Lagrangian and Hamiltonian dynamics: Living with duality in GCC cells and vectors Part III.

 (Ch. 12 of Unit 1)0. Discussion of trajectory-contact-envelope problems/midterm exam
\longleftarrow Topic for 3.01.2012
1. Examples of Hamiltonian dynamics and phase plots

1D Pendulum and phase plot (Simulation)
Phase control (Simulation)
$\downarrow^{\text {Topics for } 3.05 .2012}$
3. Exploring phase space and Lagrangian mechanics more deeply

A weird "derivation" of Lagrange's equations
Poincare identity and Action
How Classicists might have "derived" quantum equations
Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics

Say $\boldsymbol{\alpha}=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0 \ldots$ Q1. ...where is its focus?
Q2. ...where is the blast wave?
Q3. ...how high can $\alpha=45^{\circ}$ path path rise ?

Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0 \ldots$ Q1. ...where is its focus? Q2. ...where is the blast wave? Q3. How high can $\alpha=45^{\circ}$ path rise? Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit?

Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0$... Q1. ...where is its focus?
Q2. ... where is the blast wave? center falls as far as 90° ball rise y
Q3. How high can $\alpha=45^{\circ}$ path rise ? $1 / 2$ ab high 1.0
Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit? $\mathrm{x}=2$
Q5. Where is blast wave then?
Q6 Where is $\alpha=45^{\circ}$ path focus?
Q7 Guess for all-path envelope?
and its focus? directrix?
directrix for all-path envelope
Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0 \ldots$ Q1. ...where is its focus?
Q2. ...where is the blast wave? center falls ap far as 90° ball ris y
Q3. How high can $\alpha=45^{\circ}$ path rise? $1 / 2$ ss hig
Q4. Where on x-axis does $\alpha=45^{\circ}$ path hit? $x=2$
Q5. Where is blast wave then? centered on 45° normal
Q6 Where is $\alpha=45^{\circ}$ path focus? $x=1, y=0$ Q7 Guess for all-path envelope?
and its focus? directrix?
Q7 Where is $\alpha=45^{\circ}$ "rite" geometry?
Q8 Where is $\alpha=0 \%$ path focus? directrix?

Say $\alpha=90^{\circ}$ path rises to 1.0 then drops. When at $y=1.0$... Q1. ...where is its focus?
Q2. ...where is the blast wave? center falls ap far as 90° ball ris y
Q3. How high can $\alpha=45^{\circ}$ path rise ? $1 / 2$ as high
Q4. Where on x-axis does $\alpha=45^{\circ}$ path thit? $x=2$
Q5. Where is blast wave then? centred on 45° normal Q6 Where is $\alpha=45^{\circ}$ path focus? $x=1, y=0$ Q7 Guess for all-path envelope? - 1.0 and its focus? directrix? Q7 Where is $\alpha=45^{\circ}$ "rite" geomety y ? Q8 Where is $\alpha=0 \%$ path focus? directrix?

Exploding-starlet elliptical envelope and contacting elliptical trajectories

1D Pendulum and phase plot

Lagrangian function $L=K E-P E=T$ - U where potential energy is $U(\theta)=-M g R \cos \theta$

$$
L(\dot{\theta}, \theta)=\frac{1}{2} I \dot{\theta}^{2}-U(\theta)=\frac{1}{2} I \dot{\theta}^{2}+M g R \cos \theta
$$

1D Pendulum and phase plot

Lagrangian function $L=K E-P E=T-U$ where potential energy is $U(\theta)=-M g R \cos \theta$

$$
L(\dot{\theta}, \theta)=\frac{1}{2} I \dot{\theta}^{2}-U(\theta)=\frac{1}{2} I \dot{\theta}^{2}+M g R \cos \theta
$$

Hamiltonian function $H=K E+P E=T+U$ where potential energy is $U(\theta)=-M g R \cos \theta$

$$
H\left(p_{\theta}, \theta\right)=\frac{1}{2 I} p_{\theta}^{2}+U(\theta)=\frac{1}{2 I} p_{\theta}^{2}-M g R \cos \theta=E=\text { const. }
$$

1D Pendulum and phase plot

Lagrangian function $L=K E-P E=T-U$ where potential energy is $U(\theta)=-M g R \cos \theta$

$$
L(\dot{\theta}, \theta)=\frac{1}{2} I \dot{\theta}^{2}-U(\theta)=\frac{1}{2} I \dot{\theta}^{2}+M g R \cos \theta
$$

Hamiltonian function $H=K E+P E=T+U$ where potential energy is $U(\theta)=-M g R \cos \theta$

$$
H\left(p_{\theta}, \theta\right)=\frac{1}{2 I} p_{\theta}^{2}+U(\theta)=\frac{1}{2 I} p_{\theta}^{2}-M g R \cos \theta=E=\text { const. }
$$

implies: $p_{\theta}=\sqrt{2 I(E+M g R \cos \theta)}$

Example of plot of Hamilton for 1D-solid pendulum in its Phase Space $\left(\theta, p_{\theta}\right)$

$$
H\left(p_{\theta}, \theta\right)=E=\frac{1}{2 I} p_{\theta}^{2}-M g R \cos \theta, \text { or: } p_{\theta}=\sqrt{2 I(E+M g R \cos \theta)}
$$

Example of plot of Hamilton for 1D-solid pendulum in its Phase Space $\left(\theta, p_{\theta}\right)$

$$
H\left(p_{\theta}, \theta\right)=E=\frac{1}{2 I} p_{\theta}^{2}-M g R \cos \theta, \text { or: } p_{\theta}=\sqrt{2 I(E+M g R \cos \theta)}
$$

Funny way to look at Hamilton's equations:
$\binom{\dot{q}}{\dot{p}}=\binom{\partial_{p} H}{-\partial_{q} H}=\mathbf{e}_{\mathbf{H}} \times(-\nabla H)=(\mathrm{H}$-axis $) \times($ fall line $)$, where: $\left\{\begin{array}{c}(\mathrm{H}-\text { axis })=\mathbf{e}_{\mathbf{H}}=\mathbf{e}_{\mathbf{q}} \times \mathbf{e}_{\mathbf{p}} \\ \text { (fall line) })=-\nabla H\end{array}\right.$
2. Examples of Hamiltonian dynamics and phase plots 1D Pendulum and phase plot (Simulation)
Phase control (Simulation)

Unit 1
Fig. 7.4

Simulation of atomic classical (or semi-classical) dynamics under varying phase control

Variational calculus finds extreme (minimum or maximum) values to entire integrals
Minimize (or maximize): $S(q)=\int^{t_{1}} d t L(q(t), \dot{q}(t), t)$.

An arbitrary but small variation function $\delta q(t)$ is allowed at every point t in the figure along the curve except at the end points t_{0} and t_{1}. There we demand it not vary at all.(1)

$$
\begin{equation*}
\delta q\left(t_{0}\right)=0=\delta q\left(t_{1}\right) \tag{1}
\end{equation*}
$$

1st order $L(q+\delta q)$ approximate:

$$
S(q+\delta q)=\int_{t_{0}}^{t} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right] \text { where: } \delta \dot{q}=\frac{d}{d t} \delta q
$$

A weird "derivation" of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$$
S(q)=\int_{t_{0}}^{t_{1}} d t L(q(t), \dot{q}(t), t)
$$

An arbitrary but small variation function $\delta q(t)$ is allowed at every point t in the figure along the curve except at the end points t_{0} and t_{1}. There we demand it not vary at all.(1)

1st order $L(q+\delta q)$ approximate: $\delta q\left(t_{0}\right)=0=\delta q\left(t_{1}\right)$
$S(q+\delta q)=\int_{t_{0}}^{t_{1}} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right]$ where: $\delta \dot{q}=\frac{d}{d t} \delta q$

Variational calculus finds extreme (minimum or maximum) values to entire integrals

$$
S(q)=\int_{t_{0}}^{t_{1}} d t L(q(t), \dot{q}(t), t)
$$

An arbitrary but small variation function $\delta q(t)$ is allowed at every point t in the figure along the curve except at the end points t_{0} and t_{1}. There we demand it not vary at all.(1)

1st order $L(q+\delta q)$ approximate: $\delta q\left(t_{0}\right)=0=\delta q\left(t_{1}\right)$
$S(q+\delta q)=\int_{t_{0}}^{t} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right]$ where: $\delta \dot{q}=\frac{d}{d t} \delta q \quad$ Replace $\frac{\partial L}{\partial \dot{q}} \delta \dot{q}$ with $\frac{d}{d t}\left(\frac{\partial \dot{L}}{\partial \dot{q}} \delta q\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q$

$$
S(q+\delta q)=\int_{t_{0}}^{t} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q\right]+\int_{t_{0}}^{t} d t \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right)
$$

Variational calculus finds extreme (minimum or maximum) values to entire integrals

$$
S(q)=\int_{t_{0}}^{t_{1}} d t L(q(t), \dot{q}(t), t)
$$

An arbitrary but small variation function $\delta q(t)$ is allowed at every point t in the figure along the curve except at the end points t_{0} and t_{1}. There we demand it not vary at all.(1)

1 st $\operatorname{order} L(q+\delta q)$ approximate: $\delta q\left(t_{0}\right)=0=\delta q\left(t_{1}\right)$

$$
S(q+\delta q)=\int_{t_{0}} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right] \text { where: } \delta \dot{q}=\frac{d}{d t} \delta q \quad \text { Replace } \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \text { with } \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q
$$

$$
\begin{aligned}
S(q+\delta q) & =\int_{t_{0}}^{t_{1}} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q\right]+\int_{t_{0}}^{t} d t \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right) \\
& \left.=\int_{t_{0}}^{t} d t L(q, \dot{q}, t)+\int_{t_{0}}^{t} d t\left[\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right] \delta q+\left(\frac{\partial L}{\partial \dot{q}} \delta q\right) \right\rvert\, t_{t_{0}}
\end{aligned}
$$

Variational calculus finds extreme (minimum or maximum) values to entire integrals

$$
S(q)=\int_{t_{0}}^{t_{1}} d t L(q(t), \dot{q}(t), t)
$$

An arbitrary but small variation function $\delta q(t)$ is allowed at every point t in the figure along the curve except at the end points t_{0} and t_{1}. There we demand it not vary at all.(1)

1st order $L(q+\delta q)$ approximate: $\delta q\left(t_{0}\right)=0=\delta q\left(t_{1}\right)$

$$
S(q+\delta q)=\int_{t_{0}}^{t} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right] \text { where: } \delta \dot{q}=\frac{d}{d t} \delta q \quad \text { Replace } \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \text { with } \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q
$$

$$
\begin{aligned}
S(q+\delta q) & =\int_{t_{0}}^{t_{1}} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q\right]+\int_{t_{0}}^{t_{1}} d t \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right) \\
& =\int_{t_{0}}^{t_{0}} d t L(q, \dot{q}, t)+\int_{t_{0}}^{t} d t\left[\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right] \delta q+\left(\frac{\partial L}{\partial q} \delta q\right)\left(t_{0}\right.
\end{aligned}
$$

Third term vanishes by (1). This leaves first order variation: $\delta S=S(q+\delta q)-S(q)=\int_{t_{0}}^{t_{0}} d t\left[\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right] \delta q$ Extreme value (actually minimum value) of $S(q)$ occurs if and only if Lagrange equation is satisfied!

$$
\delta S=0 \Rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=0 \quad \text { Euler-Lagrange equation }(S)
$$

A weird "derivation" of Lagrange's equations
Variational calculus finds extreme (minimum or maximum) values to entire integrals

$$
S(q)=\int_{t_{1}}^{t_{1}} d t L(q(t), \dot{q}(t), t)
$$

An arbitrary but small variation function $\delta q(t)$ is allowed at every point t in the figure along the curve except at the end points t_{0} and t_{1}. There we demand it not vary at all.(1)

1st order $L(q+\delta q)$ approximate: $\delta q\left(t_{0}\right)=0=\delta q\left(t_{1}\right)$

$$
S(q+\delta q)=\int_{t_{0}} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q+\frac{\partial L}{\partial \dot{q}} \delta \dot{q}\right] \quad \text { where: } \delta \dot{q}=\frac{d}{d t} \delta q \quad \text { Replace } \frac{\partial L}{\partial \dot{q}} \delta \dot{q} \quad \text { with } \quad \frac{d}{d t}\left(\frac{\partial \dot{L}}{\partial \dot{q}} \delta q\right)-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q
$$

$$
\begin{aligned}
S(q+\delta q) & =\int_{t_{0}}^{t_{1}} d t\left[L(q, \dot{q}, t)+\frac{\partial L}{\partial q} \delta q-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right) \delta q\right]+\int_{t_{0}}^{t_{1}} d t \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}} \delta q\right) \\
& \left.=\int_{t_{0}}^{t_{1}} d t L(q, \dot{q}, t)+\int_{t_{0}}^{t_{1}} d t\left[\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right] \delta q+\frac{\partial L}{\partial q} \delta q\right] t_{t_{0}}^{t_{1}}
\end{aligned}
$$

Third term vanishes by (1). This leaves first order variation: $\delta S=S(q+\delta q)-S(q)=\int_{t_{0}}^{t_{0}} d t\left[\frac{\partial L}{\partial q}-\frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)\right] \delta q$ Extreme value (actually minimum value) of $S(q)$ occurs if and only if Lagrange equation is satisfied!

$$
\delta S=0 \Rightarrow \frac{d}{d t}\left(\frac{\partial L}{\partial \dot{q}}\right)-\frac{\partial L}{\partial q}=0 \quad \text { Euler-Lagrange equation }(S)
$$

But, WHY is nature so inclined to fly JUST SO as to minimize the Lagrangian $L=T$ - U???
3. Exploring phase space and Lagrangian mechanics more deeply A weird "derivation" of Lagrange's equations

Poincare identity and Action

How Classicists might have "derived" quantum equations
Huygen's contact transformations enforce minimum action
How to do quantum mechanics if you only know classical mechanics

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \bullet \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad\left(\mathbf{v}=\frac{d \mathbf{r}}{d t} \text { implies: } \mathbf{v} \cdot d t=d \mathbf{r}\right)
$$

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \bullet \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad\left(\mathbf{v}=\frac{d \mathbf{r}}{d t} \text { implies: } \mathbf{v} \cdot d t=d \mathbf{r}\right)
$$

This is the time differential $d S$ of action $S=\int L \cdot d t$ whose time derivative is rate L of quantum phase.

$$
d S=L \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \text { where }: \quad L=\frac{d S}{d t}
$$

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \bullet \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \mathbf{v}=\frac{d \mathbf{r}}{d t}
$$

This is the time differential $d S$ of action $S=\int L \cdot d t$ whose time derivative is rate L of quantum phase.

$$
d S=L \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \text { where }: \quad L=\frac{d S}{d t}
$$

Unit 2 shows DeBroglie law $\mathbf{p}=\hbar \mathbf{k}$ and Planck law $H=\hbar \omega$ make quantum plane wave phase Φ :

$$
\Phi=S / \hbar=\int L \cdot d t / \hbar
$$

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \bullet \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \mathbf{v}=\frac{d \mathbf{r}}{d t}
$$

This is the time differential $d S$ of action $S=\int L \cdot d t \quad$ whose time derivative is rate L of quantum phase.

$$
d S=L \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \text { where: } \quad L=\frac{d S}{d t}
$$

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \bullet \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \mathbf{v}=\frac{d \mathbf{r}}{d t}
$$

This is the time differential $d S$ of action $S=\int L \cdot d t \quad$ whose time derivative is rate L of quantum phase.

$$
d S=L \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \text { where }: \quad L=\frac{d S}{d t}
$$

Unit 2 shows DeBroglie law $\mathbf{p}=\hbar \mathbf{k}$ and Planck law $H=\hbar \omega$ make quantum plane wave phase $\Phi:$ $\begin{array}{r}\Phi=S / \hbar=\int L \cdot d t / \hbar\end{array}$

$$
\psi(\mathbf{r}, t)=e^{i S / \hbar}=e^{i(\mathbf{p} \cdot \mathbf{r}-H \cdot t) / \hbar}=e^{i(\mathbf{k} \cdot \mathbf{r}-\omega \cdot t)}
$$

$\mathrm{Q}:$ When is the Action-differential $d S$ integrable?
A: Differential $d W=f_{x}(x, y) d x+f_{y}(x, y) d y$ is integrable to a $W(x, y)$ if: $f_{x}=\frac{\partial W}{\partial x}$ and: $f_{y}=\frac{\partial W}{\partial y}$

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \bullet \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \mathbf{v}=\frac{d \mathbf{r}}{d t}
$$

This is the time differential $d S$ of action $S=\int L \cdot d t \quad$ whose time derivative is rate L of quantum phase.

$$
d S=L \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \text { where: } \quad L=\frac{d S}{d t}
$$

Unit 2 shows DeBroglie law $\mathbf{p}=\hbar \mathbf{k}$ and Planck law $H=\hbar \omega$ make quantum plane wave phase $\Phi:$ $\begin{array}{r}\Phi=S / \hbar=\int L \cdot d t / \hbar\end{array}$

$$
\begin{aligned}
& \psi(\mathbf{r}, \boldsymbol{t})=e^{i S / \hbar}=e^{i(\mathbf{p} \cdot \mathbf{r}-H \cdot t) / \hbar}=e^{i(\mathbf{k} \cdot \mathbf{r}-\omega \cdot t)} \longleftarrow \\
& \text { ee Action-differential } d S \text { integrable? } \\
& \text { al } d W=f_{x}(x, y) d x+f_{y}(x, y) d y \text { is integrable to a } W(x, y) \text { if: } f_{x}=\frac{\partial W}{\partial x} \text { and: } f_{y}=\frac{\partial W}{\partial y}
\end{aligned}
$$

Similar to conditions
for integrating work differential $d W=\mathbf{f} \bullet d \mathbf{r}$ to get potential $W(\mathbf{r})$. That condition is no curl allowed: $\nabla \times \mathbf{f}=\mathbf{0}$ or $\frac{\partial \text {-symmetry of } W \text { : }}{}$

$$
\frac{\partial f_{x}}{\partial y}=\frac{\partial^{2} W}{\partial y \partial x}=\frac{\partial^{2} W}{\partial x \partial y}=\frac{\partial f_{y}}{\partial x}
$$

Legendre-Poincare identity and Action

Legendre transform $L(\mathbf{v})=\mathbf{p} \cdot \mathbf{v}-H(\mathbf{p})$ becomes Poincare's invariant differential if $d t$ is cleared.

$$
L \cdot d t=\mathbf{p} \cdot \mathbf{v} \cdot d t-H \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \mathbf{v}=\frac{d \mathbf{r}}{d t}
$$

This is the time differential $d S$ of action $S=\int L \cdot d t \quad$ whose time derivative is rate L of quantum phase.

$$
d S=L \cdot d t=\mathbf{p} \cdot d \mathbf{r}-H \cdot d t \quad \text { where }: \quad L=\frac{d S}{d t}
$$

Unit 2 shows DeBroglie law $\mathbf{p = \hbar k}$ and Planck law $H=\hbar \omega$ maker quantum plane wave phase $\Phi:$ $\begin{array}{r}\Phi=S / \hbar=\int L \cdot d t / \hbar\end{array}$

$$
\begin{aligned}
& \begin{array}{l}
\psi(\mathbf{r}, t)=e^{i S / \hbar}=e^{i(\mathbf{p} \cdot \mathbf{r}-H \cdot t) / \hbar}=e^{i(\mathbf{k} \cdot \mathbf{r}-\omega \cdot t)} \\
\\
\text { he Action-differential } d S \text { integrable? } \\
d W=f_{x}(x, y) d x+f_{y}(x, y) d y \text { is integrable to a } W(x, y) \text { if: } f_{x}=\frac{\partial W}{\partial x} \text { and: } f_{y}=\frac{\partial W}{\partial y}
\end{array} \\
& \text { Similar to conditions } \\
& \text { for integrating work } \\
& \text { differential } d W=\mathbf{f} \cdot d \mathbf{r} \\
& \text { to get potential } W(\mathbf{r}) \text {. } \\
& \text { That condition is no } \\
& \text { curl allowed: } \nabla \times \mathbf{f}=\mathbf{0} \\
& d S \text { is integrable if: } \frac{\partial S}{\partial \mathbf{r}}=\mathbf{p} \text { and: } \frac{\partial S}{\partial t}=-H
\end{aligned}
$$

3. Exploring phase space and Lagrangian mechanics more deeply A weird "derivation" of Lagrange's equations Poincare identity and Action How Classicists might have "derived" quantum equations
Huygen's contact transformations enforce minimum action How to do quantum mechanics if you only know classical mechanics

How Jacobi-Hamilton could have "derived" Schrodinger equations

 (Given "quantum wave")$$
\psi(\mathbf{r}, t)=e^{i S / \hbar}=e^{i(\mathbf{p} \cdot \mathbf{r}-H \cdot t) / \hbar}=e^{i(\mathbf{k} \cdot \mathbf{r}-\omega \cdot t)}
$$

$$
d S \text { is integrable if: } \frac{\partial S}{\partial \mathbf{r}}=\mathbf{p} \text { and: } \frac{\partial S}{\partial t}=-H
$$

These conditions are known as Jacobi-Hamilton equations

How Jacobi-Hamilton could have "derived" Schrodinger equations (Given "quantum wave")

$$
\psi(\mathbf{r}, t)=e^{i S / \hbar}=e^{i(\mathbf{p} \cdot \mathbf{r}-H \cdot t) / \hbar}=e^{i(\mathrm{k} \cdot \mathbf{r}-\omega \cdot t)}
$$

$$
d S \text { is integrable if: } \frac{\partial S}{\partial \mathbf{r}}=\mathbf{p} \text { and: } \frac{\partial S}{\partial t}=-H
$$

These conditions are known as Jacobi-Hamilton equations

Try $1{ }^{\text {st }} \mathbf{r}$-derivative of wave ψ

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r}, t) & =\frac{\partial}{\partial \mathbf{r}} e^{i S / \hbar}=\frac{\partial(i S / \hbar)}{\partial \mathbf{r}} e^{i S / \hbar}=(i / \hbar) \frac{\partial S}{\partial \mathbf{r}} \psi(\mathbf{r}, t) \\
\frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r}, t) & =(i / \hbar) \mathbf{p} \psi(\mathbf{r}, t) \text { or: } \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r}, t)=\mathbf{p} \psi(\mathbf{r}, t)
\end{aligned}
$$

How Jacobi-Hamilton could have "derived" Schrodinger equations

 (Given "quantum vave")$$
\psi(\mathbf{r}, t)=e^{i S / \hbar}=e^{i(\mathbf{p} \cdot \mathbf{r}-H \cdot t) / \hbar}=e^{i(\mathrm{k} \cdot \mathbf{r}-\omega \cdot t)}
$$

$$
d S \text { is integrable if: } \frac{\partial S}{\partial \mathbf{r}}=\mathbf{p} \text { and: } \frac{\partial S}{\partial t}=-H
$$

These conditions are known as Jacobi-Hamilton equations

Try ${ }^{\text {st }} \mathbf{r}$-derivative of wave ψ

$$
\begin{aligned}
& \frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r}, t)=\frac{\partial}{\partial \mathbf{r}} e^{i S / \hbar}=\frac{\partial(i S / \hbar)}{\partial \mathbf{r}} e^{i S / \hbar}=(i / \hbar) \frac{\partial S}{\partial \mathbf{r}} \psi(\mathbf{r}, t) \\
& \frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r}, t)=(i / \hbar) \mathbf{p} \psi(\mathbf{r}, t) \text { or: } \frac{\hbar}{\mathrm{i}} \frac{\partial}{\partial \mathbf{r}} \psi(\mathbf{r}, t)=\mathbf{p} \psi(\mathbf{r}, t)
\end{aligned}
$$

Try $1^{\text {st }} \boldsymbol{t}$-derivative of wave ψ

$$
\begin{aligned}
\frac{\partial}{\partial t} \psi(\mathbf{r}, t) & =\frac{\partial}{\partial t} e^{i S / \hbar}=\frac{\partial(i S / \hbar)}{\partial t} e^{i S / \hbar}=(i / \hbar) \frac{\partial S}{\partial t} \psi(\mathbf{r}, t) \\
& =(i / \hbar)(-H) \psi(\mathbf{r}, t) \text { or: } \mathrm{i} \hbar \frac{\partial}{\partial t} \psi(\mathbf{r}, t)=H \psi(\mathbf{r}, t)
\end{aligned}
$$

3. Exploring phase space and Lagrangian mechanics more deeply A weird "derivation" of Lagrange's equations Poincare identity and Action How Classicists might have "derived" quantum equations

Huygen's contact transformations enforce minimum action

How to do quantum mechanics if you only know classical mechanics

Each point \mathbf{r}_{k} on a wavefront "broadcasts" in all directions.
Only minimum action path interferes constructively

Fig. 12.12

Huygen's contact transformations enforce minimum action

Each point \mathbf{r}_{k} on a wavefront "broadcasts" in all directions.
Only minimum action path interferes constructively

$$
\sum_{\mathbf{r}^{\prime}}\left\langle\mathbf{r}_{1} \mid \mathbf{r}^{\prime}\right\rangle\left\langle\mathbf{r}^{\prime} \mid \mathbf{r}_{0}\right\rangle \cong \sum_{\mathbf{r}^{\prime}} e^{i\left(S_{H}\left(\mathbf{r}_{0} \cdot \mathbf{x}^{\prime}\right)+S_{H}\left(\mathbf{r}^{\prime} \mathbf{r}_{1}\right)\right) / \hbar}=e^{i S_{H}\left(\mathbf{r}_{0} \cdot \mathbf{r}_{1}\right) / \hbar}=\left\langle\mathbf{r}_{1} \mid \mathbf{r}_{0}\right\rangle
$$

3. Exploring phase space and Lagrangian mechanics more deeply A weird "derivation" of Lagrange's equations Poincare identity and Action How Classicists might have "derived" quantum equations Huygen's contact transformations enforce minimum action How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S_{H} / \hbar in amplitude to be an integral multiple n of 2π after a closed loop integral $S_{H}\left(\mathbf{r}_{0}: \mathbf{r}_{0}\right)=\int_{r_{0}}^{r_{0}} \mathbf{p} \cdot d \mathbf{r}$. The integer $n(n=0,1,2, \ldots)$ is a quantum number.

$$
l=\left\langle\mathbf{r}_{0} \mid \mathbf{r}_{0}\right\rangle=e^{i S_{H}\left(\mathbf{r}_{0} \cdot \mathbf{r}_{0}\right) / \hbar}=e^{i \Sigma_{H} / \hbar}=1 \text { for: } \Sigma_{H}=2 \pi \hbar n=h n
$$

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the current accumulated value of action $S_{H}(\mathbf{0}: \mathbf{r}) / \hbar$. Adjust energy to quantized pattern (if closed system*)

$$
S_{H}(\mathbf{0}: \mathbf{r})=S_{p}(\mathbf{0}, 0: \mathbf{r}, t)+H t=\int_{0}^{t} L d t+H t
$$

How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S_{H} / \hbar in amplitude to be an integral multiple n of 2π after a closed loop integral $S_{H}\left(\mathbf{r}_{0}: \mathbf{r}_{0}\right)=\int_{r_{0}}^{r_{0}} \mathbf{p} \cdot d \mathbf{r}$. The integer $n(n=0,1,2, \ldots)$ is a quantum number.

$$
l=\left\langle\mathbf{r}_{0} \mid \mathbf{r}_{0}\right\rangle=e^{i S_{H}\left(\mathbf{r}_{0} \cdot \mathbf{r}_{0}\right) / \hbar}=e^{i \Sigma_{H} / \hbar}=1 \text { for: } \Sigma_{H}=2 \pi \hbar n=h n
$$

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the current accumulated value of action $S_{H}(\mathbf{0}: \mathbf{r}) / \hbar$. Adjust energy to quantized pattern (if closed system*)

$$
S_{H}(\mathbf{0}: \mathbf{r})=S_{p}(\mathbf{0}, 0: \mathbf{r}, t)+H t=\int_{0}^{t} L d t+H t .
$$

The hue should represent the phase angle $S_{H}(\mathbf{0}: \mathbf{r}) / \hbar$ modulo 2π as, for example,
$0=$ red, $\pi / 4=$ orange, $\pi / 2=$ yellow, $3 \pi / 4=$ green, $\pi=$ cyan (opposite of red), $5 \pi / 4=$ indigo, $3 \pi / 2=$ blue, $7 \pi / 4=$ purple, and $2 \pi=$ red (full color circle). Interpolating action on a palette of 32 colors is enough precision for low quanta.

How to do quantum mechanics if you only know classical mechanics

Bohr quantization requires quantum phase S_{H} / \hbar in amplitude to be an integral multiple n of 2π after a closed loop integral $S_{H}\left(\mathbf{r}_{0}: \mathbf{r}_{0}\right)=\int_{r_{0}}^{r_{0}} \mathbf{p} \cdot d \mathbf{r}$. The integer $n(n=0,1,2, \ldots)$ is a quantum number.

$$
l=\left\langle\mathbf{r}_{0} \mid \mathbf{r}_{0}\right\rangle=e^{i S_{H}\left(\mathbf{r}_{0} \cdot \mathbf{r}_{0}\right) / \hbar}=e^{i \Sigma_{H} / \hbar}=1 \text { for: } \Sigma_{H}=2 \pi \hbar n=h n
$$

Numerically integrate Hamilton's equations and Lagrangian L. Color the trajectory according to the current accumulated value of action $S_{H}(\mathbf{0}: \mathbf{r}) / \hbar$. Adjust energy to quantized pattern (if closed system*)

$$
S_{H}(\mathbf{0}: \mathbf{r})=S_{p}(\mathbf{0}, 0: \mathbf{r}, t)+H t=\int_{0}^{t} L d t+H t
$$

The hue should represent the phase angle $S_{H}(\mathbf{0}: \mathbf{r}) / \hbar$ modulo 2π as, for example,
$0=$ red, $\pi / 4=$ orange, $\pi / 2=$ yellow, $3 \pi / 4=$ green, $\pi=$ cyan (opposite of red), $5 \pi / 4=$ indigo, $3 \pi / 2=$ blue, $7 \pi / 4=$ purple, and $2 \pi=$ red (full color circle). Interpolating action on a palette of 32 colors is enough precision for low quanta.

A moving wave has a quantum phase velocity found by setting $S=$ const. or $d S(0,0: r, t)=0=\mathbf{p} \cdot d \mathbf{r}-H d t$.

$$
\mathbf{V}_{\text {phase }}=\frac{d \mathbf{r}}{d t}=\frac{H}{\mathbf{p}}=\frac{\omega}{\mathbf{k}}
$$

Quantum "phase wavefronts"
(a) $S_{H}=0.3$
(b) $S_{H}=0.35$

Unit 1
Fig. 12.15
Unit 1
Fig. 12.15
(d) $S_{H}=0.9$

19. 12.151

A moving wave has a quantum phase velocity found by setting $S=$ const. or $d S(0,0: r, t)=0=\mathbf{p} \cdot d \mathbf{r}-H d t$.

$$
\mathbf{V}_{\text {phase }}=\frac{d \mathbf{r}}{d t}=\frac{H}{\mathbf{p}}=\frac{\omega}{\mathbf{k}}
$$

This is quite the opposite of classical particle velocity which is quantum group velocity.

Quantum "phase wavefronts"
(a) $S_{H}=0.3$
(b) $S_{H}=0.35$
(c) $S_{H}=0.4$

$$
\mathbf{V}_{\text {group }}=\frac{d \mathbf{r}}{d t}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\partial \omega}{\partial \mathbf{k}}
$$

Note: This is Hamilton's $1^{\text {st }}$ Equation

Unit 1
Fig. 12.15
(d) $S_{H}=0.9$
g. 12.15

A moving wave has a quantum phase velocity found by setting $S=$ const. or $d S(0,0: r, t)=0=\mathbf{p} \cdot d \mathbf{r}-H d t$.

$$
\mathbf{V}_{\text {phase }}=\frac{d \mathbf{r}}{d t}=\frac{H}{\mathbf{p}}=\frac{\omega}{\mathbf{k}}
$$

This is quite the opposite of classical particle velocity which is quantum group velocity.

Quantum "phase wavefronts"
(a) $S_{H}=0.3$

(d) $S_{H}=0.9$

$$
\mathbf{V}_{\text {group }}=\frac{d \mathbf{r}}{d t}=\dot{\mathbf{r}}=\frac{\partial H}{\partial \mathbf{p}}=\frac{\partial \omega}{\partial \mathbf{k}}
$$

Note: This is Hamilton's $1^{\text {st }}$ Equation

Classical "blast wavefronts"

(c) $T=2.3$ lower $V_{\text {group }}$ up here ...quantum group velocity that is classical particle velocity
higher $V_{\text {group }}$ down here

