Lecture 9 Revised 12.21.2012 9.18.2012

Geometry of Dual Quadratic Forms: Lagrange vs Hamilton (Ch. 11 and Ch. 12 of Unit 1)

Introduction to dual matrix operator geometry

Review of dual IHO elliptic orbits (Lecture 7-8)

Construction by Phasor-pair projection

Construction by Kepler anomaly projection

Operator geometric sequences and eigenvectors

Rescaled description of matrix operator geometry

Vector calculus of tensor operation

Introduction to Lagrangian-Hamiltonian duality

Review of partial differential relations

Chain rule and order symmetry

Duality relations of Lagrangian and Hamiltonian ellipse

Introducing the 1^{st} (partial $\frac{\partial ?}{\partial ?}$) differential equations of mechanics

Introduction to dual matrix operator geometry

Review of dual IHO elliptic orbits (Lecture 7-8)

Construction by Phasor-pair projection

Construction by Kepler anomaly projection

Operator geometric sequences and eigenvectors

Rescaled description of matrix operator geometry

Vector calculus of tensor operation

Introduction to dual matrix operator geometry

Review of dual IHO elliptic orbits (Lecture 7-8)

Construction by Phasor-pair projection

Construction by Kepler anomaly projection

Operator geometric sequences and eigenvectors

Rescaled description of matrix operator geometry

Vector calculus of tensor operation

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ is called positive-definite (if $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}$ always > 0)

$$\begin{pmatrix} x & y \end{pmatrix} \bullet \begin{pmatrix} \frac{1}{a^2} & 0 \\ 0 & \frac{1}{b^2} \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = 1 = \begin{pmatrix} x & y \end{pmatrix} \bullet \begin{pmatrix} \frac{x}{a^2} \\ \frac{y}{b^2} \end{pmatrix} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ called inverse or dual ellipse:

$$\mathbf{p} \bullet \mathbf{Q}^{-1} \bullet \mathbf{p} = 1$$

$$\left(\begin{array}{ccc} p_x & p_y \\ 0 & b^2 \end{array} \right) \bullet \left(\begin{array}{ccc} a^2 & 0 \\ p_y \end{array} \right) = 1 = \left(\begin{array}{ccc} p_x & p_y \\ p_y \end{array} \right) \bullet \left(\begin{array}{ccc} a^2 p_x \\ b^2 p_y \end{array} \right) = a^2 p_x^2 + b^2 p_y^2$$

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ is called positive-definite (if $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}$ always > 0)

$$\begin{pmatrix} x & y \end{pmatrix} \bullet \begin{pmatrix} \frac{1}{a^2} & 0 \\ 0 & \frac{1}{b^2} \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = 1 = \begin{pmatrix} x & y \end{pmatrix} \bullet \begin{pmatrix} \frac{x}{a^2} \\ \frac{y}{b^2} \end{pmatrix} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ called inverse or dual ellipse:

$$\begin{pmatrix} p_x & p_y \end{pmatrix} \bullet \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix} \bullet \begin{pmatrix} p_x \\ p_y \end{pmatrix} = 1 = \begin{pmatrix} p_x & p_y \\ p_y \end{pmatrix} \bullet \begin{pmatrix} a^2 p_x \\ b^2 p_y \end{pmatrix} = a^2 p_x^2 + b^2 p_y^2$$

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ is called positive-definite (if $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}$ always > 0)

$$\begin{pmatrix} x & y \end{pmatrix} \bullet \begin{pmatrix} \frac{1}{a^2} & 0 \\ 0 & \frac{1}{b^2} \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = 1 = \begin{pmatrix} x & y \end{pmatrix} \bullet \begin{pmatrix} \frac{x}{a^2} \\ \frac{y}{b^2} \end{pmatrix} = \frac{x^2}{a^2} + \frac{y^2}{b^2}$$
Defined mapping between ellipses

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p} = 1$ called inverse or dual ellipse:

$$\begin{pmatrix} p_x & p_y \end{pmatrix} \bullet \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix} \bullet \begin{pmatrix} p_x \\ p_y \end{pmatrix} = 1 = \begin{pmatrix} p_x & p_y \\ p_y \end{pmatrix} \bullet \begin{pmatrix} a^2 p_x \\ b^2 p_y \end{pmatrix} = a^2 p_x^2 + b^2 p_y^2$$

based on Unit 1 Fig. 11.6

based on Unit 1 Fig. 11.6

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ has mutual duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p} = 1 = \mathbf{p} \cdot \mathbf{r}$

based on Unit 1 Fig. 11.6

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ has mutual duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p} = 1 = \mathbf{p} \cdot \mathbf{r}$

$$\mathbf{p} = \mathbf{Q} \cdot \mathbf{r} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix} = \begin{pmatrix} (1/a)\cos\phi \\ (1/b)\sin\phi \end{pmatrix} \text{ where: } \begin{cases} x = r_x = a\cos\phi = a\cos\omega t \\ y = r_y = b\sin\phi = b\sin\omega t \end{cases} \text{ so: } \mathbf{p} \cdot \mathbf{r} = 1$$

(b) Ellipse tangents

based on Unit 1 Fig. 11.6

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ has mutual duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p} = 1 = \mathbf{p} \cdot \mathbf{r}$

$$\mathbf{p} = \mathbf{Q} \cdot \mathbf{r} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix} = \begin{pmatrix} (1/a)\cos\phi \\ (1/b)\sin\phi \end{pmatrix} \text{ where: } \begin{cases} x = r_x = a\cos\phi = a\cos\omega t \\ y = r_y = b\sin\phi = b\sin\omega t \end{cases} \text{ so: } \mathbf{p} \cdot \mathbf{r} = 1$$

(b) Ellipse tangents

based on Unit 1 Fig. 11.6

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ has mutual duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p} = 1 = \mathbf{p} \cdot \mathbf{r}$

$$\mathbf{p} = \mathbf{Q} \cdot \mathbf{r} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix} = \begin{pmatrix} (1/a)\cos\phi \\ (1/b)\sin\phi \end{pmatrix} \text{ where: } \begin{cases} x = r_x = a\cos\phi = a\cos\omega t \\ y = r_y = b\sin\phi = b\sin\omega t \end{cases} \text{ so: } \mathbf{p} \cdot \mathbf{r} = 1$$

 ${f p}$ is perpendicular to velocity ${f v}={f \dot r}$, a mutual orthogonality

$$\begin{vmatrix}
\dot{\mathbf{r}} \bullet \mathbf{p} = 0 \\
\dot{\mathbf{r}}_{x} & \dot{r}_{y}
\end{vmatrix} \bullet \begin{pmatrix}
p_{x} \\
p_{y}
\end{pmatrix} = \begin{pmatrix}
-a\sin\phi & b\cos\phi
\end{pmatrix} \bullet \begin{pmatrix}
(1/a)\cos\phi \\
(1/b)\sin\phi
\end{pmatrix}$$
where:
$$\begin{vmatrix}
\dot{r}_{x} = -a\sin\phi \\
\dot{r}_{y} = b\cos\phi$$
and:
$$\begin{aligned}
p_{x} = (1/a)\cos\phi \\
p_{y} = (1/b)\sin\phi
\end{aligned}$$

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = 1$ has mutual duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p} = 1$

mutual projection

$$\mathbf{p} = \mathbf{Q} \cdot \mathbf{r} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \bullet \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix} = \begin{pmatrix} (1/a)\cos\phi \\ (1/b)\sin\phi \end{pmatrix} \text{ where: } \begin{cases} x = r_x = a\cos\phi = a\cos\omega t \\ y = r_y = b\sin\omega t \end{cases}$$

so: $\mathbf{p} \cdot \mathbf{r} = 1$

 ${\bf p}$ is perpendicular to velocity ${\bf v}={\bf \dot r}$, a mutual orthogonality. So is ${\bf r}$ perpendicular to ${\bf \dot p}$:

$$\begin{vmatrix}
\dot{\mathbf{r}} \cdot \mathbf{p} = 0 \\
\dot{\mathbf{r}}_{x} & \dot{r}_{y}
\end{vmatrix} = \begin{pmatrix} -a\sin\phi & b\cos\phi \\ p_{y} \end{pmatrix} = \begin{pmatrix} (1/a)\cos\phi \\ (1/b)\sin\phi \end{pmatrix} \text{ where: } \begin{vmatrix} \dot{r}_{x} = -a\sin\phi \\ \dot{r}_{y} = b\cos\phi \end{vmatrix} \text{ and: } \begin{aligned} p_{x} = (1/a)\cos\phi \\ p_{y} = (1/b)\sin\phi \end{aligned}$$

Introduction to dual matrix operator geometry

Review of dual IHO elliptic orbits (Lecture 7-8)

Construction by Phasor-pair projection

Construction by Kepler anomaly projection

Operator geometric sequences and eigenvectors
 Rescaled description of matrix operator geometry
 Vector calculus of tensor operation

Diagonal \mathbf{R}^{-1} -matrix acts on vector $\mathbf{v}^{x/y}$. Resulting vector has slope changed by factor b/a.

$$\mathbf{R}^{-1} \bullet \mathbf{v}^{x/y} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \cdot a \\ y \cdot b \end{pmatrix}$$

(Slope decreases if b < a.)

Resulting vector has slope changed by factor a/b = 2.

$$\mathbf{R} \cdot \mathbf{v}^{x/y} = \begin{pmatrix} 1/a & 0 \\ 0 & 1/b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a \\ y/b \end{pmatrix}$$

(It increases if a > b.)

Diagonal ($\mathbb{R}^2 = \mathbb{Q}$)-matrix acts on vector $\mathbf{v}^{x/y}$.

Resulting vector has slope changed by factor $a^2/b^2 = 4$.

$$\mathbf{Q} \cdot \mathbf{v}^{x/y} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix}$$

(It increases if a > b.)

Diagonal \mathbf{R}^{-1} -matrix acts on vector $\mathbf{v}^{x/y}$.

Resulting vector has slope changed by factor b/a=1/2.

$$\mathbf{R}^{-1} \bullet \mathbf{v}^{x/y} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \cdot a \\ y \cdot b \end{pmatrix}$$

Diagonal ($\mathbf{R}^{-2} = \mathbf{Q}^{-1}$)-matrix acts on vector $\mathbf{v}^{x/y}$.

Resulting vector has slope changed by factor $b^2/a^2=1/4$.

$$\mathbf{Q}^{-1} \cdot \mathbf{v}^{x/y} = \begin{pmatrix} a^2 & 0 \\ 0 & b^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x \cdot a^2 \\ y \cdot b^2 \end{pmatrix}$$

based on Fig. 11.7 in Unit 1

Resulting vector has slope changed by factor a/b = 2. $a^3/b^3 a^2/b^2$

$$\mathbf{R} \cdot \mathbf{v}^{x/y} = \begin{pmatrix} 1/a & 0 \\ 0 & 1/b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a \\ y/b \end{pmatrix}$$

(It increases if a > b.)

Diagonal ($\mathbb{R}^2 = \mathbb{Q}$)-matrix acts on vector $\mathbf{v}^{x/y}$

Resulting vector has slope changed by factor $a^2/b^2 = 4$.

$$\mathbf{Q} \cdot \mathbf{v}^{x/y} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix}$$

(It increases if a > b.)

Either process can go on forever...

Diagonal ($\mathbb{R}^{2n} = \mathbb{Q}^n$)-matrix acts on vector $\mathbf{v}^{x/y}$.

Resulting vector has slope changed by factor $a^{2n}/b^{2n} \neq 4^n$.

Either process can go on forever...

slopeslope

slope

/a/b

Diagonal ($\mathbf{R}^{-2n} = \mathbf{Q}^{-n}$)-matrix acts on vector $\mathbf{v}^{x/y}$.

Resulting vector has slope changed by factor $b^{2n}/a^{2n} = 4^{-n}$.

slope

b/a

 $slope \\ b^2/a^2 \\ slope \\ b^3/a^3$

based on Fig. 11.7 in Unit 1

Resulting vector has slope changed by factor a/b = 2.

$$\mathbf{R} \cdot \mathbf{v}^{x/y} = \begin{pmatrix} 1/a & 0 \\ 0 & 1/b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a \\ y/b \end{pmatrix}$$

(It increases if a > b.)

 $|y\rangle$

slopeslope

Diagonal ($\mathbb{R}^2 = \mathbb{Q}$)-matrix acts on vector $\mathbf{v}^{x/y}$.

Resulting vector has slope changed by factor $a^2/b^2 =$

$$\mathbf{Q} \cdot \mathbf{v}^{x/y} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix}$$

(It increases if a > b.)

Either process can go on forever...

Diagonal ($\mathbb{R}^{2n} = \mathbb{Q}^n$)-matrix acts on vector $\mathbf{v}^{x/y}$.

Resulting vector has slope changed by factor $a^{2n}/b^{2n} = 4^n$.

...Finally, the result approaches *EIGENVECTOR* $|y\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$

of ∞ -slope which is "immune" to **R**, **Q** or **Q**ⁿ:

$$\mathbf{R}|y\rangle = (1/b)|y\rangle \qquad \mathbf{Q}^n|y\rangle = (1/b^2)^n|y\rangle$$

Either process can go on forever...

Diagonal ($\mathbf{R}^{-2n} = \mathbf{Q}^{-n}$)-matrix acts on vector $\mathbf{v}^{x/y}$.

Resulting vector has slope changed by factor $b^{2n}/a^{2n} = 4^{-n}$.

slope

...Finally, the result approaches *EIGENVECTOR* $|x\rangle = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$

of 0-slope which is "immune" to \mathbf{R}^{-1} , \mathbf{Q}^{-1} or \mathbf{Q}^{-n} :

$$\mathbf{R}^{-1}|\mathbf{x}\rangle = (\mathbf{a})|\mathbf{x}\rangle \qquad \mathbf{Q}^{-n}|\mathbf{x}\rangle = (\mathbf{a}^2)^n|\mathbf{x}\rangle$$

slope

Resulting vector has slope changed by factor a/b = 2.

$$\mathbf{R} \cdot \mathbf{v}^{x/y} = \begin{pmatrix} 1/a & 0 \\ 0 & 1/b \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a \\ y/b \end{pmatrix}$$

(It increases if a > b.)

 $|y\rangle$

slopeslope

EIGENVECTOR

slope

Diagonal ($\mathbb{R}^2 = \mathbb{Q}$)-matrix acts on vector $\mathbf{v}^{x/y}$.

Resulting vector has slope changed by factor $a^2/b^2 =$

$$\mathbf{Q} \cdot \mathbf{v}^{x/y} = \begin{pmatrix} 1/a^2 & 0 \\ 0 & 1/b^2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x/a^2 \\ y/b^2 \end{pmatrix}$$

(It increases if a > b.)

Either process can go on forever...

Diagonal ($\mathbb{R}^{2n} = \mathbb{Q}^n$)-matrix acts on vector $\mathbf{v}^{x/y}$.

Resulting vector has slope changed by factor $a^{2n}/b^{2n} = 4^n$.

...Finally, the result approaches *EIGENVECTOR* $|y\rangle = \begin{pmatrix} 0 \\ 1 \end{pmatrix}$

of ∞ -slope which is "immune" to \mathbf{R} , \mathbf{Q} or \mathbf{Q}^n :

Either process can go on forever...

Diagonal ($\mathbf{R}^{-2n} = \mathbf{Q}^{-n}$)-matrix acts on vector $\mathbf{v}^{x/y}$.

Resulting vector has slope changed by factor $b^{2n}/a^{2n} = 4^{-n}$.

slope

b/a

...Finally, the result approaches *EIGENVECTOR* $|x\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$

of 0-slope which is "immune" to \mathbf{R}^{-1} , \mathbf{Q}^{-1} or \mathbf{Q}^{-n} :

$$\mathbf{R}|y\rangle = (1/b)|y\rangle \qquad \mathbf{Q}^{n}|y\rangle = (1/b^{2})^{n}|y\rangle \qquad Eigensolution \qquad \mathbf{R}^{-1}|x\rangle = (a)|x\rangle \qquad \mathbf{Q}^{-n}|x\rangle = (a^{2})^{n}|x\rangle$$

$$Eigenvalues \qquad Relations \qquad Eigenvalues$$

$$\mathbf{R}^{-1}|x\rangle = (a)|x\rangle \qquad \mathbf{Q}^{-n}|x\rangle = (a^2)^n|x\rangle$$
Eigenvalues

Introduction to dual matrix operator geometry

Review of dual IHO elliptic orbits (Lecture 7-8)

Construction by Phasor-pair projection

Construction by Kepler anomaly projection

Operator geometric sequences and eigenvectors

Rescaled description of matrix operator geometry

Vector calculus of tensor operation

This is a clearer choice. It separates **r** and **p** into different spaces

Introduction to dual matrix operator geometry

Review of dual IHO elliptic orbits (Lecture 7-8)

Construction by Phasor-pair projection

Construction by Kepler anomaly projection

Operator geometric sequences and eigenvectors

Rescaled description of matrix operator geometry

Vector calculus of tensor operation

Derive matrix "normal-to-ellipse" geometry by vector calculus:

Let matrix
$$Q = \begin{pmatrix} A & B \\ B & D \end{pmatrix}$$

define the ellipse
$$1 = \mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} A & B \\ B & D \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} A \cdot x + B \cdot y \\ B \cdot x + D \cdot y \end{pmatrix} = A \cdot x^2 + 2B \cdot xy + D \cdot y^2 = 1$$

Derive matrix "normal-to-ellipse" geometry by vector calculus:

Let matrix
$$Q = \begin{pmatrix} A & B \\ B & D \end{pmatrix}$$

define the ellipse
$$1 = \mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} A & B \\ B & D \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} A \cdot x + B \cdot y \\ B \cdot x + D \cdot y \end{pmatrix} = A \cdot x^2 + 2B \cdot xy + D \cdot y^2 = 1$$

with

Compare operation by Q on vector **r**

$$\begin{pmatrix} A & B \\ B & D \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} A \cdot x + B \cdot y \\ B \cdot x + D \cdot y \end{pmatrix}$$

vector derivative or gradient of r•Q•r

$$\frac{\partial}{\partial \mathbf{r}}(\mathbf{r} \cdot Q \cdot \mathbf{r}) = \nabla(\mathbf{r} \cdot Q \cdot \mathbf{r})$$

$$\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} (A \cdot x^2 + 2B \cdot xy + D \cdot y^2) = \begin{pmatrix} 2A \cdot x + 2B \cdot y \\ 2B \cdot x + 2D \cdot y \end{pmatrix}$$

Derive matrix "normal-to-ellipse" geometry by vector calculus:

Let matrix
$$Q = \begin{pmatrix} A & B \\ B & D \end{pmatrix}$$

define the ellipse
$$1 = \mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} A & B \\ B & D \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x & y \end{pmatrix} \cdot \begin{pmatrix} A \cdot x + B \cdot y \\ B \cdot x + D \cdot y \end{pmatrix} = A \cdot x^2 + 2B \cdot xy + D \cdot y^2 = 1$$

with

Compare operation by Q on vector **r**

$$\begin{pmatrix} A & B \\ B & D \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} A \cdot x + B \cdot y \\ B \cdot x + D \cdot y \end{pmatrix}$$

vector derivative or gradient of r•Q•r

$$\frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \cdot Q \cdot \mathbf{r}) = \nabla (\mathbf{r} \cdot Q \cdot \mathbf{r})$$

$$\begin{pmatrix} \frac{\partial}{\partial x} \\ \frac{\partial}{\partial y} \end{pmatrix} (A \cdot x^2 + 2B \cdot xy + D \cdot y^2) = \begin{pmatrix} 2A \cdot x + 2B \cdot y \\ 2B \cdot x + 2D \cdot y \end{pmatrix}$$

Very simple result:

$$\frac{\partial}{\partial \mathbf{r}} \left(\frac{\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}}{2} \right) = \nabla \left(\frac{\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}}{2} \right) = \mathbf{Q} \cdot \mathbf{r}$$

Introduction to Lagrangian-Hamiltonian duality

Review of partial differential relations

Chain rule and order symmetry

Duality relations of Lagrangian and Hamiltonian ellipse

Introducing the 1^{st} (partial $\frac{\partial?}{\partial?}$) differential equations of mechanics

$$z=f(x,y)$$
axis

$$z=f(x,y)$$
axis

Introduction to Lagrangian-Hamiltonian duality

Review of partial differential relations

Chain rule and order symmetry

Duality relations of Lagrangian and Hamiltonian ellipse Introducing the 1^{st} (partial $\frac{\partial?}{\partial?}$) differential equations of mechanics

$$f(x_1, y_1) = f(x_0, y_0) + \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y + \frac{\partial f}{\partial y}(x_0, y_0) \Delta x \Delta y$$

$$= f(x_0, y_0) + \frac{\partial f}{\partial y}(x_0, y_0) \Delta y + \frac{\partial f}{\partial x}(x_0, y_0) \Delta x + \frac{\partial f}{\partial x}(x_0, y_0) \Delta x \Delta y$$

$$f(x_{1}, y_{1}) = f(x_{0}, y_{0}) + \frac{\partial f}{\partial x}(x_{0}, y_{0}) \Delta x + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \Delta y + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \Delta x \Delta y$$

$$= f(x_{0}, y_{0}) + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \Delta y + \frac{\partial f}{\partial x}(x_{0}, y_{0}) \Delta x + \frac{\partial f}{\partial x}(x_{0}, y_{0}) \Delta x \Delta y$$

1. Chain rules

$$\begin{aligned} \left[f(\mathbf{x}_{1}, y_{1}) - f(\mathbf{x}_{0}, y_{0}) \right] &= df = \frac{\partial f}{\partial \mathbf{x}} (\mathbf{x}_{0}, y_{0}) d\mathbf{x} + \frac{\partial f}{\partial y} (\mathbf{x}_{0}, y_{0}) dy \dots_{(keep \ 1^{st} - order \ terms \ only!)} \\ \frac{df}{dt} &= \frac{\partial f}{\partial \mathbf{x}} (\mathbf{x}_{0}, y_{0}) \frac{d\mathbf{x}}{dt} + \frac{\partial f}{\partial y} (\mathbf{x}_{0}, y_{0}) \frac{d\mathbf{y}}{dt} \\ \dot{f} &= \frac{\partial f}{\partial \mathbf{x}} \dot{\mathbf{x}} + \frac{\partial f}{\partial y} \dot{\mathbf{y}} \qquad (shorthand \ notation) \end{aligned}$$

$$f(x_{1}, y_{1}) = f(x_{0}, y_{0}) + \frac{\partial f}{\partial x}(x_{0}, y_{0}) \Delta x + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \Delta y + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \Delta x \Delta y$$

$$= f(x_{0}, y_{0}) + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \Delta y + \frac{\partial f}{\partial x}(x_{0}, y_{0}) \Delta x + \frac{\partial f}{\partial x}(x_{0}, y_{0}) \Delta x + \frac{\partial f}{\partial x}(x_{0}, y_{0}) \Delta y \Delta x$$

1. Chain rules

$$\begin{aligned} \left[f(\mathbf{x}_{1}, y_{1}) - f(\mathbf{x}_{0}, y_{0}) \right] &= df = \frac{\partial f}{\partial x} (\mathbf{x}_{0}, y_{0}) dx + \frac{\partial f}{\partial y} (\mathbf{x}_{0}, y_{0}) dy \dots_{(keep \ 1^{st} - order \ terms \ only!)} \\ \frac{df}{dt} &= \frac{\partial f}{\partial x} (\mathbf{x}_{0}, y_{0}) \frac{dx}{dt} + \frac{\partial f}{\partial y} (\mathbf{x}_{0}, y_{0}) \frac{dy}{dt} \\ \dot{f} &= \frac{\partial f}{\partial x} \dot{x} + \frac{\partial f}{\partial y} \dot{y} \qquad (shorthand \ notation) = \partial_{x} f \dot{x} + \partial_{y} f \dot{y} \end{aligned}$$

2. Symmetry of partial deriv. ordering

(pay attention to the 2^{nd} – order terms, too!)

$$\frac{\partial}{\partial y} \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} \quad \text{or:} \quad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} \quad \text{or:} \quad \partial_y \partial_x f = \partial_x \partial_y f$$

(shorthand notation)

$$f(x_{1}, y_{1}) = f(x_{0}, y_{0}) + \frac{\partial f}{\partial x}(x_{0}, y_{0}) \Delta x + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \Delta y + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \Delta x \Delta y$$

$$= f(x_{0}, y_{0}) + \frac{\partial f}{\partial y}(x_{0}, y_{0}) \Delta y + \frac{\partial f}{\partial x}(x_{0}, y_{0}) \Delta x + \frac{\partial f}{\partial x}(x_{0}, y_{0}) \Delta x + \frac{\partial f}{\partial x}(x_{0}, y_{0}) \Delta y \Delta x$$

1. Chain rules

$$\begin{aligned} \left[f(\mathbf{x}_{1}, y_{1}) - f(\mathbf{x}_{0}, y_{0}) \right] &= df = \frac{\partial f}{\partial x} (\mathbf{x}_{0}, y_{0}) dx + \frac{\partial f}{\partial y} (\mathbf{x}_{0}, y_{0}) dy \dots_{(keep \ 1^{st} - order \ terms \ only!)} \\ \frac{df}{dt} &= \frac{\partial f}{\partial x} (\mathbf{x}_{0}, y_{0}) \frac{dx}{dt} + \frac{\partial f}{\partial y} (\mathbf{x}_{0}, y_{0}) \frac{dy}{dt} \\ \dot{f} &= \frac{\partial f}{\partial x} \dot{x} + \frac{\partial f}{\partial y} \dot{y} \qquad (shorthand \ notation) = \partial_{x} f \dot{x} + \partial_{y} f \dot{y} \end{aligned}$$

2. Symmetry of partial deriv. ordering

(pay attention to the 2^{nd} – order terms, too!)

$$\frac{\partial}{\partial y} \frac{\partial f}{\partial x} = \frac{\partial}{\partial x} \frac{\partial f}{\partial y} \quad \text{or:} \quad \frac{\partial^2 f}{\partial y \partial x} = \frac{\partial^2 f}{\partial x \partial y} \quad \text{or:} \quad \partial_y \partial_x f = \partial_x \partial_y f$$

(shorthand notation)

$$Let: \vec{\nabla} = \begin{pmatrix} \partial_x & \partial_y \end{pmatrix} \quad so: \vec{\nabla}f \cdot \mathbf{dr} = \begin{pmatrix} \partial_x f & \partial_y f \end{pmatrix} \cdot \begin{pmatrix} dx \\ dy \end{pmatrix} = \partial_x f \, dx + \partial_y f \, dy = df$$

Introduction to Lagrangian-Hamiltonian duality

Review of partial differential relations Chain rule and order symmetry

Duality relations of Lagrangian and Hamiltonian ellipse Introducing the 1^{st} (partial $\frac{\partial ?}{\partial ?}$) differential equations of mechanics

Friday, December 21, 2012 54

Three ways to express energy: Consider kinetic energy (KE) first

1. Lagrangian is explicit function of velocity: $\mathbf{v} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$

$$L(v_k...) = \frac{1}{2} (m_1 v_1^2 + m_2 v_2^2 + ...) = L(\mathbf{v}...) = \frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} + ... = \frac{1}{2} \begin{pmatrix} v_1 & v_2 \end{pmatrix} \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} + ...$$

2. "Estrangian" is explicit function of R-rescaled velocity:

or: "speedinum" $V = \mathbf{V} = \mathbf{V} \cdot \mathbf{v}$ or: $\begin{pmatrix} V_1 \\ V_2 \end{pmatrix} = \begin{pmatrix} \sqrt{m_1} & 0 \\ 0 & \sqrt{m_2} \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$

$$E(V_k...) = \frac{1}{2} (V_1^2 + V_2^2 + ...) = E(\mathbf{V}...) = \frac{1}{2} \mathbf{V} \cdot \mathbf{1} \cdot \mathbf{V} + ... = \frac{1}{2} \begin{pmatrix} V_1 & V_2 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} V_1 \\ V_2 \end{pmatrix} + ...$$

3. **Hamiltonian** is explicit function of **M=R**²-rescaled velocity:

or: momentum
$$p$$
 $\mathbf{p} = \mathbf{M} \cdot \mathbf{v}$ or: $\begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} m_1 v_1 \\ m_2 v_2 \end{pmatrix}$

$$H(p_k...) = \frac{1}{2}(\frac{p_1^2}{m_1} + \frac{p_2^2}{m_2} + ...) = H(\mathbf{p}...) = \frac{1}{2}\mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p} + ... = \frac{1}{2}\begin{pmatrix} p_1 & p_2 \end{pmatrix} \begin{pmatrix} 1/m_1 & 0 \\ 0 & 1/m_2 \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} + ...$$

Friday, December 21, 2012 55

Introduction to Lagrangian-Hamiltonian duality

Review of partial differential relations Chain rule and order symmetry

Duality relations of Lagrangian and Hamiltonian ellipse

Introducing the 1^{st} (partial $\frac{\partial?}{\partial?}$) differential equations of mechanics

Introducing the (partial ³?) differential equations of mechanics

Starts out with simple demands for explicit-dependence, "loyalty" or "fealty to the colors"

Lagrangian and Estrangian have <u>no</u> explicit dependence on momentum p

$$\frac{\partial L}{\partial p_k} \equiv 0 \equiv \frac{\partial E}{\partial p_k}$$

Hamiltonian and Estrangian have <u>no</u> explicit dependence on velocity v

$$\frac{\partial \mathbf{H}}{\partial \mathbf{v}_{k}} \equiv 0 \equiv \frac{\partial \mathbf{E}}{\partial \mathbf{v}_{k}}$$

Lagrangian and Hamiltonian have <u>no</u> explicit dependence on speedinum V

$$\frac{\partial L}{\partial V_k} \equiv 0 \equiv \frac{\partial H}{\partial V_k}$$

Friday, December 21, 2012 58

Introducing the (partial $\frac{\partial r}{\partial r}$) differential equations of mechanics

Starts out with simple demands for explicit-dependence, "loyalty" or "fealty to the colors"

Lagrangian and Estrangian have <u>no</u> explicit dependence on momentum p

$$\frac{\partial L}{\partial p_k} \equiv 0 \equiv \frac{\partial E}{\partial p_k}$$

Hamiltonian and Estrangian have <u>no</u> explicit dependence on velocity v

$$\frac{\partial \mathbf{H}}{\partial \mathbf{v}_{k}} \equiv 0 \equiv \frac{\partial \mathbf{E}}{\partial \mathbf{v}_{k}}$$

Lagrangian and Hamiltonian have <u>no</u> explicit dependence On speedinum V

$$\frac{\partial L}{\partial V_k} \equiv 0 \equiv \frac{\partial H}{\partial V_k}$$

Such non-dependencies hold in spite of "under-the-table" matrix and partial-differential connections

$$\nabla_{v} L = \frac{\partial L}{\partial \mathbf{v}} = \frac{\partial}{\partial \mathbf{v}} \frac{\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}}{2}$$
$$= \mathbf{M} \cdot \mathbf{v} = \mathbf{p}$$

$$\begin{pmatrix} \frac{\partial L}{\partial v_1} \\ \frac{\partial L}{\partial v_2} \end{pmatrix} = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$

$$\nabla_{p} H = \mathbf{v} = \frac{\partial H}{\partial \mathbf{p}} = \frac{\partial}{\partial \mathbf{p}} \frac{\mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}}{2}$$
$$= \mathbf{M}^{-1} \cdot \mathbf{p} = \mathbf{v}$$

$$\begin{pmatrix} \frac{\partial L}{\partial v_1} \\ \frac{\partial L}{\partial v_2} \end{pmatrix} = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} \qquad \qquad \begin{pmatrix} \frac{\partial H}{\partial p_1} \\ \frac{\partial H}{\partial p_2} \end{pmatrix} = \begin{pmatrix} m_1^{-1} & 0 \\ 0 & m_2^{-1} \end{pmatrix} \begin{pmatrix} p_1 \\ p_2 \end{pmatrix} = \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

Introducing the (partial ³/₂) differential equations of mechanics

Starts out with simple demands for explicit-dependence, "loyalty" or "fealty to the colors"

Lagrangian and Estrangian have <u>no</u> explicit dependence on momentum p

$$\frac{\partial L}{\partial p_k} \equiv 0 \equiv \frac{\partial E}{\partial p_k}$$

Hamiltonian and Estrangian have <u>no</u> explicit dependence on velocity v

$$\frac{\partial \mathbf{H}}{\partial \mathbf{v}_{k}} \equiv 0 \equiv \frac{\partial \mathbf{E}}{\partial \mathbf{v}_{k}}$$

Lagrangian and Hamiltonian have <u>no</u> explicit dependence on speedinum V

$$\frac{\partial L}{\partial V_k} \equiv 0 \equiv \frac{\partial H}{\partial V_k}$$

Such non-dependencies hold in spite of "under-the-table" matrix and partial-differential connections

$$\nabla_{v} L = \frac{\partial L}{\partial \mathbf{v}} = \frac{\partial}{\partial \mathbf{v}} \frac{\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}}{2}$$
$$= \mathbf{M} \cdot \mathbf{v} = \mathbf{p}$$

$$\begin{pmatrix} \frac{\partial L}{\partial v_1} \\ \frac{\partial L}{\partial v_2} \end{pmatrix} = \begin{pmatrix} m_1 & 0 \\ 0 & m_2 \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix} = \begin{pmatrix} p_1 \\ p_2 \end{pmatrix}$$

Lagrange's 1st equation(s)

$$\frac{\partial L}{\partial v_k} = p_k$$
 or: $\frac{\partial L}{\partial \mathbf{v}} = \mathbf{p}$

$$\nabla_{p} H = \mathbf{v} = \frac{\partial H}{\partial \mathbf{p}} = \frac{\partial}{\partial \mathbf{p}} \frac{\mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}}{2}$$
$$= \mathbf{M}^{-1} \cdot \mathbf{p} = \mathbf{v}$$

$$\begin{pmatrix}
\frac{\partial H}{\partial p_1} \\
\frac{\partial H}{\partial p_2}
\end{pmatrix} = \begin{pmatrix}
m_1^{-1} & 0 \\
0 & m_2^{-1}
\end{pmatrix} \begin{pmatrix}
p_1 \\
p_2
\end{pmatrix} = \begin{pmatrix}
v_1 \\
v_2
\end{pmatrix}$$

Hamilton's 1st equation(s)

$$\frac{\partial H}{\partial p_k} = v_k \quad \text{or:} \quad \frac{\partial H}{\partial \mathbf{p}} = \mathbf{v}$$

(Forget Estrangian for now)

