
Lecture 23. 
Relativity of lightwaves and Lorentz-Minkowski coordinates II.

(Ch. 0-3 of Unit 2   3.27.12)
3. Spectral theory of Einstein-Lorentz relativity

Applying Doppler Shifts to per-space-time (ck,ω) graph
CW Minkowski space-time coordinates (x,ct) and PW grids

Relating Doppler Shifts b or r=1/b to velocity u/c or rapidity ρ 
   Lorentz transformation

Lorentz length-contraction and Einstein time-dilation

4. Einstein-Lorentz symmetry
What happened to Galilean symmetry? (It moved to “gauge” space!)

Thale’s construction and Euclid’s means
Time reversal symmetry gives hyperbolic invariants

per-space-time hyperbola
space-time hyperbola

Phase invariance

5. That “old-time” relativity (“Bouncing-photons” smoke & mirrors)
The ship and lighthouse saga    

           
  

Lecture 22 ended (about) here 

(Includes Lecture 22 review)

Lecture 23 ended here 
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Lecture 22 ended (approximately) here 
11Tuesday, March 27, 2012



3. Spectral theory of Einstein-Lorentz relativity
Applying Doppler Shifts to per-space-time (ck,ω) graph
CW Minkowski space-time coordinates (x,ct) and PW grids

Relating Doppler Shifts b or r=1/b to velocity u/c or rapidity ρ 
   Lorentz transformation

Lorentz length-contraction and Einstein time-dilation  
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Spectral development: Note B=2.0 here.

Deriving relations between Doppler Shifts b or r=1/b and velocity u/c or rapidity ρ:
b = 1/r = e+ρ = coshρ + sinhρ
r = 1/b = e−ρ = coshρ − sinhρ
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Spectral development: Note B=2.0 here.

Deriving relations between Doppler Shifts b or r=1/b and velocity u/c or rapidity ρ:
b = 1/r = e+ρ = coshρ + sinhρ
r = 1/b = e−ρ = coshρ − sinhρ
b −1/b
b +1/b

= sinhρ
coshρ

= tanhρ = u
c
= b

2 −1
b2 +1

= 1− r
2

1+ r2
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Spectral development: Note B=2.0 here.

Deriving relations between Doppler Shifts b or r=1/b and velocity u/c or rapidity ρ:
b = 1/r = e+ρ = coshρ + sinhρ
r = 1/b = e−ρ = coshρ − sinhρ
b −1/b
b +1/b

= sinhρ
coshρ

= tanhρ = u
c
= b

2 −1
b2 +1

= 1− r
2

1+ r2

br = 1= coshρ + sinhρ( ) coshρ − sinhρ( )
1= cosh2ρ − sinh2ρ
1

cosh2ρ
= 1− sinh

2ρ
cosh2ρ

= 1− u
2

c2
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Spectral development: Note B=2.0 here.

Deriving relations between Doppler Shifts b or r=1/b and velocity u/c or rapidity ρ:
b = 1/r = e+ρ = coshρ + sinhρ
r = 1/b = e−ρ = coshρ − sinhρ
b −1/b
b +1/b

= sinhρ
coshρ

= tanhρ = u
c
= b

2 −1
b2 +1

= 1− r
2

1+ r2

br = 1= coshρ + sinhρ( ) coshρ − sinhρ( )
1= cosh2ρ − sinh2ρ
1

cosh2ρ
= 1− sinh

2ρ
cosh2ρ

= 1− u
2

c2

coshρ = 1
1− u2 c2

, 

sinhρ = coshρ tanhρ = u c
1− u2 c2
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Spectral development: Note B=2.0 here.

Deriving relations between Doppler Shifts b or r=1/b and velocity u/c or rapidity ρ:
b = 1/r = e+ρ = coshρ + sinhρ
r = 1/b = e−ρ = coshρ − sinhρ
b −1/b
b +1/b

= sinhρ
coshρ

= tanhρ = u
c
= b

2 −1
b2 +1

= 1− r
2

1+ r2

coshρ = 1
1− u2 c2

, 

sinhρ = u c
1− u2 c2

b = coshρ + sinhρ = 1+ u c
1− u2 c2

= 1+ u c
1− u c
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Spectral development: Note B=2.0 here.

Deriving relations between Doppler Shifts b or r=1/b and velocity u/c or rapidity ρ:
b = 1/r = e+ρ = coshρ + sinhρ
r = 1/b = e−ρ = coshρ − sinhρ
b −1/b
b +1/b

= sinhρ
coshρ

= tanhρ = u
c
= b

2 −1
b2 +1

= 1− r
2

1+ r2

coshρ = 1
1− u2 c2

, 

sinhρ = u c
1− u2 c2

b = coshρ + sinhρ = 1+ u c
1− u2 c2

= 1+ u c
1− u c

r = coshρ − sinhρ = 1− u c
1+ u c
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3. Spectral theory of Einstein-Lorentz relativity
Applying Doppler Shifts to per-space-time (ck,ω) graph
CW Minkowski space-time coordinates (x,ct) and PW grids
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Lorentz transform
from “lab” vectors
G and P to “atom” vectors:
 G′ = G coshρ + P sinhρ
 P′ = G sinhρ + P coshρ

G

P G′
P′

coshρ

coshρ

sinhρ

sinhρ
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Lorentz transform from “lab” vectors G and P to “atom” vectors:
 G′ = G coshρ + P sinhρ                      G =   G′coshρ  -  P′sinhρ
  P′ = G sinhρ + P coshρ                       P =- G′sinhρ  + P′coshρ

23Tuesday, March 27, 2012



Lorentz transform from “lab” vectors G and P to “atom” vectors:
 G′ = G coshρ + P sinhρ                      G =   G′coshρ  -  P′sinhρ
  P′ = G sinhρ + P coshρ                       P =- G′sinhρ  + P′coshρ

A “professional” notation: (Dirac’s bra-kets                                     )
L G = G′ = G G G′ + P P G′
L P = P ′ = G G P ′ + P P P ′

G G′ G P ′

P G′ P P ′

⎛
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⎜
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sinhρ coshρ

⎛

⎝
⎜

⎞

⎠
⎟ =

G L G G L P
P L G P L P

⎛

⎝
⎜
⎜
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⎟
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u c
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⎛

⎝
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⎜
⎜
⎜

⎞
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⎟
⎟

A B = δ A,B   and:  A A + B B = 1
Lorentz transformation operator L   
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A B = δ A,B   and:  A A + B B = 1
Lorentz transformation operator L   

INVERSE Lorentz transformation L-1   
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Lorentz transform from “lab” vectors G and P to “atom” vectors:
 G′ = G coshρ + P sinhρ                      G =   G′coshρ  -  P′sinhρ
  P′ = G sinhρ + P coshρ                       P =- G′sinhρ  + P′coshρ

A “professional” notation: (Dirac’s bra-kets                                     )
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L P = P ′ = G G P ′ + P P P ′
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Q:How do you transform components (g,p) to (g′,p′) for any vector:
                                                                             

V = g G + p P = g′ G′ + p′ P ′ =etc.

Lorentz transformation operator L   

INVERSE Lorentz transformation L-1   
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Lorentz transform from “lab” vectors G and P to “atom” vectors:
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A “professional” notation: (Dirac’s bra-kets                                     )
L G = G′ = G G G′ + P P G′
L P = P ′ = G G P ′ + P P P ′

G G′ G P ′

P G′ P P ′

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

coshρ sinhρ
sinhρ coshρ

⎛

⎝
⎜

⎞

⎠
⎟ =

G L G G L P
P L G P L P

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

1
1− u2 c2

u c
1− u2 c2

u c
1− u2 c2

1
1− u2 c2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

L−1 G′ = G = G′ G′ G + P ′ P ′ G
L−1 P ′ = P = G′ G′ P + P ′ P ′ P

G′ G G′ P

P ′ G P ′ P

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

coshρ −sinhρ
−sinhρ coshρ

⎛

⎝
⎜

⎞

⎠
⎟ =

G′ L−1 G′ G′ L−1 P ′

P ′ L−1 G′ P ′ L−1 P ′

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

1
1− u2 c2

−u c
1− u2 c2

−u c
1− u2 c2

1
1− u2 c2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

A B = δ A,B   and:  A A + B B = 1

Q:How do you transform components (g,p) to (g′,p′) for any vector:
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V = g G + p P = g′ G′ + p′ P ′ =etc.

g = G V = G G′ G′ V + G P ′ P ′ V = G G′ g′ + G P ′ p′
p = P V = P G′ G′ V + P P ′ P ′ V = P G′ g′ + P P ′ p′

Lorentz transformation operator L   

INVERSE Lorentz transformation L-1   

27Tuesday, March 27, 2012



Lorentz transform from “lab” vectors G and P to “atom” vectors:
 G′ = G coshρ + P sinhρ                      G =   G′coshρ  -  P′sinhρ
  P′ = G sinhρ + P coshρ                       P =- G′sinhρ  + P′coshρ

A “professional” notation: (Dirac’s bra-kets                                     )
L G = G′ = G G G′ + P P G′
L P = P ′ = G G P ′ + P P P ′
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Q:How do you transform components (g,p) to (g′,p′) for any vector:
A: Find:                                                                                       

in matrix notation:

V = g G + p P = g′ G′ + p′ P ′ =etc.

g = G V = G G′ G′ V + G P ′ P ′ V = G G′ g′ + G P ′ p′
p = P V = P G′ G′ V + P P ′ P ′ V = P G′ g′ + P P ′ p′

g
p
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⎜
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⎟
⎟
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⎠
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Lorentz transformation operator L   

INVERSE Lorentz transformation L-1   
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Lorentz transform from “lab” vectors G and P to “atom” vectors:
 G′ = G coshρ + P sinhρ                      G =   G′coshρ  -  P′sinhρ
  P′ = G sinhρ + P coshρ                       P =- G′sinhρ  + P′coshρ

A “professional” notation: (Dirac’s bra-kets                                     )
L G = G′ = G G G′ + P P G′
L P = P ′ = G G P ′ + P P P ′

G G′ G P ′

P G′ P P ′

⎛
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⎜
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⎜
⎜
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⎞
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coshρ sinhρ
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⎝
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⎠
⎟
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⎛
⎝⎜

⎞
⎠⎟
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ω

⎛
⎝⎜

⎞
⎠⎟
=
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sinhρ coshρ

⎛

⎝
⎜

⎞

⎠
⎟

ck′
ω ′

⎛
⎝⎜

⎞
⎠⎟

L−1 G′ = G = G′ G′ G + P ′ P ′ G
L−1 P ′ = P = G′ G′ P + P ′ P ′ P

G′ G G′ P

P ′ G P ′ P

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

coshρ −sinhρ
−sinhρ coshρ

⎛

⎝
⎜

⎞

⎠
⎟ =

G′ L−1 G′ G′ L−1 P ′

P ′ L−1 G′ P ′ L−1 P ′

⎛

⎝
⎜
⎜
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⎟
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1
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⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

A B = δ A,B   and:  A A + B B = 1

Q:How do you transform components (g,p) to (g′,p′) for any vector:
A: Find:                                                                                       

in matrix notation:

Test it! In per-space-time space-time (g,p)=(ck,ω)…  ...In space-time (g,p)=(x, ct) it’s the same! 

V = g G + p P = g′ G′ + p′ P ′ =etc.

g = G V = G G′ G′ V + G P ′ P ′ V = G G′ g′ + G P ′ p′
p = P V = P G′ G′ V + P P ′ P ′ V = P G′ g′ + P P ′ p′

g
p

⎛

⎝
⎜

⎞

⎠
⎟ =

G G′ G P ′

P G′ P P ′

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

′g
′p

⎛

⎝
⎜

⎞

⎠
⎟ =

coshρ sinhρ
sinhρ coshρ

⎛

⎝
⎜

⎞

⎠
⎟

′g
′p

⎛

⎝
⎜

⎞

⎠
⎟

Lorentz transformation operator L   

INVERSE Lorentz transformation L-1   
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Lorentz transform from “lab” vectors G and P to “atom” vectors:
 G′ = G coshρ + P sinhρ                      G =   G′coshρ  -  P′sinhρ
  P′ = G sinhρ + P coshρ                       P =- G′sinhρ  + P′coshρ

A “professional” notation: (Dirac’s bra-kets                                     )

x
ct

⎛
⎝⎜

⎞
⎠⎟
=

coshρ sinhρ
sinhρ coshρ

⎛

⎝
⎜

⎞

⎠
⎟

x′
ct′

⎛
⎝⎜

⎞
⎠⎟

ck
ω

⎛
⎝⎜

⎞
⎠⎟
=

coshρ sinhρ
sinhρ coshρ

⎛

⎝
⎜

⎞

⎠
⎟

ck′
ω ′

⎛
⎝⎜

⎞
⎠⎟

A B = δ A,B   and:  A A + B B = 1

G′
P′

coshρ

sinhρ

sinhρ

P′
coshρ x

ct
⎛
⎝⎜

⎞
⎠⎟

=
coshρ sinhρ
sinhρ coshρ

⎛

⎝
⎜

⎞

⎠
⎟

1
0

⎛
⎝⎜

⎞
⎠⎟

=
coshρ
sinhρ

⎛

⎝
⎜

⎞

⎠
⎟

1
0

!
"#

$
%&
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3. Spectral theory of Einstein-Lorentz relativity
Applying Doppler Shifts to per-space-time (ck,ω) graph
CW Minkowski space-time coordinates (x,ct) and PW grids

Relating Doppler Shifts b or r=1/b to velocity u/c or rapidity ρ 
   Lorentz transformation

Lorentz length-contraction and Einstein time-dilation  
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Time
Dilation
Δt′/t′=

1/√1-v2/c2

Length
Contraction
ΔL′/L′=
√ 1-v2/c2

Atom Time
ct′ - axis

Atom Space
x′ - axis

Lase
r Spa

ce

x- ax
is

Laser
Time

ct - ax
is

Δt′/t′
=5/4

ΔL′/L′=4/5

1.0

1.0

1.0

1.0

invariant

hyperbolas

Fig. 2.4 Space-time grid intersections mark Lorentz contraction and Einstein time dilation.
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4. Einstein-Lorentz symmetry
What happened to Galilean symmetry? (It moved to “gauge” space!)

Thale’s construction and Euclid’s means
Time reversal symmetry gives hyperbolic invariants

per-space-time hyperbola
space-time hyperbola

Phase invariance
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half-sum=overall phase
half-difference=group phase

Re ψ

Im ψ

22−

433221100--11

geometric

mean:

1

2

1

2

difference

mean:

Relates to wave interference by (Galilean)

phasor angular velocity addition

ck

ω

arithmetric

mean:

[4+1]=5/2=5/2

(HALF-SUM )(HALF-

DIFFERENCE )

1/2

41

[4-1]=3/2

[1· 4] =2

3/2

Euclid’s 3-means (300 BC)

Geometric“heart” of wave mechanics

Linear velocity V
group

/c=u/c

is (HALF-DIFF./HALF-SUM)=3/5

(units of 300THz)

Thales (580BC) rectangle-in-circle

Fig. 3.3a Euclidian mean geometry for counter-moving waves of frequency 1 and 4. (300THz units). 

Lecture 23 ended here 

http://www.uark.edu/ua/pirelli/php/means_1.php
http://www.uark.edu/ua/pirelli/php/half_sum_2.php

Sites for animation:
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Fig. 3.1 Wave phasor addition. (a) Each phasor in a wave array is a sum (b) of two component phasors.

http://www.uark.edu/ua/pirelli/php/means_1.php
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