Complex Variables, Series, and Field Coordinates II.

(Ch. 10 of Unit 1)

From Part I:
 From Part I:

\author{

1. Review of source-free (analytic) fields
 Easy 2D source-free field theory
 Easy 2D vector field-potential theory
 Easy 2D source-free field theory
 Easy 2D vector field-potential theory
}

2. Review of basic Riemann-Cauchy conditions
 2.

End of Part I. Lecture 19 Thur. 3.08.2012
9. Complex integrals $\int f(z) d z$ count $2 D$ "circulation"($\int \mathbf{F} \cdot \mathrm{dr}$) and "flux"((F)xdr)
3. $2 D$ source-field-potential-coordinate analysis Easy 2D circulation and flux integrals Easy 2D curvilinear coordinate discovery Easy 2D monopole, dipole, and 2^{n}-pole analysis

1. Complex numbers provide "automatic trigonometry"
2. Complex numbers add like vectors.
3. Complex exponentials Ae ${ }^{-i \omega t}$ track position and velocity using Phasor Clock.
4. Complex products provide $2 D$ rotation operations.
5. Complex products provide 2D "dot" (\cdot) and "cross" (x) products.
6. Complex derivative contains "divergence" $(\nabla \cdot \mathrm{F})$ and "curl" $(\nabla \mathrm{xF})$ of $2 D$ vector field
7. Invent source-free $2 D$ vector fields $[\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$]
8. Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $\mathrm{F}=\nabla \mathrm{xA})$ potentials
9. Complex integrals $\int f(z) d z$ count $2 D$ "circulation"($\left.\int \mathbf{F} \cdot \mathrm{dr}\right)$ and "flux"($(\mathbf{F} \mathbf{F d r})$
10. Complex integrals define 2D monopole fields and potentials
11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
12. Complex derivatives give $2 D$ dipole fields
13. More derivatives give $2 D 2^{N}$-pole fields...
14. ...and 2^{N}-pole multipole expansions of fields and potentials...
15. ...and Laurent Series... 13-16 Not covered in class
16. ...and non-analytic source analysis. on 3.12.12

From Part I:

1. Review of source-free (analytic) fields
\longrightarrow Easy 2D source-free field theory Easy 2D vector field-potential theory
2. Review of basic Riemann-Cauchy conditions

6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla \times F)$ of $2 D$ vector field

Relation of $\left(z, z^{*}\right)$ to ($x=\operatorname{Re} z, y=\operatorname{Im} z$) defines a z-derivative $\frac{d f}{d z}$ and "star" z^{*}-derivative. $\frac{d f}{d z^{*}}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

Derivative chain-rufe shows real part of $\frac{d f}{d z}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$
\frac{d f}{d z}=\frac{d}{d z}\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{1}{2} \nabla \bullet \mathbf{f}+\frac{i}{2}|\nabla \times \mathbf{f}|_{Z \perp(x, y)}
$$

7. Invent source-free $2 D$ vector fields $[\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$]

We can invent source-free $2 D$ vector fields that are both zero-divergence and zero-curl.
Take any function $f(z)$, conjugate it (change all i 's to $-i$) to give $f^{*}\left(z^{*}\right)$ for which $\frac{d f^{*}}{d z}=0$
For example: if $f(z)=a \cdot z$ then $f^{*}\left(z^{*}\right)=a \cdot z^{*}=a(x-i y)$ is not function of z so it has zero z-derivative.
$\mathbf{F}=\left(F_{x}, F_{y}\right)=\left(f_{x,}^{*} f_{y}^{*}\right)=(a \cdot x,-a \cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F}=0$ and has zero curl: $\mid \nabla \times \mathbf{F}=0$.

$$
\nabla \bullet \mathbf{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}=\frac{\partial(a x)}{\partial x}+\frac{\partial F(-a y)}{\partial y}=0 \quad \left\lvert\, \nabla \times \mathbb{F}_{Z \perp(x, y)}=\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}=\frac{\partial(-a y)}{\partial x}-\frac{\partial F(a x)}{\partial y}=0\right.
$$

A $D F L$ field \mathbf{F} (Divergence-Free-Laminar)

From Part I:

1. Review of source-free (analytic) fields

Easy 2D source-free field theory
\longrightarrow Easy 2 D vector field-potential theory
2. Review of basic Riemann-Cauchy conditions
8. Complex potential ϕ contains "scalar" $\mathrm{F}=\nabla \Phi$) and "vector" $\mathrm{F}=\nabla x \mathrm{~A}$) potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A}.

$$
\mathbf{F}=\nabla \Phi
$$

$$
\mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose z-derivative is $f(z)=d \phi / d z$. Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathbf{A}(x, y)$ has z^{*}-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field \mathbf{F}.

Now if you have a field $f(z)$ you integrate to get the potential $\phi(z)$ field: $\phi(z)=\int f(z) d z$

8. Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $\mathrm{F}=\nabla \times \mathrm{A})$ potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A}.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathbf{A}(x, y)$ exists whose z-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathbf{A}(x, y)$ has z^{*}-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field \mathbf{F}.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get ϕ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary $(\mathrm{Im} \phi=\mathrm{A})$ parts.

$$
\begin{aligned}
\phi & =\overbrace{=\frac{1}{2}}^{\Phi}+i \overbrace{a\left(x^{2}-y^{2}\right)}^{\mathrm{A}}+i \overbrace{\text { axy }}^{\mathrm{A}}=\int f \cdot d z=\int a z \cdot d z=\frac{1}{2} a z^{2}=\frac{1}{2} a(x+i y)^{2}
\end{aligned}
$$

Unit 1
Fig. 10.7

But, if you have a potential $\phi(z)$ you differentiate to get the field $f(z)=\frac{d}{d z} \phi(z)$

What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector"($\mathrm{F}=\nabla \mathrm{xA}$) potentials ...and either one (or half-n'-half!) works just as well.
Derivative $\frac{d \phi^{*}}{d z^{*}}$ has 2D gradient $\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial D}{\partial y}}$ of scalar Φ and $\operatorname{curl}_{\nabla \times A}=\binom{\frac{\partial A}{\partial y}}{\frac{\partial \lambda}{\partial x}}$ of vector A (and they're equal!')

$$
\frac{d}{d z^{*}} \phi^{*}=\frac{d}{d z^{*}}(\Phi-i \mathbf{A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathbf{A})=\frac{1}{2}(\overbrace{\left.\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}\right)})+\frac{1}{2}\left(\frac{\partial \mathrm{~A}}{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x}\right)=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathbf{A}
$$

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$

What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials ...and either one (or half-n'-half!) works just as well.
Derivative $\frac{d \phi^{*} *}{d z^{*}}$ has 2D gradient $\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}$ of scalar Φ and $\operatorname{curl} \nabla \times \mathrm{A}=\binom{\frac{\partial A}{\partial y}}{-\frac{\partial A}{\partial y}}$ of vector A (and they're equal!')

$$
\frac{d}{d z^{*}} \phi^{*}=\frac{d}{d z^{*}}(\Phi-i \mathrm{~A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathrm{~A})=\frac{1}{2}(\overbrace{\left.\left.\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}\right)+\frac{1}{2}\left(\frac{\partial \mathrm{~A}}{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x}\right)=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathbf{A},{ }^{2}\right)}
$$

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$

Scalar static potential lines $\Phi=$ const. and vector flux potential lines $\mathbf{A}=$ const. define $D F L$ field-net.

The half-n'-half results are called
Riemann-Cauchy
Derivative Relations

$$
\begin{aligned}
& \frac{\partial \Phi}{\partial x}=\frac{\partial \mathrm{A}}{\partial y} \quad \text { is: } \\
& \frac{\partial \Phi}{\partial y}=-\frac{\partial \mathrm{Re} f(z)}{\partial x} \text { is }: \quad \frac{\partial \operatorname{Im} f(z)}{\partial y} \\
& \frac{\partial \operatorname{Re} f(z)}{\partial y}=-\frac{\partial \operatorname{Im} f(z)}{\partial x}
\end{aligned}
$$

From Part I:

1. Review of source-free (analytic) fields

Easy 2D source-free field theory
Easy $2 D$ vector field-potential theory

Review of basic Riemann-Cauchy conditions What's analytic? (... and what's not?)

Review $\left(z, z^{*}\right)$ to (x, y) transformation relations

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{1}{2 i} \frac{\partial f}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) f \\
z^{*}=x-i y & y=\frac{1}{2}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{1}{2 i} \frac{\partial f}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) f
\end{array}
$$

Criteria for a field function $f=f_{x}(x, y)+i f_{y}(x, y)$ to be an analytic function $\boldsymbol{f}(z)$ of $z=x+i y$:
First, $f(z)$ must not be a function of $z^{*}=x-i y$, that is: $\frac{d f}{d z^{*}}=0$
This implies $f(z)$ satisfies differential equations known as the Riemann-Cauchy conditions
$\frac{d f}{d z^{*}}=0=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}-\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}+\frac{\partial f_{x}}{\partial y}\right)$ implies: $\frac{\partial f_{x}}{\partial x}=\frac{\partial f_{y}}{\partial y} \quad$ and $\left.: \quad \frac{\partial f_{y}}{\partial x}=-\frac{\partial f_{x}}{\partial y}\right)$
$\frac{d f}{d z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{\partial f_{x}}{\partial x}+i \frac{\partial f_{y}}{\partial x}=\frac{\partial f_{y}}{\partial y}-i \frac{\partial f_{x}}{\partial y}=\frac{\partial}{\partial x}\left(f_{x}+i f_{y}\right)=\frac{\partial}{\partial i y}\left(f_{x}+i f_{y}\right)$

Review $\left(z, z^{*}\right)$ to (x, y) transformation relations
$z=x+i y$
$x=\frac{1}{2}\left(z+z^{*}\right)$
$\frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{1}{2 i} \frac{\partial f}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right) f$
$z^{*}=x-i y \quad y=\frac{1}{2 i}\left(z-z^{*}\right)$ $\frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{1}{2 i} \frac{\partial f}{\partial y}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right) f$

Criteria for a field function $f=f_{x}(x, y)+i f_{y}(x, y)$ to be an analytic function $\boldsymbol{f}(z)$ of $z=x+i y$:
First, $f(z)$ must not be a function of $z^{*}=x-i y$, that is: $\frac{d f}{d z^{*}}=0$
This implies $f(z)$ satisfies differential equations known as the Riemann-Cauchy conditions
$\frac{d f}{d z^{*}}=0=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}-\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}+\frac{\partial f_{x}}{\partial y}\right)$ implies: $\frac{\partial f_{x}}{\partial x}=\frac{\partial f_{y}}{\partial y} \quad$ and $\left.: \quad \frac{\partial f_{y}}{\partial x}=-\frac{\partial f_{x}}{\partial y}\right)$
$\frac{d f}{d z}=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{\partial f_{x}}{\partial x}+i \frac{\partial f_{y}}{\partial x}=\frac{\partial f_{y}}{\partial y}-i \frac{\partial f_{x}}{\partial y}=\frac{\partial}{\partial x}\left(f_{x}+i f_{y}\right)=\frac{\partial}{\partial i y}\left(f_{x}+i f_{y}\right)$

Criteria for a field function $f=f_{x}(x, y)+i f_{y}(x, y)$ to be an analytic function $\boldsymbol{f}\left(z^{*}\right)$ of $z^{*}=x$-iy:
First, $f\left(z^{*}\right)$ must not be a function of $z=x+i y$, that is: $\frac{d f}{d z}=0$
This implies $f\left(z^{*}\right)$ satisfies differential equations we call Anti-Riemann-Cauchy conditions
$\frac{d f}{d z}=0=\frac{1}{2}\left(\frac{\partial}{\partial x}-i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=$ implies: $: \frac{\partial f_{x}}{\partial x}=-\frac{\partial f_{y}}{\partial y} \quad$ and $\left.: \quad \frac{\partial f_{y}}{\partial x}=\frac{\partial f_{x}}{\partial y}\right)$
$\frac{d f}{d z^{*}}=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}-\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}+\frac{\partial f_{x}}{\partial y}\right)=\frac{\partial f_{x}}{\partial x}+i \frac{\partial f_{y}}{\partial x}=-\frac{\partial f_{y}}{\partial y}+i \frac{\partial f_{x}}{\partial y}=\frac{\partial}{\partial x}\left(f_{x}+i f_{y}\right)=-\frac{\partial}{\partial i y}\left(f_{x}+i f_{y}\right)$

What's analytic? (... and what's not?)

Example: Is $f(x, y)=2 x+i y$ an analytic function of $z=z+i y$?

What's analytic? (...and what's not?)
Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } \quad x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
f(x, y)=2 x+i 4 y=2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right)
$$

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
\begin{aligned}
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =\quad z+z^{*}+\left(2 z-2 z^{*}\right)
\end{aligned}
$$

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
\begin{aligned}
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right) \\
& =3 z-z^{*}
\end{aligned}
$$

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
\begin{aligned}
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right) \\
& =3 z-z^{*}
\end{aligned}
$$

A: NO! It's a function of z and $z *$ so not analytic for either.

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
\begin{aligned}
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right) \\
& =3 z-z^{*}
\end{aligned}
$$

A: NO! It's a function of z and z * so not analytic for either.

Example 2: Q: Is $r(x, y)=x^{2}+y^{2}$ an analytic function of $z=z+i y$?

A: NO! $r(x y)=z^{*} z$ is a function of z and z^{*} so not analytic for either.

What's analytic? (... and what's not?)

Example: Q: Is $f(x, y)=2 x+i 4 y$ an analytic function of $z=z+i y$?
Well, test it using definitions: $z=x+i y \quad$ and: $\quad z^{*}=x-i y$

$$
\text { or: } x=\left(z+z^{*}\right) / 2 \quad \text { and: } \quad y=-i\left(z-z^{*}\right) / 2
$$

$$
\begin{aligned}
f(x, y)=2 x+i 4 y & =2\left(z+z^{*}\right) / 2+i 4\left(-i\left(z-z^{*}\right) / 2\right) \\
& =z+z^{*}+\left(2 z-2 z^{*}\right) \\
& =3 z-z^{*}
\end{aligned}
$$

A: NO! It's a function of z and $z *$ so not analytic for either.

Example 2: Q: Is $r(x, y)=x^{2}+y^{2}$ an analytic function of $z=z+i y$?

A: NO! $\quad r(x y)=z^{*} z$ is a function of z and z^{*} so not analytic for either.
Example 3: Q: Is $s(x, y)=x^{2}-y^{2}+2 i x y$ an analytic function of $z=z+i y$?
A: YES! $s(x y)=(x+i y)^{2}=z^{2}$ is analytic function of z. (xay)
3. 2D source-field-potential-coordinate analysis
\rightarrow Easy 2D circulation and flux integrals Easy 2D curvilinear coordinate discovery Easy 2D monopole, dipole, and 2^{n}-pole analysis
9. Complex integrals $\int f(z) d z$ count $2 D$ "circulation"($\int \mathrm{F} \cdot \mathrm{dr}$) and "flux"($(\mathrm{F} \mathbf{F d r})$

Integral of $f(z)$ between point z_{1} and point z_{2} is potential difference $\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)$

$$
\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)=\int_{z_{1}}^{z_{2}} f(z) d z=\underbrace{\Phi\left(x_{2}, y_{2}\right)-\Phi\left(x_{1}, y_{1}\right)}_{\Delta \phi=}+i[\underbrace{[\underbrace{\mathrm{~A}\left(x_{2}, y_{2}\right)-\mathrm{A}\left(x_{1}, y_{1}\right)}_{\Delta \mathbf{A}})]}_{\Delta \Phi}
$$

In $D F L$ field $\mathbf{F}, \Delta \phi$ is independent of the integration path $z(t)$ connecting z_{l} and z_{2}.
9. Complex integrals $\int f(z) d z$ count $2 D$ "circulation" ($\int \mathrm{F} \cdot \mathrm{dr}$) and "flux"($(\mathrm{F} \mathbf{F d r})$

Integral of $f(z)$ between point z_{1} and point z_{2} is potential difference $\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)$

$$
\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)=\int_{z_{1}}^{z_{2}} f(z) d z=\underbrace{\Phi\left(x_{2}, y_{2}\right)-\Phi\left(x_{1}, y_{1}\right)}_{\Delta \phi=}+i[\underbrace{i\left[\mathrm{~A}\left(x_{2}, y_{2}\right)-\mathrm{A}\left(x_{1}, y_{1}\right)\right.}_{\Delta \Phi})]
$$

In $D F L$ field $\mathbb{F}, \Delta \phi$ is independent of the integration path $z(t)$ connecting z_{1} and z_{2}.

$$
\begin{aligned}
\int f(z) d z & =\int\left(f^{*}\left(z^{*}\right)\right)^{*} d z=\int\left(f^{*}\left(z^{*}\right)\right)^{*}(d x+i d y)=\int\left(f_{x}^{*}+i f_{y}^{*}\right)^{*}(d x+i d y)=\int\left(f_{x}^{*}-i f_{y}^{*}\right)(d x+i d y) \\
& =\int\left(f_{x}^{*} d x+f_{y}^{*} d y\right)+i \int\left(f_{x}^{*} d y-f_{y}^{*} d x\right) \\
& =\int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \times d \mathbf{r} \cdot \hat{\mathbf{e}}_{Z} \\
& =\int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \cdot d \mathbf{r} \times \hat{\mathbf{e}}_{Z} \\
& =\int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \cdot d \mathrm{~S} \quad \text { where: } \quad d \mathrm{~S}=d \mathbf{r} \times \hat{\mathbf{e}}_{Z}
\end{aligned}
$$

9. Complex integrals $\int f(z) d z$ count $2 D$ "circulation"($\int \mathrm{F} \cdot \mathrm{dr}$) and "flux"($(\mathrm{F} \mathbf{F d r})$

Integral of $f(z)$ between point z_{1} and point z_{2} is potential difference $\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)$

$$
\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)=\int_{z_{1}}^{z_{2}} f(z) d z=\underbrace{\Phi\left(x_{2}, y_{2}\right)-\Phi\left(x_{1}, y_{1}\right)}_{\Delta \phi=}+i \underbrace{i[\underbrace{\mathbf{A}\left(x_{2}, y_{2}\right)-\mathbf{A}\left(x_{1}, y_{1}\right)}_{\Delta \mathbf{A}}]}_{\Delta \Phi}
$$

In $D F L$ field $\mathbf{F}, \Delta \phi$ is independent of the integration path $z(t)$ connecting z_{1} and z_{2}.

$$
\begin{aligned}
& \int f(z) d z=\int\left(f^{*}\left(z^{*}\right)\right)^{*} d z=\int\left(f^{*}\left(z^{*}\right)\right)^{*}(d x+i d y)=\int\left(f_{x}^{*}+i f_{y}^{*}\right)^{*}(d x+i d y)=\int\left(f_{x}^{*}-i f_{y}^{*}\right)(d x+i d y) \\
& =\int\left(f_{x}^{*} d x+f_{y}^{*} d y\right)+i \int\left(f_{x}^{*} d y-f_{y}^{*} d x\right) \\
& =\quad \int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \times d \mathbf{r} \cdot \hat{\mathbf{e}}_{Z} \\
& =\quad \int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \cdot d \mathbf{r} \times \hat{\mathbf{e}}_{Z} \\
& =\quad \int \mathbf{F} \cdot d \mathbf{r} \quad+i \int \mathbf{F} \cdot d \mathrm{~S} \quad \text { where: } \quad d \mathrm{~S}=d \mathbf{r} \times \hat{\mathbf{e}}_{Z} \\
& \text { Real part } \quad \int_{1}^{2} \mathbf{F} \bullet d \mathbf{r}=\Delta \Phi \\
& \text { sums F projections along path } \\
& d \mathbf{r} \text { that is, circulation on path } \\
& \text { to get } \Delta \Phi \text {. }
\end{aligned}
$$

3. 2D source-field-potential-coordinate analysis Easy 2D circulation and flux integrals
\longrightarrow Easy 2D curvilinear coordinate discovery Easy 2D monopole, dipole, and 2^{n}-pole analysis

Here the scalar potential $\Phi=\left(x^{2}-y^{2}\right) / 2$ is stereo-plotted vs. (x, y) The $\Phi=\left(x^{2}-y^{2}\right) / 2=$ const. curves are topography lines
The $A=(x y)=$ const. curves are streamlines normal to topography lines

What Good Are Complex Exponentials? (contd.)

11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, A) grid is a GCC coordinate system*:
$q^{l}=\Phi=\left(x^{2}-y^{2}\right) / 2=$ const.
$q^{2}=\mathrm{A}=(x y)=$ const.
*Actually it's OCC.

Kajobian $=\left(\begin{array}{cc}\frac{\partial q^{1}}{\partial x} & \frac{\partial q^{1}}{\partial y} \\ \frac{\partial q^{2}}{\partial x} & \frac{\partial q^{2}}{\partial y}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} \\ \frac{\partial A}{\partial x} & \frac{\partial A}{\partial y}\end{array}\right)=\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right) \leftarrow \mathbf{E}^{\Phi} \quad \leftarrow \mathbf{E}^{A} \quad$ Jacobian $\left.=\left(\begin{array}{cc}\frac{\partial x}{\partial q^{1}} & \frac{\partial x}{\partial q^{2}} \\ \frac{\partial y}{\partial q^{1}} & \frac{\partial y}{\partial q^{2}}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial x}{\partial \Phi} & \frac{\partial x}{\partial A} \\ \frac{\partial y}{\partial \Phi} & \frac{\partial y}{\partial A}\end{array}\right)=\frac{1}{r^{2}} \begin{array}{cc}x & y \\ -y & x\end{array}\right)$ Metrictensor $=\left(\begin{array}{ll}g_{\Phi \Phi} & g_{\Phi A} \\ g_{A \Phi} & g_{A A}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A}\end{array}\right)=\left(\begin{array}{cc}r^{2} & 0 \\ 0 & r^{2}\end{array}\right)$ where: $r^{2}=x^{2}+y^{2}$

What Good Are Complex Exponentials? (contd.)

11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, \mathbf{A}) grid is a GCC coordinate system*:
$q^{1}=\Phi=\left(x^{2}-y^{2}\right) / 2=$ const.
$q^{2}=\mathrm{A}=(x y)=$ const .
*Actually it's OCC.

Kajobian $=\left(\begin{array}{cc}\frac{\partial q^{1}}{\partial x} & \frac{\partial q^{1}}{\partial y} \\ \frac{\partial q^{2}}{\partial x} & \frac{\partial q^{2}}{\partial y}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} \\ \frac{\partial A}{\partial x} & \frac{\partial A}{\partial y}\end{array}\right)=\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right) \leftarrow \mathbf{E}^{\Phi} \quad \leftarrow \mathbf{E}^{A} \quad$ Jacobian $\left.=\left(\begin{array}{cc}\frac{\partial x}{\partial q^{1}} & \frac{\partial x}{\partial q^{2}} \\ \frac{\partial y}{\partial q^{1}} & \frac{\partial y}{\partial q^{2}}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial x}{\partial \Phi} & \frac{\partial x}{\partial A} \\ \frac{\partial y}{\partial \Phi} & \frac{\partial y}{\partial A}\end{array}\right)=\frac{1}{r^{2}} \begin{array}{cc}x & y \\ -y & x\end{array}\right)$ Metrictensor $=\left(\begin{array}{ll}g_{\Phi \Phi} & g_{\Phi A} \\ g_{A \Phi} & g_{A A}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A}\end{array}\right)=\left(\begin{array}{cc}r^{2} & 0 \\ 0 & r^{2}\end{array}\right)$ where: $r^{2}=x^{2}+y^{2}$

Riemann-Cauchy Derivative Relations make coordinates orthogonal
$\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}=\binom{\frac{\partial}{\partial} x \frac{a}{2}\left(x^{2}-y^{2}\right)}{\frac{\partial}{\partial y} y \frac{a}{2}\left(x^{2}-y^{2}\right)}=\binom{a x}{-a y}=\mathbf{F}$

The half-n'-half results assure

$$
\begin{aligned}
\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} & =\frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x}+\frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y} \\
& =-\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y}+\frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x}=0
\end{aligned}
$$

What Good Are Complex Exponentials? (contd.)

11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field

The (Φ, \mathbf{A}) grid is a GCC coordinate system*:
$q^{l}=\Phi=\left(x^{2}-y^{2}\right) / 2=$ const.
$q^{2}=\mathrm{A}=(x y)=$ const .
*Actually it's OCC.

Kajobian $=\left(\begin{array}{cc}\frac{\partial q^{1}}{\partial x} & \frac{\partial q^{1}}{\partial y} \\ \frac{\partial q^{2}}{\partial x} & \frac{\partial q^{2}}{\partial y}\end{array}\right)=\left(\begin{array}{ll}\frac{\partial \Phi}{\partial x} & \frac{\partial \Phi}{\partial y} \\ \frac{\partial A}{\partial x} & \frac{\partial A}{\partial y}\end{array}\right)=\left(\begin{array}{cc}x & -y \\ y & x\end{array}\right) \leftarrow \mathbf{E}^{\Phi} \quad \leftarrow \mathbf{E}^{\Lambda} \quad$ Jacobian $\left.=\left(\begin{array}{cc}\frac{\partial x}{\partial q^{1}} & \frac{\partial x}{\partial q^{2}} \\ \frac{\partial y}{\partial q^{1}} & \frac{\partial y}{\partial q^{2}}\end{array}\right)=\left(\begin{array}{cc}\frac{\partial x}{\partial \Phi} & \frac{\partial x}{\partial A} \\ \frac{\partial y}{\partial \Phi} & \frac{\partial y}{\partial A}\end{array}\right)=\frac{1}{r^{2}} \begin{array}{cc}x & y \\ -y & x\end{array}\right)$ Metrictensor $=\left(\begin{array}{ll}g_{\Phi \Phi} & g_{\Phi A} \\ g_{A \Phi} & g_{A A}\end{array}\right)=\left(\begin{array}{ll}\mathbf{E}_{\Phi} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} \\ \mathbf{E}_{A} \cdot \mathbf{E}_{\Phi} & \mathbf{E}_{A} \cdot \mathbf{E}_{A}\end{array}\right)=\left(\begin{array}{cc}r^{2} & 0 \\ 0 & r^{2}\end{array}\right)$ where: $r^{2}=x^{2}+y^{2}$

Riemann-Cauchy Derivative Relations make coordinates orthogonal
$\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}=\binom{\frac{\partial}{\partial x} \frac{a}{2}\left(x^{2}-y^{2}\right)}{\frac{\partial}{\partial y} \frac{a}{2}\left(x^{2}-y^{2}\right)}=\binom{a x}{-a y}=\mathbf{F}$
The half-n'-half results assure

$$
\begin{aligned}
\mathbf{E}_{\Phi} \cdot \mathbf{E}_{A} & =\frac{\partial \Phi}{\partial x} \frac{\partial A}{\partial x}+\frac{\partial \Phi}{\partial y} \frac{\partial A}{\partial y} \\
& =-\frac{\partial \Phi}{\partial x} \frac{\partial \Phi}{\partial y}+\frac{\partial \Phi}{\partial y} \frac{\partial \Phi}{\partial x}=0
\end{aligned}
$$

or Riemann-Cauchy
Zero divergence requirement: $0=\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}=\frac{\partial}{\partial x} \frac{\partial \Phi}{\partial x}+\frac{\partial}{\partial y} \frac{\partial \Phi}{\partial y}=\frac{\partial^{2} \Phi}{\partial x^{2}}+\frac{\partial^{2} \Phi}{\partial y^{2}}=0$ potential Φ obeys Laplace equation
3. 2D source-field-potential-coordinate analysis Easy 2D circulation and flux integrals Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2^{n}-pole analysis

10. Complex integrals define 2D monopole fields and potentials

 Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-l$ case.Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1} \quad f(z)=\frac{a}{z}=a z^{-1}$ Source- a monopole
It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$.

10. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-l$ case.
Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1} \quad f(z)=\frac{a}{z}=a z^{-1}$ Source- a monopole
It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$.

$$
\phi(z)=\Phi+i \mathbf{A}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)
$$

10. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-1$ case.
Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$

$$
f(z)=\frac{a}{z}=a z^{-1} \text { Source- } a \text { monopole }
$$

It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$. Note: $\ln (a \cdot b)=\ln (a)+\ln (b), \ln \left(e^{i \theta}\right)=i \theta$, and $z=r e^{i \theta}$.

$$
\begin{aligned}
\phi(z) & =\overbrace{a \ln (r)}^{\Phi}+\overbrace{i a \theta}^{i \mathrm{~A}}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)=a \ln \left(r e^{i \theta}\right) \\
& =\overbrace{i=})
\end{aligned}
$$

10. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-1$ case.
Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$

$$
f(z)=\frac{a}{z}=a z^{-1} \text { Source- } a \text { monopole }
$$

It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$. Note: $\ln (a \cdot b)=\ln (a)+\ln (b), \ln \left(e^{i \theta}\right)=i \theta$, and $z=r e^{i \theta}$.

$$
\begin{aligned}
\phi(z) & =\overbrace{a \ln (r)+i}^{\Phi}+i \overbrace{a \theta}^{(a)} \text { Unit Z-line-flux field } f(z)=1 / z
\end{aligned}
$$

10. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-1$ case.
Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$

$$
f(z)=\frac{a}{z}=a z^{-1} \text { Source- } a \text { monopole }
$$

It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$. Note: $\ln (a \cdot b)=\ln (a)+\ln (b), \ln \left(e^{i \theta}\right)=i \theta$, and $z=r e^{i \theta}$.

$$
\begin{aligned}
\phi(z) & =\overbrace{\operatorname{aln}(r)}^{\Phi}+i \overbrace{a \theta} \\
& =\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)=a \ln \left(r e^{i \theta}\right)
\end{aligned}
$$

What Good Are Complex Exponentials? (contd.)

10. Complex integrals define 2D monopole fields and potentials

Of all power-law fields $f(z)=a z^{n}$ one lacks a power-law potential $\phi(z)=\frac{a}{n+1} z^{n+1}$. It is the $n=-1$ case.
Unit monopole field: $f(z)={ }_{z}^{1}=z^{-1}$

$$
f(z)=\frac{a}{z}=a z^{-1} \text { Source- } a \text { monopole }
$$

It has a logarithmic potential $\phi(z)=a \cdot \ln (z)=a \cdot \ln (x+i y)$. Note: $\ln (a \cdot b)=\ln (a)+\ln (b), \ln \left(e^{i \theta}\right)=i \theta$, and $z=r e^{i \theta}$.

$$
\begin{aligned}
& \phi(z)=\underbrace{\Phi}+\underbrace{\Phi}=\int f(z) d z=\int \frac{a}{z} d z=a \ln (z)=a \ln \left(r e^{i \theta}\right) \\
& =a \ln (r)+i a \theta
\end{aligned}
$$

A monopole field is the only power-law field whose integral (potential) depends on path of integration.

$$
\Delta \phi=\oint f(z) d z=a \oint \frac{d z}{z}=a \int_{\theta=0}^{\theta=2 \pi N} \frac{d\left(R e^{i \theta}\right)}{R e^{i \theta}}=a \int_{\theta=0}^{\theta=2 \pi N} i d \theta=\left.a i \theta\right|_{0} ^{2 \pi N}=2 a \pi i N
$$

Each turn around origin
adds $2 \pi i$ to vector potential $i \mathrm{~A}$

What Good Are Complex Exponentials? (contd.)

$$
f(z)=(0.5+i 0.5) / z=e^{i \pi / 4 / z \sqrt{ } 2}
$$

"Vortex"
"Hurricane"

$$
f(z)=(0.75+i 0.25) / z=e^{i 18^{\circ}} / z \sqrt{ } n
$$

3. 2D source-field-potential-coordinate analysis Easy 2D circulation and flux integrals Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2^{n}-pole analysis
12. Complex derivatives give 2D dipole fields Start with $f(z)=a z^{-1}: 2 \mathrm{D}$ line monopole field and is its monopole potentialp $(z)=a \ln z$ of source strength a.

$$
f^{1-\text { pole }}(z)=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z} \quad \phi^{l-\text { pole }}(z)=a \ln z
$$

Now let these two line-sources of equal but opposite source constants $+a$ and $-a$ be located at $z= \pm \Delta / 2$ separated by a small interval Δ. This sum (actually difference) of $f^{1 \text {-pole }}$-fields is called a dipole field.

$$
f^{\text {dipole }}(z)=\frac{a}{z+\frac{\Delta}{2}}-\frac{a}{z-\frac{\Delta}{2}}=\frac{-a \cdot \Delta}{z^{2}-\frac{\Delta}{4}^{2}} \quad \phi^{\text {dipole }}(z)=a \ln \left(z-\frac{\Delta}{2}\right)-a \ln \left(z+\frac{\Delta}{2}\right)=a \ln \frac{z-\frac{\Delta}{2}}{z+\frac{\Delta}{2}}
$$

What Good Are Complex Exponentials? (contd.)

12. Complex derivatives give 2D dipole fields

Start with $f(z)=a z^{-1}: 2 \mathrm{D}$ line monopole field and is its monopole potential $(z)=a \ln z$ of source strength a.

$$
f^{l-\text { pole }}(z)=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z} \quad \phi^{1-\text { pole }}(z)=a \ln z
$$

Now let these two line-sources of equal but opposite source constants $+a$ and $-a$ be located at $z= \pm \Delta / 2$ separated by a small interval Δ. This sum (actually difference) of $f^{1-\text {-pole }}$-fields is called a dipole field.

$$
f^{\text {dipole }}(z)=\frac{a}{z+\frac{\Delta}{2}}-\frac{a}{z-\frac{\Delta}{2}}=\frac{-a \cdot \Delta}{z^{2}-\frac{\Lambda^{2}}{4}} \quad \phi^{\text {dipole }}(z)=a \ln \left(z-\frac{\Delta}{2}\right)-a \ln \left(z+\frac{\Delta}{2}\right)=a \ln \frac{z-\frac{\Lambda^{1}}{2}}{z+\frac{\Delta}{2}}
$$

If interval Δ is tiny and is divided out we get a point-dipole field $f^{2 \text {-pole }}$ that is the z-derivative of $f^{l \text {-pole }}$.

$$
f^{2-\text { pole }}=\frac{-a}{z^{2}}=\frac{d f^{1-\text { pole }}}{d z}=\frac{d \phi^{2-p o l e}}{d z} \quad \phi^{2-\text { pole }}=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z}
$$

12. Complex derivatives give 2D dipole fields

Start with $f(z)=a z^{-1}: 2 \mathrm{D}$ line monopole field and is its monopole potentialp $(z)=a \ln z$ of source strength a.

$$
f^{1-\text { pole }}(z)=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z} \quad \phi^{l-\text { pole }}(z)=a \ln z
$$

Now let these two line-sources of equal but opposite source constants $+a$ and $-a$ be located at $z= \pm \Delta / 2$ separated by a small interval Δ. This sum (actually difference) of $f^{1-\text {-pole }}$-fields is called a dipole field.

$$
f^{\text {dipole }}(z)=\frac{a}{z+\frac{\Delta}{2}}-\frac{a}{z-\frac{\Delta}{2}}=\frac{-a \cdot \Delta}{z^{2}-\frac{\Lambda^{2}}{4}} \quad \phi^{\text {dipole }}(z)=a \ln \left(z-\frac{\Delta}{2}\right)-a \ln \left(z+\frac{\Delta}{2}\right)=a \ln \frac{z-\frac{\Delta}{2}}{z+\frac{\Delta}{2}}
$$

If interval Δ is tiny and is divided out we get a point-dipole field $f^{2 \text {-pole }}$ that is the z-derivative of $f^{1 \text {-pole }}$.

What Good Are Complex Exponentials? (contd.)

12. Complex derivatives give 2D dipole fields

Start with $f(z)=a z^{-1}: 2 \mathrm{D}$ line monopole field and is its monopole potential $(z)=a \ln z$ of source strength a.

$$
f^{1-\text { pole }}(z)=\frac{a}{z}=\frac{d \phi^{1-\text { pole }}}{d z} \quad \phi^{1-\text { pole }}(z)=a \ln z
$$

Now let these two line-sources of equal but opposite source constants $+a$ and $-a$ be located at $z= \pm \Delta / 2$ separated by a small interval Δ. This sum (actually difference) of $f^{1-\text {-pole }-f i e l d s ~ i s ~ c a l l e d ~ a ~ d i p o l e ~ f i e l d . ~}$

$$
f^{\text {dipole }}(z)=\frac{a}{z+\frac{\Delta}{2}}-\frac{a}{z-\frac{\Delta}{2}}=\frac{-a \cdot \Delta}{z^{2}-\frac{\Lambda^{2}}{4}} \quad \phi^{\text {dipole }}(z)=a \ln \left(z-\frac{\Delta}{2}\right)-a \ln \left(z+\frac{\Delta}{2}\right)=a \ln \frac{z-\frac{\Lambda^{1}}{2}}{z+\frac{\Delta}{2}}
$$

If interval Δ is tiny and is divided out we get a point-dipole field $f^{2 \text {-pole }}$ that is the z-derivative of $f^{1 \text {-pole }}$.

$$
f^{2-\text { pole }}=\frac{-a}{z^{2}}=\frac{d f^{I-p o l e}}{d z}=\frac{d \phi^{2-p o l e}}{d z} \quad \phi^{2-p o l e}=\frac{a}{z}=\frac{d \phi^{1-p o l e}}{d z}
$$

A point-dipole potential $\phi^{2-\text {-pole }}$ (whose z-derivative is $f^{2 \text {-pole }}$) is a z-derivative of $\phi^{1 \text {-pole }}$.

$$
\begin{aligned}
\phi^{2-p o l e}=\frac{a}{z}=\frac{a}{x+i y}=\frac{a}{x+i y} \frac{x-i y}{x-i y} & =\frac{a x}{x^{2}+y^{2}}+i \frac{-a y}{x^{2}+y^{2}}=\frac{a}{r} \cos \theta-i \frac{a}{r} \sin \theta \\
& =\Phi^{2-p o l e}+i \mathrm{~A}^{2-p o l e}
\end{aligned}
$$

A point-dipole potential $\phi^{2-\text { pole }}$ (whose z-derivative is $f^{2-\text { pole }}$) is a z-derivative of $\phi^{l-\text { pole }}$.

$$
\begin{aligned}
\phi^{2-p o l e}=\frac{a}{z}=\frac{a}{x+i y}=\frac{a}{x+i y} \frac{x-i y}{x-i y} & =\frac{a x}{x^{2}+y^{2}}+i \frac{-a y}{x^{2}+y^{2}}=\frac{a}{r} \cos \theta-i \frac{a}{r} \sin \theta \\
& =\Phi^{2-p o l e}+i \mathrm{~A}^{2-p o l e}
\end{aligned}
$$

3. 2D source-field-potential-coordinate analysis Easy 2D circulation and flux integrals Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2^{n}-pole analysis
2^{n}-pole analysis (quadrupole: $2^{2}=4$-pole, octapole: $2^{3}=8$-pole, \ldots, , pole daneer,
What if we put a (-)copy of a 2 -pole near its original?
Well, the result is 4 -pole or quadrupole field $f^{4 \text {-pole }}$ and potential $\phi^{4 \text {-pole }}$.
Each a z-derivative of $f^{2 \text {-pole }}$ and $\phi^{2 \text {-pole }}$.

$$
f^{4-\text { pole }}=\frac{a}{z^{3}}=\frac{1}{2} \frac{d f^{2-p o l e}}{d z}=\frac{d \phi^{4-p o l e}}{d z}
$$

$$
\phi^{4-\text { pole }}=-\frac{a}{2 z^{2}}=\frac{1}{2} \frac{d \phi^{2-p o l e}}{d z}
$$

2^{n}-pole analysis (quadrupole: $2^{2}=4$-pole, octapole: $2^{3}=8$-pole, \ldots, , pole dancer,
What if we put a (-)copy of a 2-pole near its original?
Well, the result is 4-pole or quadrupole field $f^{4-\text { pole }}$ and potential $\phi^{4 \text {-pole }}$.
Each a z-derivative of $f^{2 \text {-pole }}$ and $\phi^{2 \text {-pole }}$.

$$
f^{4-\text { pole }}=\frac{a}{z^{3}}=\frac{1}{2} \frac{d f^{2-\text { pole }}}{d z}=\frac{d \phi^{4-\text { pole }}}{d z} \quad \phi^{4-\text { pole }}=-\frac{a}{2 z^{2}}=\frac{1}{2} \frac{d \phi^{2-\text { pole }}}{d z}
$$

2^{n}-pole analysis: Laurent series (Generalization of Maclaurin-Taylor series)

Laurent series or multipole expansion of a given complex field function $f(z)$ around $z=0$.

$$
\begin{aligned}
f(z)= & \ldots a_{-3} z^{-3}+a_{-2} z^{-2}+a_{-1} z^{-1}+a_{0}+a_{1} z+a_{2} z^{2}+a_{3} z^{3}+a_{4} z^{4}+a_{5} z^{5}+\ldots \\
& \ldots 2^{2} \text {-pole } 2^{1} \text {-pole } 2^{0} \text {-pole } 2^{1} \text {-pole } 2^{2} \text {-pole } 2^{3} \text {-pole } 2^{4} \text {-pole } 2^{5} \text {-pole } 2^{6} \text {-pole } \cdots \\
& \text { at } z=0 \quad \text { at } z=0 \quad \text { at } z=0 \quad \text { at } z=\infty \\
\phi(z)= & \ldots \frac{a_{-3}}{-2} z^{-2}+\frac{a_{-2}}{-1} z^{-1}+a_{-1} \ln z+a_{0} z+\frac{a_{1}}{2} z^{2}+\frac{a_{2}}{3} z^{3}+\frac{a_{3}}{4} z^{4}+\frac{a_{4}}{5} z^{5}+\frac{a_{5}}{6} z^{6}+\ldots
\end{aligned}
$$

All field terms $a_{m-1} z^{m-1}$ except 1 -pole ${ }_{\frac{a}{-}}^{a_{-1}}$ have potential term $a_{m-1} z^{m} / m$ of a 2^{m}-pole.
These are located at $z=0$ for $m<0$ and at $z=\infty$ for $m>0$.

$$
\begin{aligned}
& \phi(z)=\ldots \frac{a_{-3}}{-2} z^{-2}+\frac{a_{-3}}{-2} z^{-2}+\frac{a_{-2}}{-1} z^{-1}+a_{-1} \ln z+a_{0} z+\frac{a_{1}}{2} z^{2}+\frac{a_{2}}{3} z^{3}+\ldots \\
& \phi(w)=\ldots \frac{a_{-3}}{-2} w^{-2}+\frac{a_{-3}}{-2} w^{-2}+\frac{a_{-2}}{-1} w^{-1}+a_{-1} \ln w+a_{0} w+\frac{a_{1}}{2} w^{2}+\frac{a_{2}}{3} w^{3}+\ldots \\
&\left(\text { with } z=w^{-1}\right) \\
&=\ldots \frac{a_{2}}{3} z^{-2}+\frac{a_{1}}{2} z^{-2}+a_{0} z^{-1}-a_{-1} \ln z+\frac{a_{-2}}{-1} z+\frac{a_{-3}}{-2} z^{2}+\frac{a_{-3}}{-2} z^{3}+\ldots \\
&\left(\text { with } w=z^{-1}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \phi(z)=\ldots \frac{a_{-3}}{-2} z^{-2}+\frac{a_{-3}}{-2} z^{-2}+\frac{a_{-2}}{-1} z^{-1}+a_{-1} \ln z+a_{0} z+\frac{a_{1}}{2} z^{2}+\frac{a_{2}}{3} z^{3}+\ldots \\
& \phi(w)=\ldots \frac{a_{-3}}{-2} w^{-2}+\frac{a_{-3}}{-2} w^{-2}+\frac{a_{-2}}{-1} w^{-1}+a_{-1} \ln w+a_{0} w+\frac{a_{1}}{2} w^{2}+\frac{a_{2}}{3} w^{3}+\ldots
\end{aligned}
$$

$$
=\ldots \frac{a_{2}}{3} z^{-2}+\frac{a_{1}}{2} z^{-2}+a_{0} z^{-1}-a_{-1} \ln z+\frac{a_{-2}}{-1} z+\frac{a_{-3}}{-2} z^{2}+\frac{a_{-3}}{-2} z^{3}+\ldots
$$

$$
\text { (with } w=z^{-1} \text {) }
$$

Of all 2^{m}-pole field terms $a_{m-1} z^{m-1}$, only the $m=0$ monopole a_{-1} / z^{-1} has a non-zero loop integral (10.39).

$$
\oint f(z) d z=\oint a_{-1} z^{-1} d z=2 \pi i a_{-1} \quad a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z
$$

This $m=1$-pole constant- a_{-1} formula is just the first in a series of Laurent coefficient expressions.

$$
\cdots a_{-3}=\frac{1}{2 \pi i} \oint z^{2} f(z) d z, a_{-2}=\frac{1}{2 \pi i} \phi z^{1} f(z) d z, a_{-1}=\frac{1}{2 \pi i} \oint f(z) d z, a_{0}=\frac{1}{2 \pi i} \oint \frac{f(z)}{z} d z, a_{1}=\frac{1}{2 \pi i} \oint \frac{f(z)}{z^{2}} d z, \cdots
$$

Source analysis starts with 1-pole loop integrals $\oint z^{-1} d z=2 \pi i$ or, with origin shifted $\oint(z-a)^{-1} d z=2 \pi i$ They hold for any loop about point- a. Function $f(z)$ is just $f(a)$ on a ${ }_{\text {iny }}$ circle around point- a.

$$
\oint \frac{f(z)}{z-a} d z=\oint \frac{f(a)}{z-a} d z=f(a) \oint \frac{1}{z-a} d z=2 \pi i f(a) \quad f(a)=\frac{1}{2 \pi i} \oint \frac{f(z)}{z-a} d z
$$

The $f(a)$ result is called a Cauchy integral. Then repeated a-derivatives gives a sequence of them.

$$
\frac{d f(a)}{d a}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{2}} d z, \frac{d^{2} f(a)}{d a^{2}}=\frac{2}{2 \pi i} \oint \frac{f(z)}{(z-a)^{3}} d z, \frac{d^{3} f(a)}{d a^{3}}=\frac{3!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{4}} d z, \cdots, \frac{d^{n} f(a)}{d a^{n}}=\frac{n!}{2 \pi i} \oint \frac{f(z)}{(z-a)^{n+1}} d z
$$

This leads to a general Taylor-Laurent power series expansion of function $f(z)$ around point- a.

$$
f(z)=\sum_{n=-\infty}^{\infty} a_{n}(z-a)^{n} \quad \text { where }: a_{n}=\frac{1}{2 \pi i} \oint \frac{f(z)}{(z-a)^{n+1}} d z\left(=\frac{1}{n!} \frac{d^{n} f(a)}{d a^{n}} \quad \text { for }: n \geq 0\right)
$$

End of this Lecture

