Geometry of Dual Quadratic Forms: Lagrange vs Hamilton

 (Ch. 11 and Ch. 12 of Unit 1)Introduction to dual matrix operator geometry
Review of dual IHO elliptic orbits (Lecture 7-8)
Construction by Phasor-pair projection
Construction by Kepler anomaly projection
Operator geometric sequences and eigenvectors
Rescaled description of matrix operator geometry
Vector calculus of tensor operation
Introduction to Lagrangian-Hamiltonian duality
Review of partial differential relations
Chain rule and order symmetry
Duality relations of Lagrangian and Hamiltonian ellipse
Introducing the $1^{\text {st }}$ (partial $\frac{\partial ?}{\partial ?}$) differential equations of mechanics

Introduction to dual matrix operator geometry

Review of dual IHO elliptic orbits (Lecture 7-8)
Construction by Phasor-pair projection
Construction by Kepler anomaly projection
Operator geometric sequences and eigenvectors
Rescaled description of matrix operator geometry
Vector calculus of tensor operation

Introduction to dual matrix operator geometry

Review of dual IHO elliptic orbits (Lecture 7-8)
Construction by Phasor-pair projection
\longrightarrow Construction by Kepler anomaly projection Operator geometric sequences and eigenvectors Rescaled description of matrix operator geometry

Vector calculus of tensor operation

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \cdot Q \cdot \mathbf{r}=1$ is called positive-definite (if $\mathbf{r} \cdot Q \cdot \mathbf{r}$ always >0)

$$
\begin{aligned}
\mathbf{r} \bullet \mathbf{Q} \bullet \mathbf{r} & =1 \\
\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot\left(\begin{array}{cc}
\frac{1}{a^{2}} & 0 \\
0 & \frac{1}{b^{2}}
\end{array}\right) \cdot\binom{x}{y} & =1=\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot\binom{\frac{x}{a^{2}}}{\frac{y}{b^{2}}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
\end{aligned}
$$

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p}^{\bullet} Q^{-1} \cdot \mathbf{p}=1$ called inverse or dual ellipse:

$$
\begin{gathered}
\mathbf{p} \bullet \mathbf{Q}^{-1} \bullet \mathbf{p} \\
\left(\begin{array}{ll}
p_{x} & p_{y}
\end{array}\right) \cdot\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right) \cdot\binom{p_{x}}{p_{y}}=1=\left(\begin{array}{ll}
p_{x} & p_{y}
\end{array}\right) \cdot\binom{a^{2} p_{x}}{b^{2} p_{y}}=a^{2} p_{x}^{2}+b^{2} p_{y}^{2}
\end{gathered}
$$

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \bullet Q \bullet \mathbf{r}=1$ is called positive-definite (if $\mathbf{r} \bullet Q \cdot \mathbf{r}$ always >0)

$$
\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot \overbrace{\left(\begin{array}{cc}
\frac{1}{a^{2}} & 0 \\
0 & \frac{1}{b^{2}}
\end{array}\right)}^{\mathbf{r} \bullet \mathbf{Q} \cdot \mathbf{r}} \cdot\binom{x}{y}=1=\left(\sim_{\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot\binom{\frac{x}{a^{2}}}{\frac{y}{b^{2}}}}^{\mathbf{Q} \bullet \mathbf{r}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}\right.
$$

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p}^{\bullet} Q^{-1} \cdot \mathbf{p}=1$ called inverse or dual ellipse:

$$
\left(\begin{array}{ll}
p_{x} & p_{y}
\end{array}\right) \cdot \overbrace{\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right)}^{\mathbf{p} \bullet \mathbf{Q}^{-1} \bullet \mathbf{p}} \cdot\binom{p_{x}}{p_{y}}=1=(\overbrace{\left(\begin{array}{cc}
p_{x} & p_{y}
\end{array}\right) \cdot(\overbrace{\binom{a^{2} p_{x}}{b^{2} p_{y}}}^{\mathbf{p}})=a^{2} p_{x}^{2}+b^{2} p_{y}^{2} . \mathbf{Q}^{-1} \cdot \mathbf{p}}^{=1}
$$

Quadratic forms and tangent contact geometry of their ellipses

A matrix Q that generates an ellipse by $\mathbf{r} \bullet Q \cdot \mathbf{r}=1$ is called positive-definite (if $\mathbf{r} \bullet Q \cdot \mathbf{r}$ always >0)

$$
\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot \overbrace{\left(\begin{array}{cc}
\frac{1}{a^{2}} & 0 \\
0 & \frac{1}{b^{2}}
\end{array}\right)}^{\mathbf{r} \bullet \mathbf{Q} \bullet \mathbf{r}} \cdot\binom{x}{y}=1=\left(\sim_{\left(\begin{array}{c}
x \\
x
\end{array}\right.}^{y}\right),\binom{\frac{x}{a^{2}}}{\frac{y}{b^{2}}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

Defined mapping between ellipses

A inverse matrix Q^{-1} generates an ellipse by $\mathbf{p}^{\bullet} Q^{-1} \cdot \mathbf{p}=1$ called inverse or dual ellipse:

$$
\left(\begin{array}{ll}
p_{x} & p_{y}
\end{array}\right) \bullet\left(\begin{array}{cc}
a^{2} & 0 \\
0 & b^{2}
\end{array}\right) \cdot\binom{p_{x}}{p_{y}}=1=(\overbrace{\left(\begin{array}{ll}
-1 \\
p_{x} & p_{y}
\end{array}\right) \bullet\binom{a^{2} p_{x}}{b^{2} p_{y}}=a^{2} p_{x}^{2}+b^{2} p_{y}^{2}}^{\mathbf{p}} \quad \mathbf{Q}^{-1} \bullet \mathbf{p}=\mathbf{r}
$$

(a) Quadratic form ellipse and

(a) Quadratic form ellipse and

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has mutraal duality relations with inverse form $\mathbf{p}^{\cdot} \mathbf{Q}^{-1} \cdot \mathbf{p}=1=\mathbf{p} \cdot \mathbf{r}$
(a) Quadratic form ellipse and Inverse quadratic form ellipse

$$
\mathbf{p} \bullet \mathbf{Q}^{-1} \bullet \mathbf{p}=\mathbf{p} \bullet \mathbf{r}=1
$$

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has muatraal duality relations with inverse form $\mathbf{p}^{\cdot} \mathbf{Q}^{-1} \cdot \mathbf{p}=1=\mathbf{p} \cdot \mathbf{r}$

$$
\mathbf{p}=\mathbf{Q} \cdot \mathbf{r}=\left(\begin{array}{cc}
1 / a^{2} & 0 \\
0 & 1 / b^{2}
\end{array}\right) \cdot\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}=\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi} \text { where: } \begin{gathered}
x=r_{x}=a \cos \phi=a \cos \omega t \\
y=r_{y}=b \sin \phi=b \sin \omega t
\end{gathered} \quad \text { so: } \mathbf{p} \cdot \mathbf{r}=1
$$

(a) Quadratic form ellipse and Inverse quadratic form ellipse

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has mutrad duality relations with inverse form $\mathbf{p}^{\cdot} \mathbf{Q}^{-1} \cdot \mathbf{p}=1=\mathbf{p} \cdot \mathbf{r}$
$\mathbf{p}=\mathbf{Q} \cdot \mathbf{r}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right) \cdot\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}=\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi}$ where: $\begin{gathered}x=r_{x}=a \cos \phi=a \cos \omega t \\ y=r_{y}=b \sin \phi=b \sin \omega t\end{gathered}$ so: $\mathbf{p} \cdot \mathbf{r}=1$
(a) Quadratic form ellipse and

Inverse quadratic form ellipse
(b) Ellipse tangents

Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has montral duality relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p}=1=\mathbf{p} \cdot \mathbf{r}$

$$
\mathbf{p}=\mathbf{Q} \cdot \mathbf{r}=\left(\begin{array}{cc}
1 / a^{2} & 0 \\
0 & 1 / b^{2}
\end{array}\right) \cdot\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}=\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi} \text { where: } \begin{aligned}
& x=r_{x}=a \cos \phi=a \cos \omega t \\
& y=r_{y}=b \sin \phi=b \sin \omega t
\end{aligned} \quad \text { so: } \mathbf{p} \cdot \mathbf{r}=1
$$

\mathbf{p} is perpendicular to velocity $\mathbf{v}=\dot{\mathbf{r}}, a$ matrual orthogomality

$\dot{\mathbf{r}} \bullet \mathbf{p}=0=\left(\begin{array}{ll}\dot{r}_{x} & \dot{r}_{y}\end{array}\right) \bullet\binom{p_{x}}{p_{y}}=\left(\begin{array}{ll}-a \sin \phi & b \cos \phi\end{array}\right) \bullet\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi}$ where: | $\dot{r}_{x}=-a \sin \phi$ |
| :--- |
| $\dot{r}_{y}=b \cos \phi$ | and: | $p_{x}=(1 / a) \cos \phi$ |
| :--- |
| $p_{y}=(1 / b) \sin \phi$ |

(a) Quadratic form ellipse and Inverse quadratic form ellipse

(b) Ellipse tangents

Unit 1
Fig. 11.6
unit
Quadratic form $\mathbf{r} \cdot \mathbf{Q} \cdot \mathbf{r}=1$ has mutrual drualitity relations with inverse form $\mathbf{p} \cdot \mathbf{Q}^{-1} \cdot \mathbf{p}=1$

$$
\mathbf{p}=\mathbf{Q} \cdot \mathbf{r}=\left(\begin{array}{cc}
1 / a^{2} & 0 \\
0 & 1 / b^{2}
\end{array}\right) \cdot\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}=\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi} \text { where: } \begin{gathered}
x=r_{x}=a \cos \phi=a \cos \omega t \\
y=r_{y}=b \sin \phi=b \sin \omega t
\end{gathered}
$$

p is perpendicular to velocity $\mathbf{v}=\dot{\mathbf{r}}$, a matrual orthogonalitity. So is \mathbf{r} perpendicular to $\dot{\mathbf{p}}$. $\quad \dot{\mathbf{p}} \cdot \mathbf{r}=0$

$\dot{\mathbf{r}} \bullet \mathbf{p}=0=\left(\begin{array}{ll}\dot{r}_{x} & \dot{r}_{y}\end{array}\right) \bullet\binom{p_{x}}{p_{y}}=\left(\begin{array}{ll}-a \sin \phi & b \cos \phi\end{array}\right) \bullet\binom{(1 / a) \cos \phi}{(1 / b) \sin \phi}$ where: | $\dot{r}_{x}=-a \sin \phi$ |
| :--- |
| $\dot{r}_{y}=b \cos \phi$ | and: | $p_{x}=(1 / a) \cos \phi$ |
| :--- |
| $p_{y}=(1 / b) \sin \phi$ |

Introduction to dual matrix operator geometry

Review of dual IHO elliptic orbits (Lecture 7-8)
Construction by Phasor-pair projection
Construction by Kepler anomaly projection
\longrightarrow Operator geometric sequences and eigenvectors Rescaled description of matrix operator geometry

Vector calculus of tensor operation

Diagonal \mathbf{R}-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a / b=2$.
$\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}$
(Slope increases if $a \geqslant 6$.)
based on
Fig. 11.7 in Unit 1

Diagonal \mathbf{R}^{-1}-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor b / a.
$\mathbf{R}^{-1} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\binom{x}{y}=\binom{x \cdot a}{y \cdot b}$
(Slope decreases if $b<a$.)

Diagonal R-matrix acts on vector $\mathbf{v}^{x / y}$.

Resulting vector has slope changed by factor $a / b-2 . \quad a^{2} / b^{2}$
$\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}$
(It increases if $a>b$.)

Diagonal ($\mathbf{R}^{2}=\mathbf{Q}$)-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2} / b^{2}=4$.
$\mathbf{Q} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}$
(It increases if $a>b$.)

Diagonal \mathbf{R}^{-1}-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b / a=1 / 2$.
$\mathbf{R}^{-1} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{ll}a & 0 \\ 0 & b\end{array}\right)\binom{x}{y}=\binom{x \cdot a}{y \cdot b}$

Diagonal $\left(\mathbf{R}^{-2}=\mathbf{Q}^{-1}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b^{2} / a^{2}=1 / 4$.
based on
Fig. 11.7
in Unit/

Diagonal \mathbf{R}-matrix acts on vector $\mathbf{v}^{x / y}$

Resulting vector has slope changed by factor $a / b=2 . a^{3} / b^{3} a^{2} / b^{2}$
$\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}$
(It increases if $a>b$.)

Diagonal $\left(\mathbf{R}^{2}=\mathbf{Q}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$. Resulting vector has slope changed by factor $a^{2} / b^{2}=4$.
$\mathbf{Q} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}y / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}$
(It increases if $a>b$.)

Either process can go on forever...
Either process can go on forever..
Diagonal $\left(\mathbf{R}^{2 n}=\mathbf{Q}^{n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2 n} / b^{2 n}=4^{n}$.

Diagonal $\left(\mathbf{R}^{-2 n}=\mathbf{Q}^{-n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b^{2 n} / a^{2 n}=4^{-n}$.
based on Fig. 11.7 in Unit1

Diagonal R-matrix acts on vector $\mathbf{v}^{x / y}$

Resulting vector has slope changed by factor $a / b=2$.
$\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}$
(It increases if $a>b$.)

EIGENVECTOR

$|y\rangle$
Diagonal $\left(\mathbf{R}^{2}=\mathbf{Q}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2} / b^{2}=$ $\mathbf{Q} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}$
(It increases if $a>b$.)

Either process can go on forever...
Diagonal $\left(\mathbf{R}^{2 n}=\mathbf{Q}^{n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2 n} / b^{2 n}=4^{n}$.
...Finally, the result approaches EIGENVECTOR $|y\rangle=\binom{0}{1}$ of ∞-slope which is "immune" to \mathbf{R}, \mathbf{Q} or \mathbf{Q}^{n} :

$$
\mathbf{R}|y\rangle=(1 / b)|x\rangle \quad \mathbf{Q}^{n}|y\rangle=\left(1 / b^{2}\right)^{n}|y\rangle
$$

Diagonal R-matrix acts on vector $\mathbf{v}^{x / y}$

Resulting vector has slope changed by factor $a / b=2$.
$\mathbf{R} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a & 0 \\ 0 & 1 / b\end{array}\right)\binom{x}{y}=\binom{x / a}{y / b}$
(It increases if $a>b$.)

EIGENVECTOR

$|y\rangle$
Diagonal $\left(\mathbf{R}^{2}=\mathbf{Q}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2} / b^{2}=$ $\mathbf{Q} \cdot \mathbf{v}^{x / y}=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{x}{y}=\binom{x / a^{2}}{y / b^{2}}$
(It increases if $a>b$.)

Either process can go on forever...
Diagonal $\left(\mathbf{R}^{2 n}=\mathbf{Q}^{n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $a^{2 n} / b^{2 n}=4^{n}$.
...Finally, the result approaches EIGENVECTOR $|y\rangle=\binom{0}{1}$

EIGENVECTOR
$|x\rangle$

Either process can go on forever...
Diagonal $\left(\mathbf{R}^{-2 n}=\mathbf{Q}^{-n}\right)$-matrix acts on vector $\mathbf{v}^{x / y}$.
Resulting vector has slope changed by factor $b^{2 n} / a^{2 n}=4^{-n}$. ...Finally, the result approaches EIGENVECTOR $|x\rangle=\left(\begin{array}{l}1 \\ 0\end{array}\right.$ of 0 -slope which is "immune" to $\mathbf{R}^{-1}, \mathbf{Q}^{-1}$ or \mathbf{Q}^{-n} :
$\mathbf{R}|y\rangle=(1 / b)|y\rangle \quad \mathbf{Q}^{n}|y\rangle=\left(1 / b^{2}\right)^{n}|y\rangle \quad$ Eigensolution
Eigenvalues
$\mathbf{R}^{-1}|x\rangle=(a)|x\rangle \quad \mathbf{Q}^{-n}|x\rangle=\left(a^{2}\right)^{n}|x\rangle$

Eigenvalues

Introduction to dual matrix operator geometry

Review of dual IHO elliptic orbits (Lecture 7-8)
Construction by Phasor-pair projection
Construction by Kepler anomaly projection
Operator geometric sequences and eigenvectors
\longrightarrow Rescaled description of matrix operator geometry
Vector calculus of tensor operation

Need to rescale by geometric mean $\sqrt{ }(a \cdot b)$ if $\mathbf{r} \cdot Q \cdot \mathbf{r}$ and $\mathrm{p} \cdot Q^{-1} \cdot \mathrm{p}$ ellipses are to be same size

Need to rescale by geometric mean $\sqrt{ }(a \cdot b) \quad($ so $a \cdot b=1)$ if $\mathbf{r} \cdot Q \cdot \mathbf{r}$ and $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p}$ ellipses are to be same size

\ldots or rescale $\mathbf{r} \cdot Q \cdot \mathbf{r}$ and $\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p}$ ellipses by $\sqrt{ }(a \cdot b)=\sqrt{ } 2$ to different size

This is a) learer choice. It separates \mathbf{r} and p into different spaces

Action of matrix Q that generates an \mathbf{r}-ellipse $(\mathbf{r} \bullet Q \cdot \mathbf{r}=1)$

 on a single $\mathbf{r}-\nu$$\mathbf{p}\left(\phi_{1}\right)=\mathbf{Q} \cdot \mathbf{r}\left(\phi_{-1}\right)$
$=\left(\begin{array}{cc}1 / a^{2} & 0 \\ 0 & 1 / b^{2}\end{array}\right)\binom{a \cos \phi_{0}}{b \sin \phi_{0}}$
based on
Fig. 11.7
in Unit 1

Action of matrix Q that generates an \mathbf{r}-ellipse $(\mathbf{r} \bullet Q \bullet \mathbf{r}=1)$
on a single \mathbf{r}-vector $\mathbf{r}(\phi-1) \ldots$ is to rotate it to a new vector \mathbf{p} on the \mathbf{p}-ellipse $\left(\mathbf{p} \cdot Q^{-1} \cdot \mathbf{p}=1\right)$, that is, $Q \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{p}\left(\phi_{+1}\right)$

$$
\begin{aligned}
& \mathbf{p}\left(\phi_{1}\right)=\mathbf{Q} \cdot \mathbf{r}\left(\phi_{-1}\right) \\
& =\left(\begin{array}{cc}
1 / a^{2} & 0 \\
0 & 1 / b^{2}
\end{array}\right)\binom{a \cos \phi_{0}}{b \sin \phi_{0}}
\end{aligned}
$$

based on
Fig. 11.7 in Unit 1

Action of matrix Q that generates an \mathbf{r}-ellipse $(\mathbf{r} \bullet Q \bullet \mathbf{r}=1)$
on a single \mathbf{r}-vector $\mathbf{r}\left(\phi_{-1}\right) \ldots$ is to rotate it to a new vector \mathbf{p} on the \mathbf{p}-ellipse $\left(\mathbf{p} \cdot Q^{-1 /} \cdot \mathbf{p}=1\right)$, that is, $Q \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{p}\left(\phi_{+1}\right)$

$$
\begin{aligned}
& \mathbf{p}\left(\phi_{1}\right)=\mathbf{Q} \cdot \mathbf{r}\left(\phi_{-1}\right) \\
& =\left(\begin{array}{cc}
1 / a^{2} & 0 \\
0 & 1 / b^{2}
\end{array}\right)\binom{a \cos \phi_{0}}{b \sin \phi_{0}}
\end{aligned}
$$

$$
=\left(\begin{array}{l}
\frac{1}{a} \cos \phi_{0} \\
\frac{1}{b} \sin \phi_{0}
\end{array}\right.
$$

$$
=\left\{\begin{array}{l}
\frac{1}{2} \frac{1}{\sqrt{2}} \\
\frac{1}{1} \frac{1}{\sqrt{2}}
\end{array}\right.
$$

based on Fig. 11.7 in Unit 1

Key points

matrix

 geometry:Matrix Q maps any vector \mathbf{r} to a new vector \mathbf{p} normal to the tangent $\dot{\mathbf{r}}$ to its r-Q.r-ellipse.

Action of matrix Q that generates an \mathbf{r}-ellipse $(\mathbf{r} \bullet Q \bullet \mathbf{r}=1)$
on a single \mathbf{r}-vector $\mathbf{r}\left(\phi_{-1}\right) \ldots$ is to rotate it to a new vector \mathbf{p} on the \mathbf{p}-ellipse $\left(\mathbf{p} \cdot Q^{-1 /} \cdot \mathbf{p}=1\right)$, that is, $Q \cdot \mathbf{r}_{\left(\phi_{-1}\right)}=\mathbf{p}\left(\phi_{+1}\right)$

Matrix Q^{-1} maps \mathbf{p} back to \mathbf{r} that is normal to the tangent $\dot{\mathbf{p}}$ to its p• $Q^{-1} \cdot \mathbf{p}$-ellipse.
Key points

matrix

 geometry:Matrix Q maps any vector \mathbf{r} to a new vector \mathbf{p} normal to the tangent $\dot{\mathbf{r}}$ to its r-Q.r-ellipse.

based on Fig. 11.7 in Unit 1

Introduction to dual matrix operator geometry

Review of dual IHO elliptic orbits (Lecture 7-8)
Construction by Phasor-pair projection
Construction by Kepler anomaly projection
Operator geometric sequences and eigenvectors
Rescaled description of matrix operator geometry
\longrightarrow Vector calculus of tensor operation

Derive matrix "normal-to-ellipse"geometry by vector calculus:

Let matrix $Q=\left(\begin{array}{cc}A & B \\ B & D\end{array}\right)$
define the ellipse $1=\mathbf{r} \cdot Q \cdot \mathbf{r}=\left(\begin{array}{cc}x & y\end{array}\right) \cdot\left(\begin{array}{ll}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}=A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}=1$

$B \neq 0$

Derive matrix "normal-to-ellipse"geometry by vector calculus:

Let matrix $Q=\left(\begin{array}{cc}A & B \\ B & D\end{array}\right)$
define the ellipse $1=\mathbf{r} \cdot Q \cdot \mathbf{r}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\left(\begin{array}{cc}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}=A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}=1$

Compare operation by Q on vector \mathbf{r} with vector derivative or gradient of $\mathbf{r} \cdot Q \cdot \mathbf{r}$

$$
\frac{\partial}{\partial \mathbf{r}}(\mathbf{r} \cdot Q \cdot \mathbf{r})=\nabla(\mathbf{r} \cdot Q \cdot \mathbf{r})
$$

$\left(\begin{array}{cc}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}$

$$
\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}\left(A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}\right)=\binom{2 A \cdot x+2 B \cdot y}{2 B \cdot x+2 D \cdot y}
$$

$B \neq 0$

Derive matrix "normal-to-ellipse"geometry by vector calculus:

Let matrix $Q=\left(\begin{array}{cc}A & B \\ B & D\end{array}\right)$
define the ellipse $1=\mathbf{r} \cdot Q \cdot \mathbf{r}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\left(\begin{array}{cc}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\left(\begin{array}{ll}x & y\end{array}\right) \cdot\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}=A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}=1$

Compare operation by Q on vector \mathbf{r} with vector derivative or gradient of $\mathbf{r} \cdot Q \cdot \mathbf{r}$

$$
\frac{\partial}{\partial \mathbf{r}}(\mathbf{r} \cdot Q \cdot \mathbf{r})=\nabla(\mathbf{r} \cdot Q \cdot \mathbf{r})
$$

$\left(\begin{array}{ll}A & B \\ B & D\end{array}\right) \cdot\binom{x}{y}=\binom{A \cdot x+B \cdot y}{B \cdot x+D \cdot y}$

$$
\binom{\frac{\partial}{\partial x}}{\frac{\partial}{\partial y}}\left(A \cdot x^{2}+2 B \cdot x y+D \cdot y^{2}\right)=\binom{2 A \cdot x+2 B \cdot y}{2 B \cdot x+2 D \cdot y}
$$

Very simple result:

$$
\frac{\partial}{\partial \mathbf{r}}\left(\frac{\mathbf{r} \cdot Q \cdot \mathbf{r}}{2}\right)=\nabla\left(\frac{\mathbf{r} \cdot Q \cdot \mathbf{r}}{2}\right)=Q \cdot \mathbf{r}
$$

Action of "sqrt-" matrix $R=\sqrt{ } Q$ (R generates another ellipse $\mathbf{r} \cdot R \cdot \mathbf{r}=1$ not shown) on a single \mathbf{r}-vector $\mathbf{r}\left(\phi_{-1}\right) \ldots$ is to rotate it to \mathbf{u}-circle $(\mathbf{u} \cdot \mathbf{u}=1)$, that is, $R \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{u}=($ const. $) \mathbf{r}\left(\phi_{0}\right)$

$$
\mathbf{u}=\sqrt{\mathbf{Q}} \cdot \mathbf{r}\left(\phi_{-1}\right)=\mathbf{R} \cdot \mathbf{r}\left(\phi_{-1}\right)
$$

$$
=\left(\begin{array}{cc}
1 / a & 0 \\
0 & 1 / b
\end{array}\right)\binom{a \cos \phi_{0}}{b \sin \phi_{0}}
$$

$$
\begin{aligned}
& =\left(\begin{array}{cc}
1 / a & 0 \\
0 & 1 / b
\end{array}\right)\left[\begin{array}{l}
a \cos \phi_{0} \\
b \sin \phi_{0}
\end{array}\right) \\
& =\binom{\frac{1}{a} a \cos \phi_{0}}{\frac{1}{b} b \sin \phi_{0}}=\binom{\cos \phi_{0}}{\sin \phi_{0}}
\end{aligned}
$$

$$
=\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}
$$

a unit vector on unit-circle
based on Fig. 11.7 in Unit 1

Introduction to Lagrangian-Hamiltonian duality

\longrightarrow Review of partial differential relations
Chain rule and order symmetry
Duality relations of Lagrangian and Hamiltonian ellipse Introducing the $1^{\text {st }}$ (partial $\frac{\partial ?}{\partial ?}$) differential equations of mechanics

Begin with a function $z=f(z)$ of 2-dimensions (x, y) and plotted
$z=f(x, y)$
axis in 3-D (Then approximate by cells and tiles.)

Begin with a function $z=f(z)$ of 2-dimensions (x, y) and plotted
$z=f(x, y)$ axis in 3-D (Then approximate by cells and tiles.)

Begin with a function $z=f(z)$ of 2-dimensions (x, y) and plotted
$z=f(x, y)$ axis in 3-D (Then approximate by cells and tiles.)

Begin with a function $z=f(z)$ of 2-dimensions (x, y) and plotted in 3-D (Then approximate by cells and tiles.)
$z=f(x, y)$
axis

Begin with a function $z=f(z)$ of 2-dimensions (x, y) and plotted in 3-D (Then approximate by cells and tiles.)
$z=f(x, y)$
axis

Introduction to Lagrangian-Hamiltonian duality

Review of partial differential relations
\longrightarrow Chain rule and order symmetry
Duality relations of Lagrangian and Hamiltonian ellipse Introducing the $1^{\text {st }}$ (partial $\frac{\partial ?}{\partial ?}$) differential equations of mechanics

What the geometry indicates....(Two important results)

$$
\begin{aligned}
f\left(x_{1}, y_{1}\right) & =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x \Delta y \\
& =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y \Delta x
\end{aligned}
$$

What the geometry indicates....(Two important results)

$$
\begin{aligned}
f\left(x_{1}, y_{1}\right) & =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x \Delta y \\
& =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y \Delta x
\end{aligned}
$$

1. Chain rules

$$
\begin{aligned}
{\left[f\left(x_{1}, y_{1}\right)-f\left(x_{0}, y_{0}\right)\right]=d f } & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) d x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) d y \ldots_{(\text {keep } 1 \text { 1r-order terms only.') }} \\
\frac{d f}{d t} & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \frac{d x}{d t}+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \frac{d y}{d t} \\
\dot{f} & =\frac{\partial f}{\partial x} \dot{x}+\frac{\partial f}{\partial y} \dot{y} \quad{ }_{\text {(shorthand notation })}
\end{aligned}
$$

What the geometry indicates....(Two important results)

$$
\begin{aligned}
f\left(x_{1}, y_{1}\right) & =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x \Delta y \\
& =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y \Delta x
\end{aligned}
$$

1. Chain rules

$$
\begin{aligned}
{\left[f\left(x_{1}, y_{1}\right)-f\left(x_{0}, y_{0}\right)\right]=d f } & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) d x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) d y \ldots_{\text {(keep 1 1s-order terms only') }} \\
\frac{d f}{d t} & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \frac{d x}{d t}+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \frac{d y}{d t} \\
\dot{f} & =\frac{\partial f}{\partial x} \dot{x}+\frac{\partial f}{\partial y} \dot{y} \quad \underset{\text { (shorthand notation) }}{ }=\partial_{x} f \dot{x}+\partial_{y} f \dot{y}
\end{aligned}
$$

2. Symmetry of partial deriv. ordering

$$
\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y} \quad \text { or: } \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y} \quad \text { or: } \quad \partial_{y} \partial_{x} f=\partial_{x} \partial_{y} f
$$

(shorthand notation)

What the geometry indicates....(Two important results)

$$
\begin{aligned}
f\left(x_{1}, y_{1}\right) & =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial}{\partial y} \frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x \Delta y \\
& =f\left(x_{0}, y_{0}\right)+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y+\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \Delta x+\frac{\partial}{\partial x} \frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \Delta y \Delta x
\end{aligned}
$$

1. Chain rules

$$
\begin{aligned}
{\left[f\left(x_{1}, y_{1}\right)-f\left(x_{0}, y_{0}\right)\right]=d f } & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) d x+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) d y_{\omega_{\text {(keep 1 1 }}(\text {-order terms sonly!) }} \\
\frac{d f}{d t} & =\frac{\partial f}{\partial x}\left(x_{0}, y_{0}\right) \frac{d x}{d t}+\frac{\partial f}{\partial y}\left(x_{0}, y_{0}\right) \frac{d y}{d t} \\
\dot{f} & =\frac{\partial f}{\partial x} \dot{x}+\frac{\partial f}{\partial y} \dot{y} \quad \underset{\text { (shorthand notation) })}{ }=\partial_{x} f \dot{x}+\partial_{y} f \dot{y}
\end{aligned}
$$

2. Symmetry of partial deriv. ordering

$$
\frac{\partial}{\partial y} \frac{\partial f}{\partial x}=\frac{\partial}{\partial x} \frac{\partial f}{\partial y} \quad \text { or: } \frac{\partial^{2} f}{\partial y \partial x}=\frac{\partial^{2} f}{\partial x \partial y} \text { or: } \quad \partial_{y} \partial_{x} f=\partial_{x} \partial_{y} f
$$

(shorthand notation)

$$
\text { Let }: \vec{\nabla}=\left(\begin{array}{ll}
\partial_{x} & \partial_{y}
\end{array}\right) \quad \text { so }: \vec{\nabla} f \cdot \mathbf{d r}=\left(\begin{array}{ll}
\partial_{x} f & \partial_{y} f
\end{array}\right) \cdot\binom{d x}{d y}=\partial_{x} f d x+\partial_{y} f d y=d f
$$

Introduction to Lagrangian-Hamiltonian duality

Review of partial differential relations
Chain rule and order symmetry
\longrightarrow Duality relations of Lagrangian and Hamiltonian ellipse Introducing the $1^{\text {st }}$ (partial $\frac{\partial ?}{\partial ?}$) differential equations of mechanics

1. Lagrangian is explicit function of velocity: $\quad \mathbf{v}=\binom{v_{1}}{v_{2}}$
$L\left(v_{k} \ldots\right)=\frac{1}{2}\left(m_{1} v_{1}^{2}+m_{2} v_{2}^{2}+\ldots\right)=L(\mathbf{v} \ldots)=\frac{1}{2} \mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}+\ldots=\frac{1}{2}\left(\begin{array}{ll}v_{1} & v_{2}\end{array}\right)\left(\begin{array}{cc}m_{1} & 0 \\ 0 & m_{2}\end{array}\right)\binom{v_{1}}{v_{2}}+\ldots$
2. "Estrangian" is explicit function of \mathbf{R}-rescaled velocity: or: "speedinum" $V \quad \mathbf{V}=\mathbf{R} \cdot \mathbf{v}$ or: $\binom{V_{1}}{V_{2}}=\left(\begin{array}{cc}\sqrt{m_{1}} & 0 \\ 0 & \sqrt{m_{2}}\end{array}\right)\binom{v_{1}}{v_{2}}$
$E\left(V_{k} \ldots\right)=\frac{1}{2}\left(V_{1}^{2}+V_{2}^{2}+\ldots\right)=E(\mathbf{V} \ldots)=\frac{1}{2} \mathbf{V} \cdot \mathbf{1} \cdot \mathbf{V}+\ldots=\frac{1}{2}\left(\begin{array}{ll}V_{1} & V_{2}\end{array}\right)\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\binom{V_{1}}{V_{2}}+\ldots$
3. Hamiltonian is explicit function of $\mathbf{M}=\mathbf{R}^{2}$-rescaled velocity: or: momentum p

$$
\mathbf{p}=\mathbf{M} \cdot \mathbf{v} \text { or: }\binom{p_{1}}{p_{2}}=\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{m_{1} v_{1}}{m_{2} v_{2}}
$$

$H\left(p_{k} \ldots\right)=\frac{1}{2}\left(\frac{p_{1}^{2}}{m_{1}}+\frac{p_{2}^{2}}{m_{2}}+\ldots\right)=H(\mathbf{p} \ldots)=\frac{1}{2} \mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}+\ldots=\frac{1}{2}\left(\begin{array}{ll}p_{1} & p_{2}\end{array}\right)\left(\begin{array}{cc}1 / m_{1} & 0 \\ 0 & 1 / m_{2}\end{array}\right)\binom{p_{1}}{p_{2}}+\ldots$

The R and Q matrix transformations are like the mechanics rescaling matrices $\sqrt{ } \mathbf{M}$ and \mathbf{m} :
Like $Q=R^{2}: ~ \mathbf{M}=\left(\begin{array}{cc}m_{1} & 0 \\ 0 & m_{2}\end{array}\right)=\mathbf{R}^{2}$ Like $\sqrt{ } Q=R: \sqrt{\mathbf{M}}=\left(\begin{array}{cc}\sqrt{m_{1}} & 0 \\ 0 & \sqrt{m_{2}}\end{array}\right)=\mathbf{R} \quad$ Like $Q^{-1}=R^{-2}: \quad \mathbf{M}^{-1}=\left(\begin{array}{cc}1 / m_{1} & 0 \\ 0 & 1 / m_{2}\end{array}\right)=\mathbf{R}^{-2}$
(a) Lagrangian $L=L\left(v_{l}, v_{2}\right)$

COM Bisector slope $=1 / 1$

$$
\begin{aligned}
& \text { COM Bisector slope } \\
& =\sqrt{m}_{2} /{ }^{\prime} m_{1}=1 / 4
\end{aligned}
$$

Collision line and COM tangent slope $=-m_{1} / m_{2}=-16$
(b) Estrangian $E=E\left(V_{1}, V_{2}\right)$ Fig. 12.1 $\quad V_{2}=\sqrt{ } m_{2} v_{2} \quad$ Collision line and

COM Bisector slope

$$
=m_{2} / m_{1}=1 / 16
$$

Collision line and COM tangent slope $\forall=-1 / 1$

Introduction to Lagrangian-Hamiltonian duality

Review of partial differential relations
Chain rule and order symmetry
Duality relations of Lagrangian and Hamiltonian ellipse
\longrightarrow Introducing the $1^{\text {st }}$ (partial $\frac{\partial ?}{\partial ?}$) differential equations of mechanics

Introducing the (partial $\frac{\bar{\partial}}{\bar{\partial}}$) differential equations of mechanics

Starts out with simple demands for explicit-dependence, "loyalty" or "fealty to the colors"

Lagrangian and Estrangian have no explicit dependence on momentum p

$$
\frac{\partial L}{\partial p_{k}} \equiv 0 \equiv \frac{\partial E}{\partial p_{k}}
$$

Hamiltonian and Estrangian have no explicit dependence on velocity \mathbf{v}

$$
\frac{\partial H}{\partial v_{k}} \equiv 0 \equiv \frac{\partial E}{\partial v_{k}}
$$

Lagrangian and Hamiltonian have no explicit dependence on speedinum V

$$
\frac{\partial L}{\partial V_{k}} \equiv 0 \equiv \frac{\partial H}{\partial V_{k}}
$$

Introducing the (partial ${ }_{\frac{\partial}{\partial r}}$) differential equations of mechanics

Starts out with simple demands for explicit-dependence, "loyalty" or "fealty to the colors"

Lagrangian and Estrangian have no explicit dependence on momentum \mathbf{p}

$$
\frac{\partial L}{\partial p_{k}} \equiv 0 \equiv \frac{\partial E}{\partial p_{k}}
$$

Hamiltonian and Estrangian have no explicit dependence on velocity \mathbf{v}

$$
\frac{\partial H}{\partial v_{k}} \equiv 0 \equiv \frac{\partial E}{\partial v_{k}}
$$

Lagrangian and Hamiltonian have no explicit dependence on speedinum V

$$
\frac{\partial L}{\partial V_{k}} \equiv 0 \equiv \frac{\partial H}{\partial V_{k}}
$$

Such non-dependencies hold in spite of "under-the-table" matrix and partial-differential connections

$$
\begin{array}{rlr}
\nabla_{v} L=\frac{\partial L}{\partial \mathbf{v}}=\frac{\partial}{\partial \mathbf{v}} \frac{\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}}{2} & \nabla_{p} H=\mathbf{v}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\partial}{\partial \mathbf{p}} \frac{\mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}}{2} \\
=\mathbf{M} \cdot \mathbf{v}=\mathbf{p} & =\mathbf{M}^{-1} \cdot \mathbf{p}=\mathbf{v}
\end{array}\binom{\frac{\partial L}{\partial v_{1}}}{\frac{\partial L}{\partial v_{2}}}=\left(\begin{array}{cc}
m_{1} & 0 \\
0 & m_{2}
\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{p_{1}}{p_{2}} \quad\binom{\frac{\partial H}{\partial p_{1}}}{\frac{\partial H}{\partial p_{2}}}=\left(\begin{array}{l}
p_{1} \\
0
\end{array} m_{2}^{-1}\right)=\binom{v_{1}}{p_{2}} .
$$

Introducing the (partial ${ }_{\frac{\partial}{\partial r}}$) differential equations of mechanics

Starts out with simple demands for explicit-dependence, "loyalty" or "fealty to the colors"

Lagrangian and Estrangian have no explicit dependence on momentum \mathbf{p}

$$
\frac{\partial L}{\partial p_{k}} \equiv 0 \equiv \frac{\partial E}{\partial p_{k}}
$$

Hamiltonian and Estrangian

 have no explicit dependence on velocity $\mathbf{v}$$$
\frac{\partial H}{\partial v_{k}} \equiv 0 \equiv \frac{\partial E}{\partial v_{k}}
$$

Lagrangian and Hamiltonian have no explicit dependence on speedinum V

$$
\frac{\partial L}{\partial V_{k}} \equiv 0 \equiv \frac{\partial H}{\partial V_{k}}
$$

Such non-dependencies hold in spite of "under-the-table" matrix and partial-differential connections

$$
\begin{aligned}
\nabla_{v} L=\frac{\partial L}{\partial \mathbf{v}} & =\frac{\partial}{\partial \mathbf{v}} \frac{\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v}}{2} \\
& =\mathbf{M} \cdot \mathbf{v}=\mathbf{p}
\end{aligned}
$$

$$
\nabla_{p} H=\mathbf{v}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\partial}{\partial \mathbf{p}} \frac{\mathbf{p} \cdot \mathbf{M}^{-1} \cdot \mathbf{p}}{2}
$$

$$
=\mathbf{M}^{-1} \cdot \mathbf{p}=\mathbf{v}
$$

$\binom{\frac{\partial L}{\partial v_{1}}}{\frac{\partial L}{\partial v_{2}}}=\left(\begin{array}{cc}m_{1} & 0 \\ 0 & m_{2}\end{array}\right)\binom{v_{1}}{v_{2}}=\binom{p_{1}}{p_{2}}$
Lagrange's $1^{s t}$ equation(s)
$\frac{\partial L}{\partial v_{k}}=p_{k} \quad$ or: $\quad \frac{\partial L}{\partial \mathbf{v}}=\mathbf{p}$

Unit 1
Fig. 12.2
(a) $\begin{aligned} & \text { Lagrangian plot } \\ & L(\mathbf{v})=\text { const. }=\mathbf{v} \cdot \mathbf{M} \cdot \mathbf{v} / 2\end{aligned}$
(b) $\begin{aligned} & \text { plot } \\ & H(p)=\text { const. }=\end{aligned} \cdot \mathbf{M}^{-1} \cdot / 2 \quad p_{2}=m_{2} v_{2}$

