
Geometry of Dual Quadratic Forms: Lagrange vs Hamilton
(Ch. 11 and Ch. 12 of Unit 1)

Introduction to dual matrix operator geometry
Review of dual IHO elliptic orbits (Lecture 7-8)

Construction by Phasor-pair projection
Construction by Kepler anomaly projection

Operator geometric sequences and eigenvectors
Rescaled description of matrix operator geometry

Vector calculus of tensor operation
Introduction to Lagrangian-Hamiltonian duality

Review of partial differential relations
Chain rule and order symmetry

Duality relations of Lagrangian and Hamiltonian ellipse
Introducing the 1st (partial      ) differential equations of mechanics
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See 
Lecture 7
pages 37 to 49

and 
Lecture 8
pages 7 to 15
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Step 1. Draw concentric
circles of radius a and b
and a radius OA at angleω t

Step 3. Draw horizontial line BR
from b-circle at ω t to line AX.
Intersection is orbit point R.

Step 2. Draw vertical line AX
from a-circle at ωt to x-axis

O
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B
R

abω t
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Step 4-N
Repeat
as often
as needed

b
a

Linear Harmonic
Force-Field
Orbits

Unit 1
Fig. 11.1

(top 2/3’s)

Kepler’s 
Mean Anomaly Line
(slope angle θ =ωt) 

Kepler’s 
Eccentric Anomaly Line

(slope is polar angle φ=atan[y/x]) See 
Lecture 8
pages 17 to 25
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Quadratic forms and tangent contact geometry of their ellipses

   

r •Q• r  = 1

x y( )•
1

a2
0

0 1

b2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

• x
y

⎛

⎝
⎜

⎞

⎠
⎟ = 1= x y( )•

x
a2

y
b2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

= x2

a2
+ y2

b2
 

A inverse matrix Q-1 generates an ellipse by p•Q -1•p=1 called inverse or dual ellipse:

   

p•Q−1•p        = 1

px py( )• a2 0

0 b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
•

px
py

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= 1= px py( )• a2 px

b2 py

⎛

⎝

⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
= a2 px

2 + b2 py
2  

A matrix Q that generates an ellipse by r•Q•r=1 is called positive-definite (if r•Q•r always >0)
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Quadratic forms and tangent contact geometry of their ellipses
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A matrix Q that generates an ellipse by r•Q•r=1 is called positive-definite (if r•Q•r always >0)
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Quadratic forms and tangent contact geometry of their ellipses
A matrix Q that generates an ellipse by r•Q•r=1 is called positive-definite (if r•Q•r always >0)
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A inverse matrix Q-1 generates an ellipse by p•Q -1•p=1 called inverse or dual ellipse:
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Defined
mapping
between
ellipses
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r(φ)

φ=ω t

ab

b-circle

a-circle

Original ellipse

r•Q•r = r•p = 1

Inverse ellipse

p•Q-1•p =p•r = 1

p(φ)

(a) Quadratic form ellipse and

Inverse quadratic form ellipse

 p = Q• r

  r = Q−1•p

Defined
mapping
between
ellipses

Q

Q-1

based on
Unit 1

Fig. 11.6 
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r•Q•r = r•p = 1

Inverse ellipse

p•Q-1•p =p•r = 1
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(a) Quadratic form ellipse and

Inverse quadratic form ellipse

Quadratic form r•Q•r =1 has mutual duality relations with inverse form  p•Q-1•p =1= p•r

 p = Q• r

  r = Q−1•p
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Unit 1

Fig. 11.6 

10Friday, December 21, 2012



r(φ)

φ=ω t

ab

b-circle

a-circle

Original ellipse

r•Q•r = r•p = 1

Inverse ellipse

p•Q-1•p =p•r = 1

p(φ)
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Quadratic form r•Q•r =1 has mutual duality relations with inverse form  p•Q-1•p =1= p•r
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Quadratic form r•Q•r =1 has mutual duality relations with inverse form  p•Q-1•p =1= p•r
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Quadratic form r•Q•r =1 has mutual duality relations with inverse form  p•Q-1•p =1= p•r
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Unit 1
Fig. 11.6 
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Start with 45° unit vector v x/y = x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

1/ 2

1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

based on
Fig. 11.7 
in Unit 1
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Diagonal R-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a /b = 2.

R i v x/y =
1/a 0
0 1/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x/a
y/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(Slope increases if a >b.)

 

Diagonal R−1-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b/a.

R−1 i v x/y = a 0
0 b

⎛
⎝⎜

⎞
⎠⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x ⋅a
y ⋅b

⎛

⎝
⎜

⎞

⎠
⎟

(Slope decreases if b< a.)

based on
Fig. 11.7 
in Unit 1
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Diagonal (R2=Q)-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2 /b2 = 4.

Q i v x/y =
1/a2 0

0 1/b2

⎛

⎝
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⎜
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⎠
⎟
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⎝
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⎞

⎠
⎟
⎟

(It increases if a >b.)

 

Diagonal (R−2=Q−1)-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b2 /a2=1/4.

Q−1 i v x/y = a2 0
0 b2
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⎜

⎞

⎠
⎟ =

x ⋅a2

y ⋅b2

⎛

⎝
⎜⎜
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⎠
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Diagonal R-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a /b = 2.

R i v x/y =
1/a 0
0 1/b
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⎠
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⎛

⎝
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⎠
⎟⎟

(It increases if a >b.)

 

Diagonal R−1-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b/a=1/2.

R−1 i v x/y = a 0
0 b

⎛
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⎠
⎟

based on
Fig. 11.7 
in Unit 1
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slope
1/1

slope
a/b

slope
b/a
slope
b2/a2

slope
a2/b2

slope
b3/a3

slope
a3/b3

 

Diagonal (R2=Q)-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2 /b2 = 4.

Q i v x/y =
1/a2 0

0 1/b2

⎛

⎝
⎜
⎜
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⎟
⎟
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⎛
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⎜
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⎠
⎟
⎟

(It increases if a >b.)

 

Diagonal R-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a /b = 2.

R i v x/y =
1/a 0
0 1/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x/a
y/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(It increases if a >b.)

Either process can go on forever... 
Diagonal (R2n=Qn )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2n /b2n = 4n.

Either process can go on forever... 
Diagonal (R−2n=Q−n )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b2n /a2n = 4−n.

based on
Fig. 11.7 
in Unit 1
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slope
b2/a2
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Diagonal (R2=Q)-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2 /b2 = 4.

Q i v x/y =
1/a2 0

0 1/b2

⎛
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⎜
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⎠
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⎛
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(It increases if a >b.)

 

Diagonal R-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a /b = 2.

R i v x/y =
1/a 0
0 1/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x/a
y/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(It increases if a >b.)

Either process can go on forever... 
Diagonal (R2n=Qn )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2n /b2n = 4n.

...Finally, the result approaches EIGENVECTOR y = 0
1

⎛
⎝⎜

⎞
⎠⎟

of ∞-slope which is "immune" to R , Q or Qn :
         R y = (1/b) y         Qn y = (1/b2 )n y

Either process can go on forever... 
Diagonal (R−2n=Q−n )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b2n /a2n = 4−n.

...Finally, the result approaches EIGENVECTOR x = 1
0

⎛
⎝⎜

⎞
⎠⎟

of 0-slope which is "immune" to R−1  , Q−1  or Q−n :
         R−1 x = (a) x         Q−n x = (a2 )n x

EIGENVECTOR
             y

EIGENVECTOR
             x
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Diagonal (R2=Q)-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2 /b2 = 4.
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1/a2 0

0 1/b2
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⎜
⎜

⎞

⎠
⎟
⎟

(It increases if a >b.)

 

Diagonal R-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a /b = 2.

R i v x/y =
1/a 0
0 1/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

x/a
y/b

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(It increases if a >b.)

Either process can go on forever... 
Diagonal (R2n=Qn )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor a2n /b2n = 4n.

...Finally, the result approaches EIGENVECTOR y = 0
1

⎛
⎝⎜

⎞
⎠⎟

of ∞-slope which is "immune" to R , Q or Qn :
         R y = (1/b) y         Qn y = (1/b2 )n y

Either process can go on forever... 
Diagonal (R−2n=Q−n )-matrix acts on vector v x/y . 
Resulting vector has slope changed by factor b2n /a2n = 4−n.

...Finally, the result approaches EIGENVECTOR x = 1
0

⎛
⎝⎜

⎞
⎠⎟

of 0-slope which is "immune" to R−1  , Q−1  or Q−n :
         R−1 x = (a) x         Q−n x = (a2 )n x

EIGENVECTOR
             y

EIGENVECTOR
             x

Eigensolution
RelationsEigenvalues Eigenvalues
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Introduction to dual matrix operator geometry
Review of dual IHO elliptic orbits (Lecture 7-8)

Construction by Phasor-pair projection
Construction by Kepler anomaly projection

Operator geometric sequences and eigenvectors
Rescaled description of matrix operator geometry

Vector calculus of tensor operation
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Start with 45° unit vector v x/y = x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

1/ 2

1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

Need to rescale by geometric mean √(a·b) 
if r•Q•r and p•Q-1•p ellipses are to be same size

 

riQir − ellipse
r2x
a2

+
r2y
b2

= 1

(a = 2, b = 1)

 

piQ−1ip − ellipse
a2p2x + b

2p2y = 1
(a = 2, b = 1)
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Start with 45° "unit" vector v x/y = x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

1/2
1 /2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

. 

Need to rescale by geometric mean √(a·b)   (so a·b=1) 
if r•Q•r and p•Q-1•p ellipses are to be same size

 

riQir − ellipse
r2x
a2

+
r2y
b2

= 1

(a = 2, b = 1/ 2)

 

piQ−1ip − ellipse
a2p2x + b

2p2y = 1

(a = 2, b = 1/ 2)

1/ 2

2

1/ 2

2
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Start with 45° unit vector v x/y = x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

1/ 2

1 / 2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

. 

...or rescale r•Q•r and p•Q-1•p ellipses by √(a·b)=√2 to different size

 

riQir − ellipse
r2x
a2

+
r2y
b2

= 1

(a = 2, b = 1)

 

piQ−1ip − ellipse
a2p2x + b

2p2y = 1
(a = 2, b = 1)

1/a = 1/ 2

2

b = 1

a = 2

This is a clearer choice. It separates r and p into different spaces 

1/b = 1

25Friday, December 21, 2012



slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

p(φ1) = Q i r(φ−1)

= 1/ a2 0

0 1/ b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

acosφ0
bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

Action of matrix Q that generates an r-ellipse (r•Q• r =1)
on a single r-vector r(φ-1)...

acos!0

bsin!0

r(φ-1)φ0

φ-1

a

b

based on
Fig. 11.7 
in Unit 1
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slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

p(φ1) = Q i r(φ−1)

= 1/ a2 0

0 1/ b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

acosφ0
bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
a

cosφ0

1
b

sinφ0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
2

1
2

1
1

1
2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Action of matrix Q that generates an r-ellipse (r•Q•r =1)
on a single r-vector r(φ-1)... is to rotate it to a new vector p on the  p-ellipse (p•Q-1• p =1),
 that is,  Q•r(φ-1) = p(φ+1)

based on
Fig. 11.7 
in Unit 1
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slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

p(φ1) = Q i r(φ−1)

= 1/ a2 0

0 1/ b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

acosφ0
bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
a

cosφ0

1
b

sinφ0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
2

1
2

1
1

1
2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Action of matrix Q that generates an r-ellipse (r•Q•r =1)
on a single r-vector r(φ-1)... is to rotate it to a new vector p on the  p-ellipse (p•Q-1• p =1),
 that is,  Q•r(φ-1) = p(φ+1)

Key points
of

matrix
geometry:

Matrix Q maps any
vector r to a new 
vector p normal to 
the tangent    to its 
r•Q•r-ellipse. 

r
p

  r

  r

based on
Fig. 11.7 
in Unit 1
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slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

p(φ1) = Q i r(φ−1)

= 1/ a2 0

0 1/ b2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

acosφ0
bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
a

cosφ0

1
b

sinφ0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=

1
2

1
2

1
1

1
2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Action of matrix Q that generates an r-ellipse (r•Q•r =1)
on a single r-vector r(φ-1)... is to rotate it to a new vector p on the  p-ellipse (p•Q-1• p =1),
 that is,  Q•r(φ-1) = p(φ+1)

Key points
of

matrix
geometry:

Matrix Q maps any
vector r to a new 
vector p normal to 
the tangent    to its 
r•Q•r-ellipse. 

r
p

  r

  r

Matrix Q-1 maps p
back to r that is 
normal to the 
tangent    to its
p• Q-1• p-ellipse. 

  p

  p

  p

based on
Fig. 11.7 
in Unit 1
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Introduction to dual matrix operator geometry
Review of dual IHO elliptic orbits (Lecture 7-8)

Construction by Phasor-pair projection
Construction by Kepler anomaly projection

Operator geometric sequences and eigenvectors
Rescaled description of matrix operator geometry

Vector calculus of tensor operation
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Derive matrix “normal-to-ellipse”geometry by vector calculus:
Let matrix Q =              

define the ellipse 1=r•Q•r =

A B
B D

⎛
⎝⎜

⎞
⎠⎟

 

x y( ) i A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ = x y( ) i A ⋅ x + B ⋅ y

B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟ = A ⋅ x2 + 2B ⋅ xy + D ⋅ y2 = 1

r
p

  r
rp

  r

B = 0 B ≠ 0
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Derive matrix “normal-to-ellipse”geometry by vector calculus:
Let matrix Q =              

define the ellipse 1=r•Q•r =

Compare operation by Q on vector r       with      vector derivative  or gradient of r•Q•r 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

 

x y( ) i A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ = x y( ) i A ⋅ x + B ⋅ y

B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟ = A ⋅ x2 + 2B ⋅ xy + D ⋅ y2 = 1

r
p

  r
rp

  r

 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

A ⋅ x + B ⋅ y
B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟

 

∂
∂r
r iQ i r( ) = ∇ r iQ i r( )

∂
∂x
∂
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

A ⋅ x2 + 2B ⋅ xy + D ⋅ y2( ) = 2A ⋅ x + 2B ⋅ y
2B ⋅ x + 2D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟

B = 0 B ≠ 0
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Derive matrix “normal-to-ellipse”geometry by vector calculus:
Let matrix Q =              

define the ellipse 1=r•Q•r =

Compare operation by Q on vector r       with      vector derivative  or gradient of r•Q•r 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

 

x y( ) i A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ = x y( ) i A ⋅ x + B ⋅ y

B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟ = A ⋅ x2 + 2B ⋅ xy + D ⋅ y2 = 1

r
p

  r
rp

  r

Very simple result:

 

A B
B D

⎛
⎝⎜

⎞
⎠⎟

i
x
y

⎛

⎝
⎜

⎞

⎠
⎟ =

A ⋅ x + B ⋅ y
B ⋅ x + D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟

 

∂
∂r
r iQ i r( ) = ∇ r iQ i r( )

∂
∂x
∂
∂y

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

A ⋅ x2 + 2B ⋅ xy + D ⋅ y2( ) = 2A ⋅ x + 2B ⋅ y
2B ⋅ x + 2D ⋅ y

⎛

⎝
⎜

⎞

⎠
⎟

 

∂
∂r

r iQ i r
2

⎛
⎝⎜

⎞
⎠⎟ = ∇ r iQ i r

2
⎛
⎝⎜

⎞
⎠⎟ =Q i r

B = 0 B ≠ 0
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slope
b/a=1/2

r•Q•r-ellipse
rx
2/a2+ry

2/b2=1
(a = 2.0 , b = =1.0 )

p•Q-1•p-ellipse
a2px

2+b2py
2=1

(a = 2.0 , b = =1.0 )

b=1.0

    

u = Q i r(φ−1) = R i r(φ−1)

= 1/ a 0
0 1/ b

⎛

⎝⎜
⎞

⎠⎟
acosφ0
bsinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
a

acosφ0

1
b

bsinφ0

⎛

⎝

⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟

=
cosφ0
sinφ0

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

=

1
2

1
2

⎛

⎝

⎜
⎜
⎜
⎜⎜

⎞

⎠

⎟
⎟
⎟
⎟⎟

Action of “sqrt-”matrix R=√Q                          (R generates another ellipse r•R•r =1 not shown)
on a single r-vector r(φ-1)... is to rotate it to  u-circle (u•u =1), that is,  R•r(φ-1) = u =(const.)r(φ0)

a unit vector
on  unit-circle

u

based on
Fig. 11.7 
in Unit 1
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slope
b2/a2

As before, these processes may be 
continued indefinitely.

based on
Fig. 11.7 
in Unit 1
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slope
b2/a2

...And includes a cool way to 
construct those tangents             ...           etc. 
(see exercises!)

 r(φ−2 )

 r(φ−2 )

 p(φ1)

 p(φ1)

based on
Fig. 11.7 
in Unit 1
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Introduction to Lagrangian-Hamiltonian duality
Review of partial differential relations

Chain rule and order symmetry
Duality relations of Lagrangian and Hamiltonian ellipse
Introducing the 1st (partial      ) differential equations of mechanics∂?

∂?
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x-ax
is

y-axis

z=f(x,y)
axis

( x0 , y0 )

( x1 , y0 )=
( x0+Δx , y0 )

( x2 , y0 )
=( x0+2Δx , y0 )

( x0 , y1 )=
( x0 , y0+Δy )

( x0 , y2 )=
( x0 , y0+2Δy )

( x1 , y1 )

( x1 , y2 )

( x2 , y2 )
( x2 , y1 )

z0=f( x0 , y0 )

ΔxΔy

Begin with a function z=f(z)
of 2-dimensions (x,y) and plotted
in 3-D (Then approximate by cells and tiles.)

(Typical Beaver Lake boathouse)
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x-ax
is

y-axis

z=f(x,y)
axis

( x0 , y0 )

( x1 , y0 )=
( x0+Δx , y0 )

( x2 , y0 )
=( x0+2Δx , y0 )

( x0 , y1 )=
( x0 , y0+Δy )

( x0 , y2 )=
( x0 , y0+2Δy )

( x1 , y1 )

( x1 , y2 )

( x2 , y2 )
( x2 , y1 )

z0=f( x0 , y0 )

x-ax
is

y-axis

z=f(x,y)
axis

( x0 , y0 )

( x1 , y0 )=
( x0+Δx , y0 )

( x2 , y0 )
=( x0+2Δx , y0 )

( x0 , y1 )=
( x0 , y0+Δy )

( x0 , y2 )=
( x0 , y0+2Δy )

( x1 , y1 )

( x1 , y2 )

( x2 , y2 )
( x2 , y1 )

z0=f( x0 , y0 )

slope: ∂ f
∂x

x0, y0( )

f (x1, y0 ) = f (x0, y0 )+
∂ f
∂x

x0, y0( )Δx

ΔxΔy

Begin with a function z=f(z)
of 2-dimensions (x,y) and plotted
in 3-D (Then approximate by cells and tiles.)
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x-ax
is

y-axis

z=f(x,y)
axis

( x0 , y0 )

( x1 , y0 )=
( x0+Δx , y0 )

( x2 , y0 )
=( x0+2Δx , y0 )

( x0 , y1 )=
( x0 , y0+Δy )

( x0 , y2 )=
( x0 , y0+2Δy )

( x1 , y1 )

( x1 , y2 )

( x2 , y2 )
( x2 , y1 )

z0=f( x0 , y0 )

slope: ∂ f
∂x

x0, y0( )

slope: ∂ f
∂y

x0, y0( )

f (x1, y0 ) = f (x0, y0 )+
∂ f
∂x

x0, y0( )Δx

f (x0, y1) = f (x0, y0 )+
∂ f
∂y

x0, y0( )Δy

ΔxΔy

Begin with a function z=f(z)
of 2-dimensions (x,y) and plotted
in 3-D (Then approximate by cells and tiles.)
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x-ax
is

y-axis

z=f(x,y)
axis

( x0 , y0 )

( x1 , y0 )=
( x0+Δx , y0 )

( x2 , y0 )
=( x0+2Δx , y0 )

( x0 , y1 )=
( x0 , y0+Δy )

( x0 , y2 )=
( x0 , y0+2Δy )

( x1 , y1 )

( x1 , y2 )

( x2 , y2 )
( x2 , y1 )

z0=f( x0 , y0 )

slope: ∂ f
∂x

x0, y0( )

slope: ∂ f
∂y

x0, y0( )

f (x1, y0 ) = f (x0, y0 )+
∂ f
∂x

x0, y0( )Δx

f (x0, y1) = f (x0, y0 )+
∂ f
∂y

x0, y0( )Δy

ΔxΔy

slope: ∂ f
∂y

x1, y0( ) = ∂ f
∂y

x0, y0( ) + ∂
∂x

∂ f
∂y

x0, y0( )Δx

Begin with a function z=f(z)
of 2-dimensions (x,y) and plotted
in 3-D (Then approximate by cells and tiles.)
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x-ax
is

y-axis

z=f(x,y)
axis

( x0 , y0 )

( x1 , y0 )=
( x0+Δx , y0 )

( x2 , y0 )
=( x0+2Δx , y0 )

( x0 , y1 )=
( x0 , y0+Δy )

( x0 , y2 )=
( x0 , y0+2Δy )

( x1 , y1 )

( x1 , y2 )

( x2 , y2 )
( x2 , y1 )

z0=f( x0 , y0 )

slope: ∂ f
∂x

x0, y0( )

slope: ∂ f
∂y

x0, y0( )

f (x1, y0 ) = f (x0, y0 )+
∂ f
∂x

x0, y0( )Δx

f (x0, y1) = f (x0, y0 )+
∂ f
∂y

x0, y0( )Δy

ΔxΔy

slope: ∂ f
∂x

x0, y1( ) = ∂ f
∂x

x0, y0( ) + ∂
∂y

∂ f
∂x

x0, y0( )Δy

slope: ∂ f
∂y

x1, y0( ) = ∂ f
∂y

x0, y0( ) + ∂
∂x

∂ f
∂y

x0, y0( )Δx

Begin with a function z=f(z)
of 2-dimensions (x,y) and plotted
in 3-D (Then approximate by cells and tiles.)
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x-ax
is

y-axis

z=f(x,y)
axis

( x0 , y0 )

( x1 , y0 )=
( x0+Δx , y0 )

( x2 , y0 )
=( x0+2Δx , y0 )

( x0 , y1 )=
( x0 , y0+Δy )

( x0 , y2 )=
( x0 , y0+2Δy )

( x1 , y1 )

( x1 , y2 )

( x2 , y2 )
( x2 , y1 )

z0=f( x0 , y0 )

slope: ∂ f
∂x

x0, y0( )

slope: ∂ f
∂y

x0, y0( )

f (x1, y0 ) = f (x0, y0 )+
∂ f
∂x

x0, y0( )Δx

f (x0, y1) = f (x0, y0 )+
∂ f
∂y

x0, y0( )Δy

ΔxΔy

slope: ∂ f
∂x

x0, y1( ) = ∂ f
∂x

x0, y0( ) + ∂
∂y

∂ f
∂x

x0, y0( )Δy

slope: ∂ f
∂y

x1, y0( ) = ∂ f
∂y

x0, y0( ) + ∂
∂x

∂ f
∂y

x0, y0( )Δx
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∂x
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= f (x0, y0 )+ ∂ f
∂y

x0, y0( )Δy + ∂ f
∂x

x0, y0( ) + ∂
∂y

∂ f
∂x

x0, y0( )Δy⎛
⎝⎜

⎞
⎠⎟
Δx
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∂y

∂ f
∂x

x0, y0( )ΔyΔx

45Friday, December 21, 2012



x-ax
is

y-axis

z=f(x,y)
axis

( x0 , y0 )

( x1 , y0 )=
( x0+Δx , y0 )

( x2 , y0 )
=( x0+2Δx , y0 )

( x0 , y1 )=
( x0 , y0+Δy )

( x0 , y2 )=
( x0 , y0+2Δy )

( x1 , y1 )

( x1 , y2 )

( x2 , y2 )
( x2 , y1 )

z0=f( x0 , y0 )

slope: ∂ f
∂x

x0, y0( )

slope: ∂ f
∂y

x0, y0( )

f (x1, y0 ) = f (x0, y0 )+
∂ f
∂x

x0, y0( )Δx

f (x0, y1) = f (x0, y0 )+
∂ f
∂y

x0, y0( )Δy

ΔxΔy

slope: ∂ f
∂x

x0, y1( ) = ∂ f
∂x

x0, y0( ) + ∂
∂y

∂ f
∂x

x0, y0( )Δy

slope: ∂ f
∂y

x1, y0( ) = ∂ f
∂y

x0, y0( ) + ∂
∂x

∂ f
∂y

x0, y0( )Δx

f (x1, y1) = f (x0, y1)             +             ∂ f
∂x

x0, y1( )Δx

= f (x0, y0 )+ ∂ f
∂y

x0, y0( )Δy + ∂ f
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⎠⎟
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x0, y0( )Δy + ∂ f
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∂y
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⎝⎜

⎞
⎠⎟
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= f (x0, y0 )+ ∂ f
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x0, y0( )Δy + ∂
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∂y

x0, y0( )ΔxΔy
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What the geometry indicates....(Two important results)

f (x1, y1) = f (x0, y0 )+ ∂ f
∂x

x0, y0( )Δx + ∂ f
∂y

x0, y0( )Δy + ∂
∂y

∂ f
∂x

x0, y0( )ΔxΔy

           = f (x0, y0 )+ ∂ f
∂y

x0, y0( )Δy + ∂ f
∂x

x0, y0( )Δx + ∂
∂x

∂ f
∂y

x0, y0( )ΔyΔx
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What the geometry indicates....(Two important results)

f (x1, y1) = f (x0, y0 )+ ∂ f
∂x

x0, y0( )Δx + ∂ f
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x0, y0( )Δy + ∂
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x0, y0( )Δy + ∂ f
∂x

x0, y0( )Δx + ∂
∂x

∂ f
∂y

x0, y0( )ΔyΔx

1. Chain rules

 

f (x1, y1)− f (x0, y0 )[ ] = df = ∂ f
∂x

x0, y0( )dx + ∂ f
∂y

x0, y0( )dy...(keep 1st−order terms only!)

                                  df
dt

= ∂ f
∂x

x0, y0( )dx
dt

+ ∂ f
∂y

x0, y0( )dy
dt

                                  f =          ∂ f
∂x
x        +       ∂ f

∂y
y        (shorthand notation)
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                                  df
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+ ∂ f
∂y

x0, y0( )dy
dt

                                  f =          ∂ f
∂x
x        +       ∂ f

∂y
y        (shorthand notation)

2. Symmetry of partial deriv. ordering
∂
∂y

∂ f
∂x

= ∂
∂x

∂ f
∂y

   or:  ∂2 f
∂y∂x

= ∂2 f
∂x∂y

  or:   ∂y∂x f = ∂x∂y f   

                                                     (shorthand notation)

( pay attention to the 2
nd
−order terms, too !)

 =  ∂x f x +  ∂y f y  
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Let :


∇ = ∂x ∂y( )     so :


∇f idr = ∂x f ∂y f( ) i dx

dy
⎛

⎝
⎜

⎞

⎠
⎟ = ∂x f dx + ∂y f dy = df
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Three ways to express energy:     Consider kinetic energy (KE) first

1. Lagrangian is explicit function of velocity: 

 

L(vk…) =2
1 (m1v1

2 +m2v2
2 +…) = L(v...) = 2

1viMiv + ...=2
1 v1 v2( ) m1 0

0 m2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

v1
v2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+ ...

2. “Estrangian” is explicit function of R-rescaled velocity:
                                                            or: “speedinum” V

 

E(Vk…) =2
1 (V1

2 +V2
2 +…) = E(V…) = 2

1Vi1iV + ... = 2
1 V1 V2( ) 1 0

0 1
⎛
⎝⎜

⎞
⎠⎟

V1
V2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+ ...

 

V = R i v    or:    
V1

V2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

m1 0

0 m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

v1

v2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

v  =
v1

v2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

3. Hamiltonian is explicit function of M=R2-rescaled velocity:
                                                              or: momentum p   

 

H (pk…) = 2
1( p1

2

m1

+ p2
2

m2

+…) = H (p...) = 2
1piM−1ip + ... = 2

1 p1 p2( ) 1/m1 0
0 1 /m2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

p1
p2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
+ ...

 

p =M i v   or: 
p1

p2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

m1 0
0 m2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

v1

v2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
=

m1v1

m2v2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

(or l’Estrangian
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(a) Lagrangian L = L(v1,v2)

v1

v2
(b) Estrangian E = E(V1,V2)

V1=√m1v1

(c) Hamiltonian H = H(p1,p2)

p1=m1v1

p2=m2v2

V2=√m2v2

COM Bisector
slope = 1/1

Collision line and
COM tangent slope
= -m1/m2 =-16

Collision line and
COM tangent slope
=-√m1/√m2=-4

COM Bisector slope
= √m2/√m1 =1/4

Collision line and
COM tangent slope

= -1/1

COM Bisector slope
= m2/m1 =1/16

slope
√m1
√m2

=4

slope=1

The R and Q matrix transformations are like the mechanics rescaling matrices √M and M:
Like Q=R2:                               Like √Q=R:                                 Like Q-1=R-2:

M =
m1 0
0 m2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= R2 M =

m1 0

0 m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= R M−1 =

1/m1 0
0 1 /m2

⎛

⎝
⎜⎜

⎞

⎠
⎟⎟
= R−2

Unit 1
Fig. 12.1 
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Introducing the (partial  ) differential equations of mechanics
Starts out with simple demands for explicit-dependence, “loyalty” or “fealty to the colors” 
 

∂L
∂pk

≡ 0 ≡ ∂E
∂pk

∂?
∂?

∂H
∂vk

≡ 0 ≡ ∂E
∂vk

∂L
∂Vk

≡ 0 ≡ ∂H
∂Vk

Lagrangian and Estrangian 
have no explicit dependence 
on momentum p

Hamiltonian and Estrangian 
have no explicit dependence 
on velocity v

Lagrangian and Hamiltonian 
have no explicit dependence 
on speedinum V
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∂?
∂?

∂H
∂vk

≡ 0 ≡ ∂E
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∂L
∂Vk

≡ 0 ≡ ∂H
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Lagrangian and Estrangian 
have no explicit dependence 
on momentum p

Hamiltonian and Estrangian 
have no explicit dependence 
on velocity v

Lagrangian and Hamiltonian 
have no explicit dependence 
on speedinum V

Such non-dependencies hold in spite of “under-the-table” matrix and partial-differential connections 

 

∇vL = ∂L
∂v

= ∂
∂v
viMiv
2

=M iv= p

  

∂L
∂v1

∂L
∂v2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
m1 0

0 m2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

v1

v2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

p1

p2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

 

∇ pH = v = ∂H
∂p

= ∂
∂p
piM−1ip
2

=M−1ip = v

  

∂H
∂p1

∂H
∂p2

⎛

⎝

⎜
⎜
⎜
⎜
⎜

⎞

⎠

⎟
⎟
⎟
⎟
⎟

=
m1
−1 0

0 m2
−1

⎛

⎝

⎜
⎜

⎞

⎠

⎟
⎟

p1

p2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

v1

v2

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
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Introducing the (partial  ) differential equations of mechanics
Starts out with simple demands for explicit-dependence, “loyalty” or “fealty to the colors” 
 

∂L
∂pk

≡ 0 ≡ ∂E
∂pk

∂?
∂?

∂H
∂vk

≡ 0 ≡ ∂E
∂vk

∂L
∂Vk

≡ 0 ≡ ∂H
∂Vk

Lagrangian and Estrangian 
have no explicit dependence 
on momentum p

Hamiltonian and Estrangian 
have no explicit dependence 
on velocity v

Lagrangian and Hamiltonian 
have no explicit dependence 
on speedinum V

Such non-dependencies hold in spite of “under-the-table” matrix and partial-differential connections 

 

∇vL = ∂L
∂v

= ∂
∂v
viMiv
2

=M iv= p  

∇ pH = v = ∂H
∂p

= ∂
∂p
piM−1ip
2

=M−1ip = v

(Forget Estrangian for now)

Lagrange’s 1st equation(s)                  Hamilton’s 1st equation(s)

   

∂L
∂vk

= pk      or:       ∂L
∂v

= p
   

∂H
∂pk

= vk      or:       ∂H
∂p

= v
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p2=m2v2

p1
=m1v1

Hamiltonian plot
H(p)=const.=p•M-1•p/2(b)Lagrangian plot

L(v)=const.=v•M•v/2

v2=p2 /m2

L=const = E

v1=
p1 /m1

(a)

v v = ∇∇pH
=M-1•p

p = ∇∇vL
=M•v

p

Lagrangian tangent at velocity v
is normal to momentum p

Hamiltonian tangent at momentum p
is normal to velocity v

(c) Overlapping plots
v

p

v

p

p

v (d) Less mass

(e) More mass

H=const = E

L=const = E

H=const = E

Unit 1
Fig. 12.2 
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