
Lecture  19 
Thur. 3.08.2012

 Complex Variables, Series, and Field Coordinates I.
(Ch. 10 of Unit 1)

1. The Story of e (A Tale of Great $Interest$)
         How good are those power series?

2. What good are complex exponentials?
      Easy trig
       Easy 2D vector analysis
        Easy oscillator phase analysis
         Easy 2D vector derivatives 
          Easy 2D source-free field theory
           Easy 2D vector field-potential theory

   The half-nʼ-half results: (Riemann-Cauchy Derivative Relations)

Easy 2D circulation and flux integrals
Easy 2D curvilinear coordinate discovery
Easy 2D monopole, dipole, and 2n-pole analysis

 

End of  Part I. Lecture  19 Thur. 3.08.2012

1. Complex numbers provide "automatic  trigonometry"

2. Complex numbers add like vectors.

3. Complex exponentials Ae-iωt track position and velocity using Phasor Clock.
4. Complex products provide 2D rotation operations.
5. Complex products provide 2D “dot”(•) and “cross”(x) products.

6. Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field

7. Invent source-free 2D vector fields [∇•F=0 and ∇xF=0]

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials

9. Complex integrals ∫  f(z)dz  count 2D “circulation”(  ∫F•dr) and “flux”( ∫Fxdr) 
10. Complex integrals define 2D monopole fields and potentials
11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
12. Complex derivatives give 2D dipole fields
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Simple interest at some rate r  based on a 1 year period. 

You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r·t)p(0). 

$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=1year.

The Story of e (A Tale of Great $Interest$)
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Semester compounded interest gives                            at the half-period       and then 
use        during the last half to figure final payment. Now $1.00 at rate r=1 earns $2.25.

 

Simple interest at some rate r  based on a 1 year period. 

You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r·t)p(0). 

$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=1year.

p(2
t ) = (1+ r·2

t )p(0) 2
t

p(2
t )

p 2
1
(t) = (1+ r·2

t )p(2
t ) = (1+ r·2

t )·(1+ r·2
t )p(0) =2

3·2
3·1=4

9= 2.25

The Story of e (A Tale of Great $Interest$)
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Semester compounded interest gives                            at the half-period       and then 
use        during the last half to figure final payment. Now $1.00 at rate r=1 earns $2.25.

 

Simple interest at some rate r  based on a 1 year period. 

You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r·t)p(0). 

$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=1year.
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t )p(2
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t )·(1+ r·2
t )p(0) =2

3·2
3·1=4

9= 2.25

p(3
t ) = (1+ r·3

t )p(0) 3
tTrimester compounded interest gives                           at the 1/3rd-period       or 1st trimester and    

then use that to figure the 2nd trimester and so on. Now $1.00 at rate r=1 earns $2.37.

p 3
1
(t) = (1+ r·3

t )p(23
t ) = (1+ r·3

t )·(1+ r·3
t )p(3

t ) = (1+ r·3
t )·(1+ r·3

t )·(1+ r·3
t )p(0) =3

4 ·3
4 ·3
4 ·1=27

64= 2.37

The Story of e (A Tale of Great $Interest$)
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4 ·3
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The Story of e (A Tale of Great $Interest$)

So if you compound interest more and more frequently, do you approach INFININTEREST? ∞∞
$

$ $
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Semester compounded interest gives                            at the half-period       and then 
use        during the last half to figure final payment. Now $1.00 at rate r=1 earns $2.25.

 

Simple interest at some rate r  based on a 1 year period. 

You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r·t)p(0). 

$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=1year.

p(2
t ) = (1+ r·2

t )p(0) 2
t

p(2
t )

p 2
1
(t) = (1+ r·2

t )p(2
t ) = (1+ r·2

t )·(1+ r·2
t )p(0) =2

3·2
3·1=4

9= 2.25
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t )p(0) 3
tTrimester compounded interest gives                           at the 1/3rd-period       or 1st trimester and    

then use that to figure the 2nd trimester and so on. Now $1.00 at rate r=1 earns $2.37.

p 3
1
(t) = (1+ r·3

t )p(23
t ) = (1+ r·3

t )·(1+ r·3
t )p(3

t ) = (1+ r·3
t )·(1+ r·3

t )·(1+ r·3
t )p(0) =3

4 ·3
4 ·3
4 ·1=27

64= 2.37

p1
1
(t) = (1+ r·1

t )1 p(0) = 1
2( )1·1= 12= 2.00

p 2
1
(t) = (1+ r·2

t )2 p(0) = 2
3( )2 ·1=49= 2.25

p 3
1
(t) = (1+ r·3

t )3 p(0) = 3
4( )3·1=2764= 2.37

p 4
1
(t) = (1+ r·4

t )4 p(0) = 4
5( )4 ·1=256625= 2.44

The Story of e (A Tale of Great $Interest$)

So if you compound interest more and more frequently, do you approach INFININTEREST? ∞∞
$

¢
NOT!!

+25¢

+12¢

+7¢
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Semester compounded interest gives                            at the half-period       and then 
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Simple interest at some rate r  based on a 1 year period. 

You gave a principal p(0) to the bank and some time t later they would pay you p(t)=(1+r·t)p(0). 

$1.00 at rate r=1 (like Israel and Brazil that once had 100% interest.) gives $2.00 at t=1year.
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tTrimester compounded interest gives                           at the 1/3rd-period       or 1st trimester and    

then use that to figure the 2nd trimester and so on. Now $1.00 at rate r=1 earns $2.37.

p 3
1
(t) = (1+ r·3

t )p(23
t ) = (1+ r·3

t )·(1+ r·3
t )p(3

t ) = (1+ r·3
t )·(1+ r·3
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t )p(0) =3

4 ·3
4 ·3
4 ·1=27
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p1
1
(t) = (1+ r·1

t )1 p(0) = 1
2( )1·1= 12= 2.00

p 2
1
(t) = (1+ r·2

t )2 p(0) = 2
3( )2 ·1=49= 2.25

p 3
1
(t) = (1+ r·3

t )3 p(0) = 3
4( )3·1=2764= 2.37

p 4
1
(t) = (1+ r·4

t )4 p(0) = 4
5( )4 ·1=256625= 2.44

 Monthly:       p12
1

(t) = (1+ r·12
t )12 p(0) = 12

13( )12
·1= 2.613 

 Weekly:        p 52
1

(t) = (1+ r·52
t )52 p(0) = 52

53( )52
·1= 2.693

 Daily:      p 365
1

(t) = (1+ r·365
t )365 p(0) = 365

366( )365
·1= 2.7145

 Hrly:  p 8760
1

(t) = (1+ r·8760
t )8760 p(0) = 8760

8761( )8760
·1= 2.7181

The Story of e (A Tale of Great $Interest$)

So if you compound interest more and more frequently, do you approach INFININTEREST? ∞∞
$

¢
NOT!!

+25¢

+12¢

+7¢
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p1/m (1) = (1+m
1 )m m→∞⎯ →⎯⎯

            p1/m(1) = 2.7169239322       for m = 1,000
  p1/m(1) = 2.7181459268  for m = 10,000
  p1/m(1) = 2.7182682372  for m = 100,000
  p1/m(1) = 2.7182804693  for m = 1,000,000    
  p1/m(1) = 2.7182816925  for m = 10,000,000
  p1/m(1) = 2.7182818149  for m = 100,000,000
  p1/m(1) = 2.7182818271  for m = 1,000,000,000

(1+m
1 )m⋅r⋅t m→∞⎯ →⎯⎯ er·t

(1+n
r·t )n n→∞⎯ →⎯⎯ er·t

Let:  m·r·t=n
or:  1/m= r·t/n

Interest product formula is really inefficient: 106 products for 6-figures! .. .109 products for 9  ...

2.718281828459..
=e
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p1/m (1) = (1+m
1 )m m→∞⎯ →⎯⎯

            p1/m(1) = 2.7169239322       for m = 1,000
  p1/m(1) = 2.7181459268  for m = 10,000
  p1/m(1) = 2.7182682372  for m = 100,000
  p1/m(1) = 2.7182804693  for m = 1,000,000    
  p1/m(1) = 2.7182816925  for m = 10,000,000
  p1/m(1) = 2.7182818149  for m = 100,000,000
  p1/m(1) = 2.7182818271  for m = 1,000,000,000

(x + y)n = xn + n ⋅ xn−1y + n(n −1)
2!

xn−2y2 + n(n −1)(n − 2)
3!

xn−3y3 + ...+ n ⋅ xyn−1 + yn

(1+ r ⋅ t
n
)n = 1+ n ⋅ r ⋅ t

n
⎛
⎝⎜

⎞
⎠⎟
+
n(n −1)
2!

r ⋅ t
n

⎛
⎝⎜

⎞
⎠⎟
2
+
n(n −1)(n − 2)

3!
r ⋅ t
n

⎛
⎝⎜

⎞
⎠⎟
3
+ ...

(1+m
1 )m⋅r⋅t m→∞⎯ →⎯⎯ er·t

(1+n
r·t )n n→∞⎯ →⎯⎯ er·t

Let:  m·r·t=n
or:  1/m= r·t/n

Interest product formula is really inefficient: 106 products for 6-figures! .. .109 products for 9  ...

Can improve efficiency using binomial theorem:

Define: Factorials(!): 
0!=1=1!, 2!=1·2, 3!=1·2·3, ...

2.718281828459..
=e
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⎠⎟
3
+ ...

er ⋅t = 1+ r ⋅ t + 1
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(1+n
r·t )n n→∞⎯ →⎯⎯ er·t

Let:  m·r·t=n
or:  1/m= r·t/n

Interest product formula is really inefficient: 106 products for 6-figures! .. .109 products for 9  ...

Can improve efficiency using binomial theorem:

As n → ∞ let :

n(n − 1)→ n2 ,

n(n − 1)(n − 2)→ n3 , etc.

Define: Factorials(!): 
0!=1=1!, 2!=1·2, 3!=1·2·3, ...

2.718281828459..
=e
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p1/m (1) = (1+m
1 )m m→∞⎯ →⎯⎯

            p1/m(1) = 2.7169239322       for m = 1,000
  p1/m(1) = 2.7181459268  for m = 10,000
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(x + y)n = xn + n ⋅ xn−1y + n(n −1)
2!

xn−2y2 + n(n −1)(n − 2)
3!

xn−3y3 + ...+ n ⋅ xyn−1 + yn

(1+ r ⋅ t
n
)n = 1+ n ⋅ r ⋅ t

n
⎛
⎝⎜

⎞
⎠⎟
+
n(n −1)
2!

r ⋅ t
n

⎛
⎝⎜

⎞
⎠⎟
2
+
n(n −1)(n − 2)

3!
r ⋅ t
n

⎛
⎝⎜

⎞
⎠⎟
3
+ ...

er ⋅t = 1+ r ⋅ t + 1
2!

r ⋅ t( )2 + 13! r ⋅ t( )3 + ... = r ⋅ t( )p
p!p=0

o
∑

Precision order:     (o=1)-e-series = 2.00000 =1+1
     (o=2)-e-series = 2.50000  =1+1+1/2
     (o=3)-e-series = 2.66667  =1+1+1/2+1/6
     (o=4)-e-series = 2.70833  =1+1+1/2+1/6+1/24
     (o=5)-e-series = 2.71667  =1+1+1/2+1/6+1/24+1/120     
     (o=6)-e-series = 2.71805  =1+1+1/2+1/6+1/24+1/120+1/720
     (o=7)-e-series = 2.71825
     (o=8)-e-series = 2.71828

(1+m
1 )m⋅r⋅t m→∞⎯ →⎯⎯ er·t

(1+n
r·t )n n→∞⎯ →⎯⎯ er·t

Let:  m·r·t=n
or:  1/m= r·t/n

Interest product formula is really inefficient: 106 products for 6-figures! .. .109 products for 9  ...

Can improve efficiency using binomial theorem:

As n → ∞ let :

n(n − 1)→ n2 ,

n(n − 1)(n − 2)→ n3 , etc.

Define: Factorials(!): 
0!=1=1!, 2!=1·2, 3!=1·2·3, ...

About 12 summed quotients
for 6-figure precision (A lot better!)

2.718281828459..
=e
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 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).
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 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).

Rate of change of position x(t) is velocity v(t).                                              Set t=0 to get c1 = v(0).

v(t) = d
dt
x(t) = 0 + c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + ...+ ncnt
n−1 +
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Change of velocity v(t) is acceleration a(t).                                                  Set t=0 to get c2 =  a(0).

 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).

Rate of change of position x(t) is velocity v(t).                                              Set t=0 to get c1 = v(0).

v(t) = d
dt
x(t) = 0 + c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + ...+ ncnt
n−1 +

2
1

a(t) = d
dt
v(t) = 0 + 2c2 + 2·3c3t + 3·4c4t

2 + 4·5c5t
3 + ...+ n(n −1)cnt

n−2 +
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Change of velocity v(t) is acceleration a(t).                                                  Set t=0 to get c2 =  a(0).

 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).

Rate of change of position x(t) is velocity v(t).                                              Set t=0 to get c1 = v(0).

v(t) = d
dt
x(t) = 0 + c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + ...+ ncnt
n−1 +

2
1

j(t) = d
dt
a(t) = 0 + 2·3c3 + 2·3·4c4t + 3·4·5c5t

2 + ...+ n(n −1)(n − 2)cnt
n−3 +

a(t) = d
dt
v(t) = 0 + 2c2 + 2·3c3t + 3·4c4t

2 + 4·5c5t
3 + ...+ n(n −1)cnt

n−2 +

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.)                      Set t=0 to get c3 =     j(0).3!
1

4!
1Change of jerk j(t) is inauguration i(t). (Be silly like NASA!)                     Set t=0 to get c4 =   i(0).

i(t) = d
dt
j(t) = 0 + 2·3·4c4 + 2·3·4·5c5t + ...+ n(n −1)(n − 2)(n − 3)cnt

n−4 +
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Change of velocity v(t) is acceleration a(t).                                                  Set t=0 to get c2 =  a(0).

 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).

Rate of change of position x(t) is velocity v(t).                                              Set t=0 to get c1 = v(0).

v(t) = d
dt
x(t) = 0 + c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + ...+ ncnt
n−1 +

2
1

j(t) = d
dt
a(t) = 0 + 2·3c3 + 2·3·4c4t + 3·4·5c5t

2 + ...+ n(n −1)(n − 2)cnt
n−3 +

a(t) = d
dt
v(t) = 0 + 2c2 + 2·3c3t + 3·4c4t

2 + 4·5c5t
3 + ...+ n(n −1)cnt

n−2 +

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.)                      Set t=0 to get c3 =     j(0).3!
1

4!
1Change of jerk j(t) is inauguration i(t). (Be silly like NASA!)                     Set t=0 to get c4 =   i(0).

x(t) = x(0)+ v(0)t +2!
1 a(0)t2 +3!

1 j(0)t3 +4!
1 i(0)t4 +5!

1 r(0)t5 + ...+n!
1 x(n)tn +

i(t) = d
dt
j(t) = 0 + 2·3·4c4 + 2·3·4·5c5t + ...+ n(n −1)(n − 2)(n − 3)cnt

n−4 +

Gives Maclaurin (or Taylor) power series
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Change of velocity v(t) is acceleration a(t).                                                  Set t=0 to get c2 =  a(0).

 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).

Rate of change of position x(t) is velocity v(t).                                              Set t=0 to get c1 = v(0).

v(t) = d
dt
x(t) = 0 + c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + ...+ ncnt
n−1 +

2
1

j(t) = d
dt
a(t) = 0 + 2·3c3 + 2·3·4c4t + 3·4·5c5t

2 + ...+ n(n −1)(n − 2)cnt
n−3 +

a(t) = d
dt
v(t) = 0 + 2c2 + 2·3c3t + 3·4c4t

2 + 4·5c5t
3 + ...+ n(n −1)cnt

n−2 +

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.)                      Set t=0 to get c3 =     j(0).3!
1

4!
1Change of jerk j(t) is inauguration i(t). (Be silly like NASA!)                     Set t=0 to get c4 =   i(0).

x(t) = x(0)+ v(0)t +2!
1 a(0)t2 +3!

1 j(0)t3 +4!
1 i(0)t4 +5!

1 r(0)t5 + ...+n!
1 x(n)tn +

i(t) = d
dt
j(t) = 0 + 2·3·4c4 + 2·3·4·5c5t + ...+ n(n −1)(n − 2)(n − 3)cnt

n−4 +

Gives Maclaurin (or Taylor) power series

Good old UP I formula!
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Change of velocity v(t) is acceleration a(t).                                                  Set t=0 to get c2 =  a(0).

 Start with a general power series with constant coefficients c0, c1, etc.
x(t) = c0 + c1t + c2t

2 + c3t
3 + c4t

4 + c5t
5 + ...+ cnt

n +

Power Series Good!    Need general power series development
                                   Set t=0 to get c0 = x(0).

Rate of change of position x(t) is velocity v(t).                                              Set t=0 to get c1 = v(0).

v(t) = d
dt
x(t) = 0 + c1 + 2c2t + 3c3t

2 + 4c4t
3 + 5c5t

4 + ...+ ncnt
n−1 +

2
1

j(t) = d
dt
a(t) = 0 + 2·3c3 + 2·3·4c4t + 3·4·5c5t

2 + ...+ n(n −1)(n − 2)cnt
n−3 +

a(t) = d
dt
v(t) = 0 + 2c2 + 2·3c3t + 3·4c4t

2 + 4·5c5t
3 + ...+ n(n −1)cnt

n−2 +

Change of acceleration a(t) is jerk j(t). (Jerk is NASA term.)                      Set t=0 to get c3 =     j(0).3!
1

4!
1Change of jerk j(t) is inauguration i(t). (Be silly like NASA!)                     Set t=0 to get c4 =   i(0).

x(t) = x(0)+ v(0)t +2!
1 a(0)t2 +3!

1 j(0)t3 +4!
1 i(0)t4 +5!

1 r(0)t5 + ...+n!
1 x(n)tn +

i(t) = d
dt
j(t) = 0 + 2·3·4c4 + 2·3·4·5c5t + ...+ n(n −1)(n − 2)(n − 3)cnt

n−4 +

Gives Maclaurin (or Taylor) power series

Setting all initial values to 1= x(0) = v(0) = a(0) = j(0) = i(0) = ....

gives exponential: et = 1+ t +2!
1 t2 +3!

1 t 3 +4!
1 t 4 +5!

1 t5 + ...+n!
1 t n +

Good old UP I formula!
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quadratic
(parabola)

cubic

quartic
x(t)=et

line
constant

Unit 1
Fig. 10.2 

x(t) = x(0)+ v(0)t +2!
1 a(0)t2 +3!

1 j(0)t3 +4!
1 i(0)t4 +5!

1 r(0)t5 + ...+n!
1 x(n)tn +

Gives Maclaurin (or Taylor) power series

Setting all initial values to 1= x(0) = v(0) = a(0) = j(0) = i(0) = ....

gives exponential: et = 1+ t +2!
1 t2 +3!

1 t 3 +4!
1 t 4 +5!

1 t5 + ...+n!
1 t n +

But, how good are power series?
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cubic

1st
5th

3rd

7th
9th 13th

15th

11th

17th
(b) x(t) =sin t

quadratic
(parabola)

2nd 4th

6th

8th 10th

12th

14th

16th

18th

20th

(a) x(t)=cos t

quartic

How good are power series?  Depends...
x(t) = cos t = 1+ 0 − t

2

2!
+ 0 + t

4

4!
+ 0 − t

6

6!
+ 0 + t

8

8!
...

x(t) = sin t = 0 + t + 0 − t
3

3!
+ 0 + t

5

5!
+ 0 − t

7

7!
+ 0 + t

9

9!
...

Unit 1
Fig. 10.3 
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Suppose the fancy bankers really went bonkers and made interest rate r an imaginary number r=iθ. 
Imaginary number          powers have repeat-after-4-pattern: i0=1, i1=i, i2=-1, i3=-i, i4=1,etc... i = −1

eiθ = 1+ iθ +
(iθ )2

2!
+

(iθ )3

3!
+

(iθ )4

4!
+

(iθ )5

5!
+ ...        (From exponential series)

      = 1+ iθ −
θ2

2!
  − iθ

3

3!
  + θ

4

4!
   + iθ

5

5!
 − ...        (i = -1 imples: i1=i, i2 =-1, i3=-i, i4 =+1, i5 =i,...)

      = 1− θ
2

2!
+
θ 4

4!
− ...

⎛

⎝
⎜

⎞

⎠
⎟ + iθ − iθ

3

3!
+ iθ

5

5!
− ...

⎛

⎝
⎜

⎞

⎠
⎟    
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Suppose the fancy bankers really went bonkers and made interest rate r an imaginary number r=iθ. 
Imaginary number          powers have repeat-after-4-pattern: i0=1, i1=i, i2=-1, i3=-i, i4=1,etc... i = −1

 

eiθ = 1+ iθ +
(iθ )2

2!
+

(iθ )3

3!
+

(iθ )4

4!
+

(iθ )5

5!
+ ...        (From exponential series)

      = 1+ iθ −
θ2

2!
  − iθ

3

3!
  + θ

4

4!
   + iθ

5

5!
 − ...        (i = -1 imples: i1=i, i2 =-1, i3=-i, i4 =+1, i5 =i,...)

      = 1− θ
2

2!
+
θ 4

4!
− ...

⎛

⎝
⎜

⎞

⎠
⎟ + iθ − iθ

3

3!
+ iθ

5

5!
− ...

⎛

⎝
⎜

⎞

⎠
⎟     To match series for 

cosine : cos x = 1− x2

2!
+

x4

4!
−

x6

6!
+

sine : sin x = x − x3

3!
+

x5

5!
−

x7

7!
+

⎧

⎨
⎪⎪

⎩
⎪
⎪

eiθ   =         cosθ            +        i sinθ           

cubic

1st
5th

3rd

7th
9th 13th

15th

11th

17th
(b) x(t) =sin t

quadratic
(parabola)

2nd 4th

6th

8th 10th

12th

14th

16th

18th

20th

(a) x(t)=cos t

quartic

Unit 1
Fig. 10.3 

Euler-DeMoivre Theorem
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Suppose the fancy bankers really went bonkers and made interest rate r an imaginary number r=iθ. 
Imaginary number          powers have repeat-after-4-pattern: i0=1, i1=i, i2=-1, i3=-i, i4=1,etc... i = −1

 

eiθ = 1+ iθ +
(iθ )2

2!
+

(iθ )3

3!
+

(iθ )4

4!
+

(iθ )5

5!
+ ...        (From exponential series)

      = 1+ iθ −
θ2

2!
  − iθ

3

3!
  + θ

4

4!
   + iθ

5

5!
 − ...        (i = -1 imples: i1=i, i2 =-1, i3=-i, i4 =+1, i5 =i,...)

      = 1− θ
2

2!
+
θ 4

4!
− ...

⎛

⎝
⎜

⎞

⎠
⎟ + iθ − iθ

3

3!
+ iθ

5

5!
− ...

⎛

⎝
⎜

⎞

⎠
⎟     To match series for 

cosine : cos x = 1− x2

2!
+

x4

4!
−

x6

6!
+

sine : sin x = x − x3

3!
+

x5

5!
−

x7

7!
+

⎧

⎨
⎪⎪

⎩
⎪
⎪

eiθ   =         cosθ            +        i sinθ           

cubic

1st
5th

3rd

7th
9th 13th

15th

11th

17th
(b) x(t) =sin t

quadratic
(parabola)

2nd 4th

6th

8th 10th

12th

14th

16th

18th

20th

(a) x(t)=cos t

quartic

Unit 1
Fig. 10.3 z = reiθ = x + iy

x = r cosθ

reiθ =  r cosθ +  i sinθ   

y = r sinθ   

Imaginary axis
 i axis( )

Real  axis
 1axis( )

r
θ   

Euler-DeMoivre Theorem
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2. What Good Are Complex Exponentials?
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What Good Are Complex Exponentials?

1. Complex numbers provide "automatic  trigonometry"

Can't remember is cos(a+b) or sin(a+b)? Just factor ei(a+b) = eiaeib...

              ei(a+b)              =               eia                            eib

cos(a+b) + i sin(a+b) = (cos a + i sin a) (cos b + i sin b)
cos(a+b) + i sin(a+b) = [cos a cos b - sin a sin b]+i[sin a cos b + cos a sin b] 
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What Good Are Complex Exponentials?

1. Complex numbers provide "automatic  trigonometry"

Can't remember is cos(a+b) or sin(a+b)? Just factor ei(a+b) = eiaeib...

              ei(a+b)              =               eia                            eib

cos(a+b) + i sin(a+b) = (cos a + i sin a) (cos b + i sin b)
cos(a+b) + i sin(a+b) = [cos a cos b - sin a sin b]+i[sin a cos b + cos a sin b] 

2. Complex numbers add like vectors. zsum = z + z' = (x + iy) + (x' + iy') = (x + x') + i(y + y')
zdiff  = z − z' = (x + iy) − (x' + iy') = (x − x') + i(y − y')

x=Re z

y=Im z φr

(a)

z

(b) z z+z
φ

z

(c) z

z•z
φ

φ+φ

z
z z−z

Sum
Differenceand

Productφ z
z

x=Re z

y=Im z

φ φ

� 

zSUM = z + ′ z ( )* z + ′ z ( ) = reiφ + ′ r ei ′ φ ( )*
reiφ + ′ r ei ′ φ ( ) = re−iφ + ′ r e− i ′ φ ( ) reiφ + ′ r ei ′ φ ( )

           = r2 + ′ r 2 + r ′ r ei φ − ′ φ ( ) + e−i φ − ′ φ ( )( ) = r2 + ′ r 2 + 2r ′ r cos φ − ′ φ ( )

Unit 1
Fig. 10.6 

(quick derivation of Cosine Law)
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3.Complex exponentials Ae-iωt track position and velocity using Phasor Clock.

eiθ=x+iy

x=
θ

y=sin θ
e±iπ=-1

e+iπ/2=+i

e-iπ/2=-i

e+iπ/4=(1+i)/√2

e+i5π/4=e-i3π/4

= -(1+i)/√2

imaginary
axis

real
axis

imaginary
axis

real
axis

Magnitude or Modulus
A = |ψ | = √ ψ*ψ

A
−ω t

Phase angle or Argument
θ=−ω t = ATAN[v(t)/ωx(t)]

x(t)

Re ψ
x(t) = Acosω t

Im ψ
y(t)=v(t)/ω= -Asinω t

Re ψ

Im ψ (The “Gonna’be”)

(b) Quantum Phasor Clock ψ = Ae-iωt = Acosω t−i Asinω t=x+iy

Ψ

(The “Is”)v(t)
ω

(a) Complex plane and unit vectors

POLAR

COMPONENTS

CARTESIAN

COMPONENTS

e-iπ/4=(1-i)/√2

1

cos θ

Ae-iωt

Unit 1
Fig. 10.5 

What Good Are Complex Exponentials? (contd.)
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(x, y) form
Cartesian

ψ x = Reψ (t)  = x(t) =   Acosω t = ψ +ψ *
2

ψ y = Imψ (t) = v(t)
ω

= −Asinω t = ψ −ψ *
2i

⎧

⎨
⎪⎪

⎩
⎪
⎪   

(r ,θ )
form

Polar r = A =|ψ |= ψ x
2 +ψ y

2 = ψ *ψ

θ = −ω t=arctan(ψ y /ψ x )

⎧
⎨
⎪

⎩⎪

  

ψ = re+iθ = re−iω t = r(cosω t − i sinω t)

ψ * = re−iθ = re+iω t = r(cosω t + i sinω t)
  

cosθ=2
1 (e+iθ + e−iθ )

sinθ=2i
1 (e+iθ − e−iθ )

3.Complex exponentials Ae-iωt track position and velocity using Phasor Clock.

eiθ=x+iy

x=
θ

y=sin θ
e±iπ=-1

e+iπ/2=+i

e-iπ/2=-i

e+iπ/4=(1+i)/√2

e+i5π/4=e-i3π/4

= -(1+i)/√2

imaginary
axis

real
axis

imaginary
axis

real
axis

Magnitude or Modulus
A = |ψ | = √ ψ*ψ

A
−ω t

Phase angle or Argument
θ=−ω t = ATAN[v(t)/ωx(t)]

x(t)

Re ψ
x(t) = Acosω t

Im ψ
y(t)=v(t)/ω= -Asinω t

Re ψ

Im ψ (The “Gonna’be”)

(b) Quantum Phasor Clock ψ = Ae-iωt = Acosω t−i Asinω t=x+iy

Ψ

(The “Is”)v(t)
ω

(a) Complex plane and unit vectors

POLAR

COMPONENTS

CARTESIAN

COMPONENTS

e-iπ/4=(1-i)/√2

1

cos θ

Ae-iωt

Unit 1
Fig. 10.5 

What Good Are Complex Exponentials? (contd.)

Some Rect-vs-Polar relations worth remembering
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eiφ·z = (cosφ + i sinφ)·(x + iy)=  x cosφ − y sinφ                   + i   (x sinφ + y cosφ )

4. Complex products provide 2D rotation operations.

 
R+φ ir = (x cosφ − ysinφ)êx + (x sinφ + ycosφ)ê y

 

cosφ − sinφ
sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟
i
x
y

⎛
⎝⎜

⎞
⎠⎟
=               

x cosφ − ysinφ
x sinφ + ycosφ

⎛
⎝⎜

⎞
⎠⎟

What Good Are Complex Exponentials? (contd.)
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eiφ·z = (cosφ + i sinφ)·(x + iy)=  x cosφ − y sinφ                   + i   (x sinφ + y cosφ )

4. Complex products provide 2D rotation operations.

 
R+φ ir = (x cosφ − ysinφ)êx + (x sinφ + ycosφ)ê y

 

cosφ − sinφ
sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟
i
x
y

⎛
⎝⎜

⎞
⎠⎟
=               

x cosφ − ysinφ
x sinφ + ycosφ

⎛
⎝⎜

⎞
⎠⎟

What Good Are Complex Exponentials? (contd.)

z = reiθ = x + iy

x = r cosθ

y = r sinθ   

Imaginary axis
 i axis( )

Real  axis
 1axis( )

r
θ   

eiφ acts on this:

z = reiθ = x + iy

x = r cosθ

y = r sinθ   

Imaginary axis
 i axis( )

Real  axis
 1axis( )

r
θ   

to give this: eiφ 

eiφz = reiφeiθ = rei(φ+θ ) = x + iy

rφ

z = reiθ eiφz = reiφeiθ
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eiφ·z = (cosφ + i sinφ)·(x + iy)=  x cosφ − y sinφ                   + i   (x sinφ + y cosφ )

4. Complex products provide 2D rotation operations.

 
R+φ ir = (x cosφ − ysinφ)êx + (x sinφ + ycosφ)ê y

5. Complex products provide 2D “dot”(•) and “cross”(x) products.

 

cosφ − sinφ
sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟
i
x
y

⎛
⎝⎜

⎞
⎠⎟
=               

x cosφ − ysinφ
x sinφ + ycosφ

⎛
⎝⎜

⎞
⎠⎟

What Good Are Complex Exponentials? (contd.)

Two complex numbers A=Ax+iAy and B=Bx+iBy and their “star” (*)-product A*B.
A*B = (Ax + iAy )*(Bx + iBy ) = (Ax − iAy )(Bx + iBy )
         = (AxBx + AyBy )+ i(AxBy − AyBx ) = A •B + i |A ×B |Z⊥(x,y)

Real part is scalar or “dot”(•) product A•B. 
Imaginary part is vector or “cross”(×) product, but just the Z-component normal to xy-plane.

A*B = ( A eiθA )*( B eiθB ) = A e−iθA B eiθB = A B ei(θB −θA )

         = A B cos(θB −θA )+ i A B sin(θB −θA ) = A •B + i |A ×B |Z⊥(x,y)

Rewrite A*B in polar form.
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eiφ·z = (cosφ + i sinφ)·(x + iy)=  x cosφ − y sinφ                   + i   (x sinφ + y cosφ )

4. Complex products provide 2D rotation operations.

 
R+φ ir = (x cosφ − ysinφ)êx + (x sinφ + ycosφ)ê y

5. Complex products provide 2D “dot”(•) and “cross”(x) products.

 

cosφ − sinφ
sinφ cosφ

⎛
⎝⎜

⎞
⎠⎟
i
x
y

⎛
⎝⎜

⎞
⎠⎟
=               

x cosφ − ysinφ
x sinφ + ycosφ

⎛
⎝⎜

⎞
⎠⎟

What Good Are Complex Exponentials? (contd.)

Two complex numbers A=Ax+iAy and B=Bx+iBy and their “star” (*)-product A*B.
A*B = (Ax + iAy )*(Bx + iBy ) = (Ax − iAy )(Bx + iBy )
         = (AxBx + AyBy )+ i(AxBy − AyBx ) = A •B + i |A ×B |Z⊥(x,y)

Real part is scalar or “dot”(•) product A•B. 
Imaginary part is vector or “cross”(×) product, but just the Z-component normal to xy-plane.

A*B = ( A eiθA )*( B eiθB ) = A e−iθA B eiθB = A B ei(θB −θA )

         = A B cos(θB −θA )+ i A B sin(θB −θA ) = A •B + i |A ×B |Z⊥(x,y)

Rewrite A*B in polar form.

 A •B = A B cos(θB −θA )
= A cosθA B cosθB + A sinθA B sinθB
=          AxBx              +       AyBy

|A ×B | = A B sin(θB −θA )
= A cosθA B sinθB − A sinθA B cosθB
=          AxBy            −       AyBx
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What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative      and “star” z*-derivative.  dz
df

dz*
df

z = x + iy

z* = x − iy
x =2

1 (z + z∗)

y =2i
1 (z − z∗)

dz
df =   ∂z

∂x
∂x
∂f +∂z

∂y
∂y
∂f  =2

1
∂x
∂f −2

i
∂y
∂f

dz*
df =∂z*

∂x
∂x
∂f +∂z*

∂y
∂y
∂f =2

1
∂x
∂f +2

i
∂y
∂f

Applying
chain-rule
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Derivative chain-rule shows real part of       has 2D divergence ∇•f and imaginary part has curl ∇× f.

What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative      and “star” z*-derivative.  dz
df

dz*
df

z = x + iy

z* = x − iy
x =2

1 (z + z∗)

y =2i
1 (z − z∗)

dz
df =   ∂z

∂x
∂x
∂f +∂z

∂y
∂y
∂f  =2

1
∂x
∂f −2

i
∂y
∂f

dz*
df =∂z*

∂x
∂x
∂f +∂z*

∂y
∂y
∂f =2

1
∂x
∂f +2

i
∂y
∂f

dz
df

dz
df =dz

d ( fx+ i fy ) =2
1 (∂x

∂f −i∂y
∂f )( fx+ i fy ) =2

1 (∂x
∂fx + ∂y

∂fy )+2
i (∂x

∂fy − ∂y
∂fx ) =2

1∇•f +2
i |∇×f |Z⊥(x,y)
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We can invent source-free 2D vector fields that are both zero-divergence and zero-curl. 
Take any function f(z), conjugate it (change all i’s to –i) to give f*(z*) for which            . 

Derivative chain-rule shows real part of       has 2D divergence ∇•f and imaginary part has curl ∇× f.

What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative      and “star” z*-derivative.  dz
df

dz*
df

z = x + iy

z* = x − iy
x =2

1 (z + z∗)

y =2i
1 (z − z∗)

dz
df =   ∂z

∂x
∂x
∂f +∂z

∂y
∂y
∂f  =2

1
∂x
∂f −2

i
∂y
∂f

dz*
df =∂z*

∂x
∂x
∂f +∂z*

∂y
∂y
∂f =2

1
∂x
∂f +2

i
∂y
∂f

dz
df

dz
df =dz

d ( fx+ i fy ) =2
1 (∂x

∂f −i∂y
∂f )( fx+ i fy ) =2

1 (∂x
∂fx + ∂y

∂fy )+2
i (∂x

∂fy − ∂y
∂fx ) =2

1∇•f +2
i |∇×f |Z⊥(x,y)

dz
df * = 0

7. Invent source-free 2D vector fields [∇•F=0 and ∇xF=0]

36Friday, March 9, 2012



We can invent source-free 2D vector fields that are both zero-divergence and zero-curl. 
Take any function f(z), conjugate it (change all i’s to –i) to give f*(z*) for which            . 

Derivative chain-rule shows real part of       has 2D divergence ∇•f and imaginary part has curl ∇× f.

What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains “divergence”(∇•F) and “curl”( ∇xF) of 2D vector field

Relation of (z,z*) to (x=Rez,y=Imz) defines a z-derivative      and “star” z*-derivative.  dz
df

dz*
df

z = x + iy

z* = x − iy
x =2

1 (z + z∗)

y =2i
1 (z − z∗)

dz
df =   ∂z

∂x
∂x
∂f +∂z

∂y
∂y
∂f  =2

1
∂x
∂f −2

i
∂y
∂f

dz*
df =∂z*

∂x
∂x
∂f +∂z*

∂y
∂y
∂f =2

1
∂x
∂f +2

i
∂y
∂f

dz
df

dz
df =dz

d ( fx+ i fy ) =2
1 (∂x

∂f −i∂y
∂f )( fx+ i fy ) =2

1 (∂x
∂fx + ∂y

∂fy )+2
i (∂x

∂fy − ∂y
∂fx ) =2

1∇•f +2
i |∇×f |Z⊥(x,y)

dz
df * = 0

7. Invent source-free 2D vector fields [∇•F=0 and ∇xF=0]

For example: if f(z)=a·z then f*(z*)=a·z*=a(x-iy) is not function of z so it has zero z-derivative.
 F=(Fx,Fy)=(f*x,f*y)=(a·x,-a·y) has zero divergence:  ∇•F=0 and has zero curl: |∇×F|=0.  

∇•F =
∂Fx
∂x

+
∂Fy
∂y

=
∂(ax)
∂x

+
∂F(−ay)

∂y
= 0 |∇×F|Z⊥ (x,y)=

∂Fy
∂x

−
∂Fx
∂y

=
∂(−ay)
∂x

−
∂F(ax)
∂y

= 0
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We can invent source-free 2D vector fields that are both zero-divergence and zero-curl. 
Take any function f(z), conjugate it (change all i’s to –i) to give f*(z*) for which               . 

dz
df * = 0

7. (contd.) Invent source-free 2D vector fields [∇•F=0 and ∇xF=0]

For example, if f(z)=a·z then f*(z*)=a·z*=a(x-iy) is not function of z so it has zero z-derivative.
 F=(Fx,Fy)=(f*x,f*y)=(a·x,-a·y) has zero divergence:  ∇•F=0 and has zero curl: |∇×F|=0.  

What Good Are Complex Exponentials? (contd.)

 F=(f*x,f*y) =(a·x,-a·y) is a divergence-free laminar (DFL) field.

precursor to
Unit 1

Fig. 10.7 
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What Good Are Complex Exponentials? (contd.)

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
Any DFL field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.
   F= ∇Φ	
	
 	
 	
 F= ∇×A 	
 	
 	
 	
 	


A complex potential φ(z)=Φ(x,y)+iA(x,y) exists whose z-derivative is f(z)=d φ/dz.
Its complex conjugate  φ*(z*)=Φ(x,y)-iA(x,y) has z*-derivative f*(z*) =d φ*/dz* giving DFL field F.
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What Good Are Complex Exponentials? (contd.)

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
Any DFL field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.
   F= ∇Φ	
	
 	
 	
 F= ∇×A 	
 	
 	
 	
 	


A complex potential φ(z)=Φ(x,y)+iA(x,y) exists whose z-derivative is f(z)=d φ/dz.
Its complex conjugate  φ*(z*)=Φ(x,y)-iA(x,y) has z*-derivative f*(z*) =d φ*/dz* giving DFL field F.

φ =          Φ        + i  A = f ⋅dz∫ = az ⋅dz∫ =2
1 az2 =2

1 a(x + iy)2

  =2
1 a(x2 − y2) + i  axy

To find φ=Φ+iA integrate f(z)=a·z to get φ and isolate real (Reφ=Φ) and imaginary (Imφ=A) parts.
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z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

What Good Are Complex Exponentials? (contd.)

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
Any DFL field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.
   F= ∇Φ	
	
 	
 	
 F= ∇×A 	
 	
 	
 	
 	


f (z) = dz
dφ

A complex potential φ(z)=Φ(x,y)+iA(x,y) exists whose z-derivative is f(z)=d φ/dz.
Its complex conjugate  φ*(z*)=Φ(x,y)-iA(x,y) has z*-derivative f*(z*) =d φ*/dz* giving DFL field F.

φ =          Φ        + i  A = f ⋅dz∫ = az ⋅dz∫ =2
1 az2 =2

1 a(x + iy)2

  =2
1 a(x2 − y2) + i  axy

To find φ=Φ+iA integrate f(z)=a·z to get φ and isolate real (Reφ=Φ) and imaginary (Imφ=A) parts.

Unit 1
Fig. 10.7 
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z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

What Good Are Complex Exponentials? (contd.)

8. Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
Any DFL field F is a gradient of a scalar potential field  Φ  or a curl of a vector potential field A.
   F= ∇Φ	
	
 	
 	
 F= ∇×A 	
 	
 	
 	
 	


f (z) = dz
dφ

A complex potential φ(z)=Φ(x,y)+iA(x,y) exists whose z-derivative is f(z)=d φ/dz.
Its complex conjugate  φ*(z*)=Φ(x,y)-iA(x,y) has z*-derivative f*(z*) =d φ*/dz* giving DFL field F.

φ =          Φ        + i  A = f ⋅dz∫ = az ⋅dz∫ =2
1 az2 =2

1 a(x + iy)2

  =2
1 a(x2 − y2) + i  axy

To find φ=Φ+iA integrate f(z)=a·z to get φ and isolate real (Reφ=Φ) and imaginary (Imφ=A) parts.

Unit 1
Fig. 10.7 

The (Φ,A) grid is a GCC  
coordinate system*:
q1= Φ =(x2-y2)/2 = const.

q2= A = (xy) = const.

*Actually it’s OCC.

BONUS!
Get a free 
coordinate 

system!

42Friday, March 9, 2012



Derivative       has 2D gradient               of scalar Φ and curl                 of vector A (and they’re equal!)

What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
...and either one (or half-nʼ-half!) works just as well.

dz∗
dφ∗

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∇×A = ∂y
∂A

−∂y
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A
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Derivative       has 2D gradient               of scalar Φ and curl                 of vector A (and they’re equal!)

What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
...and either one (or half-nʼ-half!) works just as well.

dz∗
dφ∗

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∇×A = ∂y
∂A

−∂y
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A

Note, mathematician definition of force field F=+∇Φ replaces usual physicist’s definition F=-∇Φ 
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Derivative       has 2D gradient               of scalar Φ and curl                 of vector A (and they’re equal!)

What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
...and either one (or half-nʼ-half!) works just as well.

dz∗
dφ∗

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∇×A = ∂y
∂A

−∂y
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A

Note, mathematician definition of force field F=+∇Φ replaces usual physicist’s definition F=-∇Φ 

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂y

∂ axy

−∂x
∂ axy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F

φ =          Φ        + i  A

  =2
1 a(x2 − y2 ) + i  axy

Given φ: The half-nʼ-half result

find: or find:
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Derivative       has 2D gradient               of scalar Φ and curl                 of vector A (and they’re equal!)

What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
...and either one (or half-nʼ-half!) works just as well.

dz∗
dφ∗

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∇×A = ∂y
∂A

−∂y
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A

Note, mathematician definition of force field F=+∇Φ replaces usual physicist’s definition F=-∇Φ 

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂y

∂ axy

−∂x
∂ axy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F

Scalar static potential lines Φ=const. and vector flux potential lines A=const. define DFL field-net.

φ =          Φ        + i  A

  =2
1 a(x2 − y2 ) + i  axy

Given φ: The half-nʼ-half result

find: or find:

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A
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Derivative       has 2D gradient               of scalar Φ and curl                 of vector A (and they’re equal!)

What Good Are Complex Exponentials? (contd.)
8. (contd.) Complex potential φ contains “scalar”( F= ∇Φ) and “vector”( F=∇xA) potentials
...and either one (or half-nʼ-half!) works just as well.

dz∗
dφ∗

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

∇×A = ∂y
∂A

−∂y
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

dz∗
d φ∗ =

dz∗
d (Φ− iA) =2

1 (∂x
∂ +i∂y

∂ )(Φ− iA) =2
1 (∂x

∂Φ+i∂y
∂Φ )+2

1 (∂y
∂A−i ∂x

∂A) =2
1∇Φ +2

1∇×A

Note, mathematician definition of force field F=+∇Φ replaces usual physicist’s definition F=-∇Φ 

∇Φ = ∂x
∂Φ

∂y
∂Φ

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂x

∂
2
a (x2 − y2)

∂y
∂
2
a (x2 − y2)

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F ∇×A = ∂y

∂A

−∂x
∂A

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
= ∂y

∂ axy

−∂x
∂ axy

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
=

ax
−ay

⎛
⎝⎜

⎞
⎠⎟
= F

Scalar static potential lines Φ=const. and vector flux potential lines A=const. define DFL field-net.

φ =          Φ        + i  A

  =2
1 a(x2 − y2 ) + i  axy

Given φ: The half-nʼ-half result

find: or find:

z1

z2Field:
f*(z*)=z*=x-iy
F(x,y)=(x,-y)
Potential:
φ(z)=z2

=x2-y2+i2xy
= Φ +i A

The half-nʼ-half results
are called

Riemann-Cauchy
Derivative Relations

∂x
∂Φ= ∂y

∂A    is:  ∂x
∂Re f(z)= ∂y

∂Im f(z)

∂y
∂Φ=−∂x

∂A is:  ∂y
∂Re f(z)= − ∂x

∂Im f(z)

The half-nʼ-half result
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9. Complex integrals ∫  f(z)dz  count 2D “circulation”(  ∫F•dr) and “flux”( ∫Fxdr)  

What Good Are Complex Exponentials? (contd.)

Integral of f(z)  between point z1 and point z2 is potential difference Δφ=φ(z2)- φ(z1)

In DFL field F, Δφ is independent of the integration path z(t) connecting z1 and z2.
   

Δφ = φ(z2 ) −φ(z1) = f (z)dz
z1

z2
∫ = Φ(x2 , y2 ) − Φ(x1, y1) + i[A(x2 , y2 ) − A(x1, y1)]

                                             Δφ =               ΔΦ             + i            ΔA
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