2-Wave Interference: Phase and Group Velocity

(Ch. 0-1 of Unit 2)

1. Review of basic formulas for waves in space-time (x, t) or per-space-time (ω, k)

1-Plane-wave phase velocity
2-Plane-wave phase velocity and group velocity (1/2-sum \& 1/2-diff.)
2-Plane-wave real zero grid in (x, t) or (ω, k)
2. Geometric construction of wave-zero grids

Continuous Wave (CW) grid based on $\mathbf{K}_{\text {phase }}=\left(\mathbf{K}_{a}+\mathbf{K}_{b}\right) / 2$ and $\mathbf{K}_{\text {group }}=\left(\mathbf{K}_{a}-\mathbf{K}_{b}\right) / 2$ vectors Pulse Wave (PW) grid based on primitive $\mathbf{K}_{a}=\mathbf{K}_{\text {phase }}+\mathbf{K}_{\text {group }}$ and $\mathbf{K}_{b}=\mathbf{K}_{\text {phase }}-\mathbf{K}_{\text {group }}$ vectors When this doesn't work (When you don't need it')
3. Beginning wave relativity

Dueling lasers make lab frame space-time grid
Einstein PW Axioms versus Evenson CW Axioms (Occam at Work)
Only CW light clearly shows Doppler shift
Dueling lasers make lab frame space-time grid

Fundamental wave dynamics based on Euler Expo-cosine Identity
$\left(e^{i a}+e^{i b}\right) / 2=\quad e^{i(a+b) / 2}\left(e^{i(a-b) / 2}+e^{-i(a-b) / 2}\right) / 2=e^{i(a+b) / 2} \cdot \cos (a-b) / 2$
Balanced (50-50) plane wave combination:

$$
\begin{array}{cc}
\omega_{p}=\left(\omega_{1}+\omega_{2}\right) / 2 & \omega_{g}=\left(\omega_{1}-\omega_{2}\right) / 2 \\
k_{p}=\left(k_{1}+k_{2}\right) / 2 & k_{g}=\left(k_{1}-k_{2}\right) / 2
\end{array}
$$

Overall or Mean phase Relative or
$\Psi_{501^{-} 50}(x, t)=(1 / 2) \psi_{k_{1}}(x, t)+(1 / 2) \psi_{k_{2}}(x, t)$ Group phase

$$
(1 / 2) e^{i\left(k_{1} x-\omega_{1} t\right)}+(1 / 2) e^{i\left(k_{2} x-\omega_{2} t\right)}=e^{i\left(k_{p} x-\omega_{p} t\right)} \cdot \cos \left(k_{g} x-\omega_{g} t\right)
$$

Velocity:
$\frac{\text { meters }}{\text { second }}$
or
$\frac{\text { per-seconds }}{\text { per-meter }}$

$$
\begin{array}{cc}
1^{\text {st }} \text { plane } & 2^{\text {nd }} \text { plane } \\
\text { phase } \\
\text { velocity } & \text { phase } \\
\text { velocity } \\
V_{1}=\frac{\omega_{1}}{k_{1}} & V_{2}=\frac{\omega_{2}}{k_{2}}
\end{array}
$$

Phase or Carrier velocity
2. Geometric construction of wave-zero grids

Continuous Wave (CW) grid based on $\mathbf{K}_{\text {phase }}=\left(\mathbf{K}_{a}+\mathbf{K}_{b}\right) / 2$ and $\mathbf{K}_{\text {group }}=\left(\mathbf{K}_{a}-\mathbf{K}_{b}\right) / 2$ vectors Pulse Wave (PW) grid based on primitive $\mathbf{K}_{a}=\mathbf{K}_{\text {phase }}+\mathbf{K}_{\text {group }}$ and $\mathbf{K}_{b}=\mathbf{K}_{\text {phase }}-\mathbf{K}_{\text {group }}$ vectors When this doesn't work (When you don't need it)

2-Wave Source: Unifying Trajectory-Space-time (x, t) and Fourier-Per-space-time (ω, k)

$$
\psi_{+}=e^{i a}+e^{i b}=e^{i \frac{a+b}{2}}\left(e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}\right)=2 e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=2\left(\cos \frac{a+b}{2}+i \sin \frac{a+b}{2}\right) \cos \frac{a-b}{2}
$$

Suppose we are
given two
"mystery" sources"

†Schrodinger matter waves

Spacetime (x, t)

Frequency ω

$$
\begin{aligned}
0=\operatorname{Re} \psi_{+}=\operatorname{Re} e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=\cos \frac{a+b}{2} \cos \frac{a-b}{2} & =\cos \left(\frac{k_{a}+k_{b}}{2} x-\frac{\omega_{a}+\omega_{b}}{2} t\right) \cos \left(\frac{k_{a}-k_{b}}{2} x-\frac{\omega_{a}-\omega_{b}}{2} t\right) \\
& =\cos \left(k_{\text {phase }} x-\omega_{\text {phase }} t\right) \cos \left(k_{\text {group }} x-\omega_{\text {group }} t\right)
\end{aligned}
$$

2-Wave Source: Unifying Trajectory-Space-time (x, t) and Fourier-Per-space-time (ω, k)

$$
\psi_{+}=e^{i a}+e^{i b}=e^{i \frac{a+b}{2}}\left(e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}\right)=2 e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=2\left(\cos \frac{a+b}{2}+i \sin \frac{a+b}{2}\right) \cos \frac{a-b}{2}
$$

†Schrodinger matter waves

Spacetime (x, t)

Per-spacetime (ω, k)

$0=\operatorname{Re} \psi_{+}=\operatorname{Re} e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=\cos \frac{a+b}{2} \cos \frac{a-b}{2}=\cos \left(\frac{k_{a}+k_{b}}{2} x-\frac{\omega_{a}+\omega_{b}}{2} t\right) \cos \left(\frac{k_{a}-k_{b}}{2} x-\frac{\omega_{a}-\omega_{b}}{2} t\right)$

$$
=\cos \left(k_{\text {phase }} x-\omega_{\text {phase }} t\right) \cos \left(k_{\text {group }} x-\omega_{\text {group }} t\right)
$$

Space-time Re ψ-zeros determined by:
$k_{\text {phase }} x-\omega_{\text {phase }} t=m(\pi / 2) \quad m= \pm 1, \pm 3, \ldots$
$k_{\text {group }} x-\omega_{\text {group }} t=n(\pi / 2) \quad n= \pm 1, \pm 3, \ldots$

2-Wave Source: Unifying Trajectory-Space-time (x, t) and Fourier-Per-space-time (ω, k)

$$
\psi_{+}=e^{i a}+e^{i b}=e^{i \frac{a+b}{2}}\left(e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}\right)=2 e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=2\left(\cos \frac{a+b}{2}+i \sin \frac{a+b}{2}\right) \cos \frac{a-b}{2}
$$

Suppose we are given two "mystery' sources"

†Schrodinger matter waves

Spacetime (x, t)

Per-spacetime (ω, k)

$0=\operatorname{Re} \psi_{+}=\operatorname{Re} e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=\cos \frac{a+b}{2} \cos \frac{a-b}{2}=\cos \left(\frac{k_{a}+k_{b}}{2} x-\frac{\omega_{a}+\omega_{b}}{2} t\right) \cos \left(\frac{k_{a}-k_{b}}{2} x-\frac{\omega_{a}-\omega_{b}}{2} t\right)$

$$
=\cos \left(k_{\text {phase }} x-\omega_{\text {phase }} t\right) \cos \left(k_{\text {group }} x-\omega_{\text {group }} t\right)
$$

Space-time Re ψ-zeros determined by: Matrix equation:
$\begin{array}{ll}k_{\text {phase }} x-\omega_{\text {phase }} t=m(\pi / 2) & m= \pm 1, \pm 3, \ldots \\ k_{\text {group }} x-\omega_{\text {group }} t=n(\pi / 2) & n= \pm 1, \pm 3, \ldots\end{array} \quad\left(\begin{array}{ll}k_{\text {phase }} & -\omega_{\text {phase }} \\ k_{\text {group }} & -\omega_{\text {group }}\end{array}\right)\binom{x}{t}=\binom{m}{n} \frac{\pi}{2}$

2-Wave Source: Unifying Trajectory-Space-time (x, t) and Fourier-Per-space-time (ω, k)
$\psi_{+}=e^{i a}+e^{i b}=e^{i \frac{a+b}{2}}\left(e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}\right)=2 e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=2\left(\cos \frac{a+b}{2}+i \sin \frac{a+b}{2}\right) \cos \frac{a-b}{2}$

†Schrodinger matter waves

Spacetime (x, t)

Per-spacetime (ω, k)

$0=\operatorname{Re} \psi_{+}=\operatorname{Re} e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=\cos \frac{a+b}{2} \cos \frac{a-b}{2}=\cos \left(\frac{k_{a}+k_{b}}{2} x-\frac{\omega_{a}+\omega_{b}}{2} t\right) \cos \left(\frac{k_{a}-k_{b}}{2} x-\frac{\omega_{a}-\omega_{b}}{2} t\right)$ $=\cos \left(k_{\text {phase }} x-\omega_{\text {phase }} t\right) \cos \left(k_{\text {group }} x-\omega_{\text {group }} t\right)$
Matrix equation:
Inverse matrix equation:

Space-time Re ψ-zeros $\mathbf{X}_{m, n}$ determined by:

$$
k_{\text {phase }} x-\omega_{\text {phass }} t=m(\pi / 2) \quad m= \pm 1, \pm 3, \ldots
$$

$$
k_{\text {group }} x-\omega_{\text {group }} t=n(\pi / 2) \quad n= \pm 1, \pm 3, \ldots
$$

$\left(\begin{array}{ll}k_{\text {phase }} & -\omega_{\text {phase }} \\ k_{\text {group }} & -\omega_{\text {group }}\end{array}\right)\binom{x}{t}=\binom{m}{n} \frac{\pi}{2}$
$\left.\left.\binom{x_{m, n}}{t_{m, n}}=\frac{\left(\begin{array}{ll}\omega_{\text {group }} & -\omega_{\text {phase }} \\ k_{\text {group }} & -k_{\text {phase }}\end{array}\right)}{\left|\omega_{\text {group }} k_{\text {phase }}-\omega_{\text {phase }} k_{\text {group }}\right|} \right\rvert\, \begin{array}{l}m \\ n\end{array}\right) \frac{\pi}{2}$

$$
\binom{x_{m, n}}{t_{m, n}}=\mathbf{X}_{m, n}=\left[m \mathbf{K}_{\text {group }}-n \mathbf{K}_{\text {phase }}\right] s_{g p}
$$

2-Wave Source: Unifying Trajectory-Space-time (x, t) and Fourier-Per-space-time (ω, k)
$\psi_{+}=e^{i a}+e^{i b}=e^{i \frac{a+b}{2}}\left(e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}\right)=2 e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=2\left(\cos \frac{a+b}{2}+i \sin \frac{a+b}{2}\right) \cos \frac{a-b}{2}$

†Schrodinger matter waves

Spacetime (x, t)

Per-spacetime (ω, k)

$0=\operatorname{Re} \psi_{+}=\operatorname{Re} e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=\cos \frac{a+b}{2} \cos \frac{a-b}{2}=\cos \left(\frac{k_{a}+k_{b}}{2} x-\frac{\omega_{a}+\omega_{b}}{2} t\right) \cos \left(\frac{k_{a}-k_{b}}{2} x-\frac{\omega_{a}-\omega_{b}}{2} t\right)$ $=\cos \left(k_{\text {phase }} x-\omega_{\text {phase }} t\right) \cos \left(k_{\text {group }} x-\omega_{\text {group }} t\right)$

Inverse matrix equation:

Matrix equation:
Space-time Rew-zeros $\mathbf{X}_{m, n}$ determined by:
$k_{\text {phase }} x-\omega_{\text {phase }} t=m(\pi / 2) \quad m= \pm 1, \pm 3, \ldots$
$k_{\text {group }} x-\omega_{\text {group }} t=n(\pi / 2) \quad n= \pm 1, \pm 3, \ldots . \quad\left(\begin{array}{ll}k_{\text {phase }} & -\omega_{\text {phase }} \\ k_{\text {group }} & -\omega_{\text {group }}\end{array}\right)\binom{x}{t}=\binom{m}{n} \frac{\pi}{2}$
...and space-time scale factor: $s_{g p}=\frac{\pi}{2\left|\mathbf{K}_{\text {group }} \times \mathbf{K}_{\text {phase }}\right|}$
$\binom{x_{m, n}}{t_{m, n}}=\frac{\left(\begin{array}{ll}\omega_{\text {group }} & -\omega_{\text {phase }} \\ k_{\text {group }} & -k_{\text {phase }}\end{array}\right)}{\mid \omega_{\text {group }} k_{\text {phase }}-\omega_{\text {phase }} k_{\text {group }}}\binom{m}{n} \frac{\pi}{2}$

$$
\binom{x_{m, n}}{t_{m, n}}=\mathbf{X}_{m, n}=\left[m \mathbf{K}_{\text {group }}-n \mathbf{K}_{\text {phase }}\right] s_{g p}
$$

2-Wave Source: Unifying Trajectory-Space-time (x, t) and Fourier-Per-space-time (ω, k)
$\psi_{+}=e^{i a}+e^{i b}=e^{i \frac{a+b}{2}}\left(e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}\right)=2 e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=2\left(\cos \frac{a+b}{2}+i \sin \frac{a+b}{2}\right) \cos \frac{a-b}{2}$

Suppose we are given two "mystery" sources"

†Schrodinger matter waves

Spacetime (x, t)

Per-spacetime (ω, k)

$0=\operatorname{Re} \psi_{+}=\operatorname{Re} e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=\cos \frac{a+b}{2} \cos \frac{a-b}{2}=\cos \left(\frac{k_{a}+k_{b}}{2} x-\frac{\omega_{a}+\omega_{b}}{2} t\right) \cos \left(\frac{k_{a}-k_{b}}{2} x-\frac{\omega_{a}-\omega_{b}}{2} t\right)$ $=\cos \left(k_{\text {phase }} x-\omega_{\text {phase }} t\right) \cos \left(k_{\text {group }} x-\omega_{\text {group }} t\right)$
Matrix equation:
Space-time Rew-zeros $\mathbf{X}_{m, n}$ determined by:
$k_{\text {phase }} x-\omega_{\text {phase }} t=m(\pi / 2) \quad m= \pm 1, \pm 3, \ldots$
$k_{\text {group }} x-\omega_{\text {group }} t=n(\pi / 2) \quad n= \pm 1, \pm 3, \ldots$
$\left(\begin{array}{ll}k_{\text {phase }} & -\omega_{\text {phase }} \\ k_{\text {group }} & -\omega_{\text {group }}\end{array}\right)\binom{x}{t}=\binom{m}{n} \frac{\pi}{2}$
$\binom{x_{m, n}}{t_{m, n}}=\frac{\left(\begin{array}{ll}\omega_{\text {group }} & -\omega_{\text {phase }} \\ k_{\text {group }} & -k_{\text {phase }}\end{array}\right)}{\left|\omega_{\text {group }} k_{\text {phase }}-\omega_{\text {phase }} k_{\text {group }}\right|}\binom{m}{n} \frac{\pi}{2}$
\ldots and space-time scale factor: $s_{g p}=\frac{\pi}{2\left|\mathbf{K}_{\text {group }} \times \mathbf{K}_{\text {phase }}\right|}=\frac{\pi}{2|1.5 \cdot 3.0-2.5 \cdot 1.0|}=\frac{\pi}{4} \quad\binom{x_{m, n}}{t_{m, n}}=\mathbf{X}_{m, n}=\left[m \mathbf{K}_{\text {group }}-n \mathbf{K}_{\text {phase }}\right] s_{g p} \begin{aligned} & m= \pm 1, \pm 3, \ldots \\ & n= \pm 1, \pm 3, \ldots\end{aligned}$

2-Wave Source: Unifying Trajectory-Space-time (x, t) and Fourier-Per-space-time (ω, k)
$\psi_{+}=e^{i a}+e^{i b}=e^{i \frac{a+b}{2}}\left(e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}\right)=2 e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=2\left(\cos \frac{a+b}{2}+i \sin \frac{a+b}{2}\right) \cos \frac{a-b}{2}$

Suppose we are given two "mystery" sources"

†Schrodinger matter waves

Spacetime (x, t)

Per-spacetime (ω, k)

$0=\operatorname{Re} \psi_{+}=\operatorname{Re} e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=\cos \frac{a+b}{2} \cos \frac{a-b}{2}=\cos \left(\frac{k_{a}+k_{b}}{2} x-\frac{\omega_{a}+\omega_{b}}{2} t\right) \cos \left(\frac{k_{a}-k_{b}}{2} x-\frac{\omega_{a}-\omega_{b}}{2} t\right)$ $=\cos \left(k_{\text {phase }} x-\omega_{\text {phase }} t\right) \cos \left(k_{\text {group }} x-\omega_{\text {group }} t\right)$

Inverse matrix equation:
Space-time Rew-zeros $\mathbf{X}_{m, n}$ determined by:
$k_{\text {phase }} x-\omega_{\text {phase }} t=m(\pi / 2) \quad m= \pm 1, \pm 3, \ldots$
$k_{\text {group }} x-\omega_{\text {group }} t=n(\pi / 2) \quad n= \pm 1, \pm 3, \ldots$

$$
\left(\begin{array}{ll}
k_{\text {phase }} & -\omega_{\text {phase }} \\
k_{\text {group }} & -\omega_{\text {group }}
\end{array}\right)\binom{x}{t}=\binom{m}{n} \frac{\pi}{2}
$$

$$
\binom{x_{m, n}}{t_{m, n}}=\frac{\left(\begin{array}{ll}
\omega_{\text {group }} & -\omega_{\text {phase }} \\
k_{\text {group }} & -k_{\text {phase }}
\end{array}\right)}{\left|\omega_{\text {group }} k_{\text {phase }}-\omega_{\text {phase }} k_{\text {group }}\right|}\binom{m}{n} \frac{\pi}{2}
$$

... and space-time scale factor: $s_{g p}=\frac{\pi}{2\left|\mathbf{K}_{\text {group }} \times \mathbf{K}_{\text {phase }}\right|}=\frac{\pi}{2|1.5 \cdot 3.0-2.5 \cdot 1.0|}=\frac{\pi}{4}$
$\binom{x_{m, n}}{t_{m, n}}=\mathbf{X}_{m, n}=\left[m \mathbf{K}_{\text {group }}-n \mathbf{K}_{\text {phase }}\right] s_{g p}$

$$
\begin{aligned}
& m= \pm 1, \pm 3, \ldots \ldots \\
& n= \pm 1, \pm 3, \ldots
\end{aligned}
$$

2-Wave Source: Unifying Trajectory-Space-time (x, t) and Fourier-Per-space-time (ω, k)
$\psi_{+}=e^{i a}+e^{i b}=e^{i \frac{a+b}{2}}\left(e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}\right)=2 e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=2\left(\cos \frac{a+b}{2}+i \sin \frac{a+b}{2}\right) \cos \frac{a-b}{2}$

$0=\operatorname{Re} \psi_{+}=\operatorname{Re} e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=\cos \frac{a+b}{2} \cos \frac{a-b}{2}=\cos \left(\frac{k_{a}+k_{b}}{2} x-\frac{\omega_{a}+\omega_{b}}{2} t\right) \cos \left(\frac{k_{a}-k_{b}}{2} x-\frac{\omega_{a}-\omega_{b}}{2} t\right)$

$$
=\cos \left(k_{\text {phase }} x-\omega_{\text {phase }} t\right) \cos \left(k_{\text {group }} x-\omega_{\text {group }} t\right)
$$

Matrix equation:
Space-time Re ψ-zeros $\mathbf{X}_{m, n}$ determined by:

$$
\begin{array}{ll}
k_{\text {phase }} x-\omega_{\text {phase }} t=m(\pi / 2) & m= \pm 1, \pm 3, \ldots \\
k_{\text {group }} x-\omega_{\text {group }} t=n(\pi / 2) & n= \pm 1, \pm 3, \ldots
\end{array}
$$

$$
\left(\begin{array}{ll}
k_{\text {phase }} & -\omega_{\text {phase }} \\
k_{\text {group }} & -\omega_{\text {group }}
\end{array}\right)\binom{x}{t}=\binom{m}{n} \frac{\pi}{2}
$$

$$
\binom{x_{m, n}}{t_{m, n}}=\frac{\left(\begin{array}{ll}
\omega_{\text {group }} & -\omega_{\text {phase }} \\
k_{\text {group }} & -k_{\text {phase }}
\end{array}\right)}{\left|\omega_{\text {group }} k_{\text {phase }}-\omega_{\text {phase }} k_{\text {group }}\right|}\binom{m}{n} \frac{\pi}{2}
$$

$$
\ldots \text { and space-time scale factor: } s_{g p}=\frac{\pi}{2\left|\mathbf{K}_{\text {group }} \times \mathbf{K}_{\text {phase }}\right|}=\frac{\pi}{2|1.5 \cdot 3.0-2.5 \cdot 1.0|}=\frac{\pi}{4} \quad\binom{x_{m, n}}{t_{m, n}}=\mathbf{X}_{m, n}=\left[m \mathbf{K}_{\text {group }}-n \mathbf{K}_{\text {phase }}\right] s_{g p} \quad \begin{aligned}
& m= \pm 1, \pm 3, \ldots \\
& n= \pm 1, \pm 3, \ldots
\end{aligned}
$$

2-Source Case: Unifying Trajectory-Spacetime (x, t) and Fourier-Per-spacetime (ω, k)

Wave("coherent")Lattice (Bases': $K_{\text {group }}$ and $\boldsymbol{K}_{\text {phase }}$)
The wave-interference-zero paths given by
K-vectors $\left(\omega_{g}, k_{g}\right)$ and $\left(\omega_{p}, k_{p}\right)$.
2. Geometric construction of wave-zero grids

Continuous Wave (CW) grid based on $\mathbf{K}_{\text {phase }}=\left(\mathbf{K}_{a}+\mathbf{K}_{b}\right) / 2$ and $\mathbf{K}_{\text {group }}=\left(\mathbf{K}_{a}-\mathbf{K}_{b}\right) / 2$ vectors Pulse Wave (PW) grid based on primitive $\mathbf{K}_{a}=\mathbf{K}_{\text {phase }}+\mathbf{K}_{\text {group }}$ and $\mathbf{K}_{b}=\mathbf{K}_{\text {phase }}-\mathbf{K}_{\text {group }}$ vectors When this doesn't work (When you don'tneed it!)
"Waves are illusory!" Corpuscles rule!

2-Source Case: Unifying Trajectory-Spacetime (x, t) and Fourier-Per-spacetime (ω, k)

2-Wave Source: Unifying Trajectory-Space-time (x, t) and Fourier-Per-space-time (ω, k)

$$
\begin{aligned}
& \psi_{+}=e^{i a}+e^{i b}=e^{i \frac{a+b}{2}}\left(e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}\right)=2 e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=2\left(\cos \frac{a+b}{2}+i \sin \frac{a+b}{2}\right) \cos \frac{a-b}{2} \\
& \text { Suppose we are } \\
& \text { given two } \\
& \text { "mystery" sources" } \\
& \begin{aligned}
K_{2} & =\left(\omega_{2}, k_{2}\right) \\
\text { source } 2 & =(1,2) \\
\text { source } 4 \rightarrow K_{4} & =\left(\omega_{4}, k_{4}\right) \\
& =(4,4)
\end{aligned} \\
& \dagger \text { Schrodinger matter waves Distance } x \\
& 0=\operatorname{Re} \psi_{+}=\operatorname{Re} e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=\cos \frac{a+b}{2} \cos \frac{a-b}{2}=\cos \left(\frac{v_{a}+k_{b}}{2} x-\frac{\omega_{a}+\omega_{b}}{2} t\right) \cos \left(\frac{k_{a}-k_{b}}{2} x-\frac{\omega_{a}-\omega_{b}}{2} t\right) \\
& =\cos \left(k_{\text {phase }} x-\omega_{\text {phase }} t\right) \cos \left(k_{\text {group }} x-\omega_{\text {group }} t\right)
\end{aligned}
$$

2-Wave Source: Unifying Trajectory-Space-time (x, t) and Fourier-Per-space-time (ω, k)

$$
\begin{aligned}
& \psi_{+}=e^{i a}+e^{i b}=e^{i \frac{a+b}{2}}\left(e^{i \frac{a-b}{2}}+e^{-i \frac{a-b}{2}}\right)=2 e^{i \frac{a+b}{2}} \cos \frac{a-b}{2}=2\left(\cos \frac{a+b}{2}+i \sin \frac{a+b}{2}\right) \cos \frac{a-b}{2} \\
& \text { Suppose we are } \\
& \text { given two } \\
& \text { "mystery" sources" } \\
& \text { source } 2 \mathrm{~K}_{2}=\left(\omega_{2}, k_{2}\right) \\
& 0=\operatorname{Re} \psi_{+}=\operatorname{Re} e^{i \frac{a+b}{2}} \cos \frac{-b}{2}=\cos \frac{a+b}{2} \cos \frac{a-b}{2}=\cos \left(\frac{v_{a}+k_{b}}{2} x-\frac{\omega_{a}+\omega_{b}}{2} t\right) \cos \left(\frac{k_{a}-k_{b}}{2} x-\frac{\omega_{a}-\omega_{b}}{2} t\right) \\
& =\cos \left(k_{\text {phase }} x-\omega_{\text {phase }} t\right) \cos \left(k_{\text {group }} x-\omega_{\text {group }} t\right) \\
& \text { "Waves are illusory } \\
& \text { Corpuscles rule! } \\
& \text { Pa-tooey! } \\
& \text { Frequency } \omega \\
& \text { Per-spacetime (} \quad \text {, } k \text {) } \\
& \text { Wavevector } \kappa
\end{aligned}
$$

2. Geometric construction of wave-zero grids

Continuous Wave (CW) grid based on $\mathbf{K}_{\text {phase }}=\left(\mathbf{K}_{a}+\mathbf{K}_{b}\right) / 2$ and $\mathbf{K}_{\text {group }}=\left(\mathbf{K}_{a}-\mathbf{K}_{b}\right) / 2$ vectors Pulse Wave (PW) grid based on primitive $\mathbf{K}_{a}=\mathbf{K}_{\text {phase }}+\mathbf{K}_{\text {group }}$ and $\mathbf{K}_{b}=\mathbf{K}_{\text {phase }}-\mathbf{K}_{\text {group }}$ vectors When this doesn't work (When you don't need it')
"Waves are illusory!" Corpuscles rule!
Pa-tooey!
(a) Spacetime $(x, c t)$

(b) Per-spacetime (ω, ck)
...But, if you collide the beams Head-On...

What happens when the grid area $\mathbf{K}_{\text {group }} \times \mathbf{K}_{\text {phase }}$ is $Z E R O$:

$$
\boldsymbol{s}_{\text {gp }}=\frac{\pi}{2\left|\mathbf{K}_{\text {group }} \times \mathbf{K}_{\text {phase }}\right|}=\infty
$$

```
3. Beginning wave relativity
Dueling lasers make lab frame space-time grid (CW or PW)
Einstein PW Axioms versus Evenson CW Axioms (Occam at Work)
Only CW light clearly shows Doppler shift
Dueling lasers make lab frame space-time grid
```


Zeros of head-on CW sum gives (x,ct)-grid

Zeros of head-on CW sum gives (x,ct)-grid

- Optical wave coordinate manifolds and frames

Shining some light on light using complex phasor analysis

Old-fashioned meter-stick-clock frames
E. F.Taylor and J. A. Wheeler Spacetime Physics (Freeman San Francisco 1966)

1. The Geemery of Spucelima

New-fashioned laser clocks \& meter sticks
Complex Phasor Clocks : Tesla's AC "phasor"
 in time for positive ω
$300 T H z$ Laser plane wave $\langle x, t \mid k, \omega\rangle=\mathrm{Ae}^{i(k x-w t)}$

New-fashioned laser clocks \& meter sticks (conda) Dual views:

Space x
Single plane-wave meter-stick-clocks are too fast
(...But at least this view is constant) (can't catch'em)

Interfering wave pairs needed to make rest frame coordinates...

Newton's "Fits" in Optical Interference

Newton complained that light waves have "fits" (what we now know as wave interference or resonance.) Examples of interference are head-on collision of two Continuous Waves (2-CW) or two Pulse Waves (PW)

Newton's "Fits" in Optical Interference

Newton complained that light waves have "fits" (what we now know as wave interference or resonance.) Examples of interference are head-on collision of two Continuous Waves (2-CW) or two Pulse Waves (PW)

Pulse Wave (PW) sum compared with

- $P W$ waves are OFF (0) or ON (1)
- $P W$ sum is Boolean $\quad\left(0_{\mathrm{L}}, 0_{\mathrm{R}}\right),\left(0_{\mathrm{L}}, 1_{\mathrm{R}}\right)$, $\left(1_{\mathrm{L}}, 0_{\mathrm{R}}\right),\left(1_{\mathrm{L}}, 1_{\mathrm{R}}\right) . \quad \mathbf{L}+\mathbf{R}$
- $P W$ time peak-diamond paths are wysiwre. (What you see is what you expect!)
 EQUALS

Continuous Wave (CW) sum

- $C W$ waves range continously from -1 to +1
- $C W$ sum is more subtle and nuanced interference.
- CW time zero-square paths are subtle results of the half-sum \mathbb{P}-rule $\quad \mathbb{P}=\mathbf{R}+\mathbf{L}$ and the
half-difference \mathbb{G}-rule of phase \mathbb{P} and group \boldsymbol{G} zeros.

3. Beginning wave relativity

Dueling lasers make lab frame space-time grid (CW or PW)
Einstein PW Axioms versus Evenson CW Axioms (Occam at Work)
Only CW light clearly shows Doppler shift
Dueling lasers make lab frame space-time grid

Evenson CW Axiom ("All colors go c.") is only reasonable conclusion: Linear dispersion: $\omega=c k$

Linear dispersion means NO dispersion

Einstein PW is corollary of Evenson CW

wavenumber $c k / 2 \pi$
(inverse wavelength $1 / \lambda$)

Evenson CW Axiom ("All colors go c.") is only reasonable conclusion: Linear dispersion: $\omega=c k$

Linear dispersion means NO dispersion
 Einstein PW is corollary of Evenson CW

What if blue were to travel 0.001% slower than red from a galaxy 9 billion light years away? (.and show up 10^{5} years late)

That would mean Good-Bye Hubble Astronomy!
3. Beginning wave relativity

Dueling lasers make lab frame space-time grid (CW or PW)
Einstein PW Axioms versus Evenson CW Axioms (Occam at Work)
Einstein PW Axioms versus Evenson CW Axioms clearly shows Doppler shift
Dueling lasers make lab frame space-time grid

3. Beginning wave relativity

Dueling lasers make lab frame space-time grid (CW or PW)
Einstein PW Axioms versus Evenson CW Axioms (Occam at Work)
Only CW light clearly shows Doppler shift
Dueling lasers make lab frame space-time grid

Deriving Spacetime and per－spacetime coordinate geometry by：
（1）Evenson CW axiom＂All colors go c＂keeps \mathbf{K}_{A} and \mathbf{K}_{B} on their baselines．
（2）Time－Reversal axiom：$r=1 / b$
（3）Half－Sum Phase $\mathbf{P}=(\mathbf{R}+\mathbf{L}) / 2$ and Half－Difference Group $\mathbf{G}=(\mathbf{R}-\mathbf{L}) / 2$

LASER LAB FIRAME

AtomPer－Spacetime

ATOM FRAME vIEW OF LASER WAIES

$$
750 \mathrm{THz} \text { or } 400 \mathrm{~mm}
$$

600 Kite or 500 mm
500THE゙あ゙ 600nm
400THz or 75 ．$\omega^{\prime} 3$

Deriving Spacetime and per-spacetime coordinate geometry by:
(1) Evenson CW axiom"All colors go c" keeps \mathbf{K}_{A} and \mathbf{K}_{B} on their baselines.
(2) Time-Reversal axiom: $r=1 / b$
(3) Half-Sum Phase $\mathbf{P}=(\mathbf{R}+\mathbf{L}) / 2$ and Half-Difference Group $\mathbf{G}=(\mathbf{R}-\mathbf{L}) / 2$

600THz

LASER LAB FRAME
LaserPer-Spacetime

 ATOM FRAME vIEW of LASN NWENES AtomPer-Spacetime

(a) Laser "Baseball Diamond"

(b) Laser group and phase wavevectors (Per-space-time Cartesian lattice)

(c) Laser Coherent Wave (CW) paths (Space-time Cartesian grid)

(d) Laser Pulse Wave (PW) Paths (Space-time Diamond grid)

(a) Boosted Laser "Baseball Diamond"

(b) Boosted group and phase wavevectors

(d) Boosted PW Paths (Rectangular grid)

Laser lab views

atom speed $-u=-\frac{3}{5} c$

Atom views (sees lab going $+u=\frac{3}{5} c$)

 LASERR LABB FRAMME

ATOM FRAME VIEW of LASSER WAVIES
atom speed-u
LaserPer-Spacetime
$\omega_{\text {versus }}$ ck

AtomPer-Spacetime
ω^{\prime} versus $c k^{\prime}$

Euclidian Geometry for Per-spacetime Relativity

