Complex Variables, Series, and Field Coordinates I.

(Ch. 10 of Unit 1)

1. The Story of e (A Tale of Great \$Interest\$)

How good are those power series?
2. What good are complex exponentials?

> Easy trig Easy 2D vector analysis
> Easy oscillator phase analysis Easy 2D vector derivatives Easy 2D source-free field theory Easy 2D vector field-potential theory

The half-n'-half results: (Riemann-Cauchy Derivative Relations)

1. Complex numbers provide "automatic trigonometry"
2. Complex numbers add like vectors.
3. Complex exponentials $A e^{-i \omega t}$ track position and velocity using Phasor Clock.
4. Complex products provide 2D rotation operations.
5. Complex products provide 2D "dot" (\cdot) and "cross" (x) products.
6. Complex derivative contains "divergence" $(\nabla \cdot \mathrm{F})$ and "curl" $(\nabla \mathrm{FF})$ of $2 D$ vector field
7. Invent source-free $2 D$ vector fields [$\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$]
8. Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials
3.08.2012
9. Complex integrals $\int f(z) d z$ count $2 D$ "circulation" $\left(\int F \cdot d r\right)$ and "flux"($(\mathbf{F} \mathbf{F d r})$
10. Complex integrals define 2D monopole fields and potentials
11. Complex potentials define 2D Orthogonal Curvilinear Coordinates (OCC) of field
12. Complex derivatives give $2 D$ dipole fields

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$. $\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$. $\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.

Semester compounded interest gives $p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) p(0)$ at the half-period $\frac{t}{2}$ and then use $p\left(\frac{t}{2}\right)$ during the last half to figure final payment. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.25$.

$$
p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right) p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) \cdot\left(1+r \cdot \frac{t}{2}\right) p(0)=\frac{3}{2} \cdot \frac{3}{2} \cdot 1=\frac{9}{4}=2.25
$$

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$.
$\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.
Semester compounded interest gives $p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) p(0)$ at the half-period $\frac{t}{2}$ and then use $p\left(\frac{t}{2}\right)$ during the last half to figure final payment. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.25$.

$$
p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right) p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) \cdot\left(1+r \cdot \frac{t}{2}\right) p(0)=\frac{3}{2} \cdot \frac{3}{2} \cdot 1=\frac{9}{4}=2.25
$$

Trimester compounded interest gives $\quad p\left(\frac{t}{3}\right)=\left(1+r_{3}^{t}\right) p(0)$ at the $1 / 3^{r d}$-period $\quad{ }_{3}^{t}$ or $1^{\text {st }}$ trimester and then use that to figure the $2^{\text {nd }}$ trimester and so on. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.37$.

$$
p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right) p\left(2 \frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p(0)=\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1=\frac{64}{27}=2.37
$$

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$.
$\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.
Semester compounded interest gives $p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) p(0)$ at the half-period $\frac{t}{2}$ and then use $p\left(\frac{t}{2}\right)$ during the last half to figure final payment. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.25$.

$$
p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right) p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) \cdot\left(1+r \cdot \frac{t}{2}\right) p(0)=\frac{3}{2} \cdot \frac{3}{2} \cdot 1=\frac{9}{4}=2.25
$$

Trimester compounded interest gives $\quad p\left(\frac{t}{3}\right)=\left(1+r_{3}^{t}\right) p(0)$ at the $1 / 3^{r d}$-period $\quad{ }_{3}^{t}$ or $1^{\text {st }}$ trimester and then use that to figure the $2^{\text {nd }}$ trimester and so on. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.37$.

$$
p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right) p\left(2 \frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p(0)=\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1=\frac{64}{27}=2.37
$$

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$.
$\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.
Semester compounded interest gives $p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) p(0)$ at the half-period $\frac{t}{2}$ and then use $p\left(\frac{t}{2}\right)$ during the last half to figure final payment. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.25$.

$$
p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right) p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) \cdot\left(1+r \cdot \frac{t}{2}\right) p(0)=\frac{3}{2} \cdot \frac{3}{2} \cdot 1=\frac{9}{4}=2.25
$$

Trimester compounded interest gives $\quad p\left(\frac{t}{3}\right)=\left(1+r_{3}^{t}\right) p(0)$ at the $1 / 3^{r d}$-period $\quad{ }_{3}^{t}$ or $1^{\text {st }}$ trimester and then use that to figure the $2^{\text {nd }}$ trimester and so on. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.37$.

$$
p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right) p\left(2 \frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p(0)=\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1=\frac{64}{27}=2.37
$$

So if you compound interest more and more frequently, do you approach INFININTEREST?

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$.
$\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.
Semester compounded interest gives $p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) p(0)$ at the half-period $\frac{t}{2}$ and then use $p\left(\frac{t}{2}\right)$ during the last half to figure final payment. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.25$.

$$
p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right) p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) \cdot\left(1+r \cdot \frac{t}{2}\right) p(0)=\frac{3}{2} \cdot \frac{3}{2} \cdot 1=\frac{9}{4}=2.25
$$

Trimester compounded interest gives $\quad p\left(\frac{t}{3}\right)=\left(1+r_{3}^{t}\right) p(0)$ at the $1 / 3^{r d}$-period $\quad{ }_{3}^{t}$ or $1^{\text {st }}$ trimester and then use that to figure the $2^{\text {nd }}$ trimester and so on. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.37$.

$$
p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right) p\left(2 \frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p(0)=\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1=\frac{64}{27}=2.37
$$

So if you compound interest more and more frequently, do you approach INFININTEREST?

$$
\begin{aligned}
& p^{\frac{1}{1}}(t)=\left(1+r \cdot \frac{t}{1}\right)^{1} p(0)=\left(\frac{2}{1}\right)^{1} \cdot 1=\frac{2}{1}=2.00 \\
& p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right)^{2} p(0)=\left(\frac{3}{2}\right)^{2} \cdot 1=\frac{9}{4}=2.25 \\
& p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right)^{3} p(0)=\left(\frac{4}{3}\right)^{3} \cdot 1=\frac{64}{27}=2.37 \\
& p^{\frac{1}{4}}(t)=\left(1+r \cdot \frac{t}{4}\right)^{4} p(0)=\left(\frac{5}{4}\right)^{4} \cdot 1=\frac{625}{256}=2.44
\end{aligned}
$$

The Story of e (A Tale of Great \$Interest\$)

Simple interest at some rate r based on a 1 year period.
You gave a principal $p(0)$ to the bank and some time t later they would pay you $p(t)=(1+r \cdot t) p(0)$.
$\$ 1.00$ at rate $r=1$ (like Israel and Brazil that once had 100% interest.) gives $\$ 2.00$ at $t=1$ year.
Semester compounded interest gives $p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) p(0)$ at the half-period $\frac{t}{2}$ and then use $p\left(\frac{t}{2}\right)$ during the last half to figure final payment. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.25$.

$$
p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right) p\left(\frac{t}{2}\right)=\left(1+r \cdot \frac{t}{2}\right) \cdot\left(1+r \cdot \frac{t}{2}\right) p(0)=\frac{3}{2} \cdot \frac{3}{2} \cdot 1=\frac{9}{4}=2.25
$$

Trimester compounded interest gives $\quad p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) p(0)$ at the $1 / 3^{r d}$-period $\quad{ }_{3}^{t}$ or $1^{\text {st }}$ trimester and then use that to figure the $2^{\text {nd }}$ trimester and so on. Now $\$ 1.00$ at rate $r=1$ earns $\$ 2.37$.

$$
p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right) p\left(2 \frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p\left(\frac{t}{3}\right)=\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) \cdot\left(1+r \cdot \frac{t}{3}\right) p(0)=\frac{4}{3} \cdot \frac{4}{3} \cdot \frac{4}{3} \cdot 1=\frac{64}{27}=2.37
$$

So if you compound interest more and more frequently, do you approach INFININTEREST?

$$
\begin{aligned}
& p^{\frac{1}{1}}(t)=\left(1+r \cdot \frac{t}{1}\right)^{1} p(0)=\left(\frac{2}{1}\right)^{1} \cdot 1=\frac{2}{1}=2.00 \\
& p^{\frac{1}{2}}(t)=\left(1+r \cdot \frac{t}{2}\right)^{2} p(0)=\left(\frac{3}{2}\right)^{2} \cdot 1=\frac{9}{4}=2.25 \phi \\
& p^{\frac{1}{3}}(t)=\left(1+r \cdot \frac{t}{3}\right)^{3} p(0)=\left(\frac{4}{3}\right)^{3} \cdot 1=\frac{64}{27}=2.37 \\
& p^{\frac{1}{4}}(t)=\left(1+r \cdot \frac{t}{4}\right)^{4} p(0)=\left(\frac{5}{4}\right)^{4} \cdot 1=\frac{625}{256}=2.44
\end{aligned}
$$

Monthly: $\quad p^{\frac{1}{12}}(t)=\left(1+r \cdot \frac{t}{12}\right)^{12} p(0)=\left(\frac{13}{12}\right)^{12} \cdot 1=2.613$
Weekly: $\quad p^{\frac{1}{52}}(t)=\left(1+r \cdot \frac{t}{52}\right)^{52} p(0)=\left(\frac{53}{52}\right)^{52} \cdot 1=2.693$
Daily: $\quad p^{\frac{1}{365}}(t)=\left(1+r \cdot \frac{t}{365}\right)^{365} p(0)=\left(\frac{366}{365}\right)^{365} \cdot 1=2.7145$
Hrly: $p^{\frac{1}{8760}}(t)=\left(1+r \cdot \frac{t}{8760}\right)^{8760} p(0)=\left(\frac{8761}{8760}\right)^{8760} \cdot 1=2.7181$

$$
p^{1 / m}(1)=\mathbf{2 . 7 1 6 9 2 3 9 3 2 2} \quad \text { for } m=1,000
$$

$$
\text { Let: } m \cdot r \cdot t=n ~\left(1+\frac{1}{m}\right)^{m \cdot r \cdot t} \xrightarrow[m \rightarrow \infty]{ } e^{r \cdot t} \quad \begin{array}{ll}
p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 8 0 4 6 9 3} & \text { for } m=1,000,000 \\
p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 8 1 6 9 2 5} & \text { for } m=10,000,000
\end{array}
$$

$$
\text { or: } 1 / m=r \cdot t / n\left(1+\frac{r \cdot t}{n}\right)^{n} \xrightarrow[n \rightarrow \infty]{ } e^{r \cdot t}
$$

$$
p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 8 1 8 1 4 9} \quad \text { for } m=100,000,000
$$

$$
p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 8 1 8 2 7 1} \quad \text { for } m=1,000,000,000
$$

Can improve efficiency using binomial theorem:

$$
\begin{aligned}
& (x+y)^{n}=x^{n}+n \cdot x^{n-1} y+\frac{n(n-1)}{2!} x^{n-2} y^{2}+\frac{n(n-1)(n-2)}{3!} x^{n-3} y^{3}+\ldots+n \cdot x y^{n-1}+y^{n} \\
& \left(1+\frac{r \cdot t}{n}\right)^{n}=1+n \cdot\left(\frac{r \cdot t}{n}\right)+\frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2}+\frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3}+\ldots \quad \begin{array}{l}
\text { Define: Factorials }(!): \\
0!=1=1!, \quad 2!=1 \cdot 2, \quad 3!=1 \cdot 2 \cdot 3, \ldots
\end{array}
\end{aligned}
$$

Interest product formula is really inefficient: 10^{6} products for 6 -figures! .. . 10^{9} products for 9 ...

Can improve efficiency using binomial theorem:

$$
\begin{aligned}
& (x+y)^{n}=x^{n}+n \cdot x^{n-1} y+\frac{n(n-1)}{2!} x^{n-2} y^{2}+\frac{n(n-1)(n-2)}{3!} x^{n-3} y^{3}+\ldots+n \cdot x y^{n-1}+y^{n} \\
& \left(1+\frac{r \cdot t}{n}\right)^{n}=1+n \cdot\left(\frac{r \cdot t}{n}\right)+\frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2}+\frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3}+\ldots \quad \begin{array}{l}
\text { Define: Factorials }(!): \\
0!=1=1!, \quad 2!=1 \cdot 2, \quad 3!=1 \cdot 2 \cdot 3, \ldots
\end{array}
\end{aligned}
$$

$$
e^{r \cdot t}=1+r \cdot t+\frac{1}{2!}(r \cdot t)^{2}+\frac{1}{3!}(r \cdot t)^{3}+\ldots=\sum_{p=0}^{o} \frac{(r \cdot t)^{p}}{p!}
$$

As $n \rightarrow \infty$ let :

$$
\begin{aligned}
& n(n-1) \rightarrow n^{2} \\
& n(n-1)(n-2) \rightarrow n^{3}, \text { etc. }
\end{aligned}
$$

$$
\begin{aligned}
& p^{1 / m}(1)=\mathbf{2 . 7 1 6 9 2 3 9 3 2 2} \quad \text { for } m=1,000 \\
& p^{1 / m}(1)=\left(1+\frac{1}{m}\right)^{m} \longrightarrow \longrightarrow^{2.718281828459 . . ~} p^{1 / m}(1)=2.7181459268 \quad \text { for } m=10,000 \\
& p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 6 8 2 3 7 2} \quad \text { for } m=100,000 \\
& p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 8 0 4 6 9 3} \quad \text { for } m=1,000,000 \\
& p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 8 1 6 9 2 5} \quad \text { for } m=10,000,000 \\
& p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 8 1 8 1 4 9} \quad \text { for } m=100,000,000 \\
& p^{1 / m}(1)=\mathbf{2 . 7 1 8 2 8 1 8 2 7 1} \quad \text { for } m=1,000,000,000
\end{aligned}
$$

Interest product formula is really inefficient: 10^{6} products for 6 -figures! .. . 10^{9} products for 9 ...

Can improve efficiency using binomial theorem:

$$
\begin{aligned}
& (x+y)^{n}=x^{n}+n \cdot x^{n-1} y+\frac{n(n-1)}{2!} x^{n-2} y^{2}+\frac{n(n-1)(n-2)}{3!} x^{n-3} y^{3}+\ldots+n \cdot x y^{n-1}+y^{n} \\
& \left(1+\frac{r \cdot t}{n}\right)^{n}=1+n \cdot\left(\frac{r \cdot t}{n}\right)+\frac{n(n-1)}{2!}\left(\frac{r \cdot t}{n}\right)^{2}+\frac{n(n-1)(n-2)}{3!}\left(\frac{r \cdot t}{n}\right)^{3}+\ldots \quad \begin{array}{l}
\text { Define: Factorials }(!): \\
0!=1=1!, \quad 2!=1 \cdot 2, \quad 3!=1 \cdot 2 \cdot 3, \ldots
\end{array}
\end{aligned}
$$

$$
e^{r \cdot t}=1+r \cdot t+\frac{1}{2!}(r \cdot t)^{2}+\frac{1}{3!}(r \cdot t)^{3}+\ldots=\sum_{p=0}^{o} \frac{(r \cdot t)^{p}}{p!}
$$

Precision order: $\quad(o=1)$-e-series $=\mathbf{2 . 0 0 0 0 0}=1+1$
As $n \rightarrow \infty$ let :
($o=2$)-e-series $=\mathbf{2 . 5 0 0 0 0}=1+1+1 / 2$
$(o=3)$ - - -series $=2.66667=1+1+1 / 2+1 / 6$
$(o=4)$-e-series $=2.70833=1+1+1 / 2+1 / 6+1 / 24$
$(o=5)-e-$ series $=2.71667=1+1+1 / 2+1 / 6+1 / 24+1 / 120$
$(o=6)-e$-series $=2.71805=1+1+1 / 2+1 / 6+1 / 24+1 / 120+1 / 720$
$(o=7)$-e-series $=\mathbf{2 . 7 1 8 2 5}$
$(o=8)$-e-series $=\mathbf{2 . 7 1 8 2 8} \quad$ About 12 summed quotients
for 6-figure precision (A lot better!)

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Rate of change of position $x(t)$ is velocity $v(t)$.
Set $t=0$ to get $c_{l}=v(0)$.

$$
v(t)=\frac{d}{d t} x(t)=0+c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4}+\ldots+n c_{n} t^{n-1}+
$$

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Rate of change of position $x(t)$ is velocity $v(t)$.
Set $t=0$ to get $c_{l}=v(0)$.

$$
v(t)=\frac{d}{d t} x(t)=0+c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4}+\ldots+n c_{n} t^{n-1}+
$$

Change of velocity $v(t)$ is acceleration $a(t)$.
Set $t=0$ to get $c_{2}=\frac{1}{2} a(0)$.

$$
a(t)=\frac{d}{d t} v(t)=0+2 c_{2}+2 \cdot 3 c_{3} t+3 \cdot 4 c_{4} t^{2}+4 \cdot 5 c_{5} t^{3}+\ldots+n(n-1) c_{n} t^{n-2}+
$$

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Rate of change of position $x(t)$ is velocity $v(t)$.
Set $t=0$ to get $c_{l}=v(0)$.

$$
v(t)=\frac{d}{d t} x(t)=0+c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4}+\ldots+n c_{n} t^{n-1}+
$$

Change of velocity $v(t)$ is acceleration $a(t)$.
Set $t=0$ to get $c_{2}=\frac{1}{2} a(0)$.

$$
a(t)=\frac{d}{d t} v(t)=0+2 c_{2}+2 \cdot 3 c_{3} t+3 \cdot 4 c_{4} t^{2}+4 \cdot 5 c_{5} t^{3}+\ldots+n(n-1) c_{n} t^{n-2}+
$$

Change of acceleration $a(t)$ is $j e r k j(t)$. (Jerk is NASA term.)
Set $t=0$ to get $c_{3}=\frac{1}{3!} j(0)$.

$$
j(t)=\frac{d}{d t} a(t)=0+2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4} t+3 \cdot 4 \cdot 5 c_{5} t^{2}+\ldots+n(n-1)(n-2) c_{n} t^{n-3}+
$$

Change of jerk $j(t)$ is inauguration $i(t)$. (Be silly like NASA!)
Set $t=0$ to get $c_{4}=\frac{1}{4}!i(0)$.

$$
i(t)=\frac{d}{d t} j(t)=0+2 \cdot 3 \cdot 4 c_{4}+2 \cdot 3 \cdot 4 \cdot 5 c_{5} t+\ldots+n(n-1)(n-2)(n-3) c_{n} t^{n-4}+
$$

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Rate of change of position $x(t)$ is velocity $v(t)$.
Set $t=0$ to get $c_{l}=v(0)$.

$$
v(t)=\frac{d}{d t} x(t)=0+c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4}+\ldots+n c_{n} t^{n-1}+
$$

Change of velocity $v(t)$ is acceleration $a(t)$.
Set $t=0$ to get $c_{2}=\frac{1}{2} a(0)$.

$$
a(t)=\frac{d}{d t} v(t)=0+2 c_{2}+2 \cdot 3 c_{3} t+3 \cdot 4 c_{4} t^{2}+4 \cdot 5 c_{5} t^{3}+\ldots+n(n-1) c_{n} t^{n-2}+
$$

Change of acceleration $a(t)$ is $j e r k j(t)$. (Jerk is NASA term.)
Set $t=0$ to get $c_{3}=\frac{1}{3!} j(0)$.

$$
j(t)=\frac{d}{d t} a(t)=0+2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4} t+3 \cdot 4 \cdot 5 c_{5} t^{2}+\ldots+n(n-1)(n-2) c_{n} t^{n-3}+
$$

Change of jerk $j(t)$ is inauguration $i(t)$. (Be silly like NASA!)
Set $t=0$ to get $c_{4}=\frac{1}{4}!i(0)$.

$$
i(t)=\frac{d}{d t} j(t)=0+2 \cdot 3 \cdot 4 c_{4}+2 \cdot 3 \cdot 4 \cdot 5 c_{5} t+\ldots+n(n-1)(n-2)(n-3) c_{n} t^{n-4}+
$$

Gives Maclaurin (or Taylor) power series

$$
x(t)=x(0)+v(0) t+\frac{1}{2!} a(0) t^{2}+\frac{1}{3!} j(0) t^{3}+\frac{1}{4!} i(0) t^{4}+\frac{1}{5!} r(0) t^{5}+\ldots+\frac{1}{n!} x^{(n)} t^{n}+
$$

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Rate of change of position $x(t)$ is velocity $v(t)$.
Set $t=0$ to get $c_{l}=v(0)$.

$$
v(t)=\frac{d}{d t} x(t)=0+c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4}+\ldots+n c_{n} t^{n-1}+
$$

Change of velocity $v(t)$ is acceleration $a(t)$.
Set $t=0$ to get $c_{2}=\frac{1}{2} a(0)$.

$$
a(t)=\frac{d}{d t} v(t)=0+2 c_{2}+2 \cdot 3 c_{3} t+3 \cdot 4 c_{4} t^{2}+4 \cdot 5 c_{5} t^{3}+\ldots+n(n-1) c_{n} t^{n-2}+
$$

Change of acceleration $a(t)$ is jerk $j(t)$. (Jerk is NASA term.)
Set $t=0$ to get $c_{3}=\frac{1}{3!} j(0)$.

$$
j(t)=\frac{d}{d t} a(t)=0+2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4} t+3 \cdot 4 \cdot 5 c_{5} t^{2}+\ldots+n(n-1)(n-2) c_{n} t^{n-3}+
$$

Change of jerk $j(t)$ is inauguration $i(t)$. (Be silly like NASA!)
Set $t=0$ to get $c_{4}=\frac{1}{4!} i(0)$.

$$
i(t)=\frac{d}{d t} j(t)=0+2 \cdot 3 \cdot 4 c_{4}+2 \cdot 3 \cdot 4 \cdot 5 c_{5} t+\ldots+n(n-1)(n-2)(n-3) c_{n} t^{n-4}+
$$

Gives Maclaurin (or Taylor) power series

$$
x(t)=x(0)+v(0) t+\frac{1}{2!} a(0) t^{2}+\frac{1}{3!} j(0) t^{3}+\frac{1}{4!} i(0) t^{4}+\frac{1}{5!} r(0) t^{5}+\ldots+\frac{1}{n!} x^{(n)} t^{n}+
$$

Power Series Good! Need general power series development

Start with a general power series with constant coefficients c_{0}, c_{1}, etc. Set $t=0$ to get $c_{0}=x(0)$.

$$
x(t)=c_{0}+c_{1} t+c_{2} t^{2}+c_{3} t^{3}+c_{4} t^{4}+c_{5} t^{5}+\ldots+c_{n} t^{n}+
$$

Rate of change of position $x(t)$ is velocity $v(t)$.
Set $t=0$ to get $c_{l}=v(0)$.

$$
v(t)=\frac{d}{d t} x(t)=0+c_{1}+2 c_{2} t+3 c_{3} t^{2}+4 c_{4} t^{3}+5 c_{5} t^{4}+\ldots+n c_{n} t^{n-1}+
$$

Change of velocity $v(t)$ is acceleration $a(t)$.
Set $t=0$ to get $c_{2}=\frac{1}{2} a(0)$.

$$
a(t)=\frac{d}{d t} v(t)=0+2 c_{2}+2 \cdot 3 c_{3} t+3 \cdot 4 c_{4} t^{2}+4 \cdot 5 c_{5} t^{3}+\ldots+n(n-1) c_{n} t^{n-2}+
$$

Change of acceleration $a(t)$ is jerk $j(t)$. (Jerk is NASA term.)
Set $t=0$ to get $c_{3}=\frac{1}{3!} j(0)$.

$$
j(t)=\frac{d}{d t} a(t)=0+2 \cdot 3 c_{3}+2 \cdot 3 \cdot 4 c_{4} t+3 \cdot 4 \cdot 5 c_{5} t^{2}+\ldots+n(n-1)(n-2) c_{n} t^{n-3}+
$$

Change of jerk $j(t)$ is inauguration $i(t)$. (Be silly like NASA!)
Set $t=0$ to get $c_{4}=\frac{1}{4!} i(0)$.

$$
i(t)=\frac{d}{d t} j(t)=0+2 \cdot 3 \cdot 4 c_{4}+2 \cdot 3 \cdot 4 \cdot 5 c_{5} t+\ldots+n(n-1)(n-2)(n-3) c_{n} t^{n-4}+
$$

Gives Maclaurin (or Taylor) power series
$x(t)=x(0)+v(0) t+\frac{1}{2!} a(0) t^{2}+\frac{1}{3!} j(0) t^{3}+\frac{1}{4!} i(0) t^{4}+\frac{1}{5!} r(0) t^{5}+\ldots+\frac{1}{n!} x^{(n)} t^{n}+$
Setting all initial values to $I=x(0)=v(0)=a(0)=j(0)=i(0)=$ \qquad
gives exponential:

$$
e^{t}=1+t+\frac{1}{2!} t^{2}+\frac{1}{3!} t^{3}+\frac{1}{4!} t^{4}+\frac{1}{5!} t^{5}+\ldots+\frac{1}{n!} t^{n}+
$$

But, how good are power series? ${ }_{[200.0}$

Unit 1
Fig. 10.2

Gives Maclaurin (or Taylor) power series

$$
x(t)=x(0)+v(0) t+\frac{1}{2!} a(0) t^{2}+\frac{1}{3!} j(0) t^{3}+\frac{1}{4!} i(0) t^{4}+\frac{1}{5!} r(0) t^{5}+\ldots+\frac{1}{n!} x^{(n)} t^{n}+
$$

Setting all initial values to $l=x(0)=v(0)=a(0)=j(0)=i(0)=\ldots$. gives exponential: $\quad e^{t}=1+t+\frac{1}{2!} t^{2}+\frac{1}{3!} t^{3}+\frac{1}{4!} t^{4}+\frac{1}{5!} t^{5}+\ldots+\frac{1}{n!} t^{n}+$

How good are power series? Depends...

Unit 1

Suppose the fancy bankers really went bonkers and made interest rate r an imaginary number $r=i \theta$. Imaginary number $i=\sqrt{-1}$ powers have repeat-after-4-pattern: $i^{0}=1, i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=1$, etc...

$$
\begin{aligned}
e^{i \theta} & =1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\ldots \\
& =1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\ldots \quad\left(i=\sqrt{-1} \text { imples: } i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=+1, i^{5}=i, \ldots\right) \\
& =\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\ldots\right)+\left(i \theta-i \frac{\theta^{3}}{3!}+i \frac{\theta^{5}}{5!}-\ldots\right)
\end{aligned}
$$

Suppose the fancy bankers really went bonkers and made interest rate r an imaginary number $r=i \theta$. Imaginary number $i=\sqrt{-1}$ powers have repeat-after-4-pattern: $i^{0}=1, i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=1$,etc...
$e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\ldots \quad$ (From exponential series)

$$
=1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\ldots \quad\left(i=\sqrt{-1} \text { imples: } i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=+1, i^{5}=i, \ldots\right)
$$

$=\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\ldots\right)+\left(i \theta-i \frac{\theta^{3}}{3!}+i \frac{\theta^{5}}{5!}-\ldots\right) \quad$ To match series for $\left\{\begin{array}{c}\operatorname{cosine}: \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\ \operatorname{sine}: \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots\end{array}\right.$ | $e^{i \theta}=\quad \cos \theta+\quad i \sin \theta$ | |
| :---: | :---: |
| Euler-DeMoivre | Theorem |

Unit 1

Fig. 10.3

Suppose the fancy bankers really went bonkers and made interest rate r an imaginary number $r=i \theta$. Imaginary number $i=\sqrt{-1}$ powers have repeat-after-4-pattern: $i^{0}=1, i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=1$, etc...
$e^{i \theta}=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\ldots \quad$ (From exponential series)

$$
=1+i \theta-\frac{\theta^{2}}{2!}-i \frac{\theta^{3}}{3!}+\frac{\theta^{4}}{4!}+i \frac{\theta^{5}}{5!}-\ldots \quad\left(i=\sqrt{-1} \text { imples: } i^{1}=i, i^{2}=-1, i^{3}=-i, i^{4}=+1, i^{5}=i, \ldots\right)
$$

$$
=\left(1-\frac{\theta^{2}}{2!}+\frac{\theta^{4}}{4!}-\ldots\right)+\left(i \theta-i \frac{\theta^{3}}{3!}+i \frac{\theta^{5}}{5!}-\ldots\right) \quad \text { To match series for }\left\{\begin{array}{c}
\text { cosine }: \cos x=1-\frac{x^{2}}{2!}+\frac{x^{4}}{4!}-\frac{x^{6}}{6!}+\cdots \\
\operatorname{sine}: \sin x=x-\frac{x^{3}}{3!}+\frac{x^{5}}{5!}-\frac{x^{7}}{7!}+\cdots
\end{array}\right.
$$

$e^{i \theta}=\quad \cos \theta+\quad i \sin \theta$	
Euler-DeMoivre	Theorem

Imaginary axis

Unit 1
Fig. 10.3

2. What Good Are Complex Exponentials?

What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is $\cos (a+b)$ or $\sin (a+b)$? Just factor $e^{i(a+b)}=e^{i a} e^{i b} \ldots$

What Good Are Complex Exponentials?

1. Complex numbers provide "automatic trigonometry"

Can't remember is $\cos (a+b)$ or $\sin (a+b)$? Just factor $e^{i(a+b)}=e^{i a} e^{i b} \ldots$

2. Complex numbers add like vectors. \quad ssum $=z+z^{\prime}=(x+i y)+\left(x^{\prime}+i y^{\prime}\right)=\left(x+x^{\prime}\right)+i\left(y+y^{\prime}\right)$

$$
z \text { diff }=z-z^{\prime}=(x+i y)-\left(x^{\prime}+i y^{\prime}\right)=\left(x-x^{\prime}\right)+i\left(y-y^{\prime}\right)
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { (a) } \\
y=\operatorname{Im} z
\end{array} \\
&\left.\right|_{z_{S U M} \mid}=\sqrt{\left(z+z^{\prime}\right)^{*}\left(z+z^{\prime}\right)}=\sqrt{\left(r e^{i \phi}+r^{\prime} e^{i \phi^{\prime}}\right)^{*}\left(r e^{i \phi}+r^{\prime} e^{i \phi^{\prime}}\right)}=\sqrt{\left(r e^{-i \phi}+r^{\prime} e^{-i \phi^{\prime}}\right)\left(r e^{i \phi}+r^{\prime} e^{i \phi^{\prime}}\right)} \\
&=\sqrt{r^{2}+r^{\prime 2}+r r^{\prime}\left(e^{i\left(\phi-\phi^{\prime}\right)}+e^{-i\left(\phi-\phi^{\prime}\right)}\right)}=\sqrt{r^{2}+r^{\prime 2}+2 r r^{\prime} \cos \left(\phi-\phi^{\prime}\right)} \quad \text { (quick derivation of Cosine Law) }
\end{aligned}
$$

What Good Are Complex Exponentials? (contd.)

3.Complex exponentials $A e^{-i \omega t}$ track position and velocity using Phasor Clock.

(a) Complex plane and unit vectors

(b) Quantum Phasor Clock $\psi=A \mathrm{e}^{-i \omega t}=A \cos \omega t-i A \sin \omega t=x+i y$

Unit 1
Fig. 10.5

What Good Are Complex Exponentials? (contd.)

3. Complex exponentials $A e^{-i \omega t}$ track position and velocity using Phasor Clock.

(a) Complex plane and unit vectors

(b) Quantum Phasor Clock $\psi=A \mathrm{e}^{-i \omega t}=A \cos \omega t-i A \sin \omega t=x+i y$

Some Rect-vs-Polar relations worth remembering

$$
\begin{aligned}
& \underset{(x, y) \text { form }}{\text { Cartesian }}\left\{\begin{array}{l}
\psi_{x}=\operatorname{Re} \psi(t)=x(t)=A \cos \omega t=\frac{\psi+\psi^{*}}{2} \\
\psi_{y}=\operatorname{Im} \psi(t)=\frac{v(t)}{\omega}=-A \sin \omega t=\frac{\psi-\psi^{*}}{2 i}
\end{array}\right. \\
& \psi=r e^{+i \theta}=r e^{-i \omega t}=r(\cos \omega t-i \sin \omega t) \\
& \psi^{*}=r e^{-i \theta}=r e^{+i \omega t}=r(\cos \omega t+i \sin \omega t) \\
& \text { Polar }\left\{r=A=|\psi|=\sqrt{\psi_{x}{ }^{2}+\psi_{y}{ }^{2}}=\sqrt{\psi^{*} \psi}\right. \\
& \stackrel{(r, \theta)}{\text { form }} \quad \theta=-\omega t=\arctan \left(\psi_{y} / \psi_{x}\right) \\
& \cos \theta=\frac{1}{2}\left(e^{+i \theta}+e^{-i \theta}\right) \\
& \sin \theta=\frac{1}{2 i}\left(e^{+i \theta}-e^{-i \theta}\right)
\end{aligned}
$$

4. Complex products provide 2D rotation operations.

$$
\begin{aligned}
& e^{i \phi} \cdot z=(\cos \phi+i \sin \phi) \cdot(x+i y)=x \cos \phi-y \sin \phi \quad+i \quad(x \sin \phi+y \cos \phi) \\
& \mathbf{R}_{+\phi} \bullet \cdot \mathbf{r}=(x \cos \phi-y \sin \phi) \hat{\mathbf{e}}_{x}+(x \sin \phi+y \cos \phi) \hat{\mathbf{e}}_{y} \\
&\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \cdot\binom{x}{y}=\quad\binom{x \cos \phi-y \sin \phi}{x \sin \phi+y \cos \phi}
\end{aligned}
$$

4. Complex products provide 2D rotation operations.

$$
e^{i \phi} \cdot z=(\cos \phi+i \sin \phi) \cdot(x+i y)=x \cos \phi-y \sin \phi \quad+i \quad(x \sin \phi+y \cos \phi)
$$

$$
\begin{aligned}
\mathbf{R}_{+\phi} \bullet \mathbf{r} & =(x \cos \phi-y \sin \phi) \hat{\mathbf{e}}_{x}+(x \sin \phi+y \cos \phi) \hat{\mathbf{e}}_{y} \\
\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \cdot\binom{x}{y} & =\quad\binom{x \cos \phi-y \sin \phi}{x \sin \phi+y \cos \phi}
\end{aligned}
$$

$e^{i \phi}$ acts on this: $z=r e^{i \theta}$

to give this: $e^{i \phi} e^{i \phi} z=r e^{i \phi} e^{i \theta}$

What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.

$$
\begin{aligned}
e i \phi \cdot z= & (\cos \phi+i \sin \phi) \cdot(x+i y)=x \cos \phi-y \sin \phi \quad+i \quad(x \sin \phi+y \cos \phi) \\
\mathbf{R}_{+\phi} \cdot \mathbf{r} & =(x \cos \phi-y \sin \phi) \hat{\mathbf{e}}_{x}+(x \sin \phi+y \cos \phi) \hat{\mathbf{e}}_{y} \\
\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \cdot\binom{x}{y} & =\quad\binom{x \cos \phi-y \sin \phi}{x \sin \phi+y \cos \phi}
\end{aligned}
$$

5. Complex products provide 2D "dot"(•) and "cross"(x) products.

Two complex numbers $A=A_{x}+i A_{y}$ and $B=B_{x}+i B_{y}$ and their "star" (*)-product $A^{*} B$.

$$
\begin{aligned}
A^{*} B= & \left(A_{x}+i A_{y}\right)^{*}\left(B_{x}+i B_{y}\right)=\left(A_{x}-i A_{y}\right)\left(B_{x}+i B_{y}\right) \\
& =\left(A_{x} B_{x}+A_{y} B_{y}\right)+i\left(A_{x} B_{y}-A_{y} B_{x}\right)=\mathbf{A} \cdot \mathbf{B}+i|\mathbf{A} \times \mathbf{B}|_{Z \perp(x, y)}
\end{aligned}
$$

Real part is scalar or "dot" (\cdot) product $\mathbf{A} \cdot \mathbf{B}$.
Imaginary part is vector or "cross" (\times) product, but just the Z-component normal to $x y$-plane.
Rewrite $A^{*} B$ in polar form.

$$
\begin{aligned}
A * B & =\left(|A| e^{i \theta_{A}}\right)^{*}\left(|B| e^{i \theta_{B}}\right)=|A| e^{-i \theta_{A}}|B| e^{i \theta_{B}}=|A||B| e^{i\left(\theta_{B}-\theta_{A}\right)} \\
& =|A||B| \cos \left(\theta_{B}-\theta_{A}\right)+i|A||B| \sin \left(\theta_{B}-\theta_{A}\right)=\mathbf{A} \cdot \mathbf{B}+i|\mathbf{A} \times \mathbf{B}|_{Z \perp(x, y)}
\end{aligned}
$$

What Good Are Complex Exponentials? (contd.)

4. Complex products provide 2D rotation operations.

$$
\begin{aligned}
e i \phi \cdot z=(\cos \phi+i \sin \phi) \cdot(x+i y)=x \cos \phi-y \sin \phi \quad & +i \quad(x \sin \phi+y \cos \phi) \\
\mathbf{R}_{+\phi} \bullet \mathbf{r} & =(x \cos \phi-y \sin \phi) \hat{\mathbf{e}}_{x}+(x \sin \phi+y \cos \phi) \hat{\mathbf{e}}_{y} \\
\left(\begin{array}{cc}
\cos \phi & -\sin \phi \\
\sin \phi & \cos \phi
\end{array}\right) \cdot\binom{x}{y} & =\quad\binom{x \cos \phi-y \sin \phi}{x \sin \phi+y \cos \phi}
\end{aligned}
$$

5. Complex products provide 2D "dot"(•) and "cross"(x) products.

Two complex numbers $A=A_{x}+i A_{y}$ and $B=B_{x}+i B_{y}$ and their "star" (*)-product $A^{*} B$.

$$
\begin{aligned}
A^{*} B= & \left(A_{x}+i A_{y}\right)^{*}\left(B_{x}+i B_{y}\right)=\left(A_{x}-i A_{y}\right)\left(B_{x}+i B_{y}\right) \\
& =\left(A_{x} B_{x}+A_{y} B_{y}\right)+i\left(A_{x} B_{y}-A_{y} B_{x}\right)=\mathbf{A} \cdot \mathbf{B}+i|\mathbf{A} \times \mathbf{B}|_{Z \perp(x, y)}
\end{aligned}
$$

Real part is scalar or "dot" (\cdot) product $\mathbf{A} \cdot \mathbf{B}$.
Imaginary part is vector or "cross" (\times) product, but just the Z-component normal to $x y$-plane.
Rewrite $A^{*} B$ in polar form.

$$
\begin{aligned}
A * B & =\left(|A| e^{i \theta_{A}}\right)^{*}\left(|B| e^{i \theta_{B}}\right)=|A| e^{-i \theta_{A}}|B| e^{i \theta_{B}}=|A||B| e^{i\left(\theta_{B}-\theta_{A}\right)} \\
& =|A||B| \cos \left(\theta_{B}-\theta_{A}\right)+i|A||B| \sin \left(\theta_{B}-\theta_{A}\right)=\mathbf{A} \cdot \mathbf{B}+i|\mathbf{A} \times \mathbf{B}|_{Z \perp(x, y)}
\end{aligned}
$$

$\mathbf{A} \cdot \mathbf{B}=|A||B| \cos \left(\theta_{B}-\theta_{A}\right)$
$=|A| \cos \theta_{A}|B| \cos \theta_{B}+|A| \sin \theta_{A}|B| \sin \theta_{B}$
$=A_{x} B_{x}+A_{y} B_{y}$
$|\mathbf{A} \times \mathbf{B}|=|A||B| \sin \left(\theta_{B}-\theta_{A}\right)$
$=|A| \cos \theta_{A}|B| \sin \theta_{B}-|A| \sin \theta_{A}|B| \cos \theta_{B}$
$=A_{x} B_{y}-A_{y} B_{x}$
6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla x F)$ of $2 D$ vector field Relation of $\left(z, z^{*}\right)$ to ($x=\operatorname{Re} z, y=\operatorname{Im} z$) defines a z-derivative $\frac{d f}{d z}$ and "star" z^{*}-derivative. $\frac{d f}{d z *}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \begin{array}{l}
\text { Applying } \\
\text { chain-rule }
\end{array} \\
\frac{d f}{d z^{*}}=\frac{\partial x}{\partial z *} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z *} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla \times F)$ of $2 D$ vector field Relation of $\left(z, z^{*}\right)$ to ($x=\operatorname{Re} z, y=\operatorname{Im} z$) defines a z-derivative $\frac{d f}{d z}$ and "star" z^{*}-derivative. $\frac{d f}{d z *}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z *} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

Derivative chain-rule shows real part of $\frac{d f}{d z}$ has 2D divergence $\nabla \cdot \mathbf{f}$ and imaginary part has curl $\nabla \times \mathbf{f}$.

$$
\frac{d f}{d z}=\frac{d}{d z}\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{1}{2} \nabla \bullet \mathbf{f}+\frac{i}{2}|\nabla \times \mathbf{f}|_{Z \perp(x, y)}
$$

What Good Are Complex Exponentials? (contd.)

6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla \mathrm{xF})$ of $2 D$ vector field Relation of $\left(z, z^{*}\right)$ to ($x=\operatorname{Re} z, y=\operatorname{Im} z$) defines a z-derivative $\frac{d f}{d z}$ and "star" z^{*}-derivative. $\frac{d f}{d z^{*}}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z^{*}} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

Derivative chain-rale shows real pary of $\frac{d f}{d z}$ has 2D divergence ∇ •f and imaginary part has curl $\nabla \times \mathbf{f}$.

7. Invent source-free 2 D vector fields $[\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$]

We can invent source-free $2 D$ vector fields that are both zero-divergence and zero-curl.
Take any function $f(z)$, conjugate it (change all i 's to $-i$) to give $f^{*}\left(z^{*}\right)$ for which $\frac{d f^{*}}{d z}=0$.
6. Complex derivative contains "divergence" $(\nabla \cdot F)$ and "curl" $(\nabla \times F)$ of $2 D$ vector field

Relation of $\left(z, z^{*}\right)$ to $(x=\operatorname{Re} z, y=\operatorname{Im} z)$ defines a z-derivative $\frac{d f}{d z}$ and "star" z^{*}-derivative. $\frac{d f}{d z *}$

$$
\begin{array}{lll}
z=x+i y & x=\frac{1}{2}\left(z+z^{*}\right) & \frac{d f}{d z}=\frac{\partial x}{\partial z} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}-\frac{i}{2} \frac{\partial f}{\partial y} \\
z^{*}=x-i y & y=\frac{1}{2 i}\left(z-z^{*}\right) & \frac{d f}{d z^{*}}=\frac{\partial x}{\partial z *} \frac{\partial f}{\partial x}+\frac{\partial y}{\partial z^{*}} \frac{\partial f}{\partial y}=\frac{1}{2} \frac{\partial f}{\partial x}+\frac{i}{2} \frac{\partial f}{\partial y}
\end{array}
$$

Derivative chain-rule shows real pary of $\frac{d f}{d z}$ has 2D divergence ∇ •f and imaginary part has curl $\nabla \times \mathbf{f}$.

$$
\frac{d f}{d z}=\frac{d}{d z}\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f}{\partial x}-i \frac{\partial f}{\partial y}\right)\left(f_{x}+i f_{y}\right)=\frac{1}{2}\left(\frac{\partial f_{x}}{\partial x}+\frac{\partial f_{y}}{\partial y}\right)+\frac{i}{2}\left(\frac{\partial f_{y}}{\partial x}-\frac{\partial f_{x}}{\partial y}\right)=\frac{1}{2} \nabla \bullet \mathbf{f}+\frac{i}{2}|\nabla \times \mathbf{f}|_{Z \perp(x, y)}
$$

7. Invent source-free $2 D$ vector fields $[\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$]

We can invent source-free $2 D$ vector fields that are both zero-divergence and zero-curl.
Take any function $f(z)$, conjugate it (change all i 's to $-i$) to give $f^{*}\left(z^{*}\right)$ for which $\frac{d f^{*}}{d z}=0$.
For example: if $f(z)=a \cdot z$ then $f^{*}\left(z^{*}\right)=a \cdot z^{*}=a(x-i y)$ is not function of z so it has zero z-derivative.
$\mathbf{F}=\left(F_{x}, F_{y}\right)=\left(f_{x,}^{*} f_{y}^{*}\right)=(a \cdot x,-a \cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F}=0$ and has zero curl: $|\nabla \times \mathbf{F}|=0$.

$$
\nabla \bullet \mathbf{F}=\frac{\partial F_{x}}{\partial x}+\frac{\partial F_{y}}{\partial y}=\frac{\partial(a x)}{\partial x}+\frac{\partial F(-a y)}{\partial y}=0 \quad|\nabla \times \mathbf{F}|_{Z \perp(x, y)}=\frac{\partial F_{y}}{\partial x}-\frac{\partial F_{x}}{\partial y}=\frac{\partial(-a y)}{\partial x}-\frac{\partial F(a x)}{\partial y}=0
$$

7. (contd.) Invent source-free $2 D$ vector fields $[\nabla \cdot \mathrm{F}=0$ and $\nabla \mathrm{xF}=0$]

We can invent source-free $2 D$ vector fields that are both zero-divergence and zero-curl. Take any function $f(z)$, conjugate it (change all i 's to $-i$) to give $f^{*}\left(z^{*}\right)$ for which $\frac{d f^{*}}{d z}=0$

For example, if $f(z)=a \cdot z$ then $f^{*}\left(z^{*}\right)=a \cdot z^{*}=a(x-i y)$ is not function of z so it has zero z-derivative. $\mathbf{F}=\left(F_{x}, F_{y}\right)=\left(f_{x,}^{*} f_{y}^{*}\right)=(a \cdot x,-a \cdot y)$ has zero divergence: $\nabla \cdot \mathbf{F}=0$ and has zero curl: $|\nabla \times \mathbf{F}|=0$.

$\mathbf{F}=\left(f_{x}^{*}, f_{y}^{*}\right)=(a \cdot x,-a \cdot y)$ is a divergence-free laminar (DFL) field.
8. Complex potential ϕ contains "scalar" $\mathrm{F}=\nabla \Phi)$ and "vector"($\mathrm{F}=\nabla x \mathrm{~A}$) potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A}.
$\mathbf{F}=\nabla \Phi$
$\mathbf{F}=\nabla \times \mathbf{A}$
A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose z-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathbf{A}(x, y)$ has z^{*}-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field \mathbf{F}.

What Good Are Complex Exponentials? (contd.)

8. Complex potential ϕ contains "scalar" $\mathrm{F}=\nabla \Phi)$ and "vector"($\mathrm{F}=\nabla x \mathrm{~A}$) potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A}.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose z-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathrm{~A}(x, y)$ has z^{*}-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field \mathbf{F}.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get ϕ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary ($\mathrm{Im} \phi=\mathrm{A}$) parts.

$$
\phi=\overbrace{\frac{1}{2} a\left(x^{2}-y^{2}\right)}^{\Phi}+i \overbrace{\text { axy }}^{\mathrm{A}}=\int f \cdot d z=\int a z \cdot d z=\frac{1}{2} a z^{2}=\frac{1}{2} a(x+i y)^{2}
$$

8. Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $\mathrm{F}=\nabla \times \mathrm{A})$ potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A}.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathbf{A}(x, y)$ exists whose z-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathbf{A}(x, y)$ has z^{*}-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field \mathbf{F}.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get ϕ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary $(\mathrm{Im} \phi=\mathrm{A})$ parts.

$$
\begin{aligned}
\phi & =\overbrace{=\frac{1}{2}}^{\Phi}+i \overbrace{a\left(x^{2}-y^{2}\right)}^{\mathrm{A}}+i \overbrace{\text { axy }}^{\mathrm{A}}=\int f \cdot d z=\int a z \cdot d z=\frac{1}{2} a z^{2}=\frac{1}{2} a(x+i y)^{2}
\end{aligned}
$$

Unit 1
Fig. 10.7

8. Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $\mathrm{F}=\nabla x \mathrm{~A})$ potentials

Any DFL field \mathbf{F} is a gradient of a scalar potential field Φ or a curl of a vector potential field \mathbf{A}.

$$
\mathbf{F}=\nabla \Phi \quad \mathbf{F}=\nabla \times \mathbf{A}
$$

A complex potential $\phi(z)=\Phi(x, y)+i \mathrm{~A}(x, y)$ exists whose z-derivative is $f(z)=d \phi / d z$.
Its complex conjugate $\phi^{*}\left(z^{*}\right)=\Phi(x, y)-i \mathbf{A}(x, y)$ has z^{*}-derivative $f^{*}\left(z^{*}\right)=d \phi^{*} / d z^{*}$ giving $D F L$ field \mathbf{F}.
To find $\phi=\Phi+i \mathrm{~A}$ integrate $f(z)=a \cdot z$ to get ϕ and isolate real $(\operatorname{Re} \phi=\Phi)$ and imaginary $(\mathrm{lm} \phi=\mathrm{A})$ parts.

$$
\begin{aligned}
\phi & =\overbrace{\overbrace{a\left(x^{2}-y^{2}\right)}^{+i}}^{\Phi}+i \overbrace{\text { axy }}^{\mathrm{A}}=\int f \cdot d z=\int a z \cdot d z=\frac{1}{2} a z^{2}=\frac{1}{2} a(x+i y)^{2}
\end{aligned}
$$

Unit 1
Fig. 10.7

BONUS!
Get a free coordinate system!

The (Φ, \mathbf{A}) grid is a GCC coordinate system*:
$q^{l}=\Phi=\left(x^{2}-y^{2}\right) / 2=$ const.
$q^{2}=\mathrm{A}=(x y)=$ const.
*Actually it's OCC.

What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials ...and either one (or half-n'-half!) works just as well.
Derivative $\frac{d \phi \phi^{*}}{d z^{*}}$ has 2D gradient $\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}$ of scalar Φ and $\operatorname{curl}_{\nabla \times A}=\left(\begin{array}{c}\frac{\partial A}{\partial y} \\ \frac{\partial \Delta}{\partial y} \\ \frac{\partial \Delta}{\partial y}\end{array}\right)$ of vector A (and they're equal!')

$$
\frac{d}{d z^{*}} \phi^{*}=\frac{d}{d z^{*}}(\Phi-i \mathbf{A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathbf{A})=\frac{1}{2}(\overbrace{\left.\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}\right)})+\frac{1}{2}(\overbrace{\frac{\partial \mathrm{~A}}{\partial y}}-i \frac{\partial \mathrm{~A}}{\partial x})=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathbf{A}
$$

What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector"($\mathrm{F}=\nabla \mathrm{xA}$) potentials ...and either one (or half-n'-half!) works just as well.
Derivative $\frac{d \phi^{*}}{d z_{2}^{*}}$ has 2D gradient $\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}$ of scalar Φ and $\operatorname{curl}_{\nabla \times A}=\binom{\frac{\partial A}{\partial y}}{\frac{\partial A}{\partial y}}$ of vector A (and they're equal!')

$$
\frac{d}{d z^{*}} \phi^{*}=\frac{d}{d z^{*}}(\Phi-i \mathrm{~A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathrm{~A})=\frac{1}{2}(\overbrace{\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}})+\frac{1}{2}\left(\frac{\partial \mathrm{~A}}{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x}\right)=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathbf{A}
$$

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$

What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials ...and either one (or half-n'-half!) works just as well.
Derivative $\frac{d \phi^{*}}{d d^{*}}$ has 2D gradient $\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}$ of scalar Φ and $\operatorname{curl}_{\nabla \times A}=\binom{\frac{\partial A}{\partial y}}{\frac{\partial \lambda}{\partial x}}$ of vector A (and they're equal!')

$$
\frac{d}{d z^{*}} \phi^{*}=\frac{d}{d z^{*}}(\Phi-i \mathbf{A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i i \frac{\partial}{\partial y}\right)(\Phi-i \mathbf{A})=\frac{1}{2}(\overbrace{\left.\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}\right)})+\frac{1}{2}(\overbrace{\left.\frac{\partial \mathrm{~A}}{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x}\right)}=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathbf{A}
$$

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$

What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials ...and either one (or half-n'-half!) works just as well.
Derivative $\frac{d \phi^{*}}{d z^{*}}$ has 2D gradient $\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}$ of scalar Φ and $\operatorname{curl}_{\nabla \times A}=\binom{\frac{\partial A}{\partial y}}{\frac{\partial A}{\partial x}}$ of vector A (and they're equal!')

$$
\frac{d}{d z^{*}} \phi^{*}=\frac{d}{d z^{*}}(\Phi-i \mathrm{~A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathrm{~A})=\frac{1}{2}(\overbrace{\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}})+\frac{1}{2}(\overbrace{\frac{\partial \mathrm{~A}}{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x}})=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathbf{A}
$$

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$

Scalar static potential lines $\Phi=$ const. and vector flux potential lines $\mathbf{A}=$ const. define $D F L$ field-net.

What Good Are Complex Exponentials? (contd.)

8. (contd.) Complex potential ϕ contains "scalar" $(\mathrm{F}=\nabla \Phi)$ and "vector" $(\mathrm{F}=\nabla x \mathrm{~A})$ potentials ...and either one (or half-n'-half!) works just as well.
Derivative $\frac{d \phi^{*} *}{d z^{*}}$ has 2D gradient $\nabla \Phi=\binom{\frac{\partial \Phi}{\partial x}}{\frac{\partial \Phi}{\partial y}}$ of scalar Φ and $\operatorname{curl} \nabla \times \mathrm{A}=\binom{\frac{\partial A}{\partial y}}{-\frac{\partial A}{\partial y}}$ of vector A (and they're equal!')

$$
\frac{d}{d z^{*}} \phi^{*}=\frac{d}{d z^{*}}(\Phi-i \mathrm{~A})=\frac{1}{2}\left(\frac{\partial}{\partial x}+i \frac{\partial}{\partial y}\right)(\Phi-i \mathrm{~A})=\frac{1}{2}(\overbrace{\left.\left.\frac{\partial \Phi}{\partial x}+i \frac{\partial \Phi}{\partial y}\right)+\frac{1}{2}\left(\frac{\partial \mathrm{~A}}{\partial y}-i \frac{\partial \mathrm{~A}}{\partial x}\right)=\frac{1}{2} \nabla \Phi+\frac{1}{2} \nabla \times \mathbf{A},{ }^{2}\right)}
$$

Note, mathematician definition of force field $\mathbf{F}=+\nabla \Phi$ replaces usual physicist's definition $\mathbf{F}=-\nabla \Phi$

Scalar static potential lines $\Phi=$ const. and vector flux potential lines $\mathbf{A}=$ const. define $D F L$ field-net.

The half-n'-half results are called
Riemann-Cauchy
Derivative Relations
9. Complex integrals $\int f(z) d z$ count $2 D$ "circulation"($\int \mathrm{F} \cdot \mathrm{dr}$) and "flux"($(\mathbf{F} \mathbf{F d r})$

Integral of $f(z)$ between point z_{1} and point z_{2} is potential difference $\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)$

$$
\Delta \phi=\phi\left(z_{2}\right)-\phi\left(z_{1}\right)=\int_{z_{1}}^{z_{2}} f(z) d z=\underbrace{\Phi\left(x_{2}, y_{2}\right)-\Phi\left(x_{1}, y_{1}\right)}_{\Delta \phi=}+i[\underbrace{[\underbrace{\mathrm{~A}\left(x_{2}, y_{2}\right)-\mathrm{A}\left(x_{1}, y_{1}\right)}_{\Delta \mathbf{A}})]}_{\Delta \Phi}
$$

In $D F L$ field $\mathrm{F}, \Delta \phi$ is independent of the integration path $z(t)$ connecting z_{1} and z_{2}.

