \\
-\sinh \rho & \cosh \rho
\end{array}\right)=\left(\begin{array}{ll}
\left\langle\mathbf{G}^{\prime}\right| L^{-1}\left|\mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G}^{\prime}\right| L^{-1}\left|\mathbf{P}^{\prime}\right\rangle \\
\left\langle\mathbf{P}^{\prime}\right| L^{-1}\left|\mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P}^{\prime}\right| L^{-1}\left|\mathbf{P}^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{1-u^{2} / c^{2}}} & \frac{-u / c}{\sqrt{1-u^{2} / c^{2}}} \\
\frac{-u / c}{\sqrt{1-u^{2} / c^{2}}} & \frac{1}{\sqrt{1-u^{2} / c^{2}}}
\end{array}\right)
\end{aligned}
$$

Q:How do you transform components (g,p) to $\left(g^{\prime}, p^{\prime}\right)$ for any vector: $|\mathbf{V}\rangle=g|\mathbf{G}\rangle+p|\mathbf{P}\rangle=g^{\prime}\left|\mathbf{G}^{\prime}\right\rangle+p^{\prime}\left|\mathbf{P}^{\prime}\right\rangle={ }_{\text {etc. }}$
A: Find: $g=\langle\mathbf{G} \mid \mathbf{V}\rangle=\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{V}\right\rangle+\left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{V}\right\rangle=\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle g^{\prime}+\left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle p^{\prime}$

$$
p=\langle\mathbf{P} \mid \mathbf{V}\rangle=\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{V}\right\rangle+\left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{V}\right\rangle=\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle g^{\prime}+\left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle p^{\prime}
$$

Lorentz transform from "lab" vectors G and P to "atom" vectors:

$\mathbf{G}^{\prime}=\mathbf{G} \cosh \rho+\mathbf{P} \sinh \rho$

$\mathbf{P}^{\prime}=\mathbf{G} \sinh \rho+\mathbf{P} \cosh \rho$
$\mathbf{G}=\mathbf{G}^{\prime} \cosh \rho-\mathbf{P}^{\prime} \sinh \rho$
$\mathbf{P}=-\mathbf{G}^{\prime} \sinh \rho+\mathbf{P}^{\prime} \cosh \rho$

A "professional" notation: (Dirac's bra-kets $\langle\mathbf{A} \mid \mathbf{B}\rangle=\delta_{A, s, ~ a n d: ~},|\mathbf{A}\rangle\langle\mathbf{A}|+|\mathbf{B}\rangle\langle\mathbf{B}|=1$) Lorentz transformation operator L
$L|\mathbf{G}\rangle=\left|\mathbf{G}^{\prime}\right\rangle=|\mathbf{G}\rangle\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle+|\mathbf{P}\rangle\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle$
$L|\mathbf{P}\rangle=\left|\mathbf{P}^{\prime}\right\rangle=|\mathbf{G}\rangle\left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle+|\mathbf{P}\rangle\left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle$
INVERSE Lorentz transformation L^{-1}
$L^{-1}\left|\mathbf{G}^{\prime}\right\rangle=|\mathbf{G}\rangle=\left|\mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{G}\right\rangle+\left|\mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{G}\right\rangle$
$L^{-1}\left|\mathbf{P}^{\prime}\right\rangle=|\mathbf{P}\rangle=\left|\mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{P}\right\rangle+\left|\mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{P}\right\rangle$

$$
\begin{aligned}
& \left(\begin{array}{ll}
\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle \\
\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)=\left(\begin{array}{cc}
\langle\mathbf{G}| L|\mathbf{G}\rangle & \langle\mathbf{G}| L|\mathbf{P}\rangle \\
\langle\mathbf{P}| L|\mathbf{G}\rangle & \langle\mathbf{P}| L|\mathbf{P}\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{1-u^{2} / c^{2}}} & \frac{u / c}{\sqrt{1-u^{2} / c^{2}}} \\
\frac{u / c}{\sqrt{1-u^{2} / c^{2}}} & \frac{1}{\sqrt{1-u^{2} / c^{2}}}
\end{array}\right. \\
& \left(\begin{array}{cc}
\left\langle\mathbf{G}^{\prime} \mid \mathbf{G}\right\rangle & \left\langle\mathbf{G}^{\prime} \mid \mathbf{P}\right\rangle \\
\left\langle\mathbf{P}^{\prime} \mid \mathbf{G}\right\rangle & \left\langle\mathbf{P}^{\prime} \mid \mathbf{P}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cosh \rho & -\sinh \rho \\
-\sinh \rho & \cosh \rho
\end{array}\right)=\left(\begin{array}{ll}
\left\langle\mathbf{G}^{\prime}\right| L^{-1}\left|\mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G}^{\prime}\right| L^{-1}\left|\mathbf{P}^{\prime}\right\rangle \\
\left\langle\mathbf{P}^{\prime}\right| L^{-1}\left|\mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P}^{\prime}\right| L^{-1}\left|\mathbf{P}^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{1-u^{2} / c^{2}}} & \frac{-u / c}{\sqrt{1-u^{2} / c^{2}}} \\
\frac{u / c}{\sqrt{1-u^{2} / c^{2}}} & \frac{1}{\sqrt{1-u^{2} / c^{2}}}
\end{array}\right)
\end{aligned}
$$

Q:How do you transform components (g,p) to $\left(g^{\prime}, p^{\prime}\right)$ for any vector: $|\mathbf{V}\rangle=g|\mathbf{G}\rangle+p|\mathbf{P}\rangle=g^{\prime}\left|\mathbf{G}^{\prime}\right\rangle+p^{\prime}\left|\mathbf{P}^{\prime}\right\rangle={ }_{\text {etc. }}$
A: Find: $g=\langle\mathbf{G} \mid \mathbf{V}\rangle=\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{V}\right\rangle+\left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{V}\right\rangle=\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle g^{\prime}+\left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle p^{\prime}$

$$
p=\langle\mathbf{P} \mid \mathbf{V}\rangle=\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{V}\right\rangle+\left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{V}\right\rangle=\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle g^{\prime}+\left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle p^{\prime}
$$

in matrix notation: $\binom{g}{p}=\left(\begin{array}{cc}\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle \\ \left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle\end{array}\right)\binom{g^{\prime}}{p^{\prime}}=\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right)\binom{g^{\prime}}{p^{\prime}}$

Lorentz transform from "lab" vectors G and P to "atom" vectors:

$\mathbf{G}^{\prime}=\mathbf{G} \cosh \rho+\mathbf{P} \sinh \rho$
$\mathbf{P}^{\prime}=\mathbf{G} \sinh \rho+\mathbf{P} \cosh \rho$
$\mathbf{G}=\mathbf{G}^{\prime} \cosh \rho-\mathbf{P}^{\prime} \sinh \rho$
$\mathbf{P}=-\mathbf{G}^{\prime} \sinh \rho+\mathbf{P}^{\prime} \cosh \rho$

A "professional" notation: (Dirac's bra-kets $\langle\mathbf{A} \mid \mathbf{B}\rangle=\delta_{A, B}$ and: $|\mathbf{A}\rangle\langle\mathbf{A}|+|\mathbf{B}\rangle\langle\mathbf{B}|=1$) Lorentz transformation operator L
$L|\mathbf{G}\rangle=\left|\mathbf{G}^{\prime}\right\rangle=|\mathbf{G}\rangle\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle+|\mathbf{P}\rangle\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle$
$L|\mathbf{P}\rangle=\left|\mathbf{P}^{\prime}\right\rangle=|\mathbf{G}\rangle\left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle+|\mathbf{P}\rangle\left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle$
INVERSE Lorentz transformation L^{-1}
$L^{-1}\left|\mathbf{G}^{\prime}\right\rangle=|\mathbf{G}\rangle=\left|\mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{G}\right\rangle+\left|\mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{G}\right\rangle$
$L^{-1}\left|\mathbf{P}^{\prime}\right\rangle=|\mathbf{P}\rangle=\left|\mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{P}\right\rangle+\left|\mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{P}\right\rangle$

$$
\begin{aligned}
& \left(\begin{array}{cc}
\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle \\
\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)=\left(\begin{array}{cc}
\langle\mathbf{G}| L|\mathbf{G}\rangle & \langle\mathbf{G}| L|\mathbf{P}\rangle \\
\langle\mathbf{P}| L|\mathbf{G}\rangle & \langle\mathbf{P}| L|\mathbf{P}\rangle
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{1-u^{2} / c^{2}}} & \frac{u / c}{\sqrt{1-u^{2} / c^{2}}} \\
\frac{u / c}{\sqrt{1-u^{2} / c^{2}}} & \frac{1}{\sqrt{1-u^{2} / c^{2}}}
\end{array}\right) \\
& \left(\begin{array}{cc}
\left\langle\mathbf{G}^{\prime} \mid \mathbf{G}\right\rangle & \left\langle\mathbf{G}^{\prime} \mid \mathbf{P}\right\rangle \\
\left\langle\mathbf{P}^{\prime} \mid \mathbf{G}\right\rangle & \left\langle\mathbf{P}^{\prime} \mid \mathbf{P}\right\rangle
\end{array}\right)=\left(\begin{array}{cc}
\cosh \rho & -\sinh \rho \\
-\sinh \rho & \cosh \rho
\end{array}\right)=\left(\begin{array}{ll}
\left\langle\mathbf{G}^{\prime}\right| L^{-1}\left|\mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G}^{\prime}\right| L^{-1}\left|\mathbf{P}^{\prime}\right\rangle \\
\left\langle\mathbf{P}^{\prime}\right| L^{-1}\left|\mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P}^{\prime}\right| L^{-1}\left|\mathbf{P}^{\prime}\right\rangle
\end{array}\right)=\left(\begin{array}{ll}
\frac{1}{\sqrt{1-u^{2} / c^{2}}} & \frac{-u / c}{\sqrt{1-u^{2} / c^{2}}} \\
\frac{-u / c}{\sqrt{1-u^{2} / c^{2}}} & \frac{1}{\sqrt{1-u^{2} / c^{2}}}
\end{array}\right)
\end{aligned}
$$

$Q:$ How do you transform components (g,p) to $\left(g^{\prime}, p^{\prime}\right)$ for any vector: $|\mathbf{V}\rangle=g|\mathbf{G}\rangle+p|\mathbf{P}\rangle=g^{\prime}\left|\mathbf{G}^{\prime}\right\rangle+p^{\prime}\left|\mathbf{P}^{\prime}\right\rangle==_{\text {etc. }}$.
A: Find: $g=\langle\mathbf{G} \mid \mathbf{V}\rangle=\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{V}\right\rangle+\left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{V}\right\rangle=\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle g^{\prime}+\left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle p^{\prime}$

$$
p=\langle\mathbf{P} \mid \mathbf{V}\rangle=\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle\left\langle\mathbf{G}^{\prime} \mid \mathbf{V}\right\rangle+\left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle\left\langle\mathbf{P}^{\prime} \mid \mathbf{V}\right\rangle=\left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle g^{\prime}+\left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle p^{\prime}
$$

in matrix notation: $\binom{g}{p}=\left(\begin{array}{cc}\left\langle\mathbf{G} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{G} \mid \mathbf{P}^{\prime}\right\rangle \\ \left\langle\mathbf{P} \mid \mathbf{G}^{\prime}\right\rangle & \left\langle\mathbf{P} \mid \mathbf{P}^{\prime}\right\rangle\end{array}\right)\binom{g^{\prime}}{p^{\prime}}=\left(\begin{array}{cc}\cosh \rho & \sinh \rho \\ \sinh \rho & \cosh \rho\end{array}\right)\binom{g^{\prime}}{p^{\prime}}$
Test it! In per-space-time space-time $(g, p)=(c k, \omega) \ldots$...In space-time $(g, p)=(x, c t)$ it's the same!

$$
\binom{c k}{\omega}=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)\binom{c k^{\prime}}{\omega^{\prime}} \quad\binom{x}{c t}=\left(\begin{array}{cc}
\cosh \rho & \sinh \rho \\
\sinh \rho & \cosh \rho
\end{array}\right)\binom{x^{\prime}}{c t^{\prime}}
$$

Lorentz transform from "lab" vectors G and P to "atom" vectors:

$$
\begin{aligned}
\mathbf{G}^{\prime} & =\mathbf{G} \cosh \rho+\mathbf{P} \sinh \rho \\
\mathbf{P}^{\prime} & =\mathbf{G} \sinh \rho+\mathbf{P} \cosh \rho
\end{aligned}
$$

$$
\mathbf{G}=\mathbf{G}^{\prime} \cosh \rho-\mathbf{P}^{\prime} \sinh \rho
$$

$$
\mathbf{P}=-\mathbf{G}^{\prime} \sinh \rho+\mathbf{P}^{\prime} \cosh \rho
$$

A"professional" notation: (Dirac's bra-kets $\langle\mathbf{A} \mid \mathbf{B}\rangle=\delta_{A, B}$ and: $|\mathbf{A}\rangle\langle\mathbf{A}|+|\mathbf{B}\rangle\langle\mathbf{B}|=\mathbf{1}$)

3. Spec rall theory of Einstein-Lorentz relativity

Applying Dopper in Sh to to per-space-time (cli, ω) graph
CWW Minhowski space-time coordinates (x, ct) and PWI grids Relating Doperer Shici bor $r=1 / b$ to velocity u / c or rapidity ρ Lorentz transformation
\Rightarrow Lorentz length-contraction and Einstein time-dilation

Fig. 2.4 Space-time grid intersections mark Lorentz contraction and Einstein time dilation.

4. Einstein-Lorentz symmetry

What happened to Galilean symmetry? (It moved to "gauge" space!)
Thale's construction and Euclid's means
Time reversal symmetry gives hyperbolic invariants per-space-time hyperbola
space-time hyperbola
Phase invariance

Euclid's 3-means (300 BC) Geometric "heart" of wave mechanics

Thales (580BC) rectangle-in-circle Relates to wave interference by (Galilean) phasor angular velocity addition

Fig. 3.3a Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units).

Fig. 3.1 Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors.

